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Abstract
We address the existence and stability of one-dimensional (1D) holes and kinks and
two-dimensional (2D) vortex-holes nested in extended binary Bose mixtures, which emerge in the
presence of Lee–Huang–Yang (LHY) quantum corrections to the mean-field energy, along with
self-bound quantum droplets. We consider both the symmetric system with equal intra-species
scattering lengths and atomic masses, modeled by a single (scalar) LHY-corrected Gross–Pitaevskii
equation (GPE), and the general asymmetric case with different intra-species scattering lengths,
described by two coupled (spinor) GPEs. We found that in the symmetric setting, 1D and 2D holes
can exist in a stable form within a range of chemical potentials that overlaps with that of
self-bound quantum droplets, but that extends far beyond it. In this case, holes are found to be
always stable in 1D and they transform into pairs of stable out-of-phase kinks at the critical
chemical potential at which localized droplets turn into flat-top states, thereby revealing the
connection between localized and extended nonlinear states. In contrast, we found that the spinor
nature of the asymmetric systems may lead to instability of 1D holes, which tend to break into two
gray states moving in the opposite directions. Remarkably, such instability arises due to spinor
nature of the system and it affects only holes nested in extended modulationally-stable
backgrounds, while localized quantum droplet families remain completely stable, even in the
asymmetric case, while 1D holes remain stable only close to the point where they transform into
pairs of kinks. We also found that symmetric systems allow fully stable 2D vortex-carrying
single-charge states at moderate amplitudes, while unconventional instabilities appear also at high
amplitudes. Symmetry also strongly inhibits instabilities for double-charge vortex-holes, which
thus exhibit unexpectedly robust evolutions at low amplitudes.

The behavior of nonlinear wave excitations and their dynamical stability and interaction properties in
systems characterized by the presence of competing nonlinearities may dramatically differ from those
encountered in systems governed by the non-linear Schrödinger and Gross–Pitaevskii equations (GPEs)
featuring only a cubic nonlinearity. Competition between nonlinearities of different orders or physical
nature may lead to stabilization of otherwise unstable fundamental or excited states, it causes unusual shape
transformations and, most importantly, it may lead to the existence or merger of nonlinear states that
otherwise would not simultaneously appear in the system, or even to the emergence of previously unknown
self-sustained states. Such phenomena are known to occur in a broad range of physical systems, including
optical, optoelectronic, acoustic and matter waves [1–3]. In this content, it was discovered in Bose–Einstein

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac7b9b
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8692-982X
https://orcid.org/0000-0003-1809-479X
https://orcid.org/0000-0002-0532-1423
https://orcid.org/0000-0002-6491-4210
mailto:Yaroslav.Kartashov@icfo.eu


New J. Phys. 24 (2022) 073012 Y V Kartashov et al

condensates that the Lee–Huang–Yang (LHY) correction to the mean-field energy due to quantum
fluctuations [4] that becomes important when other nonlinear interactions counterbalance each other, may
suppress collapse and thus lead to the formation of stable multidimensional quantum droplets [5, 6]. The
LHY quantum corrections manifest themselves as competing nonlinearities in the modified GPE governing
the system. Importantly, as shown for Bose–Bose mixtures [5, 6], the mathematical form of the LHY
correction and, consequently, the ensuing behavior of nonlinear states depend dramatically on the
dimensionality of the system (for recent reviews, see [7, 8]).

