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Abstract
Objective. Long-term monitoring of people with epilepsy based on electroencephalography (EEG)
and intracranial EEG (iEEG) has the potential to deliver key clinical information for personalised
epilepsy treatment. More specifically, in outpatient settings, the available solutions are not
satisfactory either due to poor classification performance or high complexity to be executed in
resource-constrained devices (e.g. wearable systems). Therefore, we hypothesize that obtaining
high discriminative features is the main avenue to improve low-complexity seizure-detection
algorithms. Approach. Inspired by how neurologists recognize ictal EEG data, and to tackle this
problem by targeting resource-constrained wearable devices, we introduce a new interpretable and
highly discriminative feature for EEG and iEEG, namely approximate zero-crossing (AZC). We
obtain AZC by applying a polygonal approximation to mimic how our brain selects prominent
patterns among noisy data and then using a zero-crossing count as a measure of the dominating
frequency. By employing Kullback–Leiber divergence, leveraging CHB-MIT and SWEC-ETHZ
iEEG datasets, we compare the AZC discriminative power against a set of 56 classical literature
features (CLF). Moreover, we assess the performances of a low-complexity seizure detection
method using only AZC features versus employing the CLF set.Main results. Three AZC features
obtained with different approximation thresholds are among the five with the highest median
discriminative power. Moreover, seizure classification based on only AZC features outperforms an
equivalent CLF-based method. The former detects 102 and 194 seizures, against 99 and 161 for the
latter (CHB-MIT and SWEC-ETHZ, respectively). Moreover, the AZC-based method keeps a
similar false-alarm rate (i.e. an average of 2.1 and 1.0, against 2.0 and 0.5, per day). Significance.
We propose a new feature and demonstrate its capability in seizure classification for both scalp and
intracranial EEG. We envision the use of such a feature to improve outpatient monitoring with
resource-constrained devices.

1. Introduction

Epilepsy is a brain disease with a prevalence of 4–8
per 1000 population, placing it as the fourth most
common neurological disorder worldwide [1]. Elec-
troencephalography (EEG) is an essential tool for the
diagnosis and management of people with epilepsy
(PWE) [2]. According to electrode placement, EEG

can be broadly divided into scalp and intracranial
(iEEG) recordings. Scalp EEG acquisition is more
affected by noise and artifacts but is non-invasive,
thus more used in clinical practice [3]. When asso-
ciated with video recordings, long-term EEG or iEEG
monitoring can provide key clinical information for
personalised epilepsy treatment (e.g. seizure count
in a long period, monitoring for paroxysmal events,
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etc) [4]. Such procedures are executed in-hospital, at
epilepsy monitoring units, over the course of several
days, but normally once in the patient’s lifetime due
to the associated costs [5].

Conversely, outpatient assessment mainly relies
on patient self-reports [6], which have been found
to be prone to errors due to seizure unawareness,
nocturnal events, and lack of patient commitment to
keeping up with diaries [7]. Consequently, there is an
unmet need for innovative solutions for automated
outpatient monitoring [6, 8, 9]. However, commer-
cially available products have been only certified for
generalized tonic-clonic seizures, which are associ-
atedwith strong bodymovements, leavingmost of the
PWE unattended [10].

Several state-of-the-art (SoA) works have pro-
posed methods for seizure detection based on EEG,
potentially covering a greater number of seizure
types [3, 11–19]. Yet, EEG-based outpatient monit-
oring is still a challenging problem as most of the
proposed EEG-based methodologies are not feas-
ible in the real world [9]. Besides the resource con-
straints for implementing some of the proposed solu-
tions [12, 13], PWE also have demonstrated a strong
preference for inconspicuous and non-stigmatizing
monitoring devices [6, 8]. Hence, leveraging on their
inherent unobtrusiveness, wearable devices offer con-
siderable potential for supporting outpatient mon-
itoring [9, 10]. However, a solution based on such
devices entails the use of low-complexity algorithms
due to the scarcity of resources (e.g. memory, pro-
cessing, and battery capacity). Therefore, classical
machine learning (ML) algorithms such as random
forest (RF) and support vector machines (SVM) are
fair candidates to comply with the above-described
restrictions. First, these methods’ models are relat-
ively simple and fast to execute. In addition, they
have been extensively used for EEG-/iEEG-based
seizure detection [20]. Still, such algorithms should
be optimized to achieve acceptable sensitivity and low
false-alarm rates (FAR) [9].

Since ML algorithms tend to present mar-
ginal performance gains with the same input data
and analysis conditions [21], we hypothesize that
obtaining high discriminative features is an import-
ant avenue for improving low-complexity seizure-
detection methods for resource-constrained wear-
able devices. In fact, when evaluating the EEG/iEEG
signals acquired during long-term monitoring,
neurologists are the ones setting the ground truth
for ML algorithms. They are capable of identify-
ing prominent ictal patterns among spontaneous
EEG/iEEG, noise, and artifacts more accurately than
SoA algorithms.

