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Abstract: We investigate the time-dependent behaviour of the energy current between a quantum
spin chain and its surrounding non-Markovian and finite temperature baths, together with its
relationship to the coherence dynamics of the system. To be specific, both the system and the baths
are assumed to be initially in thermal equilibrium at temperature Ts and Tb, respectively. This model
plays a fundamental role in study of quantum system evolution towards thermal equilibrium in an
open system. The non-Markovian quantum state diffusion (NMQSD) equation approach is used to
calculate the dynamics of the spin chain. The effects of non-Markovianity, temperature difference
and system-bath interaction strength on the energy current and the corresponding coherence in
cold and warm baths are analyzed, respectively. We show that the strong non-Markovianity, weak
system-bath interaction and low temperature difference will help to maintain the system coherence
and correspond to a weaker energy current. Interestingly, the warm baths destroy the coherence
while the cold baths help to build coherence. Furthermore, the effects of the Dzyaloshinskii–Moriya
(DM) interaction and the external magnetic field on the energy current and coherence are analyzed.
Both energy current and coherence will change due to the increase of the system energy induced
by the DM interaction and magnetic field. Significantly, the minimal coherence corresponds to the
critical magnetic field which causes the first order phase transition.

Keywords: quantum coherence; energy current; non-Markovian dynamics

1. Introduction

Decoherence and dissipation of a quantum system are a consequence of the inter-
action between the system and its surrounding environment and have been extensively
studied in quantum optics, quantum information, or quantum many-body system. Open
systems are difficult to deal with due to the complexity of the reservoirs. Born-Markovian
approximation has been used to describe the system dynamics, which assumes that the
large reservoir is not altered significantly. In this case, the system loses its information
into the bath, and these lost information does not play any further role on the system
dynamics. At short and intermediate time scales, considering the memory effects of the
environment, it may fails to give a correct description of the dynamics. A non-Markovian
quantum master equation is therefore required to faithfully reproduce the system dynamics,
especially in this era quantum technology in short-time and/or low temperature has been
developed thoroughly [1]. In the non-Markovian case, the lost information can flow back
to the system from environment within a certain time [2–5]. The key feature of environ-
mental non-Markovianity is the distinguishability between any two states, i.e., strong
non-Markovianity corresponds to larger information backflow [6]. The lost information can
flow back to the system within a certain time The bath-to-system backflow of information
will affect the system dynamics and has been investigated from different perspectives such
as regeneration of the coherence [7], energy [8,9], and heat [10,11]. And these phenomena
have been observed in different experimental setups [12–14].
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Recently, significant efforts have been devoted to non-Markovian dynamics in various
aspects of physics, such as quantum chemistry [15], solid state physics [16], and topological
physics [17]. Several methods have also been suggested to formally define and quantify the
degree of non-Markovianity of the baths [6,18,19]. Global correlation and local information
flows in controllable non-Markovian quantum dynamics is recently studied and the quan-
tum Fisher information and quantum mutual information are demonstrated to be capable
of measuring the non-Markovianity for a multi-channel open quantum dynamics [20]. Fur-
thermore, in superohmic environment the non-Markovian recovery of the system dynamics
and different initial state trace distance non-monotonicity are found using real-time path
integral [21]. Nowadays non-Markovianity has been exploited as resource to improve
the quantum state transfer fidelity through a spin chain [22], the adiabatic fidelity [23],
or quantum communication protocols [24]. Non-Markovian effects from the point view of
information backflow is investigated [11], exchange of information and heat in a spin-boson
model with a cold reservoir is examined.

In most of these studies, the system is assumed to be initially in a pure state. How-
ever the assumption may not be true because of inevitably inaccurate physical opera-
tions, environmental temperature and lingering noises. Furthermore, in a multi-qubit
quantum system such as nuclear magnetic resonance, it is difficult to manipulate or de-
tect single qubits and prepare pure states [25]. Thus it is of practical significance and
necessary to consider initial mixed states in a quantum process in particular qauntum
computation [26–28]. In this paper, we consider a general case that the system and the
baths are both initially in thermal equilibrium at a certain temperature. We focus on the
time evolution of the energy current and coherence of the system in an open system. We
use NMQSD approach to investigate the non-Markovian dynamics of the system [29–32]. It
determines the quantum dynamics of open systems by solving the non-Markovian diffusive
stochastic Schrödinger equation [33,34]. The effects of the environmental (temperature
Tb, non-Markovianity γ, interaction strength Γ) and system (DM interaction strength Dz,
magnetic field intensity Bz) parameters are analyzed in warm and cold baths, respectively.

