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Abstract
Estimation of Distribution Algorithms have been successfully used to solve permutation-based Combinatorial Optimization
Problems. In this case, the algorithms use probabilistic models specifically designed for codifying probability distributions
over permutation spaces. One class of these probability models are distance-based exponential models, and one example
of this class is the Mallows model. In spite of its practical success, the theoretical analysis of Estimation of Distribution
Algorithms for permutation-based Combinatorial Optimization Problems has not been developed as extensively as it has been
for binary problems. With this motivation, this paper presents a first mathematical analysis of the convergence behavior of
Estimation of Distribution Algorithms based on Mallows models. The model removes the randomness of the algorithm in
order to associate a dynamical system to it. Several scenarios of increasing complexity with different fitness functions and
initial probability distributions are analyzed. The obtained results show: a) the strong dependence of the final results on the
initial population, and b) the possibility to converge to non-degenerate distributions even in very simple scenarios, which has
not been reported before in the literature.

Keywords Estimation of Distribution Algorithms · Permutation-based Combinatorial Optimization Problems · Mathematical
Modeling · Dynamical Systems · Mallows Model

1 Introduction

1.1 Context

Evolutionary Algorithms (EAs) are a family of algorithms
inspired by the natural evolution of species. Generally, these
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population-based metaheuristic algorithms work over a set
of individuals (solutions), called the population, and at each
iteration of the algorithm they introduce several changes
to evolve the population and to obtain improved solutions
according to the function to optimize, which is denoted as
the objective function or, equivalently, the fitness function.

Introduced by Mühlenbein and Paaβ [23], Estimation of
Distribution Algorithms (EDAs) [19] are an intriguing type
of EA. The main characteristic of EDAs in comparison to
generic EAs is the use of probability distributions instead
of the usual natural evolution operators, such as recombina-
tion and mutation. In this way, EDAs start with a population,
in most cases by means of sampling a uniform probabil-
ity distribution over the search space. From the population,
EDAs use a selection operator and obtain a subset of solu-
tions which is used to learn a probability distribution. This
distribution can be learned from scratch or by modifying the
probability distribution used to sample the population at the
previous iteration (such as in cGA [16]). The ideal goals
of the learned probability distribution are to summarize the
main features of the selected solutions and to highlight the
best solutions. Finally, the learned probability distribution
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Algorithm 1 General pseudocode of an EDA
Obtain an initial population D0
while Stop criteria = FALSE do

Select a subset of individuals from the population Di : DS
i

Learn a probability distribution from DS
i : P

L
i

Sample a new set of individuals using PL
i : Di+ 1

2
Generate a new population Di+1 with Di and Di+ 1

2
i = i + 1

end while
Return Best individual of the final population

is sampled to obtain a new set of solutions and to generate
a new population, which is used at the next iteration of the
algorithm. In Algorithm 1 the general pseudocode of an EDA
which learns a probability distribution from scratch at each
iteration is introduced.

1.2 Motivation

EDAs have been and are being designed, applied and
analyzed in the solution of Combinatorial Optimization
Problems (COPs). Particular attention has been paid to the
solution of binaryCOPs,where theoretical results at different
levels have been provided for different implementations of
EDAs. However, this development has not been extended to
other non-binary COPs, such as permutation-based COPs. In
order to bridge this gap, in this paper we extend part of those
results to the area of permutation-based COPs. Several works
have been presented in the literature that use EDAs specifi-
cally designed for permutation-basedCOPs, obtaining strong
competitive results [5,6,24,28]. However, it is still not clear
which mechanisms allow them to obtain those results.

Our motivation behind this work is to present, for the
first time, a theoretical analysis of EDAs designed for
permutation-based COPs, and a mathematical modeling to
study their behavior in several scenarios of increasing com-
plexity. To the best of our knowledge, there are no theoretical
studies on permutation-basedEDAs. Therefore, we seek gen-
eral knowledge for a better comprehension of the algorithms
designed over the permutation space. Theoretical studies can
focus on many different objectives, such as limit behavior of
the algorithm, runtime analysis, population sizing and so on.
Inspired by the path followed for the theoretical studies of
EDAs designed for binary COPs, this first study focuses on
convergence analysis.

Current research of binary EDAs is often based on run-
time analysis. The goal is to find bounds on the number of
generations to sample a high quality or optimal solution for
the first time. This goal has a close connection with the prac-
tical use of the algorithms, where we would like to sample an
optimal solution as soon as possible. Notice that an optimal
solution can be reached for an algorithm without requiring
convergence to it [32].

However, convergence analysis is a very gripping starting
point of original analyses to gain insights into the studied
algorithms and for know in which scenarios the algorithm is
guaranteed to converge to the optimal model by its design.
Moreover, this work presents, for the first time, a framework
to study EDAs designed for permutation-based COPs. Let us
explain in detail our two main motivations. Firstly, as previ-
ously mentioned, permutation-based EDAs have presented
strong competitive results in practice. However, there are no
theoretical studies that analyze the algorithms which obtain
those results. Therefore, our first objective is to study the rea-
sons and the characteristics of the used algorithms to achieve
the presented results. Secondly, many mathematical frame-
works have been presented in the literature to gain insights
into binary EDAs. Some of the mentioned works are refer-
enced in Sect. 1.4. Nevertheless, permutation-based EDAs
have not gained the same attention of researchers and there
are nomathematical frameworks in the literature to study this
kind of algorithms. So, our second objective is to generate a
mathematical model that can be used to analyze permutation-
based EDAs theoretically.

While several EDAs have been designed for permutation-
based COPs which use different probabilistic models, we
concentrate on those that use the Mallows model as it is
the one that has received the highest attention in the litera-
ture. The Mallows model [20] is considered the analogous
distribution of the Gaussian distribution over the permuta-
tion space and it can be included in a more general class of
probability models: distance-based exponential models. The
Mallows model has been used for designing EDAs in the
solution of the Permutation Flowshop Scheduling Problem
[5,6] and the Vehicle Routing Problem with Time Windows
[24]. In the mentioned articles, the authors design EDAs in
which aMallowsmodel is learnt from the selected population
at each iteration of the algorithm. In [6] the authors named
this algorithm Mallows-EDA, whereas in [5,24] the authors
generalize and expand Mallows-EDA. However, even if the
mentioned articles havepresented competitive results in prac-
tice, there are no studies that analyze the behavior of the
applied algorithms. We study the reasons for the results
obtained by the Mallows-EDA and its characteristics.

1.3 Contribution

In this paper,we present amathematical framework to study a
Mallows-EDA and focus on the convergence behavior of the
algorithm for several fitness functions. Considering the ideas
presented in previous works [15,22,34], we will study the
sequence of the expected probability distributions obtained
at each iteration of the algorithm (or, equivalently, we study
the behavior of the algorithm when the population size tends
to infinity). In this way, the randomness is removed and the
algorithm is modeled as a dynamical system. Finally, our
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proposed mathematical framework is used to calculate the
convergence behavior of the algorithm for several fitness
functions. The studied functions are the constant function,
the needle in a haystack (analogous to the definition pre-
sented in [25]) and a function defined bymeans of aMallows
model centered at different permutations.

This work is an extensive and detailed expansion of the
work [29] and, as far as we know, our results are the first the-
oretical analysis given in the literature for permutation-based
EDAs, and show the obstacles in achieving high quality the-
oretical results in this unexplored area. In comparison to the
mentioned work, in this paper we show in detail the develop-
ment and the reasons for using each mathematical tool that
was not explained in [29] and we extend the obtained results
presenting new scenarios and giving the reasons for obtain-
ing them. Based on the motivations explained in Sect. 1.2,
this work has three main goals. Our first goal is to present
a mathematical framework which allows the reproducibility
of this study to different distance-based exponential models
and new fitness functions. Our second goal is to carry out
an analysis so as to provide new knowledge on the conver-
gence behavior of permutation-based algorithms. Moreover,
for the analyzed objective functions in the present work, the
obtained results are unexpected. We have observed that, for
the scenarios in which the initial probability distribution is
the uniform distribution or the fitness function is constant,
the model converges to the optimal solution. However, in
the rest of studied simple scenarios, the algorithm can con-
verge to a degenerate distribution not necessarily centered at
the optimal solution, or to a non-degenerate probability dis-
tribution. To determine the limit behavior of the algorithm,
the equations to recognize the fixed points of the dynami-
cal system are shown. These obtained results are dissimilar
to the existing results in the literature for binary EDAs (for
example, in [14,15,34], the studied algorithms converge to
degenerate distributions centered at local optima or global
optimum of the studied fitness function). An exhaustive list
of the reached results can be found in Sects. 3, 4 and 5. At
the beginning of each referenced section, a summary of the
obtained results is introduced.

Finally, our third goal is to present the obtained knowl-
edge in this study to lay the basis for upcoming research
in this area. The presented analysis shows that, given an
objective function, the initial probability distribution deter-
mines the limit behavior of the algorithm. Therefore, our first
proposed algorithmic adaptation is to apply alternative ini-
tializations for obtaining high quality solutions. On the other
hand, another proposed work is to analyze the expected num-
ber of iterations to achieve a high quality or optimal solution
for the first time and connect it with the current tendency of
the theoretical studies of EDAs. These points are discussed
further in Sect. 6.

1.4 Related work

EDAs have been mostly designed and studied for binary
COPs. Some examples of the designed EDAs for binary
COPsareUnivariateMarginalDistributionAlgorithm (UMDA)
[23], Population-based Incremental Learning (PBIL) [2],
Compact Genetic Algorithm (cGA) [16] and Factorized Dis-
tribution Algorithm (FDA) [22]. Moreover, they have also
been complementedwith a theoretical studywith the purpose
of understanding and improving these algorithms [14,15,22].
The first theoretical studies focused on their convergence
behavior and the current tendency of the theoretical studies
is the runtime analysis of the algorithms. We highly recom-
mend the work [18] for a state-of-the-art on binary EDAs and
our ideal goal is to explore the permutation-based EDAs in
an analogous way.

From [18], we want to highlight three inspiring works.
In [14], the authors prove that when the fitness function is
unimodal, PBIL converges to the global optimum. In [15], it
is proved that any discrete EDA generates a population with
an optimal solution if any solution of the search space can
be generated at any iteration of the algorithm. In addition, in
the same work, the authors review a dynamical system used
in the literature to study UMDA and PBIL. In the present
work, we have considered the idea of studying EDAs as
dynamical systems. Last but not least, in [22], the authors
study the convergence behavior of the FDA using Boltzmann
and truncation selection and by analyzing finite and infinite
populations, which shows the influence of the assumption
of infinite populations and the differences in the obtained
results.

The remainder of the paper is organized as follows. In
Sect. 2, the basic concepts related with the Mallows model
and our mathematical framework are introduced. In Sect. 3,
the convergence behavior of the framework is studied for
a constant objective function f . In Sect. 4, the function f
analyzed is a needle in a haystack function. In Sect. 5, the
function f analyzed is aMallows model. In Sects. 3, 4 and 5,
two initial distributions are considered for the analysis: the
uniform distribution and a Mallows probability distribution.
Finally, in Sect. 6, conclusions and futurework are presented.

2 EDA based onMallowsmodels

The theoretical study of an EDA can focus on many different
objectives, such as limit behavior, runtime analysis, popula-
tion sizing and so on. In this work, the convergence behavior
of the Mallows-EDA has been studied. To do so, a mathe-
matical modeling based on dynamical systems is presented
to achieve our objective.
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2.1 Notation

The solutions of the studied optimization problems are per-
mutations of length n. Let us denote byΣn the n-permutation
space (|Σn| = n! = N ) and f : Σn −→ R the function to
maximize. Let us denote by σ a permutation from Σn or a
solution of the function f . Throughout this work, σ(i) rep-
resents the position of the element i in the solution σ . The
solution σ ∗ is an optimal solution:

σ ∗ = arg max
σ∈Σn

f (σ ).

Moreover, let us define an adjacent transposition of a permu-
tation σ as a swap of two consecutive elements. Additionally,
σ−1 is the inverse permutation of σ .

A population in the algorithm is a subset (in the multiset
sense) of M solutions of Σn . Let us denote by Di the pop-
ulation at step i and DS

i the selected individuals from Di .
There are several ways to study EDAs which depend on how
an iteration of the algorithm is described. The most common
explanation of a step of an EDA is the following one. The
algorithm starts the iteration i from a population Di . Then,
a subset of individuals is selected from Di by means of the
selection operator and DS

i is defined. After that, a probability
distribution PL

i is learnt from DS
i and finally a new popula-

tion Di+1 is generated by sampling solutions from PL
i and

combining them with the solutions from Di . In Algorithm 1
the general pseudocode of an EDA is introduced. Still, there
exists another possible interpretation of a step of an EDA in
which probability distributions are considered as the main
mathematical tool to study the algorithm [25]. In this sec-
ond description, the algorithm starts the iteration i from a
probability distribution Pi and a population Di is sampled.
Then, DS

i is selected andfinally a newprobability distribution
is learnt for the next iteration, PL

i = Pi+1. Throughout this
work, the last description has been considered themain inter-
pretation of EDAs for a better comprehension of Sects. 2.2
and 2.4.

The probability distributions can be represented using
probability vectors. Let us denote by pi (σ ) the probabil-
ity of σ under Pi . Therefore, we can denote by Pi =
(pi (σ1), . . . , pi (σN )) the probability distribution of the pop-
ulation at iteration i . If we are studying EDAs with finite
populations, the vector Pi can be considered as the “empir-
ical probability mass function” of Di (and analogous with
PS
i from the population DS

i ). We must emphasize that this
representation of the populations by probability vectors is
conceptual and it is really helpful for our proposed theoreti-
cal study, but it cannot be applied in practical EDAs due to
the required memory. Moreover, the subindexes used for the
permutations of the probability vectors distinguish the N per-
mutations of Σn where an order has been set up. The space

of possible probability vectorsΩn is defined in the following
way:

Ωn = {(p(σ1), p(σ2), . . . , p(σN )) :
N∑

j=1

p(σ j ) = 1, 0 ≤ p(σ j ) ≤ 1, j = 1, . . . , N

⎫
⎬

⎭ .

To avoid the trivial case, it is assumed that any initial proba-
bility vector P0 satisfies that p0(σ j ) < 1, for j = 1, . . . , N
(D0 is not formed only by one specific solution). Note that
Ωn contains degenerate distributions. Let us denote by 1σk =
(1σk (σ1), . . . , 1σk (σk−1), 1σk (σk), 1σk (σk+1), . . . , 1σk (σN )) =
(0, . . . , 0, 1, 0, . . . , 0) the degenerate probability distribu-
tion centered at σk .

Hence, if Pi are considered the references of each step of
an EDA, then the EDA can be considered a sequence of prob-
ability distributions, each one given by a stochastic transition
rule G:

P0 −→ P1 −→ P2 −→ · · ·
G G G

that is, Pi = G(Pi−1) = Gi (P0), ∀i ∈ N. Given a probability
distribution Pi , the operator G outputs the probability dis-
tribution obtained after sequentially applying the sampling,
the selection operator and the learning step. In this work,
the considered algorithm to analyze is the Mallows-EDA [6]
and the selection operator used throughout this work is a 2-
tournament selection. The details are explained in Sects. 2.3
and 2.4.

Hence, our objective is to study the convergence behavior
described as follows:

lim
i−→∞Gi (P0).