Quantum droplets have been observed experimentally and analyzed theoretically in 2D and 3D
geometries in a single-component dipolar Bose gas, where collapse driven by long-range attractive dipolar
interactions can be compensated by the repulsive LHY contribution [9–18] and in Bose–Bose mixtures
[19–26], where the repulsive LHY correction becomes important when the intra-component repulsion is
compensated by the inter-component attraction. Their static and dynamical properties have also been
investigated in 1D systems [27–32] where, remarkably, the role of the mean-field and LHY energy terms are
reversed, the latter providing the attractive contribution needed to form bound states [6, 27]. The collisions
of droplets have been also addressed experimentally [22] and theoretically [28, 33]. In higher-dimensional
settings, it was found that the LHY contribution can suppress azimuthal instabilities and stabilize localized
vortex droplets in 2D [34, 35] and 3D [36] Bose–Bose mixtures, and can lead to the formation of robust
dynamical states, such as rotating droplets and droplet clusters [37–40]. Modulational instabilities that may
produce sets of droplets was analyzed in [41, 42] for dipolar condensates. Also, stable 2D and 3D quantum
droplets have been studied in dipolar mixtures [42, 43], and their properties may be significantly affected by
optical lattices [44, 45] (for the corresponding one-dimensional case see references [46, 47]) and spin–orbit
interactions [48–50]. In dipolar droplets particular attention has been devoted to the formation of so-called
supersolid behavior (see [51, 52] and the review [8]). So-called LHY fluids in the regime with vanishing
cubic nonlinearity, whose dynamics is governed by quantum fluctuations [53], have been observed recently
[54]. The pairing theory for binary Bose mixtures with interspecies attractions elucidating the regimes of
formation of multidimensional quantum droplets was developed in [55].

Most previous efforts have been devoted to the study of self-bound quantum droplets, where the LHY
correction serves as stabilizing mechanism to suppress collapse or the instabilities of excited states. However,
it has not been yet widely appreciated that it may be possible to embed different types of localized features
in the LHY dominated regime, thus generating new nonlinear global states, such as the recently predicted
quantum bubbles arising with unequal intraspecies interactions or unequal masses [56]. Holes nested in
extended droplets whose background may be made modulationally stable in different dimensionalities are
another potential fascinating possibility, which to the date has not been explored.

The goal of this paper is twofold. First, we aim at showing that in the regimes in which LHY quantum
corrections are relevant, Bose–Bose mixtures support stable 1D kinks (i.e. nonlinear states with different
asymptotic densities along the two transverse directions) and holes (states with identical asymptotic
densities, but with a phase jump in the center where a dark notch develops in the density profile), as well as
2D vortex-holes (vortices with different topological charges nested in an extended background), and that
the LHY correction substantially impacts the properties of such states, especially at low densities. Second,
we compare the properties and stability of kinks and holes in the simplest symmetric model with equal
atomic masses and intra-species interactions, described by a single GPE derived in [5, 6], with those of the
more general asymmetric model involving two coupled GPEs with different intra-species interactions. Note
that the single wave equation model was employed to predict self-bound quantum droplets in binary Bose
mixtures [5], and it represents an interesting theoretical model in its own right. Indeed, it was later used for
the description of quantum droplets in different configurations and dimensionalities
(see, e.g., references [6, 28, 46]), as well as for the description of the LHY fluid [53, 54, 57]. It is useful to
elucidate also the properties of the asymmetric model when the single wave function ansatz is released and
each component is described by its own wavefunction.

We found that both models predict that 1D hole solutions can be found in addition to self-bound
droplets and that they transform into a pair of kinks at the critical value of the chemical potential at which
self-bound quantum droplets cease to exist. Actually, when the chemical potential approaches this value,
self-bound droplets acquire flat-top shapes, while their width greatly increases at nearly constant maximal
density. This reveals a connection between localized and extended states that is unique for this system and is
not observed for conventional dark and vortex matter-wave solitons [58–68]. Remarkably, we also found
that the stability properties of 1D holes are dramatically different in the symmetric and asymmetric systems:
while in the former 1D holes are always stable in their entire range of existence, according to the spinor
asymmetric model they become unstable, breaking up into two gray states moving in the opposite
directions. This instability is unique, as it occurs only for extended states, while localized quantum droplets
remain stable. As a matter of fact, 1D holes in the asymmetric model are stable only close to the point of
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their transformation into a pair of kinks. In 2D systems, the logarithmic nonlinearity induced by the LHY
effects allows stable single-charge vortex-holes at moderate background amplitudes, and leads to
unconventional instabilities at high amplitudes. It also strongly inhibits instabilities for double-charge
vortex-holes that are usually unstable without external traps [69–73].