2. Formalism

In this section, we review the non-Markovian quantum state diffusion approach
(Section 2.1) which will be used in the calculation. We then introduce the spin chain model,
the energy current and quantum coherence in Sections 2.2–2.4.

2.1. Non-Markovian Quantum State Diffusion

In open systems, the total Hamiltonian can be written as

Htot = Hs + Hb + Hint, (1)

where Hs, Hb denote the system and bath Hamiltonian, respectively. Hint is the interaction
Hamiltonian between the system and bath. Suppose the system consists of many qubits. It
is reasonable to assume that each qubit is coupled to its own environment. We are thus led
to a more complicated model in which the system couples to a collection of independent
baths. The Hamiltonian of the bath reads Hb = ∑N

j=1 H j
b. H j

b = ∑k ω
j
kbj†

k bj
k (setting h̄ = 1) is

the Hamiltonian of the jth baths with bj†
k , bj

k being the bosonic creation and annihilation

operators of the kth mode with frequency ω
j
k. The system-bath interaction Hamiltonian

Hint is given by
Hint = ∑

j,k

(
f j∗
k L†

j bj
k + f j

k Ljb
j†
k

)
, (2)
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where Lj is the Lindblad operator and it characterizes the couplings between the system

and the jth bath. f j
k is the coupling strength between the system and the kth mode of the jth

bath. Assume that the jth bath is initially in a thermal equilibrium state at temperature Tj

ρj(0) = e−βH j
b /Zj. (3)

Here Zj = Tr[e−βH j
b ] is the partition function with β j = 1/Tj (setting KB = 1).

The open system in the bosonic heat bath satisfies the following NMQSD
equation [31,33,35]

∂

∂t
|ψ(t)〉 = [−iHs + ∑

j
(Ljz∗j (t) + L†

j w∗j (t)− L†
j Oj†

z∗(t)− LjO
j
w∗(t))]|ψ(t)〉, (4)

where z∗(t), w∗(t) are the stochastic environmental noises, and Oj
η(t) =

∫ t
0 α

j
η(t, s)Oj

η(t, s,

z∗j , w∗j ). The O operator is an operator defined by an ansatz Oj
η(t, s, z∗j , w∗j )|ψ(t)〉 =

δ
δη(s) |ψ(t)〉

(for details, see [33]). It has memory kernel and depends on the nature of noise as well as
the form of the coupling between the system and the baths. αη(t, s) is the bath correlation
function. The density operator of the system can be recovered from the average of the solu-
tions to the NMQSD equation over all the environmental noises. When the environmental
noise strength is weak, the non-Markovian master equation can be written as [36]

∂

∂t
ρs = −i[Hs, ρs] + ∑

j
{[Lj, ρsO

j†
z (t)]− [L†

j , Oj
z(t)ρs] + [L†

j , ρsO
j†
w (t)]− [Lj, Oj

w(t)ρs]}. (5)

The first term on the right-hand side of Equation (5) accounts for the coherent unitary
evolution, which is ruled by the system Hamiltonian Hs. The other terms on the right-hand
side describe the couplings to the environment. For the bath correlation function α

j
η(t, s),

we choose the ohmic type with a Lorentz-Drude cutoff [37–39], whose spectral density is

given by Jj(ωj) =
Γj
π

ωj

1+(
ωj
γj
)2

. Here Γj, γj are dimensionless real parameters. Γj describes the

overall environmental noise strength to the system dynamical evolution process, and 1/γj
represents the memory time of the environment. When γj approaches to zero, the bosonic
bath bandwidth is narrow, which corresponds to colored noise, then the environment
manifests a strong non-Markovianity. On the contrary, for a large γj, the distribution of
the Lorentzian spectrum represents a white noise, which corresponds to Markovian limit.