2.2 EDAs based on expectations

The application of the EDA schema to deal with optimization
problems can involve an unapproachable variety of situations
and behaviors. Due to this difficulty and following the ideas
presented in the literature, our proposed mathematical mod-
eling studies the expected probability distribution generated
after one iteration of the algorithm. So, our proposed frame-
work studies the deterministic function G : Ωn −→ Ωn

which assigns the expected probability distribution of the
operator G : Ωn −→ Ωn , similar to the idea followed in
[14]:

Pi+1 = G(Pi ) = E[G(Pi )] = E[(a ◦ φ)(Pi )]
=
∑

P∈Ωn

a(P) · p(φ(Pi ) = P).
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where a(P) is the probability distribution obtained after
applying the approximation step, φ is the selection opera-
tor and p(φ(Pi ) = P) is the probability to obtain P from Pi .
The details of our proposed selection operator and approxi-
mation step are explained in Sect. 2.4.

Moreover, Pi = Gi (P0). Studying the expected proba-
bility distribution, each time the algorithm is applied, the
deterministic operatorG removes the randomdrift and avoids
ending in a different probability distribution. Another equiv-
alent interpretation of the deterministic operator G is the
study of EDAs when the population size of Di and DS

i tends
to infinity [9,10,30,34]. By theGlivenko-Canteli theorem [8],
when the population size tends to infinity, the empirical prob-
ability distribution of Di and DS

i converge to the underlying
probability distribution of Di and DS

i , respectively. Under
this assumption, Pi and PS

i can be thought of as the popula-
tion and the selected population at iteration i : in other words,
Pi and PS

i replace the populations Di and DS
i of the finite

model, respectively. Therefore, our study can be thought of as
the analysis of an EDA that works with the limit distributions
of large populations. In Algorithm 2 the general pseudocode
of an EDA based on expectations is shown.

Algorithm2General pseudocode of anEDAbased on expec-
tations
Obtain an initial probability distribution P0
while No convergence do

Compute the probability of selection from Pi bymeans of φ (selec-
tion operator): PS

i
Compute PL

i to approximate PS
i

Pi+1 = PL
i

i = i + 1
end while
Return Final probability distribution

Typical selection operators φ are n-tournament selection,
proportional selection and truncation selection [4,34].

Therefore, the operatorG induces adeterministic sequence:

P0 −→ P1 −→ P2 −→ · · ·
G G

and the new objective is to study

lim
i−→∞Gi (P0).

In Sect. 2.4, the function G used throughout this work to
study the convergence behavior of the algorithm is defined.

2.3 Mallowsmodel

The Mallows model [20] is a distanced-based exponential
probability model over permutations. Under this model, the

probability value of every permutation σ ∈ Σn depends on
two parameters: a central permutationσ0 and a spread param-
eter θ . The Mallows model is defined as follows:

P(σ ) = 1

ϕ(θ, σ0)
e−θd(σ,σ0)

where d is an arbitrary distance function defined over the
permutation space, d(σ, σ0) is the distance from σ to the
central permutation σ0, and ϕ(θ, σ0) = ∑

σ∈Σn
e−θd(σ,σ0)

is the normalization constant. Due to the definition of the
Mallows model, it is considered the analogous distribution
of the Gaussian distribution over permutations. To simplify
notation, let us denote by MM(σ0, θ) a Mallows probability
distribution centered at σ0 and spread parameter θ . Bear in
mind that when θ = 0, MM(σ0, 0) is a uniform probability
distribution for any σ0 ∈ Σn .

An important property of aMallows model is that any two
permutations at the same distance from the central permuta-
tion have the same probability value. Hence, we can group
the permutations according to their distance to the central
permutation.

Different distances can be used with the Mallows model,
such as Cayley distance, Hamming distance or, themost used
distance in the literature for the Mallows model, Kendall tau
distance [17], which is the one we use in our EDA analysis.

Definition 1 Kendall tau distance dτ (σ, π) counts the num-
ber of pairwise disagreements between σ and π . It can be
mathematically defined as follows:

dτ (σ, π) = |{(i, j) : i < j, (σ (i) < σ( j) ∧ π(i) > π( j))

∨(σ (i) > σ( j) ∧ π(i) < π( j))}|

where σ(i) is the position of the element i in the permutation
σ (and similarly with σ( j), π(i) and π( j)).

By definition, Σn with dτ is a metric space. For simplifi-
cation purposes, let us denote by σπ the composition of σ

andπ (i.e., σπ = σ ◦π ) and d(σ, π) the Kendall tau distance
between σ and π . According to the definition, the distance
between two permutations is a non-negative integer between
0 and D = n(n − 1)/2 = (n

2

)
. A property of Kendall tau

distance is that, for any σ, π ∈ Σn , d(σ, π) + d(π, I ′σ) =
d(σ, I ′σ) = D, where I ′ = (n n − 1 · · · 1). Consequently,

2
∑

π∈Σn

d(σ, π) =
∑

π∈Σn

(
d(σ, π) + d(π, I ′σ)

)

=
∑

π∈Σn

D = N · D.

Another property is that Kendall tau distance has the right
invariance property; that is, d(σ, π) = d(σρ, πρ) for every
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permutation σ, π, ρ ∈ Σn [17]. Consequently, the normal-
ization constant of the Mallows model can without loss of
generality be written as ϕ(θ).

Kendall tau distance can be equivalently written as

d(σ, π) =
n−1∑

i=1

Vi (σ, π)

where Vi (σ, π) is the minimum number of adjacent swaps to
set the valueπ(i) in the i-th position of σ [21]. It is worth not-
ing that there exists a bijection between any permutation σ of
Σn and the vector (V1(σ, I ), . . . , Vn−1(σ, I )), where I repre-
sents the identity permutation and Vi (σ, I ) ∈ {0, . . . , n− i},
∀i = 1, . . . , n − 1. Furthermore, the components Vi (σ, I )
are independent when σ is uniform on Σn .

Finally, with Kendall tau distance, the Mallows model
with central permutation σ0 and spread parameter θ and the
Mallows model with central permutation I ′σ0 and spread
parameter −θ are equivalent [13]. Therefore, without loss of
generality, we assume that θ > 0.

2.4 Mathematical modeling

As we have mentioned in the introduction section, in this
section we present a mathematical framework to study the
convergence behavior of a Mallows-EDA by a deterministic
operator based on expectations. Before presenting our pro-
posed mathematical modeling, we want to present how the
Mallows-EDA is defined in [6].

The main characteristic of the Mallows-EDA is that
the learned probability distribution is a Mallows proba-
bility distribution. To learn a Mallows model, σ0 and θ

parameters must be estimated. By the maximum likelihood
estimation method, the exact parameters are calculated. The
log-likelihood function for a finite population {σ1, . . . , σM }
is as follows [13]:

− Mθ

n−1∑

i=1

V̄i − M logϕ(θ) (1)

where V̄i denotes the observed mean for Vi : V̄i = ∑M
j=1

Vi (σ j , σ0)/M . As we can observe in Eq. (1), the value
−Mθ

∑n−1
i=1 V̄i depends on σ0 and θ , whereas the value

−M logϕ(θ) only depends on θ . Therefore, for a fixed non-
negative value θ , maximizing the log-likelihood function is
equivalent to minimizing

∑n−1
i=1 V̄i . This problem is also

known as the rank aggregation problem and the Kemeny
ranking problem and it is an NP-hard problem [1,3]. This
makes the theoretical analysis very complex.

Therefore, given a sample ofM permutations {σ1, . . . , σM },
the first step to obtain the maximum likelihood estimators of

Algorithm 3 General pseudocode of Mallows-EDA
Obtain an initial population D0
while Stop criteria = FALSE do

Select a subset of individuals from the population Di : DS
i

Estimate σ0: σ̂0
Estimate θ based on σ̂0: θ̂
Sample a new set of individuals using MM(σ̂0, θ̂ ): Di+ 1

2
Generate a new population Di+1 with Di and Di+ 1

2
i = i + 1

end while
Return Best individual of the final population

the Mallows model is to obtain a permutation σ0 which min-
imizes

∑n−1
i=1 V̄i . Let us denote by σ̂0 the estimated central

permutation for the previousminimization problem.Oncewe
obtain σ̂0, the maximum likelihood estimator of θ , denoted
by θ̂ , is obtained by solving the following equation [13]:

n−1∑

i=1

V̄i = n − 1

eθ − 1
−

n−1∑

i=1

n − i + 1

e(n−i+1)θ − 1
. (2)

Despite the fact that previous theoretical studies that use
dynamical systems ( [14,33], for example) have closed for-
mulae, the solution of this equation has not. For that reason,
a numerical method such as, e.g., Newton-Raphson, has to
be used to solve the equation. This is another reason that
shows the complexity of the theoretical analysis. Once σ̂0
and θ̂ are estimated, theMallowsmodel is completely defined
and it is used to sample new solutions for the next iteration
of the algorithm. In Algorithm 3 the general pseudocode of
Mallows-EDA defined in [6] is shown.

Throughout this work, in order to study the convergence
behavior of the Mallows-EDA based on expectations, the
deterministic operator G = a ◦ φ is used. This operator is
a composition of the selection operator φ and the approxi-
mation step a used to learn the Mallows model. Hence, the
operator φ returns the expected selection probability of the
solutions from Pi and the function a uses a maximum like-
lihood estimation method to learn a Mallows model from
PS
i .
The selection operator studied in this work has been the

widely used 2-tournament selection, but it is worth mention-
ing that the use of any selection operator based on rankings
of solutions which satisfies impartiality and no degenera-
tion properties defined in [10] will produce the same results.
This selection operator is based on the ranking of the solu-
tions according to the objective function f and cannot assign
extreme probabilities. Given the probability distribution Pi
at iteration i and assuming a maximization problem, the
expected probability of selecting a solution σ is the sum of
all the binary selections in which σ and a solution π with a
lower or equal fitness function value has been chosen, that
is:
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pSi (σ ) = 2
∑

π | f (σ )> f (π)

pi (σ )pi (π)

+
∑

π | f (σ )= f (π)

pi (σ )pi (π). (3)

Once we have PS
i calculated, the function a deals with the

probabilities pSi (σ ) to learn a new Mallows model which is
the probability distribution of the next generation. In order
to work with the probability vectors and the expected prob-
ability distributions and to estimate σ0 and θ , Eqs. (1) and
(2) must be reformulated. To do so, the value V̄i is calculated
using pS(σ ) as the proportion of the solutionσ in the selected
population by the weighted average value of Vi (σ, σ0). So,
we have

V̄i =
∑

σ∈Σn

Vi (σ, σ0) · pS(σ ).

Therefore,

n−1∑

i=1

V̄i =
n−1∑

i=1

∑

σ∈Σn

Vi (σ, σ0) · pS(σ )

=
∑

σ∈Σn

d(σ, σ0) · pS(σ ).

So themaximum likelihood estimator ofσ0 from the expected
selected population is the following:

σ̂0 = arg min
σ∈Σn

∑

π∈Σn

d(π, σ ) · pS(π). (4)

The maximum likelihood estimator of σ0 might not be
unique. In Sects. 4 and 5, we will observe some PS probabil-
ity distributions in which the estimated central permutation
is not unique.

To estimate θ , we can use Eq. (2) in the same way as with
finite populations and solve the following equation:

∑

σ∈Σn

d(σ, σ̂0) · pS(σ ) = n − 1

eθ − 1
−

n−1∑

i=1

n − i + 1

e(n−i+1)θ − 1
. (5)

Throughout this work, two observations related to the esti-
mation of the spread parameter are considered. Firstly, the
right-hand side of Eq. (5) is not definedwhen θ = 0. Still, the
right-hand side of Eq. (5) tends to

(n
2

)
/2when θ tends to 0 and

θ = 0 is a removable singularity (see Proof in Proposition 1
of Appendix A).

Considering this observation, the following lemma proves
that when the estimated central permutation is unique, then
the estimated spread parameter has a positive value. It is
worth mentioning that Lemma 1 is independent of the objec-
tive function f and the iteration i of the algorithm.

Lemma 1 Let Pi be a Mallows probability distribution with
central permutation σ0 and spread parameter θ ≥ 0, and
PS
i the probability distribution after a 2-tournament selec-

tion over Pi . Let σ̂0 be the unique estimator of the central
permutation of Pi+1. Then, the value θ̂ which solves the fol-
lowing equation

∑

σ∈Σn

d(σ, σ̂0) · pS(σ ) = n − 1

eθ̂ − 1
−

n−1∑

i=1

n − i + 1

e(n−i+1)θ̂ − 1

is a positive value. Equivalently,
∑

σ∈Σn
d(σ, σ̂0) · pS(σ ) is

a value lower than
(n
2

)
/2.

Proof First, let us consider the function g:

g(θ) =
{ n−1

eθ−1
−∑n−1

i=1
n−i+1

e(n−i+1)θ−1
if θ 
= 0

1
2

(n
2

)
if θ = 0.

(6)

The function g is a continuous decreasing function such
that g(θ) + g(−θ) = (n

2

)
, limθ−→−∞ g(θ) = (n

2

)
and

limθ−→∞ g(θ) = 0 (seeProof inProposition2ofAppendixA).
Secondly, for any σ̂0 and θ̂ parameters,

∑
σ∈Σn

d(σ, σ̂0) ·
pS(σ ) is a value from the interval (0,

(n
2

)
). In particular,

∑

σ∈Σn

d(σ, σ̂0) · pS(σ ) +
∑

σ∈Σn

d(σ, I ′σ̂0) · pS(σ )

=
(
n

2

) ∑

σ∈Σn

pS(σ ) =
(
n

2

)
.

Considering that, by hypothesis, σ̂0 is the unique estimator
of the central permutation of Pi+1,

∑

σ∈Σn

d(σ, σ̂0) · pS(σ ) <
∑

σ∈Σn

d(σ, I ′σ̂0) · pS(σ )

is obtained and therefore

∑

σ∈Σn

d(σ, σ̂0) · pS(σ ) <
1

2

(
n

2

)
.

��
The second observation is that in the approximation step

of our algorithm, at any iteration, if PS is a Mallows model
with central permutation σ0 and spread parameter θ , then
the learned Mallows model is the same one: σ̂0 = σ0 and
θ̂ = θ . The argument to prove this observation is that the
probabilities of the solutions are ordered inversely according
to their distance to σ0. Hence, Eq. (4) obtains the minimum
value at σ0 and it is unique. Furthermore, when θ̂ = θ , Eq.
(5) is fulfilled because PS is a Mallows model. Another way
to understand this observation is that when we work with
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infinite population and the sampling step is not needed, the
probability distribution is kept constant. To simplify notation,
throughout this work, let us consider the uniform distribution
as a Mallows model with central permutation σ0 ∈ Σn and
spread parameter 0.

In addition, throughout this work it is assumed that
the algorithm learns 1σk probability distribution if PS =
1σk . Note that 1σk is obtained as the limit distribution of
MM(σk, θ) when θ tends to infinity.

Once we have defined the selection operator and how
we learn a new probability distribution, our operator G is
defined. The schema of one iteration of the algorithm is the
following:

φ a
· · · −→ Pi −→ PS

i −→ Pi+1 −→ · · ·
︸ ︷︷ ︸

G = a ◦ φ

where φ is 2-tournament selection and a is the approxima-
tion step that learns a Mallows probability distribution by
maximum likelihood estimation.

The aim of the following sections is to apply our proposed
mathematical modeling in some scenarios. Each scenario
considers an objective function f and an initial probabil-
ity distribution P0. Our objective is to calculate Gi (P0)
when i tends to infinity. To do so, Gi (P0) are calculated, for
i = 1, 2, 3, . . . , and the results are analyzed. In some par-
ticular cases, it is enough to calculate G(P0) to induce the
limit behavior of the algorithm. For the most difficult cases,
we study the fixed points of the algorithm and their attraction
behavior, following the same idea used in the literature as in
[14], among others.