We start with the simplest 1D model for a Bose–Bose mixture with equal masses and intra-species
interactions, under the assumption that the two components can be described by a single wave function,
namely ψ1 = ψ2 = ψ. The corresponding modified GPE takes the following form (in dimensionless units):

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ δg|ψ|2ψ − gLHY|ψ|ψ. (1)

This model, derived in the seminal work [6], has been successfully used for the prediction of 1D
self-bound quantum droplets. Here x = Xr−1

0 is the scaled coordinate, r0 is the characteristic spatial scale
defining the characteristic energy ε0 = �

2/mr2
0 and time t0 = �ε−1

0 scales (t = Tt−1
0 ), m = m1 = m2 is the

atomic mass of the two components, δg = g12 + (g11g22)1/2 is the effective cubic nonlinearity coefficient
determined by the one-dimensional intra-species (g11 = g22 > 0) and inter-species (g12 < 0) coupling
constants (for the relation between the 1D coupling constants and the corresponding scattering lengths see,
e.g., reference [74]). Here we work in the regime δg > 0, where effective cubic nonlinearity in equation (1)
is repulsive, and we assume that it competes with quadratic LHY contribution, whose strength in symmetric

case (g11 = g22) is defined by the coefficient gLHY = 21/2g3/2
11 /π > 0 [6]. Generalization of this model to the

case of unequal components will be considered below. A comparison with the Monte-Carlo simulations for
one-dimensional Bose mixtures performed in [74] indicates that the Gross–Pitaevskii equation (1) provides
a sufficiently accurate description of the quantum droplet formation for 1.0 > |g12|/(g11g22)1/2 � 0.6, i.e. for
sufficiently small δg values. Thus, all results presented here correspond to the regime where this condition is
satisfied.

First, we consider constant-amplitude solutions of equation (1) and their modulational instability (MI).
Substitution of constant-amplitude solution ψ = a e−iμt into equation (1) yields two branches

a± =
gLHY ± (g2

LHY + 4μδg)1/2

2δg
(2)

that join at critical value of chemical potential μcr = −g2
LHY/4δg. The upper branch exists at all μ � μcr,

while the lower one at 0 � μ � μcr (its amplitude a− vanishes as μ→ 0). Notice that the presence of two
branches of solutions at 0 � μ � μcr is a specific feature of this system and that it is possible only due to the
presence of LHY correction ∼ gLHY. Assuming periodic perturbation ψ = (a± + u eikx−iδt + v∗ e−ikx+iδ∗ t)
e−iμt, where u, v are perturbation amplitudes, k is the modulation wavenumber, one gets:

δ± =
k

2

[
(g2

LHY + 4μδg) ± gLHY(g2
LHY + 4μδg)1/2

δg
+ k2

]1/2

, (3)

where ± signs correspond to the upper/lower branches. One can see that δ± can acquire nonzero imaginary
part (indicating on exponential growth of imposed modulations) only for lower branch, while upper
branch is always modulationally stable. The dependencies of growth rate δim = Im δ on (μ, k) for lower
branch are shown in figures 1(a) and (b) for various δg values at gLHY = 1. The region featuring
modulational instability has a finite bandwidth in k, which shrinks as μ→ μcr or μ→ 0, and it broadens
with a decrease of δg at a fixed gLHY = 1.

Stability of the upper constant-amplitude branch implies that one can nest in such wave stable
‘holes’—analogs of dark matter-wave solitons [58], modified by LHY correction. The properties of holes are
summarized in figures 2(a) and (b), while examples of their profiles are given in figure 2(c). In this
symmetric case holes are sought in the form ψ = q(x)e−iμt, where the function q(x) changes its sign at
x = 0 and asymptotically approaches ±a+ at x →±∞. To characterize them, we use the background
amplitude a = max|ψ| = a+, the redefined norm N =

∫
(a2

+ − |ψ|2)dx, and the integral width of the notch

w = 2[
∫

x2(a2
+ − |ψ|2)dx/N]1/2. One interesting feature of the holes is that they exist at both positive and

negative μ values, in contrast to conventional dark solitons in BEC, which exist only at μ � 0 [69]. The
width w of the holes monotonically decreases with μ, while the redefined norm N shows a nonmonotonic
behavior. Note that both quantities diverge at a specific cutoff value of the chemical potential μ = μco (see
the right vertical dashed line in figures 2(a) and (b)) that is clearly different from the critical value μcr, at
which the constant-amplitude waves cease to exist (see the left vertical dashed lines in figures 2(a) and (b)).
This corresponds to a considerable shape transformations caused by the LHY correction in the vicinity of
μco. In figure 2(c) one can see that at μ→ μco the hole transforms into a gradually separating pair of
out-of-phase kinks. We analytically the found corresponding isolated single-kink solution that writes

