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Abstract
We derive a general solution based on geometric optics that describes the light propagation
properties in multimode optical fibers with inverted refractive index profiles. Using this general
solution, we classify rays according to their propagation properties and calculate the analytical
expressions of the ray trajectories inside these fibers under different launching conditions. In
addition, we discuss the most suitable propagation conditions that maximize the confinement of
light power in the vicinity of the core-cladding interface for sensing purposes.

Keywords: optical fibers, inverted graded index fibers, ray propagation, geometric optics

(Some figures may appear in colour only in the online journal)

1. Introduction

Although an accurate study of light propagation in optical
fibers would require solvingMaxwell’s equations [1], it is pos-
sible to make use of approximations based on geometric optics
if highlymultimode fibers are involved. This approach has suc-
cessfully been applied to step-index and graded-index fibers
[2–6], as well as to more recent multi-step [7] and multicore
[8] fibers.

In 1991, Lachance and Bélanger proposed a new type of
fiber with a core of divergent parabolic graded-index pro-
file, a special fiber whose refractive index increased from the
fiber axis to the core-cladding interface [9]. Even though they
investigated the characteristics of such fibers by means of an
electromagnetic treatment, their analysis pertained only to the
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fundamental mode. Likewise, other authors also tackled the
problem of solving Maxwell’s equations in these fibers; how-
ever, their analyses were restricted to few propagating modes
[10, 11].

In 1998, Matejec et al revisited the subject and fabricated
inverted graded index (IGI) fibers [12]. A few years later,
Tsukada et al succeeded in manufacturing IGI fibers from
polymers [13]. Consequently, there is a renewed interest in
the study of these fibers because of their potential use in light
amplification and in the design of chemical sensors through the
evanescent field [14–19]. Likewise, IGI fibers are expected to
play a key role in the development of solar energy technolo-
gies and boost the transition towards clean energy, since the
manufacture of inverted graded index polymer optical fibers
with embedded photo luminescent entities will enable their
use as luminescent solar concentrators [20, 21]. For instance,
in IGI fibers featuring a radially-growing dopant distribution
(dyes, quantum dots, doped-scattering nanoparticles or any
efficient combination of them), most of the dopants accu-
mulate in the proximity of the fiber-air interface, facilitating
the absorption of sunlight and its subsequent re-emission as
fluorescence light that is collected in the fiber ends, where
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the photovoltaic cells are placed for the energy conversion
[22–24].

Even though the propagation of rays in a meridional plane
has been explained to a considerable extent, to the best of
our knowledge, there is still missing a general solution that
includes the whole set of rays in an IGI fiber. The problem of
solving ray paths can be addressed by making use of different
formalisms, yet equivalent. Among others, we can highlight
the Eikonal or ray equation [25] as well as the Lagrangian and
Hamiltonian formalisms [26, 27]. Because of the simplicity of
the solutions obtained from the Eikonal equation and since this
approach provides an adequate framework to identify sym-
metries and invariants, we have obtained the general solution
of ray propagation in a multimode IGI fiber from the Eikonal
equation and using geometric optics.

In the following section, we will introduce the structure of
the IGI fiber and classify rays depending on their oscillating
or evanescent nature. Afterwards, we will solve the general
equation for a ray path from the Eikonal equation and show
some meaningful results obtained under specific conditions;
in addition, we will discuss the most remarkable features and
conditions that make these fibers especially suitable for sens-
ing purposes and solar energy applications. Finally, we will
summarize the main conclusions.

2. Theory

2.1. Description of the fiber

We will focus on the study of light propagation in IGI fibers
with the following refractive index profile:

n2 (r) =

 n2o

[
1+ 2∆

(
r
ρ

)2]
r⩽ ρ,

n2cl r> ρ,
(1)

where no is the refractive index on the fiber axis, ncl the refract-
ive index of the surrounding claddingmaterial, ρ the half of the
fiber core diameter d= 2ρ, and ∆ the inverted profile height
parameter defined as

∆=
n2co − n2o
2n2o

, (2)

being nco the maximum value of the refractive index inside the
core at the core-cladding interface r= ρ (not to be confused
with the standard profile height parameter used in conventional
fibers).

The refractive index profile of equation (1) corresponds to
a power-law profile, although the radial variation is inverted,
in the sense that the refractive index increases as we move
away from the fiber axis, reaching a maximum value nco at the
core-cladding interface. In the cladding, the refractive index
is uniform and equal to ncl. There is a noticeable difference
between IGI fibers and conventional parabolic profile graded
fibers, since there is no continuity in the refractive index at the
core-cladding interface for the former, as shown in figure 1.

Figure 1. Refractive index profile of an IGI fiber. Radius r is
normalized to the half of the fiber core diameter (ρ= d/2). Refer to
table 1 for a more detailed description of the fiber parameters.

Table 1. Parameters of the PMMA based IGI fiber used in this work.

Parameter Description Value

ncl Cladding refractive index 1.402
nco Maximum core refractive index 1.492
no Minimum core refractive index 1.417
∆ Inverted profile height parameter 0.0543
d Core diameter (d= 2ρ) 1 mm
θc Maximum critical angle relative to

the fiber axisa
20◦

a Measured at the core-cladding interface.

Table 1 summarizes themain characteristics of poly-methyl
methacrylate (PMMA) based fiber core that will be used
throughout this work.

2.2. Ray invariants

Our starting point is the Eikonal equation [25]

d
ds

[
n(r)

dr
ds

]
=∇n(r) , (3)

where s is the distance along the ray path, and r represents the
position vector of a point on the ray path. We can write this
expression in cylindrical coordinates (r,φ,z) as follows

d
ds

[
n(r)

dr
ds

]
− rn(r)

(
dφ
ds

)2

=
dn(r)
dr

,

d
ds

[
n(r)

dφ
ds

]
− 2n(r)

r
dφ
ds

dr
ds

= 0,

d
ds

[
n(r)

dz
ds

]
= 0.

(4)

The third equation in equation (4) can easily be integrated,
since the refractive index does not depend on the z-coordinate.
Thus

d
ds

[
n(r)

dz
ds

]
= 0⇒ n(r)

dz
ds

= constant.