In order to simplify the analysis and to present the tools
and methods used to achieve our objectives, in this work we
have considered three specific cases for the objective func-
tion. In Sect. 3, f is a constant function; in Sect. 4, f is a
needle in a haystack function; and in Sect. 5, f is defined by
a Mallows model. Objective functions such as the constant
function and the needle in a haystack function have been
used in many studies of different algorithms in the literature,
whereas the Mallows model has been studied as an example
of a unimodal objective function and to analyze the relation
among the learned Mallows probability distributions by our
dynamical system and the objective function. For these cases,
we have considered P0 as a uniform distribution or aMallows
model.

3 Limiting behavior for a constant function

In these first scenarios, the function f to optimize is con-
stant: f (σ ) = c, ∀σ ∈ Σn . Hence, any solution can be

considered a global optimum. In this situation, it is proved
that the algorithm keeps the initial probability distribution
forever. We can summarize all the results from this section
in Theorem 1.

Theorem 1 If f is a constant function and P aMallows prob-
ability distribution, then G(P) = P.

Proof Starting from any Mallows model MM(σ0, θ), let us
observe the first iteration of the algorithm and calculate
G(P). It is proved that the selection method keeps the same
distribution, and then the learned parameters are σ0 and θ .

When f is a constant function, all the solutions are global
optima. So, the selection probability of each solution is the
same as the initial probability:

pS(σ ) = p(σ ),∀σ ∈ Σn �⇒ PS = P.

Given that PS = P , the next step of the algorithm is
to estimate the parameters to learn a Mallows model from
P . By the observation from Sect. 2.4 about the estimation
of the parameters from a Mallows model, it is deduced that
σ̂0 = σ0 and θ̂ = θ . Consequently, it is proved that when f is
a constant function, G(P) = P for any Mallows distribution
P . ��

4 Limiting behavior for a needle in a haystack
function

In the next case, f is a needle in the haystack function cen-
tered at σ ∗; the function is constant except for one solution
σ ∗, which is the optimal solution. Let us define

f (σ ) =
{
c σ 
= σ ∗
c′ σ = σ ∗

such that c′ > c.
In this section, the analysis focuses on the evolution and

the convergence behavior of the algorithm when the fitness
function can only take two possible values, one value for the
optimal solution and the second value for any other solu-
tion. The analysis has been separated into three sections. In
Sect. 4.1, the case when P0 is a uniform distribution is con-
sidered. In this particular case, the main procedure of the
algorithm is shown and some general results are explained.
As a result of this analysis, the case when P0 is a Mallows
model centered at σ ∗ is analyzed, which is mentioned in
Sect. 4.2. Finally, in Sect. 4.3, P0 is a Mallows model cen-
tered at σ0 
= σ ∗. In this case, a general observation among
the rest of Mallows models is explained. To do so, the fixed
points of the algorithm are calculated.
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4.1 P0 a uniform initial probability distribution

In this section it is proved that when the initial probability
distribution is a Mallows distribution centered at the optimal
solution of the needle in the haystack function the algorithm
converges to the degenerate distribution centered at the opti-
mum. The obtained result in this section can be summarized
in the following lemma.

Lemma 2 Let f be a needle in a haystack function centered at
σ ∗ and P0 aMallows model with central permutation σ ∗ and
spread parameter θ0 ≥ 0. Then, the proposed EDA always
converges to the degenerate distribution centered at σ ∗.

Proof Let us start the demonstration from the case that P0 is
a uniform distribution. In order to calculate the limit behavior
of the algorithm, let us start by calculating G(P0), starting
from the computation of PS

0 . In this case, there are two dif-
ferent cases to analyze in the selection step. If σ ∗ is chosen
to take part in the tournament, then it has an equal or higher
function value than any other permutation, so σ ∗ is always
selected. For the permutations σ 
= σ ∗, they behave in the
sameway aswhen f is a constant function. So the probability
after selection is as follows:

pS0 (σ ) =
{
p0(σ )(2 − p0(σ )) σ = σ ∗
p0(σ )(1 − p0(σ ∗)) σ 
= σ ∗. (7)

This same argument can be used for any iteration of the algo-
rithm for the selection operator.

After the selection probability has been computed, let us
study the estimation of the parameters for the Mallows mod-
els. Let us start with the estimation of the central permutation
in different iterations of the algorithm, and after that, the esti-
mated spread parameters.

At the first iteration of Algorithm 2, in order to calculate
σ̂0 for P1, it is necessary to calculate the solution of Eq. (4)
using PS

0 . Bear in mind that for any σ 
= σ ∗,

∑

π∈Σn\{σ,σ ∗}
d(π, σ ) · pS0 (π)

=
∑

π∈Σn\{σ,σ ∗}
d(π, σ ∗) · pS0 (π) (8)

because the selection probabilities for all the permutations
except σ ∗ are the same, and the right invariance property
over the Kendall tau distance ensures that the number of
solutions at each distance is the same: that is, for a fixed
d ∈ {0, . . . , D}, |{π ∈ Σn : d(π, σ ) = d}| is constant for
any σ ∈ Σn (see Definition 2).

Let σ 
= σ ∗. Thus, d(σ, σ ∗) = d > 0. Therefore, consid-
ering Eq. (8) and pS0 (σ ∗) > pS0 (σ ),

∑

π∈Σn

d(π, σ ) · pS0 (π)

=
∑

π∈Σn\{σ,σ ∗}
d(π, σ ) · pS0 (π)

+ d · pS0 (σ ∗) + 0 · pS0 (σ )

>
∑

π∈Σn\{σ,σ ∗}
d(π, σ ∗) · pS0 (π)

+ d · pS0 (σ ) + 0 · pS0 (σ ∗) =
∑

π∈Σn

d(π, σ ∗) · pS0 (π),

and it proves that the maximum likelihood estimator of the
central permutation is σ ∗.

So P1 is a Mallows model with central permutation σ ∗.
Because of the uniqueness of the estimated central permuta-
tion and by Lemma 1, the estimated spread parameter of P1 is
a positive value. In order to generalize the obtained results to
any iteration of the algorithm, let us calculate the central per-
mutation of P2. To determine PS

1 , we consider Eq. (7) from
P1. Accordingly, for each solution, the lower the distance
to σ ∗, the higher the probability of selecting the solution is.
Therefore, to calculate P2, we can repeat the same argument
of Sect. 3 to prove that σ̂0 = σ ∗. This same argument can be
repeated for any iteration i > 2.

Once it has been proved that σ ∗ is the estimated central
permutation for the learned Mallows model at any iteration
of the algorithm, let us study the estimation of θ . As we have
mentioned previously, there is no closed formula for the solu-
tion of Eq. (5). Hence, instead of calculating the value of θ ,
we follow a different avenue to prove the limiting behavior
of the algorithm. Knowing by Lemma 1 that the estimated
spread parameter θ̂ at any iteration of the algorithm is posi-
tive, we prove that the estimated spread parameter increases
in two consecutive iterations.

Particularly, Eq. (5) is analyzed to see if the spread param-
eter at iteration i + 1 is a higher or lower value than the
spread parameter at iteration i . To this end, two consec-
utive iterations are considered and the difference between∑

σ∈Σn
d(σ, σ ∗) · pSi (σ ) and

∑
σ∈Σn

d(σ, σ ∗) · pSi+1(σ ) is
analyzed. Without loss of generality, let us analyze the rela-
tion when i = 0.

The difference between the values of the left-hand side
of (5) depends on the values pS0 (σ ) and pS1 (σ ), ∀σ ∈ Σn .
Firstly, remember that

∑
σ∈Σn

d(σ, σ ∗) · pS0 (σ ) was used to
calculate the spread parameter of the Mallows probability
distribution P1. Hence, by the definition of the operator a it
holds that

∑
σ∈Σn

d(σ, σ ∗) · pS0 (σ ) and
∑

σ∈Σn
d(σ, σ ∗) ·

p1(σ ) are the same value (this argument has been used
to specify that the estimated parameters of a Mallows
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model to learn a new Mallows model are the same). Let us
denote C = ∑

σ∈Σn
d(σ, σ ∗) · p1(σ ) and compare it with∑

σ∈Σn
d(σ, σ ∗) · pS1 (σ ). Using Eq. (7) for P1,

∑

σ∈Σn

d(σ, σ ∗) · pS1 (σ )

=
∑

σ∈Σn\{σ ∗}
d(σ, σ ∗) · pS1 (σ )

(7)=
∑

σ∈Σn\{σ ∗}
d(σ, σ ∗) · p1(σ )

(
1 − p1(σ

∗)
)

= C
(
1 − p1(σ

∗)
)

< C .

This implies that the left-hand side of Eq. (5) decreases in
two consecutive iterations. Hence, as the function g defined
in Eq. (6) is a strictly decreasing function over θ , the spread
parameter increases after one iteration of the algorithm. So,
θ2 is a higher value than θ1.

Using the same reasoning for any iteration,we can observe
that at each iteration p(σ ∗) increases, whereas for all σ 
= σ ∗
p(σ ) decreases. Moreover,

∑

σ∈Σn

d(σ, σ∗) · pSj (σ )

= C
(
1 − p1(σ

∗)
) (
1 − p2(σ

∗)
) · · · (1 − p j (σ

∗)) < C
(
1 − p1(σ

∗)
) j −→

j→∞ 0.

Consequently, θ tends to infinity when the number of itera-
tions increases.

Therefore, after applying our modeling departing from
a uniform distribution to a needle in a haystack function,
the algorithm converges to a Mallows model with central
permutation σ ∗ and a spread parameter θ which tends to
infinity. Hence, the distribution in the limit is concentrated
around σ ∗. ��

4.2 P0 a Mallows probability distribution with
central permutation �∗ and spread parameter
�0

This case is the same as the one in Sect. 4.1 after the first
iteration. Hence, the algorithm converges to a degenerate dis-
tribution centered at σ ∗.

4.3 P0 a Mallows probability distribution with
central permutation �0, where
d(�∗,�0) = d∗ ≥ 1, and spread parameter�0

Due to the difficulty of this case in comparison with the pre-
vious ones, the analysis of the convergence behavior of the
algorithm is made from a new point of view. In this sec-
tion, our objectives are to study the possible fixed points of
the algorithm and to analyze the behavior of our dynamical
system. Our first objective is to calculate the fixed points of

the algorithm. A probability distribution is a fixed point of
the algorithm if, after one iteration, the algorithm does not
estimate a different probability distribution: that is to say,
G(P) = P . Consequently, the algorithm will always esti-
mate the same probability distribution.

In Sect. 4.3, the following proof idea is used:

(i) In Sect. 4.3.1, the fixed points of the algorithm are cal-
culated.

– First, it is proved that any degenerate distribution is
a fixed point.

– Then, non-degenerate fixed points are calculated.

(ii) InSect. 4.3.2, the attraction of thefixedpoints is studied.
(iii) Finally, in Sect. 4.3.3, the performance of the algorithm

is analyzed for different initial probability distributions
P0.

4.3.1 Computation of the fixed points

For our first aimofSect. 4.3, let us calculate thefixedpoints of
our dynamical system G. First, let us realize that any degen-
erate distribution is a fixed point of the discrete dynamical
system G. The selection probability departing from 1σk is:

pS(σ ) =
{
1 if σ = σk
0 otherwise.

Therefore, the probabilities of the solutions after the selection
operator keep the same values of 1σk , that is, P

S = 1σk = P .
Hence, bearing in mind that in Sect. 2.4 it has been assumed
that the estimated model from a degenerate distribution is the
same degenerate distribution, G(1σk ) = 1σk is obtained.

However, the degenerate distributions are not the only
fixed points of the discrete dynamical system G. By defi-
nition of G, any Mallows probability distribution for which
the algorithm learns the same distribution is a fixed point;
in other words, after the selection operator, if the algorithm
estimates the same central permutation and spread parameter
as in the previous distribution, then the Mallows probability
distribution is a fixed point. In Lemma 3, a formal result of
this idea is presented, showing which two equations are suf-
ficient to achieve a fixed Mallows probability distribution.

Lemma 3 Let P be a Mallows probability distribution with
central permutation σ0 and spread parameter θ0 < ∞. If for
all σ 
= σ0,

∑

π∈Σn

d(π, σ0)p
S(π) <

∑

π∈Σn

d(π, σ )pS(π) (9)
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and

∑

π∈Σn

d(π, σ0)p
S(π) =

∑

π∈Σn

d(π, σ0)p(π) (10)

are fulfilled, then G(P) = P.

Proof By the maximum likelihood estimator of the parame-
ters of the Mallows model, Inequality (9) ensures σ̂0 = σ0.
In order to prove that θ̂ = θ0, considering by hypothesis that
P is a Mallows model and by Eqs. (5) and (10),

∑

π∈Σn

d(π, σ0)p
S(π) =

∑

π∈Σn

d(π, σ0)p(π) = n − 1

eθ0 − 1

−
n−1∑

i=1

n − i + 1

e(n−i+1)θ0 − 1
.

��

Inequality (9) ensures σ̂0 = σ0 and Eq. (10) obtains θ̂ =
θ0. Inequality (9) and Eq. (10) can be written consecutively:
for all σ 
= σ0,

∑

π∈Σn

d(π, σ )pS(π)
σ̂0=σ0
>

∑

π∈Σn

d(π, σ0)p
S(π)

θ̂=θ0=
∑

π∈Σn

d(π, σ0)p(π). (11)

Lemma 3 presents a sufficient situation to achieve fixed
points of the algorithm. Unfortunately, Lemma 3 does not
present “the necessary condition” because of one very par-
ticular case: when G(P) = P , it cannot be ensured that σ0
obtains the minimum value at Inequality (9) (perhaps there
are more permutations which obtain the minimum value),
even if θ̂ = θ0. In the case that σ0 is the unique solution of
Inequality (9), then Lemma 3 would present the necessary
condition to be a fixed point. To avoid these specific scenar-
ios and the equality case in Inequality (9), which represent
zero Lebesgue measure sets, from now on we will consider
that σ0 is the estimated central permutation. In practice, the
EDA can be designed to have a preference criteria for ties.

Based on Lemma 3, our next objective is to observe the
sufficient conditions to achieve fixed points of the algorithm
when f is a needle in a haystack function. First, it is studied
when θ̂ = θ0, and then whether or not σ̂0 = σ0 is satisfied.
Let us study Eq. (10).

∑

π∈Σn

d(π, σ0)p
S(π) =

∑

π∈Σn

d(π, σ0)p(π)

(7)⇐⇒ p(σ∗) · d(σ∗, σ0) + (1 − p(σ∗))
∑

π∈Σn

d(π, σ0)p(π)

=
∑

π∈Σn

d(π, σ0)p(π)

⇐⇒ p(σ∗) · d(σ∗, σ0) = p(σ∗)
∑

π∈Σn

d(π, σ0)p(π)

⇐⇒ d(σ∗, σ0) =
∑

π∈Σn

d(π, σ0)p(π).

(12)

From Eq. (12) we can deduce that MM(σ0, θ0) is not a fixed
point ifd(σ ∗, σ0) ≥ D/2. This is due to the fact that the right-
hand side of Eq. (5) tends to 0 when θ tends to infinity and
the supreme possible value of

∑
π∈Σn

d(π, σ )p(π) is D/2.
Consequently,MM(σ0, θ0) is not a fixed point if d(σ ∗, σ0) ≥
D/2. Note that this also means that if we start with P0 ∼
MM(σ0, θ0) such that d(σ ∗, σ0) ≥ D/2, then the algorithm
can only converge to a solution σ unequal to σ0 such that
d(σ ∗, σ ) < D/2.