Oj
η(t) can be numerically calculated by the following equations [40,41]

∂Oj
z

∂t
= (

ΓjTjγj

2
−

iΓjγ
2
j

2
)Lj − γjO

j
z + [−iHs −∑

j
(L†

j Oj
z + LjO

j
w), Oj

z], (6)

∂Oj
w

∂t
=

ΓjTjγj

2
L†

j − γjO
j
w + [−iHs −∑

j
(L†

j Oj
z + LjO

j
w), Oj

w]. (7)

2.2. Spin Chain

The NMQSD approach provides a general theory to deal with the non-Markovian
dynamics of an open quantum system. The system Hamiltonian can be taken as different
forms for different physical systems. The spin chain model has attracted much attention in
experimental and theoretical studies due to its rich and exquisite mathematical structure. It
is not just an abstract theoretical model but in fact accurately describe the dominant physical
phenomena of metals and crystals like ferromagnetism and antiferromagnetism [42–45].
Here in this paper, we take a one-dimensional XY spin chain with DM interaction and
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external magnetic field. For the individual bath model, each spin is immersed in its own
baths (see Figure 1). The Hamiltonian reads

Figure 1. (Color on line) The sketch of the spin chain. Each spin is immersed in its own non-Markovian
and finite temperature heat bath.

Hs =
N

∑
j=1

[
J(σx

j σx
j+1 + σ

y
j σ

y
j+1) + Dz(σ

x
j σ

y
j+1 − σ

y
j σx

j+1) + Bzσz
j

]
, (8)

where σα
j (α = x, y, z) represents the α component of the Pauli matrix for spins and J is the

coupling constant between the nearest-neighbour sites. N is the number of site and we
assume the periodic boundary conditions σα

N+1 = σα
1 . The parameters Dz and Bz are DM

interaction and uniform magnetic field strength. Note here we consider z-component DM
interaction Dz and uniform magnetic field Bz along z direction. Antiferromagnetic spin
chain have gained increasing attention in spin technology owing to their advantages over
their ferromagnetic counterpart in considerable spin orbit, achieving ultrafast dynamics,
and large magnetoresistance transport [46–48]. For this model, we take antiferromagnetic
coupling J = 1 throughout and 0 ≤ Dz ≤ 1.

Now we assume that initially the spin chain is also at thermal equilibrium, with the
density matrix ρs(0) = e−βs Hs /tr

(
e−βs Hs

)
. βs = 1/Ts is the inverse temperature. The high-

temperature approximation can be taken when ‖Hs‖ � Ts

(
‖Hs‖ = tr

√
H†

s Hs

)
. In this

case, ρs(0) can be aprroximately expressed by the first two terms of the Taylor expan-
sion [25]

ρs(0) =
1

2N

(
I − Hs

Ts

)
, (9)

where I is the identity matrix of dimension 2N . Although the thermal equilibrium state
is highly mixed, experimental and theoretical studies have shown that this state can be
transformed into a pseudo-pure state [49,50]

ρs(0) =
1

2N (1− ε)I + ε|ϕ0〉〈ϕ0|. (10)

Pseudo-pure state is still a mixed state ( tr(ρ2
s ) < 1), but in the whole evolution the

state |ϕ0〉 appears with probability (1− ε)/2N + ε and it can carry out some manipulations
and quantum algorithms designed for pure states [51]. All of the states orthogonal to
state |ϕ0〉 appear with equal probabilities of (1− ε)/2N , where the coefficient ε is usually
small. This pseudo-pure state technique provides a convenient starting point for quantum
information processing with less than 10 qubits [52].

For the initial density operator of the system, according Equation (10) throughout the
paper we take N = 4, and assume

|ϕ0〉 = (|1000〉+ |0100〉+ |0010〉+ |0001〉), ε = −3βs. (11)
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Note that the temperature-dependent parameter ε→ 0 in the high-temperature limit
and the initial density matrix is more inclined to be a mixed state ρs(0)→ 1

2N I.