3



New J. Phys. 24 (2022) 073012 Y V Kartashov et al

Figure 1. MI gain spectra for the lower branches of the constant-amplitude solutions in the 1D (a), (b) and 2D (c),
(d) symmetric systems. The dashed white lines indicate the critical values of the chemical potential μcr. In the 1D case k = kx,
while in the 2D case k = (k2

x + k2
y)1/2.

Figure 2. (a) Redefined norm N, amplitude of the background a, and integral width of the dark notch w for 1D holes versus
chemical potential μ (lines with solid dots). The thin black line shows the amplitude a± for the two branches of the
constant-amplitude solution. The vertical dashed lines denote μcr = −g2

LHY/4δg and μco = −2g2
LHY/9δg. (b) Zoom of

dependencies from panel (a) with added N, a,w vs μ dependencies (dash-dotted lines) for self-bound 1D quantum droplets.
(c) Examples of profiles of holes at μ = −0.4 (curve 1), μ = −0.55 (curve 2), and μ = −0.5555 (curve 3). Stable evolution of
perturbed holes with μ = −0.5555 (d) and μ = −0.3 (e). In all cases δg = 0.4, gLHY = 1.

ψ = (gLHY/3δg)[1 + tanh(gLHYx/3δg1/2)]e−iμt and exists only at the chemical potential μ =
μco = −2g2

LHY/9δg (this solution was independently found recently in [75]) that cannot be numerically
continued to other values of μ. Thus, holes that can be nested only in constant-amplitude waves from the
upper branch exist only at μ � μco, and do not have a linear limit, since their amplitude remains finite at
μco. We did not find holes with a− asymptotics.

Figure 2(b) reveals the connection between the usual self-bound quantum droplets and the holes in the
symmetric case. The norm N =

∫
|ψ|2dx, width w = 2[

∫
x2|ψ|2dx/N]1/2, and maximal amplitude

a = max|ψ| of the droplets are plotted with dash-dotted lines. Self-bound droplets exist at μco � μ � 0.
The domain of existence for droplets discussed here is consistent with the one found in reference [6] (μco

corresponds to the chemical potential at the equilibrium density of a 1D liquid). Exactly at the same value
μ = μco, at which holes transform into a pair of out-of-phase kinks, the amplitude of the droplet coincides
with the amplitude of the background of the hole solution, its width and norm diverge, and the droplet
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transforms into a flat-top state. The latter can therefore be approximated by a kink–antikink pair
(producing now a localized state rather than an extended hole region and described by the solution
presented above). It is important to note that while holes can be found for μco � μ � 0 where droplet
solutions are also possible, they also extend to the entire semi-infinite interval μ > 0. A linear stability
analysis performed for perturbed holes ψ = [q(x) + u(x)e−iδt + v∗(x)e+iδ∗ t]e−iμt , where perturbations u, v
are x-dependent, within the frame of the symmetric single equation (1) shows that they are stable in the
entire existence domain (isolated kink states are stable as well). Examples of the stable evolution of
perturbed wide and narrow holes in the symmetric regime are shown in figures 2(d) and (e).

Next, we consider a more general asymmetric situation, where we still assume equal atomic masses for
species in Bose–Bose mixture, but different intra-species coupling constants. This situation occurs, in
particular, in recent experiments with a mixture of 39K condensates in different hyperfine states [20]. In this
case the evolution of the wavefunctions of the two different components is governed by the following
system of equations [57]:

i
∂ψ1,2

∂t
= −1

2

∂2ψ1,2

∂x2
+

∂E1D

∂n1,2
ψ1,2, (4)

where n1,2 = |ψ1,2|2 are the atomic densities and the energy density including both mean field and LHY
contributions is given by [6]:

E1D =
1

2
(g1/2

11 n1 − g1/2
22 n2)2 +

δg(g11g22)1/2

(g11 + g22)2
(g1/2

11 n2 + g1/2
22 n1)2 − 2

3π
(g11n1 + g22n2)3/2. (5)

Here δg = g12 + (g11g22)1/2 is defined by the intra- (g11 �= g22) and the inter-atomic (g12) dimensionless
coupling constants. We chose the scaling at which g11 = 0.639, g22 = 2.269 and g12 = −1, which
corresponds to a small δg > 0. Constant-amplitude solutions ψ1,2 = a1,2 e−iμ1,2t are now characterized by
different amplitudes a1,2 even for μ1 = μ2, but just as in the symmetric case one finds that at a fixed μ2,
constant-amplitude solutions exist only above a critical value μ1 = μ1cr of the chemical potential of the first
component and that two different branches exist for μ1cr � μ1 � 0 (see the thin black and the red lines in
figure 3(b)). The analysis of MI of such constant-amplitude solutions, similar to that performed for the
symmetric case, reveals the stability of the upper branch and the instability of the lower one. Next we
considered hole states ψ1,2 = q1,2 e−iμ1,2t with an x-dependent functions q1,2 embedded into the MI-stable
background belonging to the upper branch of constant-amplitude solutions. Representative dependencies
of the background amplitudes a1,2 = max|ψ1,2|, redefined total norm N =

∫
[(a2

1 − |ψ1|2) + (a2
2 − |ψ2|2)]

dx, and integral width of the notch w = 2[
∫

[(a2
1 − |ψ1|2) + (a2

2 − |ψ2|2)]x2 dx/N]1/2 on chemical potential
of the first component μ1 for fixed μ2 = −0.2, are presented in figures 3(a) and (b). In panel (b), for
comparison, we also show the norm and width for droplets in the asymmetric case. One can see that all
representative features obtained in the symmetric model are reproduced in the more general asymmetric
model. This includes the transformation of holes (with different functional shapes q1,2) into pairs of kinks
(see figures 3(c) and (d)), when chemical potential of the first component approaches the value μ1co > μ1cr

(μ1cr value corresponding to point of merger of two constant-amplitude branches is shown by the left
vertical dashed line in figure 3(a), while μ1co is shown by the right dashed line), and connection of holes at
μ1 = μ1co with the families of self-bound quantum droplets, whose amplitudes are shown by the
dash-dotted lines in figure 3(b). Notice that because these dependencies are shown at a fixed μ2, only the
second component of the quantum droplet vanishes at μ1 → 0, while the first component becomes spatially
extended with nonzero amplitude. Nearly a linear dependence of the critical values of chemical potential
μ1cr and μ1co on μ2 is revealed by figure 3(e).

It turns out, however, that the stability properties of holes in asymmetric model may differ substantially
from those in symmetric case. For the set of parameters considered here, self-bound quantum droplets
remain completely stable, whereas we found that holes may exhibit instabilities brought by spinor nature of
the model. Such instabilities manifest themselves in the breakup of the stationary holes into pairs of gray
states moving in the opposite directions, as shown in figures 4(a) and (b). The strength of such instability
reduces with a decrease of either μ1 or μ2, as seen in the above figures, until complete stabilization occurs
(figure 4(c)) sufficiently close to the left border of the existence domain for holes. The width of the stability
domain in the asymmetric system is rather narrow; for example, for μ2 = −0.2 holes are stable only
for−0.657 < μ1 < −0.650. The instability occurs only for states nested in the extended background, and is
not encountered for self-bound quantum droplets.

Next, we consider the analogs of holes in a symmetric 2D system. To this end we adopt the model
describing a symmetric Bose mixture (ψ1 = ψ2 = ψ) introduced in reference [6]:
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Figure 3. (a) Redefined norm N, amplitudes of the background a1,2, and integral width of the dark notch w for 1D holes in the
asymmetric case vs chemical potential μ1 at fixed μ2 = −0.2. The solid red and black lines show the amplitudes of the
components in the constant-amplitude solution. The left vertical dashed line indicates μ1cr value below which
constant-amplitude solutions do not exist for selected μ2. The right vertical dashed line indicates μ1co value at which holes and
droplets cease to exist. (b) Zoom of a1,2(μ1) dependencies from panel (a) showing also the amplitudes, norm, and width for the
droplets (dash-dotted lines). Examples of profiles of holes at μ1 = −0.2 (c) and μ1 = −0.6574 (d) at μ2 = −0.2.
(e) Dependencies of μ1cr and μ1co on μ2. In all cases g11 = 0.639, g22 = 2.269, g12 = −1.