Thus, in this work, we introduce and evaluate a
new feature of low-complexity for EEG and iEEG ana-
lysis, inspired by the way neurologists visually inspect
signals, namely approximate zero crossing (AZC). To

obtain the AZC, first, we simplify the EEG/iEEG sig-
nals by applying a polygonal approximation tomimic
how our brain selects prominent patterns among
noisy data. Then, we use a simple zero-crossing count
as an estimation of the signal’s dominating frequency.
We assess the discriminative power of the AZC feature
using theKullback–Leiber (KL) divergence score [22].
Additionally, we design a low-complexity ML clas-
sification method based on RF and apply the time-
series split cross-validation (TSCV) to assess the AZC
feature performance in long-term seizure detection.
As a comparison, we use the same method’s recipe
with a set of 56 classical literature features (CLF).
Finally, we implement both strategies in a SoA wear-
able platform to assess its computational require-
ments. In all the previously mentioned tasks, we
employ two publicly available datasets: the CHB-MIT
Scalp (982.9 h of data) [19] and the SWEC-ETHZ
iEEG (2656 h of data) [14]. The main contributions
of this work are summarized in the following:

• A new interpretable feature of low-complexity
towards resource-constrained wearable devices
use, for automated seizure monitoring based on
EEG and iEEG is presented. AZC shows a dis-
criminative power higher than most of the other
56 features evaluated using the KL divergence in
two widely used and publicly available long-term
seizure monitoring datasets. Moreover, extracting
the AZC features is 8.8× faster then calculating the
CLF set of features.

• We propose the TSCV methodology for assessing
the seizure classification performance, as we believe
it presents results that are more realistic for a real-
life long-term seizure monitoring application. To
the best of our knowledge, it has not yet been used
in EEG/iEEG-based seizure detection.

• We show that a ML solution of low-complexity
based only on six AZC features achieves 100% sens-
itivity in 25 out of 42 subjects, taplus nine showing
only onemissing seizure.Moreover, the AZC-based
method achieves a low FAR of 2.1 and 1.0/day
on average for CHB-MIT and SWEC-ETHZ,
respectively.

• We demonstrated that the AZC-based classifica-
tion method can outperform the CLF-based one
for seizure detection: 102 and 194 seizures detec-
ted against 99 and 161 for CHB-MIT and SWEC-
ETHZ, respectively.

The rest of the paper is organized as follows.
Section 2 presents the AZC feature in detail and shows
a visual example of how it works in real EEG data.
In section 3, we present our proposed methodology
for assessing the discriminative power of the AZC fea-
ture and the training framework. Section 4 details the
experimental setup for evaluating the proposed fea-
ture, whereas the results are presented in section 5.
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We discuss these results in section 6 and conclude this
work in section 7.

2. Approximate zero-crossing

We draw inspiration from clinical practice in
EEG/iEEG screening for seizure patterns to develop
the proposed AZC feature. AZC feature extraction
method comprises two main steps. First, we sim-
plify the signal using a polygonal approximation to
mimic our brain’s capacity to find prominent patterns
within noisy data. Second, we implement a zero-
crossing count on the approximated signal. There-
fore, in addition to a low computational complexity,
the proposed AZC feature is easily interpretable. In
the rest of this section, we detail our motivation,
describe the algorithm to calculate the feature values,
and show a visual example of how AZC varies with
different thresholds for a real signal.

2.1. AZC: motivation and intuition
The basic objective of the AZC feature is to estim-
ate the number of peaks in an EEG segment in the
same way it is done by a human expert who is visually
inspecting the signal. It is therefore implemented as
a regular zero-crossing calculation of the first deriv-
ative, but before this calculation, the signal is trans-
formed in order to keep only the morphological fea-
tures that are prominent to the human eye. A family of
methods well suited for this type of transformation is
a polygonal approximation, also called piece-wise lin-
ear representation or linear path simplification [23].
These methods assume that the input signal can be
represented as a sequence of linear segments, and they
apply different techniques to obtain the minimum
number of segments that best represent the underly-
ing morphology. Formally:

Definition 2.1. (Polygonal Approximation) Given
a time series represented as a sequence of n time-
value points S= {(t0,S0), . . . ,(tn−1,Sn−1)}, a poly-
gonal approximation of S is a subsequence L⊆ S
for which the time series behaviour between any
pair of consecutive points ((ti,Si),(ti+1,Si+1)) ∈ L is
assumed to be linear.

Under this general definition, we can determine a
broad set of non-linear transformations that poten-
tially removemuch information from the original sig-
nal, depending on how aggressive the approximation
is. A coarse approximation will only retain the most
outstanding behaviour of the signal, while a fine-
grained approximation will remove only the parts
that are not even recognizable by the human eye. This
level of detail is fully customizable as a parameter of
the approximation transformation.

To illustrate this idea, figure 1 shows an example
of a 20 s EEG segment that is approximated using
two different thresholds, according to the algorithm

described in section 2.2. Also, we can see how theAZC
calculation varies in two different intervals of each
signal. In this segment, a seizure starts in the second
10, and this is clearly seen in the morphology changes
of the signal, with higher amplitude and a more regu-
lar frequency. Let us put focus on how the result of the
approximation changes before and after the seizure
onset. While the approximated signal after this point
is almost identical in the three cases (and, therefore,
the AZC value is basically the same), the morpho-
logy is much more variable before the seizure onset.
Indeed, in low-amplitude regions (such as between
seconds 7 and 8) AZC varies from a very high value
in the original signal, to zero in the case of a rel-
atively high approximation threshold. In the middle
figure, we can see that visually the signal is very sim-
ilar to the original one, but the AZC count in the high-
lighted segment is less than half. What we want to
highlight here is that, while the AZC is fundament-
ally a feature estimating frequency, its calculation is
primarily determined by the amplitude behaviour of
the signal. Therefore, it simultaneously captures these
two dimensions, which are the ones assessed by the
experts during visual inspection.