2.3. Energy Current

The energy transfer between the system and the environment is important in the
study of thermodyanmic properties of an open system. The exchange energy between the
open system and environment is accompanied by the exchange of entropy, which is one of
the important criteria to evaluate the amount of information stored in a quantum system.
Therefore, energy current can indirectly describe the information storage capacity of the
environment. Recently, an exactly solvable model was proposed to investigate the quantum
energy current between a nonlinearly coupled bosonic bath and a fermionic chain [53].
The adiabatic speedup and the associated heat current with and without pulse control is
investigated, where the heat current is defined as the difference of the energy current and
the power [10,54]. The energy current can be defined as the derivative of the expectation
value of Hs [55,56]

E(t) =
∂

∂t
tr[ρsHs]. (12)

The above definitions has been proved to be valid for a non-equilibrium spin—boson
model and a three-level heat engine model in the case of non-perturbative and non-
Markovian conditions [57], where the reduced hierarchal equations of motion approach
is used.

2.4. Quantum Coherence

Quantum coherence or quantum superposition lies at the hotspot of quantum theory,
and it is a very valuable resource for quantum information processing [58,59]. It is also of
equal importance as entanglement in the studies of both bipartite and multipartite quantum
systems [60]. Based on the framework of consistent resource theory, the commonly used
coherence measure is the l1 norm coherence, which is a sum of all off-diagonal elements of
the density matrix [61]

C(ρ) = ∑
a 6=b

∣∣ρa,b
∣∣. (13)

3. Numerical Results and Discussions

Based on the definition of energy current and quantum coherence in
Equations (12) and (13), we next numerically calculate the non-Markovian dynamics of the
energy current and quantum coherence. Now the model is that each spin is immersed in
its individual bath [22]. However, due to the neighbor spins are close to each other, we
assume the same environmental parameters Γ = Γj, γ = γj, Tb = T j

b for all these jth baths.
We also assume there is no initial system-bath correlations, ρ(0) = ρs(0)

⊗
ρb(0). ρs(0)

is often taken as pure state, and ρb(0) is in a vacuum state [22], or thermal equilibrium
state [62,63]. As an example, throughout the paper we consider the quantum dissipation
model, in this case the Lindblad operator Lj = σ−j . σ−j = (σx

j − iσy
j )/2. In this case,

the number of excitations is not conserved, and transitions between different subspaces
with certain number of excitations occur [64]. We will study the behavior in time of the
energy exchange between the system and the baths and the quantum coherence of the
system under the influence of the baths.

We first explore the effects of non-Markovianity, environmental temperature and
noise strength on the system dynamics when the system couples to warm baths (Tb > Ts).
In Figure 2, we plot the energy current as a function of time t for different parameter γ
(Figure 2a), Tb (Figure 2b) and Γ (Figure 2c), respectively. In the inset of Figure 2 we also plot
the corresponding coherence dynamics. In Figure 2, we take Ts = 10 and the weak coupling
limit Γ = 0.003, Tb = 80 for Figure 2a, γ = 5, Γ = 0.003 for Figure 2b, Tb = 80, γ = 5 for
Figure 2c. From Figure 2, we can see that the energy current between the system and baths
increases with increasing parameters γ, Γ and |Ts − Tb|. That is to say, more Markovian
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baths, stronger system-baths interactions and higher temperature difference correspond
to bigger energy current, which is in accordance with the case that the initial states of
the system is in a pure state [54]. Correspondingly, coherence decreases with increasing
parameters γ, Γ and |Ts − Tb|. As expected, non-Markovian baths, weak system-bath
interactions and low temperature difference will be helpful to maintain the coherence
of the system. Note that in most cases the energy current is positive, which indicates
the energy transfer from environment to the system. At time t = 0, the energy current
is 0. In a short time region, the energy starts to increase and reach a peak value. Then
it decreases in long time region. For a relatively strong non-Markovian bath (Figure 2a
γ = 0.5), the energy current exhibits a oscillation pattern before it reaches steady state,
which has negative values (from system to bath). In this case, the coherence also shows
an osillation, i.e., the energy backflow from sytem to baths affects the coherence of
the system.
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Figure 2. (Color on line) The energy current and quantum coherence as a function of time t in warm
baths (Ts < Tb) for different values of bath parameters: (a) γ, Tb = 80, Γ = 0.003; (b) Tb, γ = 5,
Γ = 0.003; (c) Γ, Tb = 80, γ = 5. Other parameters are take as Ts = 10, J = 1, Dz = 0 and Bz = 0.