Figure 4. Evolution dynamics of perturbed holes with μ1 = −0.2 (a), μ1 = −0.62 (b), and μ1 = −0.657 (c) in asymmetric
system. In all cases μ2 = −0.2. Only the first component is shown, since dynamics of the second component is qualitatively
similar. Notice different time scales. In all cases g11 = 0.639, g22 = 2.269, g12 = −1.

i
∂ψ

∂t
= −1

2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ 2α|ψ|2ψ ln(2|ψ|2), (6)

where α = 8π/ln2(a12/a11) represents the strength of the nonlinear term whose logarithmic character stems
from the LHY correction [6], and a12, a11 are the corresponding inter- and intra-species scattering lengths.
First, we consider constant-amplitude solutions ψ = a e−iμt of this equation. As in the 1D case, there are
two branches (see solid black lines in figure 5(a)):

a± =

[
μ

2αW±(μ/α)

]1/2

, (7)

where W±(μ/α) are the upper and lower branches of the Lambert W-function. The upper branch exists for
μ � μcr = −α/e, while the lower branch exists at μcr � μ � 0. They join at the value of the amplitude
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Figure 5. (a) Amplitude of the background a and width of the dark notch wm for 2D vortex-holes with topological charges
m = 1 and m = 2 versus chemical potential μ. The solid black line shows the amplitude a± for two branches of the
constant-amplitude solution. The vertical dashed lines show μcr = −α/e and cutoff value for quantum droplets μco = −α/2e1/2.
(b) Zoom of dependencies from panel (a) with added N, a,w vs μ dependencies (dash-dotted lines) for 2D quantum droplets
with m = 0. Examples of profiles of vortex-holes with different topological charges at μ = −0.1 (c) and different chemical
potentials at m = 1 (d). (e) Real part of perturbation growth rate vs μ for m = 1, n = 1. In all cases α = 1.

a = (1/2e)1/2. The analysis of possible MI for perturbed constant-amplitude solutions ψ = (a + u eikr−iδt +

v∗ e−ikr+iδ∗t)e−iμt gives for two branches:

δ± = k

[
μ

W±(μ/α)
+ μ+

k2

4

]1/2

. (8)

The quantity μW−1
+ (μ/α) + μ is always positive for the entire upper branch, indicating modulational

stability, but it can be negative for the lower branch, where thus MI can develop. The corresponding growth
rate δim is plotted in figures 1(c) and (d) versus μ and k = |k|. One can see that the bandwidth of the region
with MI expands with increase of the logarithmic nonlinearity strength α and shrinks at μ→ μcr and
at μ→ 0.

Next we construct vortex-holes on modulationally stable background (upper branch) and search for
them in the form ψ(r, t) = q(r)eimφ−iμt, where m is the topological charge of the hole and φ is the azimuthal
angle. Note that such states are sustained by the logarithmic LHY nonlinearity and on this reason they
substantially differ from conventional BEC dark vortex solitons.

The properties of the vortex-holes we found are summarized in figures 5(a) and (b), and examples of
their profiles are shown in figures 5(c) and (d). It should be stressed that even though visually 2D
vortex-holes are well-localized, their amplitude q approaches the asymptotic value set by the background
state a+ very slowly (algebraically rather than exponentially). Therefore, even the redefined
norm N =

∫
2πr(a2

+ − |ψ|2)dr diverges, so we used only the asymptotic amplitude and the width wm of the
notch defined at the q = a+/2 level to characterize the families. At fixed μ, the vortex-hole with larger
topological charge m is broader (figure 5(c)). The width monotonically decreases with the increase of the
chemical potential μ (figure 5(a)). We also found that the vortex-hole families cease to exist at a certain
minimal value of μ, at which the solution undergoes a transformation (see lower curve in figure 5(d)) and
the tangent to the wm(μ) dependence becomes vertical. Interestingly, this minimal value of μ is close, but
does not coincide exactly with the border of existence domain for 2D quantum droplets.