2.2. Approximation algorithm
There are multiple algorithms to perform the type of
morphological approximation we are targeting [23],
each of them with different properties, constraints,
and computational complexity. Some of them can
potentially be implemented in hardware [24] and
attached directly to the ADC of the signal sampler,
making it possible to directly acquire an approxim-
ated signal and, thus, reduce the amount of informa-
tion to be processed.

Still, the algorithm we selected to perform EEG
approximation is the Douglas–Peucker method [25],
which requires access to the whole data to guaran-
tee optimality. The main reason for this choice is
that the approximation threshold ε is directly a meas-
ure of amplitude tolerance. Thus, it is fully inter-
pretable, easy to characterize, and lies on the same
scale as the EEG signal. Therefore, to ensure that we
provide an acceptable approximation for every sub-
ject and channel, we propose to simultaneously cal-
culate the AZC feature using different approximation
thresholds to cover, in a logarithmic scale, the full
range of physiologically meaningful EEG signals.

The operation of the Douglas–Peucker method is
detailed in Algorithm 1. The input is a signal frag-
ment S as a sequence ofn samples (S0, . . . ,Sn−1), and a
threshold ε> 0 representing the minimum amplitude
difference that can be considered to include a point in
the approximation. As output, the algorithm returns
a sequence L= (p0, . . . ,pm−1), with 2 ⩽m⩽ n, rep-
resenting the samples selected for the approximation.
As we can see, the approximation is initialized by the
endpoints 0 and n− 1 (line 3). At each iteration of the

3
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Figure 1. Illustrative example of the AZC feature, calculated at different approximation thresholds on a 20 s EEG window with a
seizure starting at second 10. The top figure is the original signal, while the middle and the bottom ones are approximations with
ϵ= 16 and ε= 64, respectively. [Source: Patient 22, file 25 from the CHB-MIT dataset.].

outer loop (lines 5 to 16), the approximation is exten-
ded with the point of maximum distance to the seg-
ment defined by the linear interpolation (INTERP func-
tion) between any consecutive pair of points already
included in the approximation (lines 5 and 11). The
procedure finishes when none of the points exceeds
the minimum amplitude difference (line 6).

3. Methodology

This section describes the strategy we adopt to valid-
ate the proposed AZC feature. In particular, we assess
its discriminative power and potential use for long-
term epileptic patient monitoring.

Algorithm 1. Douglas–Peucker approximation algorithm.

1: function DOUGLAS–PEUCKER(S, ϵ)
2: let n= |S|
3: let P= {(0,S0),(n− 1,Sn−1)}
4: let S ′ =INTERP (S0,Sn−1,n)
5: letM,k=max(|Si − S ′

i |), i ∈ [0,n− 1]
6: whileM> ϵ do
7: P= P∪{(k,Sk)}
8: M= 0
9: for all j ∈ [0, . . . , |P| − 2]do
10: S ′ = INTERP (Skj ,Skj+1

,kj+1 − kj)
11: M ′,k ′ =max(|Si − S ′

i−kj |), i ∈ [kj,kj+1]

12: if M ′ >M then
13: M,k=M ′,k ′

14: end if
15: end for
16: end while
17: return L= {(tp,Sp), p ∈ sorted(P)}
18: end function

3.1. Feature discriminative power
The KL divergence is a score widely used in inform-
ation theory to assess the statistical distance between
two probability distributions [22]. The higher the dis-
criminative power, the easier it is to correctly label the
data points.

We assess the discriminative power of all fea-
tures on the epileptic seizure detection (i.e. ictal vs.
non-ictal), comparing the KL divergence of the AZC
features against features typically used in the literat-
ure. We obtain the KL divergence using (1), where
P(x) and Q(x) are the feature probability distribu-
tions estimated for non-ictal and ictal time periods,
respectively. Distributions are obtained via a relat-
ive frequency histogram drawn from a feature sub-
set {X= x1,x2, . . .,xn}, where histogram bins {Ii : i=
1, . . .,M} are intervals betweenXminimumandmax-
imum values. For instance, P(x) is given by the quo-
tient between the number of elements of each bin and
X’s length.

KL(P||Q) =
∑

P(x) · log2
P(x)

Q(x)
. (1)

3.2. Adopted machine-learning methodology
Automated seizure monitoring still poses consider-
able challenges for achieving acceptable perform-
ance in real-life conditions [9]. First, removable
and unobtrusive wearable devices are preferred by
PWE [6, 8], which are known by hardware limit-
ations on memory and processing capacity. Thus,
low-complexity algorithms for seizure detection are
preferable to adhere to the restrictions imposed by

4
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such resource-constrained devices. Nevertheless, ML
models should still achieve desirable performance
metrics to attract usage interest [9]. Such models
are trained on long-term time series, and have to
be able to deal with high data imbalance. Moreover,
regarding EEG/iEEG-based monitoring, seizure pat-
terns vary greatly between subjects, and even for the
same subject over time [26]. Also, high amplitude
artifacts and cyclic oscillations can confound model
training/detection [19].

Targeting a feasible solution for outpatient mon-
itoring, we adopt the RF classification algorithm to
assess the AZC performance in the seizure detection
task. RF is an algorithm based on an ensemble of
decision trees to reduce model overfitting. It is fast
and lightweight, both inmodel size andmemory foot-
print [27], and it has been extensively used for EEG-
based seizure classification [15, 20, 28].