2
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We will call this motion constant the ray invariant β̃, and
it arises from the translational invariance of the fiber. We can
rewrite this expression as

β̃ = n(r)
dz
ds

= n(r)cosθz (r) , (5)

where θz (r) stands for the angle between the tangent to the
ray path and the axial direction z. We can use the invariant β̃
to eliminate ds from the first equation of equation (4) via

d
ds

≡ β̃

n(r)
d
dz

(6)

to obtain the ray-path equation in the radial direction

β̃2

[
d2r
dz2

− r

(
dφ
dz

)2
]
=

1
2
dn2 (r)
dr

, (7)

whereas the azimuthal component of equation (4) will lead to
a second ray invariant:

2
dr
dz

dφ
dz

+ r
d2φ
dz2

= 0⇒ d
dz

(
r2
dφ
dz

)
= 0⇒ r2

dφ
dz

= constant.

This second constant is related to the azimuthal symmetry of
the fiber (such an expression is reminiscent of the conservation
of the angular momentum for a particle of unit mass moving
under the action of a central force field [28]; notice also that it
can directly be obtained from the Eikonal equation, since the
refractive index does not depend on the angular coordinate).
This constant is usually written in another more convenient
dimensionless form that is also called the ray invariant l̃ [1]:

l̃= β̃
r2

ρ

dφ
dz
. (8)

2.3. Ray-path equation

We will write the ray-path equation given in equation (7) in
terms of the ray invariants β̃ and l̃. The most straightforward
way is to take the square of the differential path length ds [29]:

(ds)2 = (dr)2 + r2(dφ)2 +(dz)2.

If we divide it by (dz)2 and replace ds/dzwith n(r)/β̃ using
equations (5) and (6), we obtain[

n(r)

β̃

]2
=

(
dr
dz

)2

+ r2
(
dφ
dz

)2

+ 1.

Finally, if we rearrange the resultant expression and use
equation (8), we have the ray-path equation

g(r)≡ β̃2

(
dr
dz

)2

= n2 (r)− β̃2 − l̃2
ρ2

r2
. (9)

In the following section, we will consider specific applica-
tions of the ray-path equation (also denoted by g(r)).

3. Results and discussion

3.1. Classification of rays

The ray-path equation allows us to classify rays in a conveni-
ent way. Since its left-side β̃2(dr/dz)2must necessarily be pos-
itive, ray paths can exist only if the right-side of g(r) is non-
negative; consequently, we will have oscillating (propagating)
fields for the range of values of the radial coordinate r satisfy-
ing the previous condition, whereas fields will be evanescent
for negative values of the right-side of g(r).

Likewise, rays can also be classified into meridional and
skew rays according to the value of the ray invariant l̃. If l̃= 0,
rays will propagate in a meridional plane (i.e. a plane that con-
tains the fiber symmetry axis), whereas if l̃ ̸= 0, rays will fol-
low a path that excludes the fiber symmetry axis (propagation
is not allowed if the last term in the right-side of g(r) tends to
infinity when r tends to 0).

Taking into account both considerations, we can classify
rays as follows:

3.1.1. Bound rays. These rays are bound to the fiber core,
so that g(r)< 0 in the cladding (∀r> ρ) and g(r)> 0 in the
core (∀r⩽ ρ). At the core-cladding interface (r= ρ), i.e. at the
turning point rtp:

g(r)|r=rtp=ρ = n2co − β̃2 − l̃2 > 0.

This condition must be fulfilled for every value of l̃, hence:

β̃ ⩽ nco.

Furthermore, at the core-cladding interface, Snell’s law dic-
tates that the maximum value of θz (ρ) is:

cosθz,max (ρ) = cosθc =
ncl
nco

, (10)

whereas the minimum β̃ is given by nco cosθc = ncl. In sum-
mary, for bound rays:{

ncl ⩽ β̃ ⩽ nco,

0⩽ l̃⩽ l̃max

(
β̃
)
,

(11)

where l̃max

(
β̃
)
is the maximum value allowed for l̃ in the

limit g(r) = 0:

l̃2max

(
β̃
)
= n2co − β̃2. (12)

We have plotted in figures 2 and 3 the ray-path equation for
bound rays, considering meridional and skew rays separately.
The values of the ray invariants have been chosen in order to
illustrate the most representative results.

Both figures reveal that (a) ray paths only exist (non-
negative values of g(r)) between a minimum radial coordin-
ate denoted by ric (inner caustic radius) and the maximum ρ
(except for values of the ray invariant β̃ less than no, since

3
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Figure 2. Ray-path equation for bound meridional rays (̃l= 0) as a
function of fiber radius r (normalized to ρ) and for five different
values of β̃ (shown in the legend). Numerical results obtained with
the fiber parameters from table 1. Within the core (r⩽ ρ), the
non-negative values of g(r) (solid lines) start from an inner caustic
radius ric (the x-intercept point, marked by a circle) to the turning
point rtp in the core-cladding interface (rtp = ρ), and they correspond
to oscillating solutions. In the cladding (r> ρ), all values of g(r)
are negative (dotted lines) and lead to evanescent solutions.

Figure 3. Ray-path equation for bound skew rays (̃l ̸= 0)
as a function of fiber radius r (normalized to ρ) and for five
different values of l̃ (shown in the legend), with β̃ = nco−
(1/2)(nco − no) = β̃a. For the sake of comparison, the result for
bound meridional rays, l̃= 0, is also plotted (blue line). Each inner
caustic radius ric is marked by a circle, and the turning point is again
in the core-cladding interface (rtp = ρ).

all these rays are bound meridional), and (b) ray-paths tend to
concentrate in an outer ring in the vicinity of the core-cladding
interface for increasing values of the ray invariants β̃ and/or l̃.
Such a feature makes the IGI fiber interesting for sensing pur-
poses, since the power associated to rays lies closer to the outer
surface of the fiber, increasing thus the interaction of light with
the surrounding medium. As will be discussed later, the val-
ues of both ray invariants will be subjected to the launching
conditions (initial launching point and tilt angle relative to the
fiber axis).

Figure 4. Ray-path equation for refracting meridional rays (̃l= 0)
as a function of fiber radius r (normalized to ρ) and for five different
values of β̃ (shown in the legend). g(r) is always non-negative, so
that the oscillating solutions extend across the whole core (r⩽ ρ)
and the cladding (r> ρ), and there is neither an inner caustic nor a
turning point.