Let us observe whether σ̂0 = σ0 is fulfilled when θ̂ = θ0
and d(σ ∗, σ0) < D/2 (considering the case that the esti-
mated central permutation is unique):

σ̂0 = σ0 ⇐⇒
∑

π∈Σn

d(π, σ )pS(π)

>
∑

π∈Σn

d(π, σ0)p
S(π),∀σ 
= σ0. (13)

The right-hand side of the equation is simplified by Eq. (12):

∑

π∈Σn

d(π, σ )pS(π) > d(σ ∗, σ0),∀σ 
= σ0.

By the definition of the selection probability (Eq. (7)),

p(σ ∗)d(σ ∗, σ ) + (1 − p(σ ∗))
∑

π∈Σn

d(π, σ )p(π)

> d(σ ∗, σ0),∀σ 
= σ0.

Solving for the summation in the left-hand sideof the inequal-
ity,

∑

π∈Σn

d(π, σ )p(π) >
d(σ∗, σ0) − p(σ∗)d(σ∗, σ )

1 − p(σ∗)
,∀σ 
= σ0.

(14)

The value of the right-hand side of Inequality (14) can vary
according to d(σ ∗, σ ). In order to avoid repeating the same
proof for different values of d(σ ∗, σ ), let us consider the
maximum possible value of the right-hand side of Inequal-
ity (14), which is the worst possible case, and prove it.
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Substituting the expression d(σ ∗, σ0) − p(σ ∗)d(σ ∗, σ ) by
d(σ ∗, σ0), we obtain the following inequality:

∑

π∈Σn

d(π, σ )p(π) >
d(σ ∗, σ0)
1 − p(σ ∗)

. (15)

On the left-hand side of Inequality (15), the sum depends
on σ . In order to prove for all σ 
= σ0, let us take the smallest
possible value. Considering that P is a Mallows model cen-
tered at σ0, the probabilities are ordered according to their
distance toσ0. So, from the setΣn\{σ0}, any solutionσ at dis-
tance 1 from σ0 has the lowest value

∑
π∈Σn

d(π, σ )p(π),
because d(π, σ ) = d(π, σ0) ± 1. Rewriting the previous
equation for a solution σ at distance 1 from σ0,

∑

π∈Σn

d(π, σ )p(π) =
∑

π∈Σn

d(π, σ0)p(π)

+
∑

π∈Σn
d(π,σ0)<d(π,σ )

p(π) −
∑

π∈Σn
d(π,σ0)>d(π,σ )

p(π) >
d(σ∗, σ0)

1 − p(σ∗)

(12)⇐⇒ d(σ∗, σ0) +
∑

π∈Σn
d(π,σ0)<d(π,σ )

p(π)

−
∑

π∈Σn
d(π,σ0)>d(π,σ )

p(π) >
d(σ∗, σ0)

1 − p(σ∗)

⇐⇒
∑

π∈Σn
d(π,σ0)<d(π,σ )

p(π)

−
∑

π∈Σn
d(π,σ0)>d(π,σ )

p(π) >
p(σ∗)d(σ∗, σ0)

1 − p(σ∗)
.

(16)

In order to simplify the previous equation, let us introduce
some new notation and definitions.

Definition 2 For anyσ inΣn and d = 0, . . . , D, let us denote

mn(d) = |{π ∈ Σn : d(π, σ ) = d}|.

The sequence A008302 in The On-Line Encyclopedia of
Integer Sequences (OEIS) [26] shows the first values and
some properties of mn(d) numbers.

Definition 3 For any σ and τ in Σn such that d(σ, τ ) = 1,
and d = 0, . . . , D, let us denote

Dd = {π ∈ Σn : d(π, σ ) = d and d(π, τ ) = d + 1}

and m1
n(d) = |Dd |.

The sequence of non-negative numbers m1
n(d) has been

added in OEIS [26] (sequence A307429) by the authors
of the present paper and several properties have been

explained in Appendix B. To rewrite Inequality (16), Prop-
erties (ii), (iii) and (iv) from Appendix B have been
used. These enunciate that mn(d) = m1

n(d) + m1
n(d − 1),

m1
n(d) = m1

n(D − d − 1) and that m1
n(d) > m1

n(d − 1)
when d ∈ {0, . . . , dmax }, where dmax = (D/2) − 1 when
D is even and dmax = �D/2� when D is odd. Remem-
bering that ϕ(θ) = ∑

σ∈Σn
e−θd(σ,σ0) is the normalization

constant for the Mallows probability distribution, Inequal-
ity (16) can be rewritten in the following way (let us denote
d(σ ∗, σ0) = d∗):

∑

π∈Σn
d(π,σ0)<d(π,σ )

p(π) −
∑

π∈Σn
d(π,σ0)>d(π,σ )

p(π) >
p(σ∗)d(σ∗, σ0)

1 − p(σ∗)

⇐⇒
∑

π∈Σn
d(π,σ0)<d(π,σ )

e−θ̂d(π,σ0)

ϕ(θ̂)
−

∑

π∈Σn
d(π,σ0)>d(π,σ )

e−θ̂d(π,σ0)

ϕ(θ̂)

>
e−d∗θ̂

ϕ(θ̂)
· ϕ(θ̂) · d∗

ϕ(θ̂) − e−d∗θ̂

⇐⇒ (ϕ(θ̂) − e−d∗ θ̂ )

⎛

⎜⎜⎝
∑

π∈Σn
d(π,σ0)<d(π,σ )

e−θ̂d(π,σ0)

−
∑

π∈Σn
d(π,σ0)>d(π,σ )

e−θ̂d(π,σ0)

⎞

⎟⎟⎠ > d∗ · ϕ(θ̂) · e−d∗ θ̂

⇐⇒ (ϕ(θ̂) − e−d∗ θ̂ )

D∑

i=0

(
m1
n(i) − m1

n(i − 1)
)
e−i θ̂

> d∗ · ϕ(θ̂) · e−d∗θ̂ =
D∑

i=0

d∗ · mn(i) · e−(d∗+i)θ̂

⇐⇒ ϕ(θ̂)

D∑

i=0

(
m1
n(i) − m1

n(i − 1)
)
e−i θ̂

>

D∑

i=0

(
m1
n(i) − m1

n(i − 1) + d∗ · mn(i)
)
e−(d∗+i)θ̂

⇐⇒
D∑

i=0

D∑

j=0

mn(i) ·
(
m1
n( j) − m1

n( j − 1)
)
e−(i+ j)θ̂

>

D∑

i=0

(
(d∗ + 1)m1

n(i) + (d∗ − 1)m1
n(i − 1)

)
e−(d∗+i)θ̂ .

(17)

The proof of Inequality (17) is shown in Appendix C. There-
fore, the learned central permutation from P ∼ MM(σ0, θ̂ )

is σ0. To sum up, P ∼ MM(σ0, θ0) is a fixed point if
d(σ ∗, σ0) < D/2 and θ0 fulfills Eq. (12).
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4.3.2 Attraction of the fixed points

In Sect. 4.3.1, all the fixed points of the algorithm, degener-
ates and non-degenerates, have been studied. Let us define
a fixed point of the dynamical system attractive if any Mal-
lows model P near the fixed point will converge to it: that
is to say, any P that has the same central estimator as the
fixed point and a spread parameter value θ “close” to θ̂ (in
the limit sense) will converge to the fixed point. In addition,
from the study of the fixed points, several observations have
been derived.

For example, from Eq. (12), the attraction of the non-
degenerate fixed points is totally deduced. Let us denote by
θ̂d∗ the minimum spread parameter values which fulfill Eq.
(12) according to d(σ ∗, σ0). In Eq. (10),

∑
π∈Σn

d(π, σ0)

pS(π) and
∑

π∈Σn
d(π, σ0)p(π) are compared to observe

when the estimated spread parameter value remains the
same value. Let us denote by θ̂ the spread parameter value
which fulfills Eq. (10). However,

∑
π∈Σn

d(π, σ0)pS(π)

and
∑

π∈Σn
d(π, σ0)p(π) can be compared for any other

spread parameter value θ0. For example, when θ0 < θ̂d∗ ,
d(σ ∗, σ0) <

∑
π∈Σn

d(π, σ0)p(π) and
∑

π∈Σn
d(π, σ0)

pS(π) <
∑

π∈Σn
d(π, σ0)p(π), and consequently the

learned spread parameter is greater than θ0; and when θ0 >

θ̂d∗ , then the learned spread parameter decreases. This obser-
vation shows us that the non-degenerate fixed points are
attractive.

Another observation is that for sufficiently large θ0
we obtain d(σ ∗, σ0) >

∑
π∈Σn

d(π, σ0)p(π) and, conse-
quently,

∑
π∈Σn

d(π, σ0)pS(π) >
∑

π∈Σn
d(π, σ0)p(π),

which implies that θ̂0 < θ0. Hence, all the degenerate fixed
points centered at σ 
= σ ∗ are not attractive. Consequently,
the algorithm ends in a non-degenerate fixed point centered
at σ 
= σ ∗ or in the degenerate distribution centered at σ ∗.

Moreover, Eq. (13) shows us the condition to estimate
σ0 as the central permutation. Hence, there exists a spread
parameter value θ̃d∗ (dependent on d(σ ∗, σ0) < D/2) such
that if θ0 < θ̃d∗ , then the estimated central permutation is not
σ0. If θ0 = θ̃d∗ , then the algorithm can estimate more than
one central permutation and its behavior will depend on the
estimated central permutation. However, we will not focus
on those exactMallowsmodels because they represent a zero
Lebesgue measure set. In Fig. 1, the first values of θ̂ which
fulfill Eq. (12) and θ̃d∗ are displayed for n = 4, 5, 6 and 7
and their respective d∗ values, showing the proved result.
The y-axis is plotted in log scale to recognize all the lines.
In addition, for a fixed value n, it can be verified that when d
increases, due to the fact that the right-hand side of Eq. (12)
is a decreasing function, Eq. (12) is fulfilled for a lower θ̂d
value.

4.3.3 Convergence behavior of the algorithm

After analyzing the attraction of the fixed points, the next step
is to study the evolution of the estimated Mallows models;
that is, when the algorithm estimates a new central permu-
tation which is different from σ0, is it possible to limit the
number of scenarios of the algorithm in advance? Can we
know which fixed point is the convergence point of the algo-
rithm in any situation?

0 1 2 3 4 5 6 7 8 9 10 11

0.001

0.01

0.1

1

d

θ

θ̂d (n = 4)

θ̂d (n = 5)

θ̂d (n = 6)

θ̂d (n = 7)

θ̃d (n = 4)

θ̃d (n = 5)

θ̃d (n = 6)

θ̃d (n = 7)

Fig. 1 Spread parameter values in which Eq. (12) (continuous lines) and Eq. (13) (dashed lines) are fulfilled. Each line represents the value n
(n = 4, 5, 6, 7) and each point depends on d (d = 1, . . . , �D/2� − 1)
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In many cases it is shown to which fixed point the algo-
rithm converges. The main result that is given about the
convergence point of the algorithm is Lemma 4. Lemma 4
demonstrates that the algorithm estimates a central permu-
tation which must be in a set of solutions dependent on σ ∗
and σ0. In addition, for any σ0, there exists a spread param-
eter value θ̃ (σ0) such that if θ0 < θ̃(σ0), then the algorithm
estimates a new central permutation different from σ0.

In order to prove Lemma 4, let us consider Definition 4.

Definition 4 Let Σn be the search space with metric d(·, ·).
Let σ and π be two solutions of Σn . Then, the segment from
σ toπ ,C(σ, π), is the set with the permutations τ ∈ Σn such
that σ , π and τ fulfill the equality in the triangle inequality.

C(σ, π) = {τ ∈ Σn : d(σ, τ ) + d(τ, π) = d(σ, π)}.

Let us call τ ∈ C(σ, π) a solution between σ and π . Hence,
C(σ, π) is the set that includes all the permutations between
σ and π . Let us call the segment from σ to π unique when
|C(σ, π)| = d(σ, π) + 1.

Two swaps are disjoint if the intersection of the sets of
elements exchanged by each swap is empty.

Lemma 4 Let d(·, ·) be the Kendall tau distance and f an
objective function such that itsmaximal solution isσ ∗ and for
any σ, π ∈ Σn, d(σ, σ ∗) > d(π, σ ∗) if and only if f (σ ) ≤
f (π). Let P0 be a Mallows model with central permutation
σ0, where d(σ ∗, σ0) ≥ 1, and spread parameter θ0. Then,
the operator G always estimates a solution τ ∈ C(σ ∗, σ0)
as the central permutation of the learned Mallows model.

Before presenting the Proof of Lemma 4, let us consider
some preliminary ideas about our permutation space Σn and
how the solutions can be organized and classified according
to their description and the Kendall tau distance d. To do so,
let us study the Cayley graph described by (Σn, d) metric
space.

Let us denote by CG(V , E) the Cayley graph in which
V = Σn and

E = {(σ, π) ∈ Σn × Σn | d(σ, π) = 1}.

This graph has been studied in [7,12]. Lemma 2.4 of
[12] shows that there are two kinds of cycles formed in
CG(Σn, E). Because d distance has the right invariance
property, without loss of generality, let us simplify the nota-
tion and explain the two possible cycles formed by the
adjacent swaps using the identity permutation I as the refer-
ence solution. Let us denote by [i] the adjacent transposition
that exchanges the elements of the positions i and i + 1
(i = 1, . . . , n − 1). For example, [i] ◦ I represents the solu-
tion such that elements of the positions i and i +1 from I are
swapped ([i] ◦ I = (1 · · · i + 1 i · · · n)). Analogously, let us
consider a second adjacent transposition [ j].

– If [ j] ◦ [i] ◦ I = [i] ◦ [ j] ◦ I , then there is a unique
4-cycle in CG(Σn, E) passing through I , [i] ◦ I and
[ j] ◦ I . Moreover, the 4-cycle is formed by the following
solutions:

{I , [i] ◦ I , [ j] ◦ [i] ◦ I , [ j] ◦ I }.

– If [ j] ◦ [i] ◦ I 
= [i] ◦ [ j] ◦ I , then [i] ◦ [ j] ◦ [i] ◦ I = [ j] ◦
[i] ◦ [ j] ◦ I and there is a unique 6-cycle in CG(Σn, E)

passing through I , [i] ◦ I and [ j] ◦ I . Moreover, the 6-
cycle is formed by the following solutions:

{I , [i] ◦ I , [ j] ◦ [i] ◦ I , [i] ◦ [ j] ◦ [i] ◦ I ,

[i] ◦ [ j] ◦ I , [ j] ◦ I }.

By the definition of the generation of the cycles, the dis-
tances among the solutions of the same cycle are minimal.
That is to say, the distance between two solutions of the same
cycle is the number of edges between both solutions in the
cycle.

The next observation is that considering any 4-cycle, a
partition of Σn in 4 sets can be defined.

{π1, π2 = [i] ◦ π1, π3 = [ j] ◦ π1, π4 = [ j] ◦ [i] ◦ π1}.