Regarding model-training data-related hurdles,
it is essential to adopt an assessment methodology
that represents real-life usage to avoid achieving
unrealistic performance metrics. Thus, we shall avoid
employing only a subset of a dataset to assess the
performance of the proposed ML algorithms. Even if
models are trained using a small subset of the dataset,
the evaluation should be done on the available data
in general. For example, the performance of some
works as [15, 28, 29] tends to be overestimated and
impractical when considering the entire data set, as
only a small number of data points are used to assess
the proposed techniques. This happens as the prob-
ability of drawing samples of data presenting artifacts
and other common acquisition problems randomly
is very low. Second, the data imbalance is a critical
point when choosing the appropriate performance
metrics. Consequently, in this work, we adopt met-
rics recommended by the clinical community: sens-
itivity, FAR [30], and F1 score. Moreover, we con-
solidate those metrics by seizure episode instead of
by the total of data windows used during the infer-
ence. Third, patient-specific detectors can overcome
the variability of seizure patterns among subjects. Fol-
lowing previous work, we adopt a personalized ML
modeling approach [15, 19].

Last, we advocate for a cross-validation (CV)
method that takes into account the chronological
relation between data points, preserving the temporal
dependency among them, and thus representing the
assessment of a real-life application more appropri-
ately. For instance, in the leave-one-out CV (LOOCV)
method used in [3, 16, 19], withheld data is evalu-
ated with a model trained on all the remaining data.
By adopting a non-realistic approach in which future
data is used to evaluate the current test set, LOOCV
tends to overestimate results. To overcome this prob-
lem, we adopt the TSCV approach [31], which is illus-
trated in figure 2. In the TSCV scheme, we guarantee

Figure 2. Proposed time-series cross-validation approach.

that a minimum amount of data is used to train the
very first model, which must include at least one
seizure. The remaining data is used for testing and
divided into several subsets of a minimum of one-
hour long files, thus minimizing potential correlation
with neighbouring training data. Each of these sub-
sets is tested once, and at each iteration, the latest
tested data is added to the training subset. The final
performance is then obtained by concatenating the
results of each test subset.

3.3. AZC features
By using different approximation thresholds in the
algorithm described in section 2.2, we can obtain a
highly discriminative features that carry both time
and frequency characteristics, and account for intra-
/inter-patient variability in seizure patterns (i.e. wave-
form, amplitude, and frequency) [26]. In this work,
we obtain six AZC features. The first feature is calcu-
lated without the use of the polynomial approxima-
tion, thus representing a classical zero-crossing. The
other five AZC features are obtained by applying the
Douglas Peucker algorithm using 16, 32, 64, 128, and
256µV as approximation thresholds, hence covering
the normal EEG amplitude range.

3.4. Classical literature features
We compare the proposed AZC features against a set
of features commonly used for EEG-based seizure
detection, hereafter denominated CLFs. The used
CLF is composed of the 54 features proposed in [15]
and two time-domain features (i.e. line length and
mean amplitude), thus yielding the 56 features set
described below.
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3.4.1. Time domain features.
We employ the line length and the mean amplitude,
calculating themaccording to (2) and (3), respectively
[32].

LL=
1

N

N∑
i=1

(|si − si−1|) (2)

MA=
1

N

N∑
i=1

|si| (3)

where {S= s1, s2, . . ., sn} is a time-series of length N.

3.4.2. Frequency domain features.
Ictal activity is known to affect EEG brainwaves [2],
thus we rely on the signal spectral power to obtain the
EEG bandpower in various frequency bands, namely:
delta [0.5, 4] Hz, theta [4, 8] Hz, alpha [8, 12] Hz,
beta [13, 30] Hz, and gamma [30, 45] Hz. Addition-
ally, we include the total power and the power for
[0, 0.1] Hz, [0.1, 0.5] Hz, and [12, 13] Hz bands. Fur-
thermore, we also calculate the relative power of the
aforementioned bands to the total power, yielding a
subtotal of 17 features.

3.4.3. Non-linear features.
We use Shannon (SEn), Tsallis (TEn), Rényi (REn),
Sample, and Permutation entropies. These entropies
are calculated according to [15, 33], considering a his-
togramwith ten bins and adoptingα= 2 and β= 2 to
calculate Rényi and Tsallis entropies, following [33].
Before calculating all the entropies, we pre-process
the data using discrete wavelet transform employing
the Daubechies 4 (DB4) basis function. We obtain
the approximated and detailed coefficients down to
level seven. As in [15], we obtain a total of 37 features
from the detailed coefficients: Sample entropy is cal-
culated from coefficients at levels six and seven; the
remaining entropies are calculated from coefficients
at levels three, four, five, six, and seven for different
input parameters.

3.5. AZC at the edge
One of the main aims of the AZC feature is to
increase seizure detection robustness leveraging clas-
sical ML algorithms on edge devices. The computa-
tional complexity of AZC is estimated using the e-
Glass wearable device based on an ARM Cortex-M4
microcontroller [15, 27].