3.1.2. Refracting rays. These rays propagate into the clad-
ding, so that g(r)> 0 in the cladding (∀r> ρ). Therefore,

g(r) =

{
n2cl − β̃2 − l̃2 > 0 r= ρ,

n2cl − β̃2 > 0 r→∞,

that is, for refracting rays:

0⩽ β̃2 + l̃2 < n2cl. (13)

Figures 4 and 5 show the ray-path equation for refracting
rays, both meridional and skew. According to figure 4, and in
contrast to bound meridional rays, refracting meridional rays
extend across the whole core and the cladding and there is no
inner caustic. Skew refracting rays, however, extend from the
inner caustic radius to the cladding (see figure 5).

In any case, since refracting rays leak power out of the fiber,
launching conditions are always set in order to prevent their
excitation.

3.1.3. Tunneling rays. These rays undergo a much
slower leakage compared to refracting rays and satisfy
simultaneously

β̃ < ncl and β̃
2 + l̃2 ⩾ n2cl,

that is, for tunneling rays: 0⩽ β̃ < ncl,(
n2cl − β̃2

)1/2
⩽ l̃⩽ l̃max

(
β̃
)
,

(14)

being l̃max

(
β̃
)
the maximum value allowed for l̃ defined in

equation (12). From the definition given in equation (14), it is
clear that tunneling rays are always skew (̃l ̸= 0).

The results shown in figure 6 suggest that tunneling
rays propagating in the core disappear at the core-cladding

4
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Figure 5. Ray-path equation for refracting skew rays (̃l ̸= 0) as a
function of fiber radius r (normalized to ρ) and for five different
values of l̃ (shown in the legend), with β̃ = ncl − (1/2)(no − ncl).
For the sake of comparison, the result for refracting meridional rays,
l̃= 0, is also plotted (blue line). The non-negative values of g(r)
(solid lines), corresponding to oscillating solutions, extend from the
inner caustic radius ric (marked by a circle) in the core (r⩽ ρ) to
infinity in the cladding (r> ρ), and there is no turning point.

interface (r⩽ ρ) and reappear in the cladding at a finite dis-
tance (more specifically, part of the ray power is lost to
the cladding by means of a tunneling mechanism due to
the curvature of the core-cladding interface). This distance
is referred as the radiation caustic rrad, and it can easily be
obtained from g(r)|r=rrad = 0:

rrad =
ρ̃l(

n2cl − β̃2
)1/2 . (15)

3.2. Analysis of the inner caustic radius

For a given ray path, the inner caustic is the surface defined
by the radius point ric that makes dr/dz|r=ric = 0. As we have
already pointed out, propagation of bound rays is restricted
to radial components between this minimum radius and the
turning point in the core-cladding interface (ric ⩽ r⩽ ρ).

It is straightforward to show that this inner caustic radius
can be obtained from the root of the ray-path equation:

g(r)|r=ric = β̃2

(
dr
dz

)2
∣∣∣∣∣
r=ric

= n2 (ric)− β̃2 − l̃2
ρ2

r2ic
= 0.

By substituting equation (1) into the previous equation, we
solve its roots, obtaining

r2ic =
ρ2

2

 β̃2 − n2o
n2co − n2o

±

( β̃2 − n2o
n2co − n2o

)2

+
4̃l2

n2co − n2o

1/2
 ,
(16)

where the minus sign must be discarded in order to satisfy the
condition r2ic ⩾ 0 so that ric makes sense from a physical point

Figure 6. Ray-path equation for tunneling skew rays (̃l ̸= 0)
as a function of fiber radius r (normalized to ρ) and for five
different values of l̃ (shown in the legend), with β̃ = nco−
(1/2)(nco − no) = β̃a. For the sake of comparison, the result for

refracting skew rays, l̃=
(
n2cl − β̃2

)1/2
, is also plotted (blue line).

For clarity, the x-axis is twice the original limit of figures 2–5. The
non-negative values of g(r) (solid lines), corresponding to
oscillating solutions, extend from the inner caustic radius ric
(marked by a circle) in the core (r⩽ ρ) to the turning point rtp in the
core-cladding interface (rtp = ρ), and from the radiation caustic rrad
(marked by a diamond) in the cladding (r> ρ) to infinity. In
between, g(r) is negative (dotted lines) and, therefore, fields are
evanescent (fields are said to tunnel through part of the cladding).

of view. Figure 7 allows us to analyze the results obtained from
equation (16) as a function of the ray invariants β̃ and l̃ for
bound rays.

It is remarkable that in IGI fibers, unlike in conventional
fibers, inner caustics can exist even for bound meridional rays
(̃l= 0, the magenta curve in figure 7), a favorable feature for
sensing purposes. In particular, ric exists for meridional bound
rays that satisfy the condition no ⩽ β̃ ⩽ nco, and equation (16)
reduces to

r2ic
∣∣(

no⩽β̃⩽nco

l̃=0

) = ρ2

(
β̃2 − n2o
n2co − n2o

)
, (17)

whereas for meridional rays satisfying the condition ncl ⩽ β̃ <
no, equation (16) reduces always to

r2ic
∣∣(

ncl⩽β̃<no

l̃=0

) = 0. (18)

In the latter case, instead of an inner caustic, there is an inflec-
tion point on the fiber axis (r= 0) because the curvature of the
ray path reverses its tendency.

From a closer inspection of equation (16), we note that (a)
as expected, the inner caustic radius is always ric ̸= 0 for skew
rays (̃l ̸= 0), and (b) a higher skewness increases the value
of the inner caustic radius (see, for instance, the blue curve
in figure 7). Both results support the fact that skew rays are
more likely to convey light power closer to the core-cladding
interface.