In figure 5(b) we show with dash-dotted lines the dependence of the norm, width, and amplitude on μ

for droplets with m = 0. Their norm and width diverge at μco = −αe−1/2/2, at peak amplitude of the state
a = 2−1/2e−1/4 (flat-top regime). The corresponding μco value is shown by the right dashed line in
figure 5(b), while the left dashed line indicates μcr. The family of vortex-holes whose amplitude is shown
with black dots extends slightly to the left of the μ = μco line, i.e. as in the 1D case the domains of existence
of self-bound droplets and hole states nearly coincide at μ � 0, but the latter can be also found for
all μ > 0.
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Figure 6. (a) and (b) Stable evolution of vortex-hole with m = 1, μ = 1 in the presence of small noise. Main panels show |ψ| in
different moments of time, while insets show corresponding phase distributions. (c) Perturbation profile with n = 1 (notice
logarithmic scale for r axis) that leads to instability of vortex-hole at m = 1, μ = 6 illustrated in (d)–(f). (g)–(i) Decay of the
unstable vortex-hole with m = 2, μ = 6 stimulated by small noise. In all cases α = 1.

Figure 7. Metastable evolution of vortex-hole with m = 2, μ = 0.5 in the presence of small noise at α = 1.

To analyze the stability of the vortex-holes we substitute the perturbed solution ψ = [q(r) +
u(r)einφ+δt + v∗(r)e−inφ+δ∗t]eimφ−iμt , where n is the azimuthal perturbation index, into equation (6),
linearize it and solve the corresponding eigenvalue problem. A similar linear stability analysis performed for
droplets shows that they are stable in the entire domain of their existence (consistent with [34]). We found
that the logarithmic nonlinearity supports stable m = 1 holes at low and moderate μ values. An example of
such stable evolution is presented in figures 6(a) and (b). At the same time, this nonlinearity leads to
nonconventional instabilities of m = 1 holes at large μ. See the dependence in figure 5(e) of the growth rate
on μ for n = 1 (the only perturbation that can lead to instability, in this case). The corresponding
destructive perturbations are always weakly localized and feature long oscillating tails (figure 6(c)). Their
development leads to the formation of a bump and a hole close to it, which rotate upon evolution
(figures 6(d)–(f)). Vortex-holes with m = 2 are prone to perturbations with azimuthal indices n = 1, 2. An
example of the instability development at large μ = 6 leading to the splitting of the initial singularity into
two single-change singularities (notice the presence of bumps close to both holes at t = 1000) is illustrated
in figures 6(g)–(i). At the same time, instabilities are strongly suppressed even for m = 2 vortex-holes for
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μ � 0.5. Even though the linear stability analysis reveals very small growth rates associated with n = 2
perturbations for these parameters, they do not reveal themselves in dynamics and do not lead to
appreciable splitting of singularities up to t ∼ 104, even if considerable noise is added into the initial
distributions (see the example of metastable evolution of the state with m = 2, μ = 0.5 in figure 7).

In summary, we first have reported the existence of stable 1D holes and 2D vortex-hole states within the
framework of symmetric models. Then, we have discovered instabilities of the hole states that are induced
by the spinor nature of the asymmetric model. We revealed the connection between the extended states and
their localized counterparts and found that they transform into kinks. In both 1D and 2D cases, the LHY
contribution to the acting mean-field nonlinearity strongly impacts the shapes and properties of holes,
resulting for example, in inhibited instabilities of double-charge vortex states. By and large, our results
highlight the richness of the dark-like nonlinear states that are possible as a result of the competition
between mean-field nonlinearities and LHY effects and, also, the remarkably different behavior predicted
for systems described by scalar and spinor models. Our results may be potentially extended to 3D settings
and to the case of dipolar condensates, where we anticipate the formation of more exotic states whose
stability may be mediated by the LHY quantum corrections, such as vortex lines and rings.
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