We adapted our proposed AZC extraction meth-
odology described in section 2.2 by using the fast
algorithm for polygonal approximation proposed
in [34] to leverage AZC’s real-time implementation
in the e-Glass platform. Moreover, we adopt the
CMSIS (Cortex Microcontroller Software Interface

Standard) to speed-up data processing as it is tailored
for fast execution in ARM devices, associated with
the CMSIS Real-Time Operating System (CMSIS-
RTOS) to enclose our application. Furthermore, we
also achieve an optimized CLF extraction by using
the CMSIS library and a version of the GNU Sci-
entific Library (GSL) [35] cross-compiled for ARM
microcontrollers.

4. Experimental setup

In this section, we introduce the datasets used in the
experiments. Moreover, we detail our experimental
setup, for both KL divergence calculation and seizure
detection. Finally, we talk about the adopted post-
processing approach and the performance metrics
used to report our results.

4.1. Datasets
We employ two datasets to evaluate the perform-
ance of the proposed features for seizure detection:
the CHB-MIT Scalp [19] and the SWEC-ETHZ iEEG
datasets [14]. Both are annotated by neurologists and
are publicly available.

The CHB-MIT includes scalp EEG from 24 chil-
dren (5 males and 18 females, 10± 5.7 years old, one
repeated patient), containing a total of 198 annotated
seizures. Data are recorded using the bipolar mont-
age (10–20 system [36]) at a sampling frequency of
256 Hz and using 16-bit resolution. A total of 982.9 h
of data is available, with only 3.2 h of labelled ictal
data (seizure average length of 58.6 ± 65.0 s). The
dataset is generally organized in one-hour-long files,
in the European data format (.edf ). However, some
subjects have files of two or four hours long, and some
files containing ictal data are less than one hour long.

Furthermore, subject chb12 presents three files
with data acquired on a monopolar montage, includ-
ing 13 seizures. Thus, we excluded these three files
to keep a similar methodology among all subjects.
As a result, the used CHB-MIT’s data has a total of
185 annotated seizures.

The SWEC-ETHZ dataset presents 2656 h of
long-term iEEG data from 18 patients, containing a
total of 116 annotated seizures. Data are recorded in
a monopolar montage at sampling rates of 512 or
1024 Hz, median-referenced, and band-pass filtered
between 0.5 and 120 Hz (zero-phase, 4th-order But-
terworth filter). The data are organized as 1 h long
.mat files accompanied by one extra file per subject,
including seizure annotations.

4.2. Data pre-processing
First, we decimate the SWEC-ETHZ data to have the
same sampling frequency as the CHB-MIT dataset
(i.e. 256 Hz). Then, the data of each file is filtered

6
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between [1, 20]Hz using a zero-phase, 4th order, But-
terworth band-pass filter.

Thereafter, the filtered EEG data is divided into
windows of 4 s with a 0.5 s step (87.5% overlapping).
We extracted a total of 62 features (56 CLF + 6 AZC
features) per EEG window, per EEG channel. For the
CHB-MIT dataset, we performed these steps for the
18 common EEG channels among all subjects (that
is, FP1–F7, F7–T7, T7–P7, P7–O1, FP1–F3, F3–C3,
C3–P3, P3–O1, FP2–F4, F4–C4, C4–P4, P4–O2, FP2–
F8, F8–T8, T8–P8, P8–O2, FZ–CZ, CZ–PZ). Hence,
it yields a total of 108 AZC and 1008 CLF features
that are concatenated in matrices in which the lines
are equivalent to the number of EEG windows and
columns to the total number of features. However,
the SWEC-ETHZ metadata do not include inform-
ation on the iEEG electrode locations. Furthermore,
the number of channels among subjects varies greatly
from 32 to 128 [14], so we use all available chan-
nels for each subject. Finally, we generate labels for
the data representing ictal vs. nonictal data. An EEG
window is labelled according to its majority class (e.g.
a window having 50% or more ictal data is labelled
as ictal).

Next, we reorganize the extracted feature files to
contain the equivalent of one hour of data, disreg-
arding the number of seizures available. Moreover,
we guarantee that the first file contains at least one
seizure and a minimum of five hours of data, which
has been arbitrarily chosen.

4.3. KL divergence and seizure detection
Wecalculate theKL divergence employing histograms
with 100 bins. Using box plot visualization of the KL
discriminative power among features, we can observe
the KL values and also its distribution. We obtain
the plot by grouping all subjects’ scores per feature,
disregarding the EEG channel of origin. Moreover,
CHB-MIT is considered more challenging for seizure
detection given that scalp EEG acquisitions are prone
to suffer from various artifacts (e.g. subject move-
ments, blinking, chewing, electrode disconnections).
Consequently, we will only present the CHB-MIT
dataset box plot of KL scores in section 5. However,
the SWEC-ETHZ iEEG equivalent plot can be found
in the supplementary material.

Regarding the seizure detection problem, we pro-
pose an RF-based seizure detection method using
only AZC features and assess its performance for
both datasets using the TSCV approach. Moreover,
we compare the obtained results against the same
method employing the CLF set. All available seizures
are used for model training and performance assess-
ment. Finally, the code used in this work is made pub-
licly available3.

3 https://c4science.ch/source/AZC_Feature_paper/.