5
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Figure 7. Normalized inner caustic radii ric/ρ as a function of the
ray invariants β̃ and l̃ for bound rays. The red line marks the
maximum limit β̃2 + l̃2 = n2co. The magenta curve shows the results
for meridional rays (̃l= 0), whereas the navy curve corresponds to
the results obtained for skew rays (̃l ̸= 0) at a fixed value of
β̃ = β̃a = nco − (1/2)(nco − no). The inner caustics shown in
figures 2 and 3 are marked again by circles: β̃a, β̃b = nco−
(1/3)(nco − no) and nco for meridional rays (̃l= 0), and

l̃a = (1/3)
(
n2co − β̃2

a

)1/2
, l̃b = (1/2)

(
n2co − β̃2

a

)1/2
,

l̃c = (2/3)
(
n2co − β̃2

a

)1/2
, and l̃d =

(
n2co − β̃2

a

)1/2
for skew rays

(̃l ̸= 0) at β̃ = β̃a, respectively.

Consequently, and keeping in mind the use of IGI fibers in
sensing applications, it will be crucial to set the appropriate
launching conditions to ensure the excitation of either meridi-
onal bound rays with sufficiently high values of the ray invari-
ant β̃ and/or skew rays with a certain degree of skewness.

3.3. Effects of launching conditions on ray-paths

For simplicity, we will restrict the analysis of launching
conditions to bound rays only; in addition, we will address
their effects on meridional and skew rays separately. We will
assume an incoming ray at the entrance point r0 and tilted at
an angle θ0 to the fiber axis (this tilt angle is defined inside the
core, so that θz (r0) = θ0). The condition for a ray to be bound
has been stated in equation (11). Therefore, we have

β̃ ⩾ ncl ⇒ n(r0)cosθ0 ⩾ ncl.

If we substitute equation (1) into the left-side

no

[
1+ 2∆

(
r0
ρ

)2
]1/2

cosθ0 ⩾ ncl,

we can find the maximum tilt angle allowed for a bound ray
launched at r0:

θ0|max ⩽ arccos

ncl
no

[
1+ 2∆

(
r0
ρ

)2
]−1/2

 . (19)

3.3.1. Meridional rays. As pointed out previously, depend-
ing on the condition satisfied by the current value of the ray
invariant β̃, the ray path will have either an inner caustic
(ric ̸= 0, the ray will never reach the fiber axis) or an inflection
point on the fiber axis (ric = 0); refer also to equations (17)
and (18). Consequently, β̃ = no sets the limit that separates
both conditions. From this limit, we will calculate the launch-
ing conditions that lead either to an inner caustic or to an inflec-
tion point:

β̃ = no ⇒ n(r0)cosθ0 = no.

If we substitute equation (1) into the left-side and square
both sides, we have

n2o

[
1+ 2∆

(
r0
ρ

)2
]
cos2θ0 = n2o.

Finally, after some rearrangement:

r20

(√
2∆
ρ

)2

= tan2θ0.

In summary, we have: inner caustic if |tanθ0|⩽ r0
(√

2∆/ρ
)
,

inflection point if |tanθ0|> r0
(√

2∆/ρ
)
.

(20)

Next, we will show the general shape of the ray paths of
bound meridional rays through an IGI fiber. Without loss of
generality, we will now assume that the rays launched at the
input surface of the fiber are within the xz-plane, since all
the planes containing the fiber symmetry axis are equivalent
(the refractive index is axisymmetric). Under such circum-
stances, it is more convenient to write the Eikonal equation
given in equation (3) in Cartesian coordinates (x,y,z). After
some rearrangement, it is straightforward to show that, on the
one hand, the ray-path equation defined in equation (7) reduces
to 

β̃2

(
d2x
dz2

)
=

1
2
dn2 (x,y)

dx
,

β̃2

(
d2y
dz2

)
=

1
2
dn2 (x,y)

dy
,

(21)

and, on the other, the refractive index of equation (1) is written
as

n2 (x,y) =

{
n2o
[
1+ 2∆

(
x2+y2

ρ2

)]
x2 + y2 ⩽ ρ2,

n2cl x2 + y2 > ρ2.
(22)

Both expressions are further reduced within the xz-plane, since
y= 0, and, therefore, we only have to solve:

β̃2

(
d2x
dz2

)
=

1
2

d
[
n2o
(
1+ 2∆ x2

ρ2

)]
dx

=
n2o2∆
ρ2

x.
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Figure 8. Launching conditions of meridional rays parallel to the
fiber axis and contained in the xz-plane. ±x0 stands for the initial
launching point.

This expression leads to

d2x
dz2

=
n2o2∆

β̃2ρ2
x,

whose solution is

x(z) = Asinh(Γz)+Bcosh(Γz) , (23)

where

Γ2 =
n2o2∆

β̃2ρ2
, (24)

being A and B two length constants to be determined from the
launching conditions x0 = r0 and θ0. Here, the ray invariant β̃
from equation (5) is evaluated as

β̃ = n(x,0)cosθz (x,0) = n(x0,0)cosθ0.

3.3.1.1. Meridional rays parallel to the fiber axis. Let us now
consider the case of light beams injected into the fiber parallel
to the fiber axis (θ0 = 0) from the initial entrance point ±x0,
as shown in figure 8.

We determine the length constants A and B of equation (23)
by invoking at the input of the fiber (z= 0):

x(0) = x0 ⇒ Asinh(Γ0)+Bcosh(Γ0) = x0,

dx(z)
dz

∣∣∣
z=0

= tanθ0 = 0 ⇒ AΓcosh(Γ0)+BΓsinh(Γ0) = 0.

Then, we obtain A= 0 and B= x0. Consequently,

x(z) = x0 cosh(Γz) . (25)

It is straightforward to calculate the z-coordinates of the
first inner caustic and the first turning point. For the former, we
must set [dx(z)/dz]|z=zic,1 = 0, so that zic,1 = 0. For the latter,
we have ±x(ztp,1) =±ρ. Hence,

ztp,1 =
1
Γ
arccosh

(
ρ

x0

)
, (26)

Figure 9. Geometric paths described by bound meridional rays
launched parallel to the fiber axis and contained in the xz-plane.
Results obtained for different ±x0 initial launching points (shown in
the legend): solid lines for positive launching points (+x0) and
dotted lines for negative ones (−x0). Each ray undergoes total
internal reflection whenever it reaches the turning point at the
core-cladding interface (marked by a diamond). Ray-paths are
closest to the center at the inner caustics. There are no inflection
points for meridional rays launched parallel to the fiber axis. Rays
launched in the center of the fiber, x0 = 0 (dash-dotted blue line),
always propagate along the center (they have neither inner caustics
nor inflection points).