Without loss of generality, let us comment the particular case
π1 = I , and the same arguments can be applied for any other
cycle. If π1 = I , then π2 = (· · · i + 1 i · · · j j + 1 · · · );
π3 = (· · · i i+1 · · · j+1 j · · · ); andπ4 = (· · · i+1 i · · · j+
1 j · · · ). In order to simplify the notation, the solutions of the
4-cycle can be classified according to the relative positions
of the couple i and i + 1 and the couple j and j + 1. So, a
partition {S1, S2, S3, S4} of Σn is defined as follows:

S1 = {σ ∈ Σn | σ(i) < σ(i + 1) ∧ σ( j) < σ( j + 1)};
S2 = {σ ∈ Σn | σ(i) > σ(i + 1) ∧ σ( j) < σ( j + 1)};
S3 = {σ ∈ Σn | σ(i) < σ(i + 1) ∧ σ( j) > σ( j + 1)};
S4 = {σ ∈ Σn | σ(i) > σ(i + 1) ∧ σ( j) > σ( j + 1)}.

It is evident that the partition is well-defined. Moreover,
among these 4 sets, for each pair of sets a bijection can be
described:

S1 −→ S2 −→ S3 −→ S4
πS1 �−→ πS2 �−→ πS3 �−→ πS4

(18)

such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πS1(i) = πS2(i + 1) = πS3(i) = πS4(i + 1)
πS1(i + 1) = πS2(i) = πS3(i + 1) = πS4(i)
πS1( j) = πS2( j) = πS3( j + 1) = πS4( j + 1)
πS1( j + 1) = πS2( j + 1) = πS3( j) = πS4( j)
πS1(k) = πS2(k) = πS3(k) = πS4(k),

for any k 
= i, i + 1, j, j + 1.
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An important property of this defined partition is that if σ ∈
S1, then d(π1, σ ) < d(π2, σ ) = d(π3, σ ) < d(π4, σ ) is
fulfilled and analogously with the solutions of the sets S2, S3
and S4.

The previous idea can be repeated with two non-disjoint
adjacent swaps, forming a 6-cycle and defining a partition of
Σn in 6 sets, and for any cycle. In addition, we can extend the
idea by using just one adjacent swap. In this last case, we can
define a partition of Σn in two sets and a bijection between
the sets, according to the relative position of the two elements
permuted by the swap. This property is the main argument
of the Proof of Lemma 4.

Once we know how the solutions are organized in (Σn, d)

metric space, Lemma 4 is proved by induction as follows.
For any solution τ /∈ C(σ ∗, σ0), there exists another solution
ρ1 ∈ Σn such that ρ1 is “closer” to σ ∗ and σ0 than τ and
fulfills the following inequality:

∑

π∈Σn

d(π, τ )pS(π) >
∑

π∈Σn

d(π, ρ1)p
S(π). (19)

In this way, the argument can be applied for all the
solutions not included in C(σ ∗, σ0) and, therefore, for any
solution τ /∈ C(σ ∗, σ0), there is a solution ρ ∈ C(σ ∗, σ0)
such that ρ fulfills Inequality (19) with regard to τ .

Proof For any τ /∈ C(σ ∗, σ0), there are two possible cases:
(1) there is a solution ρ1 such that d(τ, ρ1) = 1, d(τ, σ ∗) =
d(ρ1, σ

∗) + 1 and d(τ, σ0) = d(ρ1, σ0) + 1 and (2) there is
no such solution ρ1.

In the first case, if i and j are the elements swapped in the
adjacent transposition between τ and ρ1, it means that any
solution of C(σ ∗, σ0) keeps the same relative order between
the elements i and j as ρ1 does. So,

∑

π∈Σn

d(π, τ )pS(π) >
∑

π∈Σn

d(π, ρ1)p
S(π)

⇐⇒
∑

π∈Σn

d(π, ρ1)p
S(π) +

∑

π∈Σn
d(π,τ )>d(π,ρ1)

pS(π)

−
∑

π∈Σn
d(π,τ )<d(π,ρ1)

pS(π) >
∑

π∈Σn

d(π, ρ1)p
S(π)

⇐⇒
∑

π∈Σn
d(π,τ )>d(π,ρ1)

pS(π) −
∑

π∈Σn
d(π,τ )<d(π,ρ1)

pS(π) > 0

(20)

Let us consider the following bijection.

Sτ = {σ ∈ Σn | d(σ, τ ) < d(σ, ρ1)} −→ Sρ

= {σ ∈ Σn | d(σ, τ ) > d(σ, ρ1)}
στ �−→ σρ

such that στ (i) = σρ( j), στ ( j) = σρ(i) and στ (k) = σρ(k),
for any k 
= i, j . According to the relative position of i
and j , σρ is closer to σ ∗ and σ0 than στ and therefore,
pS(σρ) > pS(στ ) is achieved. Consequently, Inequality (20)
is obtained.

In the second case, let us suppose that there are no swaps
from τ that decrease the distance to σ ∗ and σ0 at the same
time. First, let us consider an adjacent swap [i] from τ that
reduces the distance to σ ∗. Let us denote ρ′ = [i] ◦ τ .
Therefore, similar to the first case, a bijection can be defined
according to the relative position of the elements in the posi-
tions i and i + 1 in τ . Analogously, let us consider a second
swap [ j] from τ that reduces the distance to σ0, denote
ρ′′ = [ j] ◦ τ and define a bijection for the elements posi-
tioned at j and j+1 in τ . The transpositions [i] and [ j] define
a unique cycle passing through τ . Moreover, by definition
of the swaps and the segment C(σ ∗, σ0) and the bijections
defined in (18), this situation can only happenwhen the swaps
(i i +1) and ( j j +1) are not disjoint, which implies that the
formed cycle has length 6. Besides, this cycle also implies
that if we denote by ρτ the furthest solution of the cycle
from τ , then ρτ is closer to σ ∗ and σ0 at the same time than
τ . Figure 2 presents the unique possible scenario. Hence,
d(σ ∗, ρτ ) + d(ρτ , σ0) < d(σ ∗, τ ) + d(τ, σ0).

Let us rewrite the sum
∑

π∈Σn
d(π, τ )pS(π):

∑

π∈Σn

d(π, τ )pS(π) =
∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,ρ′)<d(π,ρ′′)

d(π, τ )pS(π)

+
∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,ρ′)=d(π,ρ′′)

d(π, τ )pS(π)

+
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,ρ′)>d(π,ρ′′)

d(π, τ )pS(π)

+
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,ρ′)=d(π,ρ′′)

d(π, τ )pS(π).

We distribute the sums in two groups, depending on
whether or not d(π, ρ′) = d(π, ρ′′).

⎡

⎢⎢⎢⎢⎢⎢⎣

∑

π∈Σn
d(π,ρ′)<d(π,τ )

d(π,ρ′)=d(π,ρ′′)

d(π, τ )pS(π) +
∑

π∈Σn
d(π,ρ′)>d(π,τ )

d(π,ρ′)=d(π,ρ′′)

d(π, τ )pS(π)

⎤

⎥⎥⎥⎥⎥⎥⎦
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+

⎡

⎢⎢⎢⎢⎢⎢⎣

∑

π∈Σn
d(π,ρ′)<d(π,τ )

d(π,τ )<d(π,ρ′′)

d(π, τ )pS(π) +
∑

π∈Σn
d(π,ρ′)>d(π,τ )

d(π,τ )>d(π,ρ′′)

d(π, τ )pS(π)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(21)

To prove that the first square brackets sum is a positive
value, for a solution π ∈ Σn , if d(π, ρ′) = d(π, ρ′′) <

d(π, τ ), then d(π, ρτ ) < d(π, τ ). So, if we denote by (i i +
1 i+2) the set of elements which are permuted in the 6-cycle,
we define the following bijection:

Sτ = {σ ∈ Σn | d(σ, ρτ ) − d(σ, τ ) = 3} −→ Sρ

= {σ ∈ Σn | d(σ, τ ) − d(σ, ρτ ) = 3}
στ �−→ σρ

,

such that στ (i) = σρ(i +2), στ (i +2) = σρ(i) and στ (k) =
σρ(k), for any k 
= i, i + 2. Therefore, a correspondence
between both sets is shown, and by the definition of the sets,
pS(σρ) > pS(στ ) is obtained for all στ ∈ Sτ .

For the second square bracket, if d(π, ρ′) < d(π, τ ) <

d(π, ρ′′), then d(π, τ ) = d(π, ρ′)+1 = d(π, ρ′′)−1, and if
d(π, ρ′) > d(π, τ ) > d(π, ρ′′), then d(π, τ ) = d(π, ρ′) −
1 = d(π, ρ′′) + 1. So, the second square bracket of (21) can
be rewritten in the following way:

∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,τ )<d(π,ρ′′)

d(π, τ )pS(π) +
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,τ )>d(π,ρ′′)

d(π, τ )pS(π)

=
∑

π∈Σn
d(π,ρ′) 
=d(π,ρ′′)

d(π, ρ′)pS(π)

+
∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,τ )<d(π,ρ′′)

pS(π) −
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,τ )>d(π,ρ′′)

pS(π)

=
∑

π∈Σn
d(π,ρ′) 
=d(π,ρ′′)

d(π, ρ′′)pS(π)

−
∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,τ )<d(π,ρ′′)

pS(π) +
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,τ )>d(π,ρ′′)

pS(π).

Therefore, depending on θ0, it can be ensured that

∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,τ )<d(π,ρ′′)

pS(π) −
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,τ )>d(π,ρ′′)

pS(π) > 0 or

−
∑

π∈Σn
d(π,ρ′)<d(π,τ )
d(π,τ )<d(π,ρ′′)

pS(π) +
∑

π∈Σn
d(π,ρ′)>d(π,τ )
d(π,τ )>d(π,ρ′′)

pS(π) > 0.

[i + 1] ◦ τ
[i] ◦ [i + 1] ◦ τ

[i] ◦ [i + 1] ◦ [i] ◦ τ

[i + 1] ◦ [i] ◦ τ
[i] ◦ τ

τ

ρ

ρτ

ρ

Fig. 2 Example of the generated 6-cycle over τ with two non-disjoint
adjacent swaps

Consequently, there is a solution ρ1 ∈ {ρ′, ρ′′} such that
∑

π∈Σn

d(π, τ )pS(π) >
∑

π∈Σn

d(π, ρ1)p
S(π).

So, for τ /∈ C(σ ∗, σ0), there exists a solution ρ1 ∈ Σn

such that d(ρ1, τ ) = 1 and ρ1 fulfills Inequality (19). If
ρ1 /∈ C(σ ∗, σ0), then by the same arguments, there exists
another solution ρ2 ∈ Σn such that d(ρ1, ρ2) = 1 and ρ2
fulfills Inequality (19) with regard to ρ1, and so on. Because
τ /∈ C(σ ∗, σ0), at least one induction stepmust fulfill the first
situation explained in this proof (fulfilling Inequality (20)).
Consequently, ρi is a solution from C(σ ∗, σ0) such that it is
a better estimator than ρ1, . . . , ρi−1 and τ . ��

Lemma 4 shows us that the algorithm estimates central
permutations from the set C(σ ∗, σ0). Bear in mind that dur-
ing the Proof of Lemma 4, the particular expression of f
has not been used. Therefore, for our particular case, we can
deduce Corollary 1.

Corollary 1 Let f be a needle in a haystack function centered
at σ ∗ and P0 a Mallows model with central permutation σ0,
where d(σ ∗, σ0) = d∗ ≥ 1, and spread parameter θ0. Then,
the EDA always estimates a solution τ ∈ C(σ ∗, σ0) as the
central permutation of the learned Mallows model.

Proof When f is a needle in a haystack function, then
f (σ ) < f (σ ∗) for any σ 
= σ ∗. Hence, the conditions of
Lemma 4 are fulfilled. ��

To summarize, the operator G ends in a non-degenerate
fixed point or in the degenerate distribution centered at σ ∗.
The non-degenerate fixed points are centered at solutions σ

such that d(σ ∗, σ ) < D/2. In addition, when the algorithm
estimates a different solution of σ0, the learned central esti-
mator is a solution from C(σ ∗, σ0)\{σ0}.

All the results of Sects. 4.1, 4.2 and 4.3 are briefly shown
in Table 1. In the first column, the section is shown. In the
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second and third columns, the initial parameters of P0 (σ0 and
θ0) are described. Finally, in the last column, the explanations
of the performance of the algorithm for each situation can be
found.

5 Limiting behavior for a Mallowsmodel
function

In this section, the function f to optimize is a Mallows prob-
ability distribution with central permutation σ ∗ and spread
parameter θ∗ > 0, without loss of generality. The Mallows
model has been studied as an example of a unimodal objec-
tive function with different quality of solutions according to
their distance to the central permutation. The objective of
this section is to analyze the relation among the learnedMal-
lows probability distributions by our dynamical system and
the objective function. For that reason, we believe that it is
a motivating starting point to study unimodal functions. In
Sect. 5.1, the initial probability distribution P0 is a uniform
distribution and the procedure of the algorithm at each iter-
ation is analyzed. In Sect. 5.2, P0 is a Mallows probability
distribution centered at σ 
= σ ∗. In this situation, the fixed
points of the algorithm and the convergence behavior of the
algorithm are studied, in a similar way as in Sect. 4.3.

5.1 P0 a uniform initial probability distribution

In this section it is proved that when the initial probability
distribution and the fitness functions are Mallows models
centered at the same solution the algorithm converges to
the degenerate distribution centered at the optimum. The
obtained result is summarized in the following lemma.

Lemma 5 Let f be a Mallows model centered at σ ∗ and
spread parameter θ∗ and P0 a Mallows model with central
permutation σ ∗ and spread parameter θ0 ≥ 0. Then, the pro-
posed EDA always converges to the degenerate distribution
centered at σ ∗.

Proof For this particular scenario, we have studied how the
algorithm performs at each iteration, analogous to Sect. 4.1.
Let us start the demonstration from the case that P0 is a
uniform distribution. First, in order to calculate P1 = G(P0),
let us calculate PS

0 .
Bear in mind that the 2-tournament does not consider the

exact function values of the solutions. In other words, by the
definition of the Mallows probability distribution, a solution
is selected more often if it is closer to σ ∗, and to study the
selection between two solutions, their distances to σ ∗ are
compared. With this property in mind, we can rewrite Eq.

(3) in the following way: for any iteration of the algorithm i ,

pSi (σ ) = 2
∑

π∈Σn
d(σ,σ ∗)<d(π,σ ∗)

pi (σ )pi (π)

+
∑

π∈Σn
d(σ,σ ∗)=d(π,σ ∗)

pi (σ )pi (π). (22)

The next step is to estimate the central permutation and
spread parameter from PS

0 to learn P1. First, to estimate σ0,
let us order the solutions increasingly according to their dis-
tance from σ ∗. Remember that two solutions have the same
probability to be selected if they are at the same distance from
σ ∗. For any σ ∈ Σn ,

∑

π∈Σn

d(π, σ ) · pS0 (π) =
D∑

d=0

⎛

⎜⎜⎝pS0 (σ̃d)
∑

π∈Σn
d(π,σ ∗)=d

d(π, σ )

⎞

⎟⎟⎠ ,

where σ̃d denotes a solution at distance d from σ ∗: d(σ̃d , σ
∗)

= d.
By Eq. (22), pS0 (σ̃0) > pS0 (σ̃1) > · · · > pSi (σ̃D). So, by

Eq. (4), the maximum likelihood estimator must minimize∑
π∈Σn

d(π, σ̂0) · pS0 (π), knowing that the selection prob-
abilities are ordered according to their distance to σ ∗ (the
lower the distance from σ ∗ to π , the higher the value pS(π)

is). For that reason, the maximum likelihood estimator of σ0
is σ ∗, and consequently, P1 follows a Mallows model with
central permutation σ ∗ and a positive spread parameter θ1,
as a consequence of Lemma 1.