4.4. Post-processing andML performance metrics
Aiming at reducing FAR due to short bursts of
rhythmic activity or high amplitude artifacts, we
post-process the inferred output’s probability of a
data window being assigned to ictal (S) or non-ictal
(NS) classes. Using the Bayesian approach proposed
in [12], we obtain the posterior classification probab-
ility for each EEG window as the dot product of the
probabilities ofW windows. Second, we apply a toler-
ance for seizure detection of 10 s before and 30 s after
the ground truth when determining the number of
true positives and false positives, merging all the true
positives that occurred for the duration of a ground
truth event. Next, we define a measure of classifica-
tion likelihood (CL), for each ith EEG/iEEG window,
as the log-odd of ictal over the non-ictal posterior
probabilities (see (4)). A new classification is then
assigned by thresholding the CL values. We adopt
W = 10 and a threshold of 1.5, according to [12].

CL[i] = log2

∑i
j S[j]

2∑i
jNS[j]

2
(4)

where j= i−W+ 1.
In sequence, we compare the post-processed out-

put against the ground truth to account for: true
positives (Tp), false positives (Fp), and false negatives
(Fn). These metrics are only given per seizure epis-
ode. Additionally, as labels are not always well synced
with ictal activity, we add a tolerance before and after
a hit (i.e. 10 and 30 s) when checking for Fp.

By using the above metrics, we report sensitivity
(Sens) and FAR.Moreover, we also compute precision
(Prec) and F1 score, thus allowing comparison with
other SoA works. These metrics are defined as:

Sens=
Tp

Tp+ Fn
, Prec=

Tp

Tp+ Fp
(5)

F1=
2 · Sens · Prec
Sens+ Prec

, FAR=
Fp

total_time
(6)

where total_time corresponds to the total amount of
hours of data in the test set.

4.5. Real-time execution assessment
We assess our real-time implementation of AZC
and CLF feature extraction algorithms in terms of
runtime and memory requirements to process one
EEG data window of 1024 samples. Regarding the
timing of the application, we employ the data watch-
point trigger component available on ARM micro-
controllers to allow us to count the cycles of the main
clock elapsed while processing each block of features.
We configure the main clock to its maximum value
(i.e. 80MHz). Furthermore, the memory demands
for each strategy are obtained by combining the use of
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Figure 3. KL divergence scores distribution, per feature, for the CHB-MIT dataset. For a detailed description of the features,
please refer to section 3.5.

Table 1. CHB-MIT: number of detected seizures and FAR/day.

Subjects 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Tot
∗

# Seizures 7 3 7 4 5 10 3 5 4 7 3 27 12 8 20 10 3 6 3 8 4 3 7 16 185
# Seiz. Test 5 2 3 3 4 7 2 3 3 6 2 16 11 4 19 9 1 5 2 7 3 2 4 9 132
# Detec. AZC 5 2 2 2 4 4 2 3 3 6 2 16 4 4 16 1 1 2 2 5 2 2 3 9 102
# Detec. CLF 5 2 3 2 4 2 1 3 3 6 2 15 3 4 16 0 1 2 2 7 1 2 4 9 99

Data Avail.(h) 41 35 38 156 39 67 67 20 68 50 35 21 33 26 40 19 21 36 30 28 33 31 27 21 979
Data Test (h) 36 20 33 137 33 59 24 15 46 32 2 15 16 21 34 9 16 7 2 18 14 14 21 15 638
FAR/day AZC 0.7 3.6 1.5 0.2 0.7 0.4 0 9.6 0 0 0 11.2 3.0 1.1 3.5 0 0 3.6 0 2.7 0 0 1.1 7.4 2.1
FAR/day CLF 3.4 2.4 1.5 0.2 0.7 0.4 0 8.0 0 0 0 11.2 1.5 1.1 2.8 0 1.5 0 0 4.1 0 0 2.3 5.9 2.0
∗All the values are a sum for all subjects but the FAR, which are averages.

the CMSIS RTOS function uxTaskGetStackHighWa-
terMark for stack usage with a manual account of the
allocated dynamic memory.

5. Results

We assess the AZC discriminative power by employ-
ing the KL divergence on the probability distri-
butions of ictal and non-ictal EEG data. Figure 3
displays the distribution of the KL scores for the
CHB-MIT dataset. The AZC features extracted for
different approximation thresholds exhibit KL scores
higher than most of the other features. For instance,
three out of the five highest median scores are from
AZC features obtained with different approximation
thresholds (e.g. AZC for 64µV presents the second-
highest median score). Only the line length andmean
amplitude present comparable scores among the 56
CLF features. Meanwhile, features commonly used in
SoA works as power features (mainly delta, theta, and
alpha bandpower) present relatively smaller scores,
followed by Renyi, Tsallis, and Shannon entropies.
The remaining features achieved very small discrim-
inative power. In any case, those features with lesser

scores are still useful as they can improve separability
when combined with others.

Regarding the seizure detection assessment, as
specified in section 3.2, we report results for a patient-
specific detection approach. Tables 1 and 2 present
the main detection results (i.e. sensitivity and FAR).
Overall, we observe that the AZC-based method
detected a higher number of seizures compared to the
CLF-based one: 102 and 194 against 99 and 161, for
CHB-MIT and SWEC-ETHZ, respectively. While, it
keeps a similar FAR/day of an average of 2.1 and 1.0
against 2.0 and 0.5, per day, respectively. Moreover,
figure 4 shows the F1 score, sensitivity, and preci-
sion, per subject, for both datasets and approaches
tested (i.e. AZC- versus CLF-based detection). AZC-
based detection outperforms the CLF-based one in
average performance values for most of the sub-
jects. Overall, 71.4% of patients reached an F1 score
greater than 70%, with 84.8% of the tested seizures
detected.