and the ray half-period zp, defined as the axial distance
between successive turning points, is then calculated as

zp =
2
Γ
arccosh

(
ρ

x0

)
, (27)

since zp = 2 |ztp,1 − zic,1|.
Figure 9 shows the ray paths obtained using equation (25)

for different values of the initial launching point ±x0 (notice
that the results shown in the figures hereafter are only intended
for a better understanding of the ray trajectories obtained from
the analytical expressions). It can be observed that there are no
inflection points for meridional rays launched parallel to the

fiber axis: indeed, in equation (20) we have x0
(√

2∆/ρ
)
⩾ 0,

i.e. there are only inner caustics (notice that rays launched
in the center of the fiber, x0 = 0, propagate only along the
fiber axis and have neither inflection points nor inner caustics).
In addition, at each inner caustic zic, the closest position to
the center coincides with the corresponding initial launching
point x0.

At each turning point ztp, a ray undergoes total internal
reflection and its axial angle is at its highest value (θtp, see
appendix A), which is always below the maximum tilt angle
allowed for a bound ray given by equation (19). From these
observations, it can be concluded that, if collimated light is
impinged on the input surface of the fiber, the initial launch-
ing point should lie as close as possible to the core-cladding
interface in order to confine light power to the outermost part
of the core.

7
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Figure 10. Launching conditions of meridional rays tilted at an
angle θ0 to the fiber axis and contained in the xz-plane. ±x0 stands
for the initial launching point and θ0 takes positive or negative
values according to the convention shown in the figure.

3.3.1.2. Meridional rays tilted to the fiber axis. In this case,
light beams are injected into the fiber tilted at an angle θ0 to
the fiber axis from the initial entrance point ±x0, as shown in
figure 10.

The length constants A and B of equation (23) are now set
by invoking at the input of the fiber (z= 0):

x(0) = x0 ⇒ Asinh(Γ0)+Bcosh(Γ0) = x0,

dx(z)
dz

∣∣∣
z=0

= tanθ0 ⇒ AΓcosh(Γ0)+BΓsinh(Γ0) = tanθ0,

so that A= tanθ0/Γ and B= x0. Thus,

x(z) =
tanθ0
Γ

sinh(Γz)+ x0 cosh(Γz) . (28)

Figures 11 and 12 show the ray paths obtained using
equation (28) for different values of the initial tilt angle ±θ0
and the initial launching point ±x0.

Unlike in the preceding case, depending on the initial
launching conditions, rays will either go through the center
of the fiber, with a change of sign in the curvature of their tra-
jectory (in other words, there are inflection points), or they will
never reach the center of the fiber (i.e. there are inner caustics).
Again, equation (20) dictates whether we have an inner caustic
or an inflection point (notice that r0 = |x0| in equation (20)).
The results plotted in both figures allow us to complete the
whole picture of ray paths as a function of launching condi-
tions: for sensing purposes, and in order to ensure the confine-
ment of light power in the outermost part of the fiber core, it
is necessary to impinge light on the input surface of the fiber
not only closest to the core-cladding interface but also with a
tilt angle as small as possible.

Let us now calculate the z-coordinate of the first inner
caustic or the first inflection point from the ray path obtained
using equation (28).

(a) For the first inner caustic zic,1, we must set
[dx(z)/dz]|z=zic,1 = 0. Therefore,

zic,1 =
1
Γ
arctanh

(
− tanθ0
x0Γ

)
, (29)

valid if |tanθ0|< |x0|Γ and x0 ̸= 0. It turns out that
both conditions are automatically fulfilled when |tanθ0|⩽
|x0|
(√

2∆/ρ
)
(refer back to equation (20)).

(b) For the first inflection point zip,1, we must set[
d2x(z)/dz2

]∣∣
z=zip,1

= 0 (notice that
[
d2x(z)/dz2

]
=

Γ2x(z), which is an expected result for an oscillating
solution satisfying the ray equation). Consequently,

zip,1 =
1
Γ
arctanh

(
−x0Γ
tanθ0

)
, (30)

valid if |tanθ0|> |x0|Γ, which is automatically fulfilled

when |tanθ0|> |x0|
(√

2∆/ρ
)
(see again equation (20)).

As to the z-coordinate of the first turning point, now we
have to set |x(ztp,1)|= ρ. More specifically:

if x0 ⩾ 0 x(ztp,1)

=

{
−ρ if |tanθ0|> |x0|Γand tanθ0 < 0,
+ρ rest of cases,

ifx0 < 0 x(ztp,1)

=

{
+ρ if |tanθ0|> |x0|Γand tanθ0 > 0,
−ρ rest of cases.

(31)

By solving the equation above (see appendix B for details),
we determine

if x0 ⩾ 0 ztp,1

=


1
Γarccosh(−F) if |tanθ0|> |x0|Γ and

tanθ0 < 0,
1
Γarccosh(+F) rest of cases,

if x0 < 0 ztp,1

=


1
Γarccosh(+F) if |tanθ0|> |x0|Γ and

tanθ0 > 0,
1
Γarccosh(−F) rest of cases,

(32)

where

F=
−ρx0Γ2 + tanθ0

[
tan2θ0 + Γ2

(
ρ2 − x20

)]1/2
tan2θ0 − x20Γ

2
.

Finally, the ray half-period zp is calculated in accordance with
equation (20) as

zp =

 2(ztp,1 − zic,1) if |tanθ0|⩽ |x0|
(√

2∆/ρ
)
,

2(ztp,1 − zip,1) if |tanθ0|> |x0|
(√

2∆/ρ
)
,

(33)

where zic,1 and zip,1 are given by equations (29) and (30),
respectively.

3.3.2 Skew rays. We can make use of equations (21)
and (22) to show the general shape of the ray paths of bound
skew rays projected to a plane perpendicular to the axial direc-
tion z. It is straightforward to show that the ray-path equation
is now expressible in the following form

8
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Figure 11. Geometric paths described by bound meridional rays launched tilted to the fiber axis and contained in the xz-plane. Results
obtained for (a) θ0 =+8◦ and (b) θ0 =−8◦, and for different ±x0 initial launching points (shown in the legend): solid lines for positive
launching points (+x0) and dotted lines for negative ones (−x0). The absolute value of θ0 is always less than the most restrictive maximum

axial angle for bound rays (equation (19) for minr0 =min |x0|, which corresponds to rays launched at x0 = 0, i.e.
∣∣∣θ0|max,x0=0

∣∣∣= 8.34◦).