The previous arguments can be used for any iteration.
Hence, Pi is a Mallows model with central permutation σ ∗
and spread parameter θi > 0, for any i ∈ N. In order
to see the evolution of the algorithm and the convergence
behavior, let us prove that θi increases at each iteration. To
this end, the difference between the values of the left-hand
side of Eq. (5) in two consecutive iterations are analyzed:∑

π∈Σn
d(π, σ ∗) · pSi (π) and

∑
π∈Σn

d(π, σ ∗) · pSi+1(π).
By the same arguments used in Sect. 4.1, the equality∑

π∈Σn
d(π, σ ∗) · pSi (π) = ∑

π∈Σn
d(π, σ ∗) · pi+1(π) is

obtained. Let us use the sequencemn(0),mn(1), . . . ,mn(D)

given in Definition 2 and simplify the notation of the prob-
abilities. By definition of the selection operator, for any
σ ∈ Σn such that d(σ, σ ∗) = d, pS(σ ) can be rewritten
in the following way:

pS(σ ) = p(σ )

(
2

(
1 −

d−1∑

i=0

mn(i)p(σ̃i )

)
− mn(d)p(σ̃d)

)
.
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Hence,

∑

π∈Σn

d(π, σ ∗) · pS(π)

=
∑

π∈Σn

d(π, σ ∗) · p(π)

+
D∑

d=1

mn(d) · d · p(σ̃d)

×
(
1 − 2

d−1∑

i=0

mn(i)p(σ̃i ) − mn(d)p(σ̃d)

)
,

Let us define the function h:

h(θ) =
D∑

d=1

mn(d) · d · p(σ̃d)

×
(
1 − 2

d−1∑

i=0

mn(i)p(σ̃i ) − mn(d)p(σ̃d)

)
.

For any θ ≥ 0, h(θ) is a negative value (see Proof in Propo-
sition 5 of Appendix C). Consequently,

∑

π∈Σn

d(π, σ ∗) · pS(π) <
∑

π∈Σn

d(π, σ ∗) · p(π),

and due to the fact that the function g defined in Eq. (6) is a
strictly decreasing function over θ , we obtain θi+1 > θi .

Therefore, after applying our modeling, departing from
a uniform distribution, to a function defined as a Mallows
model, the algorithm converges to the degenerate distribution
centered at σ ∗. ��

5.2 P0 a Mallows probability distribution with
central permutation �0, where
d(�∗,�0) = d∗ ≥ 1, and spread parameter�0

The algorithm can experience many different behaviors
depending on σ ∗ and σ0. However, there are groups of differ-
ent central permutations σ0 such that the algorithm behaves
analogously. The analogy of the analysis with different cen-
tral permutations can be obtained by means of symmetry
among the solutions of Σn . Due to the difficulty of studying
all of them, we have worked in a similar way as in Sect. 4.3.
In Sect. 5.2, the following proof idea is used:

(i) In Sect. 5.2.1, the fixed points and their attraction are
calculated.

– First, it is observed that any degenerate distribution
is a fixed point.

– Then, the equations such that any non-degenerate
fixed point must fulfill are calculated.

(ii) In Sect. 5.2.2, the convergence behavior of the algorithm
is explained and an example is shown.

A summary of all the results obtained in Sect. 5 is shown in
Table 2 at the end of this section.

5.2.1 Fixed points of the algorithm and their attraction

The casen = 2will not be explained because of its simplicity.
From now on, let us suppose that n ≥ 3 and study the fixed
points of our discrete dynamical system G. As in Sect. 4.3.1,
let us start by observing that any degenerate distribution is
a fixed point of the discrete dynamical system G, so let us
focus on the non-degenerate fixed points.

For any Mallows probability distribution P , G(P) = P
if and only if the estimated central permutation and spread
parameter are the same as those of P . So, if Eq. (11) is ful-
filled, then P is a non-degenerate fixed point. Let us study
the equality of Eq. (11). We say that P is a candidate fixed
point if it satisfies Eq. (10). Note that if P is a candidate fixed
point, then θ̂ = θ .

∑

π∈Σn

d(π, σ0)p
S(π) =

∑

π∈Σn

d(π, σ0)p(π)

(22)⇐⇒
∑

π∈Σn

d(π, σ0)p(π)

⎛

⎜⎜⎝
∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

2p(τ )

+
∑

τ∈Σn
d(τ,σ ∗)=d(π,σ ∗)

p(τ )

⎞

⎟⎟⎠ =
∑

π∈Σn

d(π, σ0)p(π)

⇐⇒
∑

π∈Σn

d(π, σ0)p(π)

⎛

⎜⎜⎝
∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

p(τ )

⎞

⎟⎟⎠

=
∑

π∈Σn

d(π, σ0)p(π)

⎛

⎜⎜⎝
∑

τ∈Σn
d(τ,σ ∗)<d(π,σ ∗)

p(τ )

⎞

⎟⎟⎠

⇐⇒
∑

π∈Σn

∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

p(π)p(τ ) [d(π, σ0) − d(τ, σ0)] = 0

⇐⇒
∑

π∈Σn

∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

e−θ(d(π,σ0)+d(τ,σ0))

× [d(π, σ0) − d(τ, σ0)] = 0.

(23)

As can be observed, Eq. (23) shows the first condition for a
Mallowsprobability distribution P centered atσ0 to be afixed
point. Equation (23) has at least one solution θ (depending
on n, σ ∗ and σ0, it may have more than one). One way to
calculate the number of candidate fixed points centered at σ0
is to count the number of roots in Eq. (23) by Sturm’s theorem
[27]. The exponential polynomial in θ ∈ [0,+∞) can be
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transformed into a polynomial defined in (0, 1] (transforming
e−θ = x) in order to apply Sturm’s theorem. Moreover, the
roots can be numerically solved to find the values of θ in
which P ∼ MM(σ0, θ) are candidate fixed points.

Moreover, for any pair of permutations π, τ (w.l.o.g.,
d(τ, σ ∗) > d(π, σ ∗)), if we choose the pair of permuta-
tions I ′π, I ′τ where I ′ = (n n − 1 · · · 1), the following
similarities can be observed:

⎧
⎪⎪⎨

⎪⎪⎩

d(τ, σ ∗) > d(π, σ ∗) ⇐⇒ D − d(I ′τ, σ ∗)
> D − d(I ′π, σ ∗) ⇐⇒ d(I ′τ, σ ∗) < d(I ′π, σ ∗)

d(π, σ0) − d(τ, σ0) = D − d(I ′π, σ0)

−D + d(I ′τ, σ0) = d(I ′τ, σ0) − d(I ′π, σ0).

Hence,

e−θ(d(π,σ0)+d(τ,σ0)) [d(π, σ0) − d(τ, σ0)]

= e−2Dθeθ(d(I ′τ,σ0)+d(I ′π,σ0))
[
d(I ′τ, σ0) − d(I ′π, σ0)

]
.

(24)

Therefore, for any σ0 ∈ Σn , let us define the function H as
follows:

H(σ0, θ) =
2D−1∑

i=1

Hie
−iθ

=
∑

π∈Σn

∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

e−θ(d(π,σ0)+d(τ,σ0))

[d(π, σ0) − d(τ, σ0)] . (25)

By Eq. (24), Hi = H2D−i . In addition, H(σ0, θ) =
−H(I ′σ0, θ) for any σ0 ∈ Σn and θ . Consequently,
H(σ0, θ̂ ) = 0 if and only if H(I ′σ0, θ̂ ) = 0. So, if P is a
candidate fixed point with central permutation σ0 and spread
parameter θ̂ , then a Mallows probability distribution with
central permutation I ′σ0 and spread parameter θ̂ is a candi-
date fixed point as well.

In addition, from the previous observation, it has been
equivalently shown that

∑

π∈Σn

d(π, σ0)p
S(π) <

∑

π∈Σn

d(π, σ0)p(π)

⇐⇒
∑

π∈Σn

∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

e−θ(d(π,σ0)+d(τ,σ0))

× [d(π, σ0) − d(τ, σ0)] < 0 (26)

and analogous for the opposite inequality. So, when θ tends
to infinity, the highest exponential coefficient of H(σ0, θ)

determines if the value is positive or not.
Considering all the observations of Eq. (23) and Inequal-

ity (26), in comparison with the results from Sects. 4.3.1 and

4.3.2, some new scenarios have been observed. The first one
is that for a fixed value σ0, there can be more than one candi-
date fixed point. Hence, the algorithm can converge to more
than one probability distribution centered at σ0. Moreover,
from Eq. (25), similarities between σ0 and I ′σ0 have been
observed. Secondly, information about the attraction of the
fixed points has been analyzed, even if the candidate fixed
points are fixed points or not. From Inequality (26)whether or
not if the degenerate distribution centered at σ0 is an attrac-
tive fixed point can be studied. Furthermore, knowing the
attraction of the degenerate distribution, the attraction of all
the candidate fixed points is completely defined. Reorder-
ing all the candidate fixed points centered at σ0 according
to their spread parameters, they alternate their attraction in
order not to obtain two consecutive candidate fixed points
with the same attraction. Consequently, the last objective is
to observe when a candidate fixed point is a fixed point.

To study if a candidate fixed point is a fixed point, it is
necessary to observe if the estimated central permutation σ̂0
from a candidate fixed point P centered at σ0 is exactly σ0.
So as to obtain the same central permutation, the inequality
of Eq. (11) must be fulfilled at the solution θ̂ of Eq. (23)
(assuming the uniqueness of the central permutation). Hence,
for all σ 
= σ0,

∑

π∈Σn

d(π, σ )pS(π) >
∑

π∈Σn

d(π, σ0)p(π)

⇐⇒
∑

π∈Σn

d(π, σ )p(π)

⎛

⎜⎜⎝1 +
∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

p(τ )

−
∑

τ∈Σn
d(τ,σ ∗)<d(π,σ ∗)

p(τ )

⎞

⎟⎟⎠ >
∑

π∈Σn

d(π, σ0)p(π)

⇐⇒
∑

π∈Σn

∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

p(π)p(τ ) [d(π, σ ) − d(τ, σ )]

>
∑

π∈Σn

p(π) [d(π, σ0) − d(π, σ )]

⇐⇒
∑

π∈Σn

∑

τ∈Σn
d(τ,σ ∗)>d(π,σ ∗)

p(π)p(τ ) [d(τ, σ ) − d(π, σ )]

<
∑

π∈Σn

p(π) [d(π, σ ) − d(π, σ0)] .

(27)

Inequality (27) shows us the condition to estimate σ0 as
the learned central permutation. Even though it can be
completely separated according to their dependence to the
distance from σ ∗, a general solution cannot be observed
(without knowing the particular values of the probabilities
and distances) which tells us in advance if Inequality (27) is
fulfilled or not.Actually, some experimental results show that
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there are candidate fixed points which do not fulfill Inequal-
ity (27).

In Fig. 3, an example of the attraction of the fixed points
is shown for n = 5. The abscissa shows σ0, numerically
indexed according to their distance to σ ∗, and the ordinate
represents the values of θ0 which fulfill Eq. (23). Therefore,
each dot represents a candidate fixed point. The color of the
dot represents if the candidate fixed point is a fixed point or
not, and its attraction. For any σ0 central permutation, the
degenerate fixed points have been illustrated.

To summarize, Inequality (27) ensures exactly which can-
didates are the fixed points of our dynamical system.

5.2.2 Convergence behavior of the algorithm

Before introducing the convergence behavior of the algo-
rithm, let us state Corollary 2, deduced from Lemma 4.

Corollary 2 Let f be a Mallows model centered at σ ∗ and
spread parameter θ∗ and P0 a Mallows model with central
permutation σ0, where d(σ ∗, σ0) = d∗ ≥ 1, and spread
parameter θ0. Then, the EDA always estimates a solution
τ ∈ C(σ ∗, σ0) as the central permutation of the learned
Mallows model.

Proof When f is aMallowsmodel centered at σ ∗ and spread
parameter θ∗ > 0, for any σ, π ∈ Σn , f (σ ) > f (π) if
and only if d(σ, σ ∗) < d(π, σ ∗). Hence, the conditions of
Lemma 4 are fulfilled. ��

Once we have Corollary 2 and we know the fixed points
and their attraction, the behavior of the algorithm is totally
defined and it can be summarized in the following way:

– For any P0 ∼ MM(σ0, θ0), there exists a spread parame-
ter value θ ′(σ0) dependent on σ0 such that if θ0 < θ ′(σ0),
then Inequality (27) is not fulfilled for all σ . In that
case, by Corollary 2, the estimated central permutation
after one iteration of the algorithm is a solution from
C(σ ∗, σ0)\{σ0}.

– If θ0 > θ ′(σ0), then the algorithm estimates σ0 as the
central permutation of the learned Mallows model. Let
us classify the different possible behaviors according to
the number of fixed points centered at σ0:

– If there are no non-degenerate solutions centered at
σ0 (there are no solutions for Eq. (23)), then the
only fixed point centered at σ0 is the degenerate dis-
tribution 1σ0 . In this case, if 1σ0 is attractive, the
algorithm converges to it; otherwise, the estimated
spread parameter decreases until an iteration when
θ̂ < θ ′(σ0) and, therefore, the estimated central per-
mutation is not σ0 anymore, returning back to the
previous situation.

– If there are i ≥ 1 non-degenerate fixed points cen-
tered at σ0, then there exist i spread parameter values
θ̃i which solve Eq. (23) and fulfill Inequality (27).
Hence, θ ′(σ0) and θ̃ j for j = 1, . . . , i divide the
interval (θ ′(σ0),+∞) in i + 1 intervals.

Let us denote by (θ ′(σ0), θ̃1), (θ̃1, θ̃2), . . . , (θ̃i−1, θ̃i )

and (θ̃i ,+∞) the i + 1 formed intervals; Pk the
non-degenerate fixed point centered at σ0 and spread
parameter θ̃k , for k = 1, . . . , i ; and 1σ0 the degener-
ate fixed point centered at σ0. There are two possible
situations, depending on whether 1σ0 is attractive or
not.

σ

θ

0 20 40 60 80 100 120

2

4

6

8

∞

Fig. 3 Candidate fixed points of our algorithm (σ and θ values such that MM(σ, θ) fulfills Eq. (23)) and their attraction (n = 5). The x-axis
differentiate all the permutations of Σ5. The y-axis shows the spread parameter values
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If 1σ0 is attractive, then Pi is not attractive and when
θ0 ∈ (θ̃i ,+∞), the algorithmconverges to 1σ0 .More-
over, because of the non-attraction of Pi and by the
same argument, Pi−1 is attractive and Pi−2 is not
attractive, Pi−3 is attractive and Pi−4 is not attractive,
and so on. Hence, if θ0 ∈ (θ̃i−2, θ̃i ), the algorithm
converges to Pi−1; if θ0 ∈ (θ̃i−4, θ̃i−2), the algorithm
converges to Pi−3; and so on.

Additionally, if 1σ0 is not attractive, then Pi is attrac-
tive and Pi−1 is not attractive, and when θ0 ∈
(θ̃i−1,+∞), the algorithm converges to Pi . More-
over, Pi−2 is attractive and Pi−3 is not attractive, and
when θ0 ∈ (θ̃i−3, θ̃i−1), the algorithm converges to
Pi−2. And so on.

Observe that when P1 is not attractive and θ0 ∈
(θ ′(σ0), θ̃1), the algorithm estimates lower spread
parameters until θ̂0 < θ ′(σ0). In this case, the
algorithm estimates a new central permutation from
C(σ ∗, σ0)\{σ0}.