Finally, the embedded microcontroller imple-
mentation of the AZC feature calculates the six target
features in only 2.98ms, against the 26.45ms taken
by the algorithm to calculate 56 features. Finally, in
terms of RAMmemory, the AZC algorithm demands
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Table 2. SWEC-iEEG: number of detected seizures and FAR/day.

Subjects 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 Tot
∗

# Seizures 2 2 4 14 4 8 4 70 27 17 2 9 7 60 2 5 2 5 244
# Seiz. Test 1 1 3 13 3 7 3 62 24 16 1 8 6 59 1 4 1 4 217
# Detec. AZC 1 1 3 10 3 6 2 47 24 15 1 8 6 58 1 4 1 3 194
# Detec. CLF 1 1 3 11 2 6 2 42 12 15 1 8 6 42 1 4 1 3 161

Data Avail.(h) 293 235 158 41 109 146 69 144 41 42 212 191 104 161 196 177 129 205 2652
Data Test (h) 172 5 74 36 103 127 49 126 36 37 29 109 96 73 154 66 46 112 1450
FAR/day AZC 0 0 0 0 1.4 0 0.5 3.6 0 0.6 0 0 0.3 6.5 0 0 2.1 2.1 1.0
FAR/day CLF 0 0 0 0 1.2 0 0.5 2.5 0 0 0 0.2 0 1.6 0 0 2.6 1.1 0.5
∗All the values are a sum for all subjects but the FAR, which are averages.

Figure 4. Performance metrics obtained with AZC-/CLF-based classification approaches, on both datasets.

up to 4160 bytes while the CLF calculation takes
4774 bytes.

6. Discussion

The evaluated AZC features achieve higher median
KL scores thanmost of the other features (see figure 3)
but also present a wide range of values. Those val-
ues are obtained using all available EEG channels
among all patients. Thus, the lack of epileptiform
activity in some scalp regionsmay reduce the separab-
ility among data. Moreover, ictal patterns vary greatly
among patients, and some patterns can be identified
easier than others [26]. Therefore, AZC could poten-
tially achieve higher discriminative power in case we
employ a channel selection approach per patient.
Another limitation of our work is related to the set of
thresholds used to calculate the AZC values. Regard-
ing seizure patterns difference among patients, a per-
sonalized selection of thresholds might also boost
AZC’s discriminativeness.

Nevertheless, the employedmethod for extracting
AZC features reaches very high performance in both
datasets (i.e. 25 subjects out of 42 achieve 100% sens-
itivity, plus nine showing only one missing seizure).
Additionally, we also achieve a very low FAR/day: 2.1

and 1.0/day on average for CHB-MIT and SWEC-
iEEG, respectively. These results are achieved using
only six features per channel, as opposed to the 56
used in the CLF-based method. Considering the sim-
plicity of the algorithm to calculate the proposed fea-
ture (i.e. AZC’s calculation is 8.8x faster than the CLF
ones and demands less RAM memory), these res-
ults support our final goal of using AZC in resource-
constrained wearable devices for long-term mon-
itoring of PWE. Although of low complexity, the
AZC feature presents an intrinsic ability to capture
changes both in time and in the frequency domain.
For example, by approximating the EEG signal under
different thresholds, we capture changes in the amp-
litude of the EEG during an ictal event [37]. Further-
more, the synchronicity of ictal-EEG (that is, slow
wave discharges at 3–5Hz [37]) is also captured by
the proposed zero crossing count, while the different
thresholds increase the separability of the ictal/non-
ictal data.

More importantly, these results were obtained
using a particularly demanding TSCV methodology
for assessing the classification performance, where
models are trained on an incremental amount of
data. To the best of our knowledge, the proposed
TSCV approach has not yet been used for assessing
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seizure detection methods based on EEG/iEEG. Due
to its interactive trainingmanner, the TSCV approach
makes the assessment harder than other methods
commonly found in the literature, and it is not
directly comparable in terms of accuracy. Depend-
ing on the available amount of seizures per subject
and their position in the acquisition timeline, most
TSCV trained models face an even higher data imbal-
ance rate when compared to LOOCV models. The
lack of ictal data can cause more misclassifications
and false alarms, as can be observed for some sub-
jects’ timelines in the supplementary material (e.g.
chb03, chb07, id07). However, TSCV maintains chro-
nological data relations, thus providing a more real-
istic assessment for long-term seizure monitoring
approaches.

The LOOCV approach may provide the closest
comparisonwhenused to evaluate performance using
the whole dataset. For instance, [19] indicates high
sensitivity in the CHB-MIT dataset even for subjects
declared difficult. By using all seizures but one for
training, and by declaring a seizure detection based on
only one positive prediction, [19]’s method achieves
high sensitivity at the cost of a higher FAR. Although
not employing any post-processing, [19] indicates
a low average FAR of 3.12/day, which might be
explained by the fact that it was only assessed on files
without seizures. We report FAR for all tested data,
including post-ictal data and in-between sequences
of seizures. For instance, by avoiding files contain-
ing ictal data, FAR values for chb12 are not realistic
and not comparable to the ones reported in this work
(chb12 has only 11 files with zero seizures out of the 29
currently available). Moreover, this work also reports
a relatively high FAR for subject chb24, which has not
been included in [19].