Each ray undergoes total internal reflection whenever it reaches the turning point at the core-cladding interface (marked by a diamond).
Ray-paths reveal inner caustics for launching points x0/ρ=±0.6 and ±0.9, whereas for lower launching points in absolute value there are
inflections points, in accordance with the condition of equation (20). Rays launched in the center of the fiber, x0 = 0 (dash-dotted blue lines,
corresponding to θ0 =+8◦ and −8◦ both in (a) and (b)), have only inflection points.

Figure 12. Geometric paths described by bound meridional rays launched tilted to the fiber axis and contained in the xz-plane. Results
obtained for x0/ρ=±0.3 and ±0.6, and for different initial tilt angles θ0 (shown in the legend): solid lines for positive launching points
(+x0) and dotted lines for negative ones (−x0). (a) x0/ρ=±0.3 and θ0 ⩾ 0; (b) x0/ρ=±0.3 and θ0 ⩽ 0; (c) x0/ρ=±0.6 and θ0 ⩾ 0;
(d) x0/ρ=±0.6 and θ0 ⩽ 0. The maximum absolute value of θ0 (8◦) is always less than the most restrictive maximum axial angle for

bound rays (equation (19) for minr0 =min |x0|, which corresponds to rays launched at x0/ρ=±0.3, i.e.
∣∣∣θ0|max,|x0/ρ|=0.3

∣∣∣= 10.06◦). Each

ray undergoes total internal reflection whenever it reaches the turning point at the core-cladding interface (marked by a diamond). Ray-paths
reveal only inner caustics for launching points x0 =±0.6 irrespective of θ0, whereas there are inflection points for launching points

x0 =±0.3 provided that θ0 is sufficiently high to satisfy the condition |tanθ0|> |x0|
(√

2∆/ρ
)
.

9



J. Opt. 24 (2022) 115602 J Zubia et al

 β̃2
(

d2x
dz2

)
=

n2o2∆
ρ2 x⇒ d2x

dz2 = Γ2x,

β̃2
(

d2y
dz2

)
=

n2o2∆
ρ2 y⇒ d2y

dz2 = Γ2y,

where Γ has been defined in equation (24).
Therefore, by solving the previous set of independent dif-

ferential equations, we obtain{
x(z) = Asinh(Γz)+Bcosh(Γz) ,
y(z) = Csinh(Γz)+Dcosh(Γz) ,

(34)

and, again,A,B,C, andD are length constants to be determined

from the launching conditions
(
x20 + y20

)1/2
= r0 and θ0.

Let us consider light beams injected into the fiber tilted at an
angle θ0 to the fiber axis on a non-meridional-plane from the
initial entrance point r0; for simplicity, wewill set this entrance
point within the xz-plane, so that x0 = r0 and y0 = 0, and the
tilt angle θ0 will be formed within the yz-plane. The length
constants A, B, C, and D of equation (34) are now obtained by
setting at the input of the fiber (z= 0):

x(0) = x0 ⇒ Asinh(Γ0)+Bcosh(Γ0) = x0,
dx(z)
dz

∣∣∣
z=0

= 0 ⇒ AΓcosh(Γ0)+BΓsinh(Γ0) = 0,

y(0) = 0 ⇒ Csinh(Γ0)+Dcosh(Γ0) = 0,
dy(z)
dz

∣∣∣
z=0

= tanθ0 ⇒ CΓcosh(Γ0)+DΓsinh(Γ0) = tanθ0,

so that A= 0, B= x0, C= tanθ0/Γ and D= 0. Thus,{
x(z) = x0 cosh(Γz) ,
y(z) = tanθ0

Γ sinh(Γz) ,
(35)

and, therefore, we obtain a set of parametric equations that
correspond to a hyperbola (indeed, if we sum the squares of
both equations and apply hyperbolic identities, we have the
equation of a hyperbola x2/x20 − y2/(tanθ0/Γ)

2
= 1; likewise,

if the condition |x0|=
(
ρ/

√
2∆
)
|tanθ0| is also satisfied, this

hyperbola becomes rectangular). Additionally, it can also be
proven that the z-coordinate of the first turning point is given
by the following compact analytical expression

ztp,1 =
1
Γ
arccosh

[
ρ2 +(tanθ0/Γ)

2

x20 +(tanθ0/Γ)
2

]1/2
, (36)

whereas the z-coordinate of the first inner caustic is always
zic,1 = 0 because, under such launching conditions, each inner
caustic coincides with the initial launching point x0. Thus, the
ray half-period zp is

zp =
2
Γ
arccosh

[
ρ2 +(tanθ0/Γ)

2

x20 +(tanθ0/Γ)
2

]1/2
. (37)

(Notice that, if θ0 = 0 is satisfied, both expressions reduce to
equations (26) and (27), respectively, since then we would
be dealing with meridional rays launched parallel to the fiber
axis.)

Using equation (35), we have plotted in figure 13 the projec-
tion of the evolution of the ray paths in a plane perpendicular to

the axial direction z for different values of the initial tilt angle
+θ0 and the initial launching point +x0, starting from Ntp = 2
turning points to Ntp = 16. Notice that negative values of the
initial tilt angle, −θ0, imply that rays start evolving counter-
clockwise (instead of clockwise); we have also omitted the res-
ults obtained for negative values of the initial launching point,
−x0, because they do not make any significant contribution to
the discussion. Furthermore, and as expected for a meridional
ray, when θ0 = 0 the projection is a straight line.

According to the results, it is clear that each inner caustic
coincides with the initial launching point x0 and it has nothing
to do with the tilt angle θ0 as long as this angle is measured
in the yz-plane. Increasing the tilt angle θ0, the projections of
ray paths in the xy-plane describe longer arc lengths and suc-
cessive turning points are more spaced, whereas the ray half-
period zp is shortened according to equation (37), so that the
ray travels a longer path inside the fiber. By launching rays
closer to the core-cladding interface, not only does the light
power confine in the outermost part of the fiber, but the ray
half-period zp is further reduced, increasing the exposure of
light rays to the core-cladding interface per unit length, a fact
that could be advantageous for sensing purposes.