Figure 4 is presented in order to show a visualiza-
tion of the possible situations. The horizontal line
represents the possible θ0 value. In each interval, a
blue arrow tells us if the estimated spread parameter
is higher or lower, and the attraction of each fixed
point can be observed. There are four possible cases,
depending on the parity of i and the attraction of 1σ0 .
In the first two cases, i is an odd number, and in the
first and fourth cases, 1σ0 is an attractive fixed point.

– If θ0 = θ ′(σ0), then the algorithm can randomly estimate
σ0 or another σ ∈ C(σ ∗, σ0) as the new central per-
mutation. In the former case, if the fixed point with the
lowest spread parameter centered at σ0 is attractive, the
algorithm will converge to it. Otherwise, the algorithm
learns a probability distribution centered at σ0 and spread
parameter θ̂ < θ0, and it behaves analogous as to the case
θ0 < θ̂0. In the latter case, the algorithm estimates a new
central permutation σ and spread parameter θ̂ , and it will
be analogous as P0 ∼ MM(σ, θ̂).

Let us present an example in order to illustrate the behavior
described above.

Example 1 Let us consider n = 5, f a Mallows model cen-
tered at σ ∗ = I and P0 a Mallows probability distribution
with central permutation σ0 = (21543) and spread parameter
θ0. To observe the behavior of the algorithm, let us calcu-
late the candidate fixed points by Eq. (23) and the minimum
spread parameter value θ ′(σ0) that allows the estimation of
σ0 as the learned central permutation, by Inequality (27).

In this particular case, there is only one solutionwhich ful-
fills Eq. (23): θ̃ ≈ 1.2519. Moreover, Inequality (27) shows
that the equality is obtained when θ ′(σ0) ≈ 0.2770. There-
fore, a Mallows probability distribution centered at σ0 with
spread parameter value θ̃ is a fixed point of our mathematical
modeling. In addition, if θ0 > θ̃ , then θ̂ < θ0. This last obser-
vation implies that the degenerate distribution centered at σ0
is not attractive, and consequently, MM(σ0, θ̃ ) is an attrac-
tive fixed point. Knowing the attraction of the fixed points,
the value of θ0 determines the behavior of the algorithm.

– If θ0 < θ ′(σ0), then σ̂0 ∈ C(σ ∗, σ0)\{σ0}. Hence, after
one iteration, the algorithm restarts the processwith a new
central permutation and spread parameter. For example,
if θ0 = 0.2760, then the learned Mallows model after
one iteration of the algorithm is MM((12453), 0.4016);
and if θ0 = 0.2700, then the learned Mallows model is
MM(σ ∗, 0.3994).

– If θ0 > θ ′(σ0), then the algorithmconverges toMM(σ0, θ̃ )

distribution.
– If θ0 = θ ′(σ0), then the algorithm estimates either σ0
or σ̂0 ∈ C(σ ∗, σ0)\{σ0}. In the first case, the algorithm
converges to MM(σ0, θ̃ ), whereas in the second case,
the algorithm estimates MM((12453), 0.4023) probabil-
ity distribution after one iteration.

For any σ0, the same test would be repeated. All the results
of Sects. 5.1 and 5.2 are briefly shown in Table 2, mentioning
the initial parameters of P0 and explaining the performance
of the algorithm.

6 Conclusions and future work

Wehave presented amathematicalmodeling to study anEDA
based on Mallows models using discrete dynamical systems
based on the expectations. Under this framework, we have
studied the convergence behavior of the algorithm for several
objective functions and initial probability distributions. Two
different approaches have been followed to study the con-
vergence behavior. For the simplest cases, the computation
of one iteration of the algorithm has been enough to prove
the limit behavior, whereas for the most complex cases, the
fixed points of the algorithm and their attraction have been
analyzed. Overall, for the latter, a wide range of possible
ending probability distributions and trajectories for the algo-
rithm have been observed, which, given its practical success
[5], were by no means anticipated.

The main results can be summarized as follows.When the
function to optimize is constant, all Mallows probability dis-
tributions are fixed points. When the function to optimize is
a needle in a haystack function centered at σ ∗ and the initial
probability distribution is a Mallows distribution centered at

123



Memetic Computing (2022) 14:305–334 327

(a)

(b)

(c)

(d)

Fig. 4 Representation of all the possible scenarios in which the convergence behavior of the algorithm is represented. The cases are divided in 4,
according to the parity of the value i and the attraction of the degenerate distribution 1σ0

Table 2 Classification of the behaviors of the EDA. f ∼ MM(σ ∗, θ∗) and P0 ∼ MM(σ0, θ0)

Section Initial σ0 Initial θ0 Performance

5.1 σ ∈ Σn θ0 = 0 (P0 uniform) The algorithm converges to the degenerate distribution centered at σ ∗.
5.1 σ ∗ θ0 > 0 The algorithm converges to the degenerate distribution centered at σ ∗

5.2 σ ∈ Σn s.t. d(σ ∗, σ ) > 0 θ0 < θ ′(σ0) Inequality (27) is not fulfilled. Hence, by Corollary 2, the algorithm
estimates a new central permutation σ ′ ∈ C(σ ∗, σ0)\{σ0}. Hence, the
convergence behavior of the algorithm is the same as the case when
P0 ∼ MM(σ ′, θ̂ ).

5.2 σ ∈ Σn s.t. d(σ ∗, σ ) > 0 θ0 > θ ′(σ0) The algorithm estimates σ0 as the learned central permutation of the
Mallows model. According to the number of solutions in Eq. (23), there
are several possible convergence behaviors of the algorithm:

• If Eq. (23) has no solution, then the algorithmconverges toσ0 if θ̂ > θ0.
Otherwise, after some iterations, the algorithm estimates a new central
permutation from the segment C(σ ∗, σ0). Therefore, the convergence
behavior of the algorithm is the same as the casewhen P0 ∼MM(σ ′, θ ′),
being θ ′ the estimated spread parameter when σ̂0 = σ ′ is obtained.
• If Eq. (23) has at least one solution, then θ0 is in an interval between two
fixed points or θ ′(σ0) < θ0 < θ̃1. In the first situation, at least one of the
fixed points is attractive and the algorithm converges to it. In the second
situation, if the fixed point with the lowest spread parameter is attractive,
the algorithm converges to it; otherwise, the algorithm estimates a new
central permutation from the segment C(σ ∗, σ0) after some iterations,
and it behaves in the same way as in the case P0 ∼ MM(σ ′, θ ′).

5.2 σ ∈ Σn s.t. d(σ ∗, σ ) > 0 θ0 = θ ′(σ0) The algorithm can estimate σ0 or σ ∈ C(σ ∗, σ0)\{σ0} which fulfills
Inequality (27) (this election is random). In the former case, the algo-
rithm behaves as the previous case; and in the latter case, the algorithm
behaves as in case θ0 < θ ′(σ0).

σ0, the algorithm converges to the degenerate distribution
centered at σ ∗ or to a non-degenerate Mallows distribution
centered at a permutation σ in the segment between σ ∗ and
σ0 such that the distance between σ and σ ∗ is lower than(n
2

)
/2 and a spread parameter which fulfills the condition to

be a (attractive) fixed point. Finally, when the function to
optimize is a Mallows model centered at σ ∗ and the initial
probability distribution is a Mallows distribution centered
at σ0, the algorithm converges to any Mallows distribution
centered at a permutation in the segment between σ ∗ and

σ0, which is an attractive fixed point. The attraction of all
the fixed points provides information in relation to the pos-
sible trajectories of the algorithm. In any case, the relation
between the initial probability distribution and the objective
function completely determines the convergence behavior of
the algorithm. Because of that, a classification of the conver-
gence behavior of the algorithm regarding the parameters of
the Mallows model is shown.

Although the behavior of the presented algorithm with
finite population can be different from that predicted from the
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expectations, the variety of scenarios shown in the presented
modeling shows the complexity of predicting the limit dis-
tributions of finite-population EDAs. For a first comparison
between the algorithmwith finite and infinite populations, an
EDA with Mallows model using finite populations and the
Borda count [11] to estimate the central permutation σ0 could
be applied and their performances contrasted. In addition, it is
really intriguing to observe if other permutation-based EDAs
or distance-based models achieve better convergence results
and not many non-desirable solutions.

The obtained results in this work have been so unexpected
that it encourages us to carry out new studies. We propose
several future works to obtain better solutions in practice
and to suggest how the runtime analysis can be performed.
For example, according to the obtained solutions, the central
permutation of the initial probability distribution determines
which probability distributions can be learnt by the algorithm
at each iteration. Then, for practical purposes, we propose
a careful choice of the initial population. For example, a
logical proposal is to generate individuals that are as far as
possible from each other, expanding the initial search of the
optimal solution. This proposal can be compared with the
initialization presented in [5,31], in which the authors apply
a preliminary step so as to guide the algorithm to find the
optimal solution. On the other hand, if we are interested in
the runtime analysis of the algorithm, it is important to take
into account some knowledge that emerges from our anal-
ysis. We have observed that the estimated spread parameter
value at each iteration of the algorithm can be very criti-
cal. When the estimated spread parameter value change is
big, the algorithm presents several scenarios in which the
learned probability distribution can be significantly differ-
ent (because the estimated central permutation is different
in each case, for example) and the probability of sampling
the optimal solution depends on it. On the contrary, when
the estimated spread parameter value change is small, if the
central permutation is not the optimal solution, the probabil-
ity of reaching it will exponentially decrease with the spread
parameter value. This observation may allow us to estimate
the number of iterations required by the algorithm to con-
verge to a model and when the researchers should modify
the algorithm to escape from the expected tendency of the
algorithm. Another analysis we propose is, starting from dif-
ferent initial probability distributions, to check if there exists
a number of iterations that ensures the probability to sam-
ple the optimal solution is higher than a value and to track
the probability at each iteration.With the obtained results, we
could connect themwith the presented results in the literature
for binary EDAs and observe the similarities and differences
between them.
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Appendix A

In this appendix, several observations and properties about
the right-hand side of Eq. (5) are studied and commented.

Proposition 1

g∗(θ) = n − 1

eθ − 1
−

n−1∑

i=1

n − i + 1

e(n−i+1)θ − 1

= 1

eθ − 1

⎛

⎝n − 1 −
n−1∑

i=1

n − i + 1

e(n−i)θ + e(n−i−1)θ + · · · + 1

⎞

⎠

is a continuous function defined in R\{0}. Moreover,

lim
θ→0

g∗(θ) = 1

2

(
n

2

)
.

Proof First of all, the function g∗ is not defined when θ = 0.
Moreover, the continuity of the function is trivial (combina-
tion of scalar and exponential functions and the denominator
is never zero).
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Let us show limθ→0 g∗(θ) = (n
2

)
/2. Let us prove the limit

by means of L’Hôpital’s rule.

lim
θ→0

⎛

⎝ n − 1

eθ − 1
−

n−1∑

i=1

n − i + 1

e(n−i+1)θ − 1

⎞

⎠

= lim
θ→0

⎛

⎝ 1

eθ − 1

⎛

⎝n − 1 −
n−1∑

i=1

n − i + 1

e(n−i)θ + e(n−i−1)θ + · · · + 1

⎞

⎠

⎞

⎠

L’Hôpital= lim
θ→0

1

eθ

⎛

⎝
n−1∑

i=1

(n − i + 1) · ((n − i)e(n−i)θ + · · · + eθ )

(e(n−i)θ + e(n−i−1)θ + · · · + 1)2

⎞

⎠

=
n−1∑

i=1

(n − i) + (n − i − 1) + · · · + 1

n − i + 1
=

n−1∑

i=1

n − i

2

= 1

2

(
n

2

)
.

��

Therefore, we have a function which is defined in R\{0}
and has a limit when θ tends to 0. So, the extension of the
right-hand side of Eq. (5) can be defined in the following
way:

g(θ) =
{
g∗(θ) if θ 
= 0
1
2

(n
2

)
if θ = 0.

(A.1)

Proposition 2 g(θ) is a continuous decreasing function,
g(θ) + g(−θ) = (n

2

)
and

lim
θ→+∞ g(θ) = 0.

Proof By definition of g(θ) and Proposition 1, it is trivial to
observe that g(θ) is a continuous function. Moreover, for any
value θ 
= 0,

g′(θ) = (1 − n)eθ

(eθ − 1)2
+

n−1∑

i=1

(
(n − i + 1)2(e(n−i+1)θ )

(e(n−i+1)θ − 1)2

)

To prove g′(θ) is always a negative value (θ 
= 0), we will
prove the following inequality:

− eθ

(eθ − 1)2
+ (n − i + 1)2(e(n−i+1)θ )

(e(n−i+1)θ − 1)2
< 0 , ∀i = 1, . . . , n − 1.

Developing the expression,

eθ
(
e(n−i)θ + e(n−i−1)θ + · · · + 1

)2

− (n − i + 1)2(e(n−i+1)θ ) > 0 , ∀i = 1, . . . , n − 1

⇐⇒
∑

k1+k2+···+kn−i+1=2

×
(

2

k1, k2, . . . , kn−i+1

)
(e(n−i)θ )k1(e(n−i−1)θ )k2 · · · 1kn−i+1

− (n − i + 1)2(e(n−i)θ ) > 0 , ∀i = 1, . . . , n − 1.

⇐⇒ 1 + 2eθ + · · · + (n − i)e(n−i−1)θ

− (n − i + 1)(n − i)e(n−i)θ + (n − i)e(n−i+1)θ + · · ·
+ e2(n−i)θ > 0 , ∀i = 1, . . . , n − 1.

and this is always true (bear in mind that the exponential
function is always positive). A direct way to see that the
previous inequality holds is considering the next inequality:

ekθ + e(2(n−i)−k)θ − 2e(n−i)θ > 0 ,

∀k = 0, . . . , n − i − 1.

⇐⇒ 1 + e(2(n−i−k))θ > 2e(n−i−k)θ ,

∀k = 0, . . . , n − i − 1.

⇐⇒ e−(n−i−k)θ + e(n−i−k)θ

2
= cosh(n − i − k) > 1 ,

∀k = 0, . . . , n − i − 1.

(A.2)

In Proposition 4 (v), a similar result is mentioned.
Now let us prove that g(θ) + g(−θ) = (n

2

)
. By definition

of g(θ), the case θ = 0 is trivial, so let us calculate for the
rest of values.

g(θ) + g(−θ) = (n − 1)

(
1

eθ − 1
+ 1

e−θ − 1

)

−
n−1∑

i=1

(n − i + 1)

×
(

1

e(n−i+1)θ − 1
+ 1

e−(n−i+1)θ − 1

)

= (n − 1)(−1) −
n−1∑

i=1

(n − i + 1)(−1)

= 1 − n +
n−1∑

i=1

(n − i + 1)

=
n−1∑

i=1

(n − i) = n(n − 1)

2
=
(
n

2

)
.

Finally, the limit limθ→+∞ g(θ) = 0 is trivial. ��
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Table 3 Number of permutations of Σn at Kendall tau distance d of
permutation σ and at Kendall tau distance d+1 of permutation τ , where
d(σ, τ ) = 1, for n = 1, . . . , 6

n m1
n(0), . . . ,m

1
n(D)

1 1

2 1, 0

3 1, 1, 1, 0

4 1, 2, 3, 3, 2, 1, 0

5 1, 3, 6, 9, 11, 11, 9, 6, 3, 1, 0

6 1, 4, 10, 19, 30, 41, 49, 52, 49, 41, 30, 19, 10, 4, 1, 0

Appendix B

In this appendix, several properties of the sequence m1
n(d)

defined in Definition 3 are shown, where n ∈ N and d =
0, . . . , D = n(n−1)/2. The first values are shown in Table 3.