Next we discuss a contrary case that the system is immersed in cold baths (Ts > Tb).
Figure 3 again plots the effects of the parameters γ, Tb and Γ on the energy current and
coherence. Here we take a high system temperature Ts = 100, clearly the coefficient ε in
Equation (11) becomes smaller, pseudo-pure state purity decreases, thus weakening the
quantum coherence in the initial state (the initial coherence is now 0.09 from Figure 3).
Compared with Figure 2, we find that the same conclusion is obtained that the energy
current increases with increasing parameters γ, Γ and temperature difference |Ts − Tb|.
But a negative energy corresponds to the energy transfer from a warm system to the cold
baths. During the calculation, we find that initially positive energy current occurs in a
very short time, these initial currents reflect the response of the system to instantaneous
coupling to the baths at time t = 0. For the coherence, the conclution in Figure 2 also holds:
non-Markovian baths, weak system-bath interactions and low temperature difference
will be helpful to maintain the coherence of the system. But surprisingly, the cohercence
increases with increasing parameter γ and Γ but decreases with increasing Tb. That is to
say, for warm system in cold baths, more Markovian, lower temperature, and stronger
interaction strengths helps the system to be a more pure state. This phenomenon can
be explained as follows: when a small warm system is surrounded by large cold baths,
the system energy dissipates into the bath quickly and the system gets cool down, thus the
coherence starts to increase due to low system temperature.

The DM interaction is an antisymmetric exchange interaction between nearest site
spins, arising from spin-orbit coupling. It emerges in Heisenberg model lacking inversion
symmetry and promotes noncollinear alignment of magnetic moments and induces chiral
magnetic order [65,66]. Although this interaction is weak, it has many spectacular features,
for example, chiral Néel domain walls [67,68], skyrmions [69], etc, implying that a study of
spin models with DM interaction could have realistic applications. In antiferromagnetic
materials, DM interaction will break the antiparallelism of the spin chain spatial structure.
This change enriches the physical properties of antiferromagnetic materials [70,71], such as
in coupled quantum dots in GaAs [72]. Next we will discuss the effects of DM interaction
on the energy current and coherence. Figure 4 plots the quantum coherence and energy
current dynamics for different DM interaction strength Dz in the warm baths (Tb = 80,
Ts = 20) and cold baths (Tb = 20, Ts = 80), respectively. Other parameters are taken as
Γ = 0.005, γ = 2, J = 1, Bz = J. From Figure 4a, for warm baths the negative energy current
is obtained by the introduction of DM interaction. Strong DM interaction strength Dz
restrains the positive energy current and enlarges the negative energy current. This is due to,
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as the DM interaction strength increases, strong spin-orbit couplings cause the neighboring
spins inverse antiparallel structures to intersect and the system energy is enhanced, as a
result it restrains the energy current from the bath to system and enlarges the reversed
current. For the cold baths plotted in Figure 4b, the negative energy current always exists
and clearly the energy current increases with increasing Dz, which is also caused by the
increasement of the system energy. From the inset of Figure 4a,b, the coherence of the
system decreases with increasing Dz. Stronger DM interaction will destroy more coherence
of the system, i.e., the system energy increase is not conductive to the preservation of
quantum coherence, whether in warm or cold baths. In addition, we find that after the
evolution time t > 4, the quantum coherence in warm bath and cold bath has a significant
recovery, which is caused by the non-markovianity of the environment.
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Figure 3. (Color on line) The energy current and quantum coherence as a function of time t in cold
baths (Ts > Tb): (a) γ, Γ = 0.005, Tb = 10; (b) Tb, γ = 10, Γ = 0.005; (c) Γ, γ = 10, Tb = 10. Other
parameters are Ts = 100, J = 1, Dz = 0, and Bz = 0.
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Figure 4. (Color on line) The dynamics of the energy current and quantum coherence with different
DM interaction strength Dz in (a) warm baths (Ts = 20, Tb = 80) and (b) cold baths (Ts = 80, Tb = 20).
Other parameters are Bz = J, γ = 2, Γ = 0.005, J = 1.
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At last, we consider the effects of the external magnetic field, which can also affect
the spatial structure of spin chain and show a positive aspect in the study of quantum
entanglement and quantum state transport in a spin chain [73–75]. In Figure 5, we plot the
energy current and coherence dynamics for different external magnetic field intensity Bz in
warm baths and cold baths, respectively. The parameters are the same as in Figure 4 except
that Dz = 0.3. First from Figure 5a for the warm bath case, the positive energy current
decreases with increasing Bz for a weak magnetic field (Bz = J). When Bz = 2J, the energy
current starts to reverse and it increases with increasing Bz. The coherence in the inset of
Figure 5a also shows this decrease-increase behavior. Bz = 2J corresponds to the lowest
coherence. Why strong field can cause the reverse of the energy current? From Figure 5a
the energy transfer from the low temperature system to the high temperature baths always
occurs in a strong external field (e.g., Bz = 5J). The spin chain is more inclined to be
at antiferromagnetic order in thermal equilibrium, but the introduction of magnetic field
reduce the antiferromagnetic order. When the external magnetic field increases to the critical
field point (Bz = 2J), the spin chain polarization flips into the direction perpendicular to the
field, and the phase transition characteristics are immediately captured by the evolutionary
properties of coherence or the energy current. The spin-flip transition of antiferromagnetic
materials under the external magnetic is a first-order quantum phase transition, and can
be observed experimentally [76,77]. Strong field causes the spin parallel to the direction
of the field and corresponds to a high potential energy, thus the energy current from the
low temperature system to high temperature baths occurs. Strong field also corresponds
to high coherence and weakens the decoherence of the system. The increase of the energy
caused by the field can also fairly explain the results in Figure 5b. The negative energy
current always increases with increasing Bz for cold baths. The energy difference between
system and baths enlarges the energy current. In this case, the phase transition (Bz = 2J)
can not be characterized by the energy current reverse, but it can still be characterized by
the coherence.
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Figure 5. (Color on line) The dynamics of energy current and quantum coherence for different Bz