We conclude this section by taking the more general

launching conditions
(
x20 + y20

)1/2
= r0 and θ0 without any of

the constraints shown above. It turns out that the ray half-
period zp is more conveniently calculated from the ray-path
equation given in equation (9) as a function of the ray invari-
ants β̃ and l̃. The ray path z(r) can be calculated as

dr
dz

=

[
g(r)

β̃2

]1/2
⇒ z(r) = z0 + β̃

rˆ

r0

dr ′

[g(r ′)]1/2

= z0 + β̃

rˆ

r0

[
n2 (r ′)− β̃2 − l̃2

ρ2

(r ′)2

]−1/2

dr ′. (38)

This integral can be solved analytically (see appendix C for
details), yielding

z(r) = z0 +
1
2Γ

arccosh

[
(r ′)2 −α2

γ

]∣∣∣∣∣
r

r0

, (39)

where Γ has already been defined in equation (24), the para-
meters α and γ are

α2 =
(
β̃2 − n2o

) ρ2/2
n2o2∆

and γ =

(̃
l2

ρ4

n2o2∆
+α4

)1/2

, (40)

and the ray invariant l̃ is obtained from equation (8).
Therefore, the ray half-period zp is finally calculated as

(refer again to appendix C for further details)

zp =
1
Γ

∣∣∣∣arccosh(ρ2 −α2

γ

)
− arccosh

(
r2ic −α2

γ

)∣∣∣∣ , (41)

being ric given in equation (16).
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Figure 13. Transverse projection to the fiber cross-section of the geometric paths described by skew rays launched tilted to the fiber axis.
Results obtained for x0/ρ=+0.3 (upper panels: (a)–(c)) and +0.6 (lower panels: (d)–(f)), and for different initial tilt angles θ0 measured in
the yz-plane (refer to both legends), showing the evolution of ray-paths from Ntp = 2 turning points (left-hand panels: (a), (d)), through
Ntp = 4 (central panels: (b), (e)), to Ntp = 16 (right-hand panels: (c), (f)). For the sake of comparison, the results of θ0 = 0, which
correspond to meridional rays, are also plotted (blue lines). Each ray undergoes total internal reflection whenever it reaches the turning point
at the core-cladding interface (marked by a diamond). Ray-paths reveal only inner caustics (there are no inflection points for skew rays,
since, by definition, they never reach the center of the fiber) and each inner caustic coincides with the corresponding initial launching point
x0 regardless of the value of the tilt angle θ0.

It is possible to test the validity of equation (41) by comput-
ing numerically the ray half-period zp for the launching condi-
tions we have considered above for skew rays (initial entrance
point r0 within the xz-plane, x0 = r0, y0 = 0, and tilt angle θ0
formed within the yz-plane) and by comparing it with the res-
ult of equation (37). For this purpose, it is necessary to obtain
the ray invariants β̃ and l̃ using equations (5) and (8), respect-
ively. On the one hand, the ray invariant β̃ is straightforwardly
calculated by taking n(r) = n(x0,0) using equation (22) and
θz (r) = θ0, so that

β̃ = n(x0,0)cosθ0.

On the other hand, the ray invariant l̃ requires calculating
dφ/dz at the input of the fiber (z= 0). Taking into account
that φ(z) = arctan [y(z)/x(z)], and substituting equation (35)
into the latter, we obtain

dφ
dz

=
(tanθ0)/x0

1+ {[(tanθ0)/(x0Γ)] tanh(Γz)}2
cosh2 (Γz) ,

so that at the input of the fiber (z= 0) we have (dφ/dz)|z=0 =
(tanθ0)/x0, leading to

l̃= β̃ (x0/ρ) tanθ0 = n(x0,0)(x0/ρ)sinθ0.

The parametersα and γ are then obtained from the substitution
of both ray invariants β̃ and l̃ into equation (40). It turns out
that γ = x20 −α2; consequently, and taking into account that
ric = x0, the second inverse hyperbolic cosine of equation (41)
equals zero and, therefore, the ray half-period zp reduces to

zp =
1
Γ
arccosh

(
ρ2 −α2

γ

)
,

leading to the same numerical results obtained from
equation (37).

4. Conclusions

In this work, we have analyzed the light propagation proper-
ties of multimode optical fibers with inverted refractive index
profiles by using the classical geometric optics approach.
We have derived the ray-path equation and the ray invari-
ants that allow us both to classify rays into bound, refract-
ing and tunneling, and to calculate the ray trajectories inside
IGI fibers.

We have analyzed the behavior of these fibers under differ-
ent launching conditions and proved that the inverted refract-
ive index profile of these fibers favors the propagation of light

11
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power closer to the core-cladding interface, provided that ray
invariants are sufficiently high or, at least, rays exhibit a certain
degree of skewness. We have also showed and concluded that
launching collimated light closer to the core-cladding interface
ensures a better confinement of light power in the outermost
part of the core, a fact that could be exploited for sensing, solar
and light amplification purposes.
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Appendix A. Highest axial angle of a meridional
bound ray launched parallel to the fiber axis

We can calculate at any turning point ztp the highest axial angle
θtp of a meridional bound ray launched parallel to the fiber axis
in the following two ways:

(a) From the slope of the ray path: tanθtp = (dx/dz)|z=ztp .
Thus, taking the derivative of equation (25) and substitut-
ing equation (26) into this derivative, we have

tanθtp =
dx
dz

∣∣∣∣
z=ztp,1

= x0Γsinh

[
arccosh

(
ρ

x0

)]
.

By applying hyperbolic identities:

tanθtp = x0Γ

{
cosh2

[
arccosh

(
ρ

x0

)]
− 1

}1/2

= x0Γ

[(
ρ

x0

)2

− 1

]1/2
.

Therefore:

θtp = arctan
[
Γ
(
ρ2 − x20

)1/2]
. (A1)

(b) From the ray invariant β̃: cosθtp = cosθz (ρ,0) =
β̃/n(ρ,0). For convenience, we apply trigonometric iden-
tities, obtaining

tanθtp =

(
n2 (ρ,0)− β̃2

)1/2
β̃

=

(
n2co − β̃2

)1/2
β̃

.