A similar approach to classification performance
evaluation is used by [16] in its patient-specific and
hybrid models. The use of fully-connected convo-
lutional neural networks (CNN) trained in most of
the data available, but one record, produced models
with high sensitivity to ictal data, but using rather
complex architecture dependant on the tuning of
1000 hyperparameters. Besides the inherent over-
optimistic results associated to the LOOCV meth-
odology, as discussed above, by considering only
one positive classified window, the minimum need
for asserting a seizure detection, [16]’s sensitivity
is reported as 100%. Additionally, it also reports
low average FAR but, once more, calculated only on
records not presenting seizures. Thus, [16] did not
assess FAR for all available data and, more specific,
it did not employ records with a higher probabil-
ity of presenting false-alarms due to the proximity
to true events (as can be seen in the classification
timelines of chb08, chb12, and chb15, in the supple-
mentary material).

Other works, such as [13], employ a general-
ized model in their classification approach and are

also not directly comparable with our personalized
approach. Also using CNN, [13] reports fair metrics
for CHB-MIT in a per-window assessment approach
(F1 score of 0.59 ± 0.26) when employing 80% of
each subject’s first seizures to train its best model.
Thus, this work’s results corroborate the requirement
of a higher amount of ictal data to improve classific-
ation performance.

Regarding the SWEC-ETHZ iEEG dataset, the
sensitivity we obtained is similar to [14]’s (194
seizures detected out of 217 versus 72 out of 92).How-
ever, two remarks are relevant regarding the method-
ological differences. First, [14] employs the concept
of leading seizures for subjects id08 and id14, thus
reporting results only for the very first seizure in
the long sequence of ictal activity observed in the
data of subjects id08 and id14 (figures 5 and 6).This
affects sensitivity, as well as, FAR results for both
subjects. Considering that those ictal periods are
rather long (up to 10 h for id14), we decided to
report results for all events. Moreover, [14]’s FAR
(average 1.44/day) is considered overestimated as its
post-processing is tailored per subject, a rather data-
dependent approach.

In relation to specific patient results, we would
like to draw attention to some patients that are
regarded as difficult cases. For instance, patients chb6
and chb16 are well known for their short seizures, i.e.
15.3 ± 2.9 s, and 8.4 ± 2.3 s, respectively. Thus, they
present less ictal data for model training. Nonethe-
less, the AZC-based detection still performs relatively
well for chb6. Such performance might be explained
by chb06’s EEGmorphological pattern, which shows a
decreasing signal amplitude and increasing frequency
during seizures. In such a case, the approximation
algorithm associated with the AZC feature calcula-
tion approach would further affect the zero-crossing
counts, as illustrated in figure 1, thus increasing its
discriminative power. Another CHB-MIT particular-
ity, pointed out in [19], is that patient chb13’s non-
ictal data contains short bursts of rhythmic activ-
ity similar to its typical seizure patterns. Hence,
it introduces a confounding effect to the proposed
algorithm, which uses all available data for training.
At last, [26] reported the existence of three unlabeled
seizures in chb24’s data, immediately after its second-
last seizure, which could correspond to the false pos-
itives shown in figure 7 around the 11th h.

Regarding the SWEC iEEG dataset, subjects id08
and id14 present a long-lasting cluster of ictal activity
labelled as various single events in sequence. As can
be seen in figure 5 and in figure 6, most of the missed
detection and false positives accounted for in both
subjects are closer to the cluster boundaries. In a real-
life application, such cases would be rather acceptable
as detections are close to true ictal events.

Finally, the use of a wide variety of features can
boost seizure detection in some cases. For example,
the CLF-based methodology detected more seizures
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Figure 5. AZC prediction for SWEC subject id08.

Figure 6. AZC prediction for SWEC subject id14.

Figure 7. AZC prediction for CHB-MIT subject chb24.

than the AZC-based one for some subjects (i.e. chb03,
chb20, id04), presenting lower FAR for seven subjects
from both datasets, as can be seen in tables 1 and 2.
These results might be explained by the intrapa-
tient variability in seizure patterns and the pres-
ence of various artifacts along the recordings, which
requires a fine-grained trained decision boundary
to achieve higher performance. However, the AZC-
based approach presents results on par formost of the
subjects assessed.

7. Conclusion

In this work, we have introduced a new interpretable
and highly discriminative feature for long-termmon-
itoring of epilepsy, namely approximate zero-crossing
(AZC). Inspired by neurologists’ procedures in inter-
preting and labelling EEG and iEEG data in clinical

practice, the AZC feature also targets to mimic how
our brain selectively picks prominent patterns among
noisy data. We have employed the KL divergence to
showAZC’s high discriminative power over a classical
set of features used in the SoA. Moreover, we have
assessed AZC performance in seizure classification
using two publicly available long-term datasets (i.e.
CHB-MIT −982.9 h, and SWEC-ETHZ −2656 h).
Overall, an AZC-based classification method detec-
ted 102 and 194 seizures against 99 and 161, for the
CLF-based one (CHB-MIT and SWEC-ETHZ data-
sets, respectively), with significantly less features (6
for AZC and 56 for CLF). While, it kept a similar
FAR/day, i.e. average of 2.1 and 1.0 against 2.0 and
0.5, per day. Thus, the proposed AZC feature may
contribute to developing newmethods for outpatient
monitoring, particularly on wearable devices, due to
its low complexity and high discriminative power.
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