in (a) warm baths (Ts = 20, Tb = 80); (b) cold baths (Ts = 80, Tb = 20). Other parameters are N = 4,
γ = 2, Γ = 0.005, J = 1, Dz = 0.3.

4. Conclusions

We have investigated the energy current and coherence dynamics in open systems.
The system is a one dimensional spin chain with periodic boundary conditions. We
have considered the independent bath model, i.e., each spin is immersed in its own non-
Markovian bath. Specifically, the spin chain is initially at thermal equilibrium at finite
temperature, or equivalently at pseudo-pure state. By using the NMQSD approach, we
calculate the energy current between the system and baths and the coherence dynamics in
warm baths and in cold baths, respectively. The effects of the bath non-Markovianity, bath
temperature and system-bath coupling strength on the energy current and coherence are
analyzed. We find that non-Markovianity, low temperature difference and weak coupling
correspond to weaker energy current and are in favour of the coherence for both warm and
cold baths. However, the coherence will be damaged by the warm baths but in cold baths it
can be significantly enlarged. Cold environment will help to boost the coherence. We also
consider the influences of the DM interaction on the energy current and coherence. The DM
interaction will increase the system energy for antiferromagnetic chain. Then it shows
different behaviours for warm and cold baths. For warm baths, strong DM interactions
restrain the positive energy current and enlarge negative energy current. For cold baths, it
only exists negative energy current, and strong DM interactions also enlarge the negative
energy current. The coherence will always decreases with the DM interaction strength Dz.
Finally we have also studied the magnetic field effects, where Bz = 2J is a critical value
which corresponds to the first a quantum phase transition. The magnetic field can also
increase the system energy, then similar as the DM interaction case, for warm baths, strong
magnetic fields restrain the positive energy current and enlarge negative energy. For cold
baths, strong magnetic fields also enlarge the negative energy currents. It is interesting to
note that for both types of baths the coherence demonstrates decrease-increase behaviour
with increasing Bz, and the lowest coherence corresponds to the critical value Bz = 2J.
These investigations, based on microscopic understanding, elucidates the relation of energy
current and quantum coherence, which might potentially be a good reference in context
of quantum thermodynamics of non-Markovian open quantum systems [78], as well as in
study of environment-induced quantum coherence [79–81].
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