Since we have β̃ = n(x0,0)cos0 at the input surface of the
fiber, we can write

tanθtp =

(
n2co − n2 (x0,0)

)1/2
β̃

=

[
n2co − n2o

(
1+ 2∆ x20

ρ2

)]1/2
β̃

=
no
√
2∆

β̃ρ

(
ρ2 − x20

)1/2
,

so that, taking into account equation (24), we obtain again
the same analytical expression given by equation (A1).

Appendix B. Longitudinal coordinate of the first
turning point of a bound meridional ray launched
tilted to the axial angle

In order to obtain the z-coordinate of the first turning point,
we can proceed by solving x(ztp,1) = sρ, where s is +1 or −1
according to the conditions stated in equation (31), i.e.

if x0 ⩾ 0 s=

{
−1 if |tanθ0|> |x0|Γ and tanθ0 < 0,
+1 rest of cases,

if x0 < 0 s=

{
+1 if |tanθ0|> |x0|Γ and tanθ0 > 0,
−1 rest of cases.

(B1)

Thus, by substituting equation (28),

x(ztp,1) =
tanθ0
Γ

sinh(Γztp,1)+ x0 cosh(Γztp,1) = sρ.

By using hyperbolic identities, we have

tanθ0
Γ

[
cosh2 (Γztp,1)− 1

]1/2
+ x0 cosh(Γztp,1) = sρ.

Solving the quadratic equation, we obtain

cosh(Γztp,1) =
−sρx0Γ2 ± tanθ0

[
tan2θ0 +Γ2

(
ρ2 − x20

)]1/2
tan2θ0 − x20Γ

2
,

where it has been taken into account that s2 = 1 for all cases.
Therefore,

ztp,1 =
1
Γ
arccosh

{
−sρx0Γ2 ± tanθ0

[
tan2θ0 +Γ2 (ρ2 − x20

)]1/2
tan2θ0 − x20Γ

2

}
.
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For a real-valued inverse hyperbolic cosine, its argument must
be positive and equal or greater than unity. Therefore, and tak-
ing into account the value of s according to equation (B1), we
will write:

if x0 ⩾ 0⇒ ztp,1

=


1
Γarccosh

(
+ρx0Γ

2−G
tan2θ0−x20Γ

2

) if |tanθ0|> |x0|Γ
and tanθ0 < 0,

1
Γarccosh

(
−ρx0Γ

2+G
tan2θ0−x20Γ

2

)
rest of cases,

if x0 < 0 ⇒ ztp,1

=


1
Γarccosh

(
−ρx0Γ

2+G
tan2θ0−x20Γ

2

) if |tanθ0|> |x0|Γ
and tanθ0 > 0,

1
Γarccosh

(
+ρx0Γ

2−G
tan2θ0−x20Γ

2

)
rest of cases,

(B2)

being

G= tanθ0
[
tan2θ0 +Γ2

(
ρ2 − x20

)]1/2
.

The previous result can be written compactly, leading to
equation (32).

Appendix C. Ray path and ray half-period for bound
skew rays

We calculate the ray path z(r) after having substituted
equation (1) into equation (38), obtaining

z(r) = z0 + β̃

rˆ

r0

{
n2o

[
1+ 2∆

(
r′

ρ

)2
]
− β̃2 − l̃2

ρ2

(r′)2

}−1/2

dr′

= z0 + β̃

rˆ

r0

[(
n2o − β̃2

)(
r′
)2

+
n2o2∆
ρ2

(
r′
)4 − l̃2ρ2

]−1/2

r′dr′.

By rearranging the equation above, we have

z(r) = z0 +
β̃ρ

no
√
2∆

×
rˆ

r0

[(
r ′
)4 −(

β̃2 − n2o
) ρ2

n2o2∆

(
r ′
)2 − l̃2

ρ4

n2o2∆

]−1/2

r ′dr ′.

(C1)

After the change of variable ζ ′ = (r ′)2,

z(r) = z0 +
1
2Γ

×
ζˆ

ζ0

[
(ζ ′)

2 −
(
β̃2 − n2o

) ρ2

n2o2∆
ζ ′ − l̃2

ρ4

n2o2∆

]−1/2

dζ ′,

(C2)

where we have replaced the first term of equation (C1) with Γ
from equation (24). If we define the following parameters

2α2 =
(
β̃2 − n2o

)
ρ2

n2o2∆
and γ2 −α4 = l̃2 ρ4

n2o2∆
,

and substitute them into equation (C2), then the latter reduces
to

z(r) = z0 +
1
2Γ

ζˆ

ζ0

[
(ζ ′)

2 − 2α2ζ ′ −
(
γ2 −α4

)]−1/2
dζ ′

= z0 +
1
2Γ

ζˆ

ζ0

[(
ζ ′ −α2

)2 − γ2
]−1/2

dζ ′.

This integral can be solved analytically after the change of
variable ψ ′ =

(
ζ ′ −α2

)
/γ. Consequently,

z(r) = z0 +
1
2Γ

ψ̂

ψ0

[(
ψ′)2 − 1

]−1/2
dψ′ = z0 +

1
2Γ

arccoshψ′

∣∣∣∣∣
ψ

ψ0

.

Finally, by restoring the changes of variables inversely, we
obtain the same expression of equation (39):

z(r) = z0 +
1
2Γ

arccosh

(
ζ ′ −α2

γ

)∣∣∣∣ζ
ζ0

= z0 +
1
2Γ

arccosh

(
(r ′)2 −α2

γ

)∣∣∣∣∣
r

r0

. (C3)

The ray half-period zp is readily obtained from twice the
axial distance (in absolute value) between a turning point (at
r= ρ) and an adjacent inner caustic (at r= ric, where ric is
calculated using equation (16)). Substitution of these radii at
equation (C3) yields the same expression of equation (41):

zp = 2 |z(ρ)− z(ric)|

=
1
Γ

∣∣∣∣arccosh(ρ2 −α2

γ

)
− arccosh

(
r2ic −α2

γ

)∣∣∣∣ . (C4)
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