Proposition 3 For a fixed n ∈ N, the sequence
(m1

n(0), . . . ,m
1
n(D)) satisfies the following properties:

(i) For any distance d ∈ {0, . . . , D},

m1
n(d) =

d∑

i=0

(−1)d−imn(i).

(ii) For any distance d ∈ {0, . . . , D},

mn(d) = m1
n(d) + m1

n(d − 1).

(iii) For any distance d ∈ {0, . . . , D},

m1
n(d) = m1

n(D − d − 1).

(iv) For any distance d ∈ {0, . . . , D} and n > 3,

– If D is even, let us define d1max = (D/2) − 1 and
d2max = D/2. Then,

{
m1

n(d) < m1
n(d + 1) when d = 0, . . . , d1max

m1
n(d) > m1

n(d + 1) when d = d2max , . . . , D − 1.

– If D is odd, let us define dmax = �D/2�. Then,
{
m1

n(d) < m1
n(d + 1) when d = 0, . . . , dmax − 1

m1
n(d) > m1

n(d + 1) when d = dmax , . . . , D − 1.

(v) For any distance d ∈ {0, . . . , D} and n 
= 1,

m1
n(d) =

d∑

k=0

n−1∑

j=0

mn−1(k − j) · (−1)d−k .

(vi) For any distance d ∈ {0, . . . , D},

m1
n(d) ≤ m1

n(d − 1) + m1
n(d + 1).

Proof Properties (i) − (v) can be easily derived from Def-
inition 3 and the characteristics of the sequence mn(d).
Finally, let us prove Property (vi), which states thatm1

n(i) <

m1
n(i − 1) + m1

n(i + 1). There exist three cases:

(a) If m1
n(i) ≤ m1

n(i − 1), the inequality is trivial.
(b) If m1

n(i) ≤ m1
n(i + 1), the inequality is trivial.

(c) Ifm1
n(i) > m1

n(i−1) andm1
n(i) > m1

n(i+1), thenm1
n(i)

is a single maximum (Note that this case appears the first
time when n = 6).

In this particular case, D is an odd number, m1
n(i) =

m1
n(�D/2�) is the maximum value, m1

n(i + 1) = m1
n(i − 1);

and mn(�D/2�) and mn(�D/2�) are the maximum values.
We present the properties and observations used to prove the
last situation:

(a) For any n ≥ 6, the maximum distance between two
permutations in Σn is D(n) = n(n − 1)/2. So the
difference between the maximum values for two per-
mutations in Σn and Σn−1 is D(n) − D(n − 1) =
n(n − 1)/2 − (n − 1)(n − 2)/2 = n − 1.

(b) Using the previous property and the sequence mn(i), we
can deduce the following observations:

– If mn(i) is the first maximum value for any fixed
integer n ≥ 6, then mn−1(i − �(n − 1)/2�) is the
(first) maximum value.

– If mn(i) is the maximum value, then mn−1(i) is
located in the descending part of the sequence, that
is, mn−1(i − 1) > mn−1(i) > mn−1(i + 1).

– Similarly, if mn(i) is the maximum value, then
mn−1(i − n) is located in the ascending part of the
sequence, that is,mn−1(i − n− 1) < mn−1(i − n) <

mn−1(i − n + 1).

(c) For any integer values n and i , mn(i) ≤ mn(i + 1) +
mn(i − 1).

Once we bear the previous observations in mind, let us
use Property (v).

m1
n(i) =

i∑

k=0

mn(k) · (−1)i−k

(n 
=1)=
i∑

k=0

n−1∑

j=0

mn−1(k − j) · (−1)i−k . (B.1)
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– If n − 1 ≥ i :

m1
n(i)

(B.1)=
{∑i/2

j=0 mn−1(2 j) if i is even
∑(i−1)/2

j=0 mn−1(2 j + 1) if i is odd.

– If n − 1 < i ,

m1
n(i)

(B.1)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i/2
j=0 mn−1(2 j) −∑(i−n−1)/2

k=0 mn−1(2k + 1)

if i is even and n is odd
∑n−1

j=0 mn−1(i − j) +∑(i−n−2)/2
k=0 mn−1(2k + 1)

−∑(i−1)/2
l=0 mn−1(2l)

if i is odd and n is odd
∑n−1

j=0 mn−1(i − j) +∑(i−n−2)/2
k=0 mn−1(2k + 1)

−∑(i−2)/2
l=0 mn−1(2l + 1)

if i is even and n is even
∑(i−1)/2

j=0 mn−1(2 j + 1) −∑(i−n−1)/2
k=0 mn−1(2k + 1)

= ∑(i−1)/2
j=(i−n+1)/2 mn−1(2 j + 1)

if i is odd and n is even.

In order to extend the sums, let us denote by “ (even)··· ”
and “ (odd)··· ” the coefficients with even and odd indexes,
respectively.

When n ≥ 6, there are four possible cases depending on
the n and i integer parity values (Eqs. (B.2) — (B.5)).

Let n be an odd number and i an even number.

2m1
n(i − 1) − m1

n(i)

= 3

[
mn−1(1) + (odd)· · · +mn−1(i − n − 2)

]
+ mn−1(i − n)

+ 2
(
mn−1(i − n) + · · · + mn−1(i − 1)

)

− 3

[
mn−1(0) + (even)· · · +mn−1(i − 2)

]
− mn−1(i)

= 3mn−1(i − n − 2) + mn−1(i − n)

+ [−mn−1(i − n − 1) + mn−1(i − n)
]+

+ [
mn−1(i − n) − mn−1(i − n + 1) + mn−1(i − n + 2)

]

+ · · · + + [mn−1(i − 3) − mn−1(i − 2) + mn−1(i − 1)
]

+ [
mn−1(i − 1) − mn−1(i)

] (b) and (c)
> 0

(B.2)

Let n and i be odd numbers.

2m1
n(i − 1) − m1

n(i)

= 3

[
mn−1(0) + (even)· · · +mn−1(i − 1)

]

− 3

[
mn−1(1) + (odd)· · · +mn−1(i − n − 1)

]

− [
mn−1(i − n + 1) + · · · + mn−1(i)

]

= 3mn−1(i − n) + [−mn−1(i − n + 1) + mn−1(i − n + 2)
]

+ [
mn−1(i − n + 2) − mn−1(i − n + 3)

+mn−1(i − n + 4)
]+ · · · +

+ [
mn−1(i − 3) − mn−1(i − 2) + mn−1(i − 1)

]

+ [
mn−1(i − 1) − mn−1(i)

] (b) and (c)
> 0

(B.3)

Let n and i be even numbers.

2m1
n(i − 1) − m1

n(i)

= 3

[
mn−1(i − n + 1) + (odd)· · · +mn−1(i − 1)

]

− [
mn−1(i − n + 1) + · · · + mn−1(i)

]

= mn−1(i − n + 1) + [
mn−1(i − n + 1)

−mn−1(i − n + 2) + mn−1(i − n + 3)
]+ · · · +

+ [
mn−1(i − 3) − mn−1(i − 2) + mn−1(i − 1)

]

+ [
mn−1(i − 1) − mn−1(i)

] (b) and (c)
> 0

(B.4)

Let n be an even number and i an odd number.

2m1
n(i − 1) − m1

n(i)

= 2
[
mn−1(i − n) + · · · + mn−1(i − 1)

]+ mn−1(i − n)−
− 3

[
mn−1(i − n) + (odd)· · · +mn−1(i − 2)

]
− mn−1(i)

= [
mn−1(i − 1) − mn−1(i)

]

+ [
mn−1(i − 3) − mn−1(i − 2) + mn−1(i − 1)

]+ · · · +
+ [

mn−1(i−n+1)−mn−1(i−n+2) + mn−1(i − n + 3)
]

+ mn−1(i − n + 1)
(b) and (c)

> 0

(B.5)

In all cases, the result is proved. ��

Appendix C

In this appendix, all the properties used in this work about
the exponential polynomials are shown. Throughout this
work, the exponential polynomials have integer coefficients
and the base used is e. For a fixed value n, the exponential
polynomials can be denoted in the following way:

Pol(θ) =
2D∑

i=0

ai e
−iθ ,

where D is the maximum Kendall tau distance. The highest
value i used in this work is 2D, which is the maximum pos-
sible sum of two Kendall tau distance values. By definition,
Pol(0) = ∑2D

i=0 ai , and when θ tends to infinity, Pol(θ)

tends to a0.

Proposition 4 The following results are true:

(i) If ai > 0, ∀i = 0, . . . , 2D, then Pol(θ) is a positive
decreasing function.

(ii) If ai ≥ 0, i = 0, . . . , j , and ai ≤ 0, i = j +1, . . . , 2D,
where at least there exists one positive coefficient and one
negative, and

∑ j
i=0 |ai | <

∑2D
i= j+1 |ai |, then there exists

a positive value θ such that Pol(θ) = 0. Analogous with
the inverse order.
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(iii) Let ai ≥ 0, ∀i = 0, . . . , j1, j2, . . . , 2D ( j1 < j2 − 1),
and ai < 0, ∀i = j1 + 1, . . . , j2 − 1, where at
least there exists one positive coefficient and one neg-
ative. If

∑ j1
i=0 |ai | ≥ ∑ j2−1

i= j1+1 |ai | and∑ j2−1
i= j1+1 |ai | ≤

∑2D
i= j2 |ai |, then there are no positive roots. Analogous

to the opposite order.
(iv) If ai = −a2D−i , ∀i = 0, . . . , 2D, then aD = 0 and

Pol(0) = 0. In addition, there are no θ positive roots
(corollary of Property (i i i)).

(v) Let ai > 0, ∀i = 0, . . . , D − 1, D + 1, . . . , 2D, ai =
a2D−i and

∑2D
i=0 ai = 0. Then, Pol(0) = 0 and there

are no θ positive roots.

Proof All the properties can be easily proved due to the def-
inition of the exponential function. For Property (v), the
argument used in Inequality (A.2) is used. ��

C.1 Proving inequality (17)

Proof To prove Inequality (17) at θ̂ value, let us analyze the
following functions (for a fixed n ∈ N such that n ≥ 3):

f1(θ) =
D∑

i=0

D∑

j=0

mn(i) ·
(
m1
n( j) − m1

n( j − 1)
)
e−(i+ j)θ

f2(θ) =
D∑

i=0

(
(d∗ + 1)m1

n(i) + (d∗ − 1)m1
n(i − 1)

)
e−(d∗+i)θ .

f1(θ) is an exponential function which fulfills Property (iv)

from the exponential polynomials, whereas f2(θ) fulfills
Property (i). An example of f1(θ) − f2(θ) is displayed for
n = 5 and d = 1, . . . , 4 in Fig. 5.

In order to prove Inequality (17), we have used the fol-
lowing result. At θ0 = θ̂ :

d(σ ∗, σ0) =
∑

π∈Σn

d(π, σ0)p(π)

= ϕ−1(θ̂)

D∑

i=0

mn(i) · i · e−i θ̂

= −ϕ−1(θ̂) · ϕ′(θ̂)

⇐⇒ d(σ ∗, σ0) · ϕ(θ̂)

= −ϕ′(θ̂) ⇐⇒
D∑

i=0

(d∗ − i) · mn(i) · e−i θ̂ = 0.

Hence, let us define a new function:

f3(θ) =
D∑

i=0

(d∗ − i) · mn(i) · e−iθ .

f3(θ) is an exponential polynomial which fulfills Prop-
erty (i i) due to the fact that d∗ < D/2, and therefore∑d∗−1

i=0 |ai | <
∑D

i=d∗+1 |ai |.
After defining the functions fi for i = 1, 2, 3, let us define

Fc(θ) in the following way:

Fc(θ) = f1(θ) − f2(θ) − c · e−Dθ · f3(θ)

where c is a real positive value. Let us denote Fc(θ) =∑2D
i=0 b

c
i e

−iθ .
When c = 0, Fc(θ) is the function associated to Inequal-

ity (17). At the interval [0,+∞), F0(θ) starts at −d∗ · n!,
and when θ tends to infinity, F0(θ) tends to 1. Moreover, by
Property (i i), it can be ensured that the equation F0(θ) = 0
is fulfilled once at θ = θ ′.

Fig. 5 The function
f1(θ) − f2(θ), for n = 5 and
d = 1, . . . , 4
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Wewanted to prove Inequality (17): that is to say, F0(θ̂) >

0. By definition of Fc(θ), this is equivalent to proving that
Fc(θ̂) > 0, for some value c. To prove this, we will choose
an appropriate value c which ensures that Fc(θ) is a posi-
tive value for any θ ∈ [0,+∞). First, notice that when c
tends to infinity, Fc(0) tends to +∞. Then, we can ensure
for c > M , being M the smallest positive number such that∑2D

i=0 b
M
i = 0 is fulfilled, that Fc(0) > 0 and when θ tends

to infinity, Fc(θ) tends to 1 because bc0 = 1. Finally, an
option to prove that Fc is a positive function for a particu-
lar c is to observe that, for a suitable value c, Fc(θ) fulfills
Property (i i i). This can be ensured because of the inequality∑d∗−1

i=0 ai < −∑D
i=d∗+1 ai which f3(θ) fulfills.

Consequently, Fc(θ) > 0 for any θ ∈ [0,+∞). Particu-
larly, Fc(θ̂) > 0 which implies, by definition of Fc(θ), that
Inequality (17) is fulfilled. ��

C.2 The function h is a negative function.

Proposition 5 For any θ ≥ 0, let us denote

h(θ) =
D∑

d=1

mn(d) · d · p(σ̃d)
(
1 − 2

d−1∑

i=0

mn(i)p(σ̃i ) − mn(d)p(σ̃d)

)

the difference value between
∑

π∈Σn
d(π, σ ∗)pS(π) and∑

π∈Σn
d(π, σ ∗)p(π). Then, h(θ) is a negative value.

Proof

h(θ) < 0 ⇐⇒
D∑

d=1

mn(d) · d · e
−dθ

ϕ(θ)

·
(
1 − 2

d−1∑

i=0

mn(i)
e−iθ

ϕ(θ)
− mn(d)

e−dθ

ϕ(θ)

)
< 0

⇐⇒
D∑

d=1

mn(d) · d · e−dθ · ϕ(θ)

<

D∑

d=1

mn(d) · d · e−dθ

·
(
2
d−1∑

i=0

mn(i)e
−iθ + mn(d)e−dθ

)
.

(C.1)

The proof is based on developing the sum in two non-positive
exponential polynomials with non-negative coefficients and
comparing those coefficients one-by-one. On the one hand,
let us denote by ai the coefficient of e−iθ in the left-hand side

of Inequality (C.1).

2D∑

i=1

ai e
−iθ = ϕ(θ)

(
D∑

d=1

d · mn(d) · e−dθ

)
,

where

ai :=
D∑

j=1

D∑

k=0

j · mn( j) · mn(k) · δi, j+k

and δi, j+k is the Kronecker delta:

δi, j+k =
{
1 if j + k = i
0 otherwise.

On the other hand, let us denote by bi the coefficient of e−iθ

in the right-hand side of Inequality (C.1).

2D∑

i=1

bi e
−iθ =

D∑

d=1

mn(d) · d · e−dθ

·
(
2
d−1∑

i=0

mn(i)e
−iθ + mn(d)e−dθ

)
,

where

bi :=
D∑

j=0

D∑

k=0

β j,k · mn( j) · mn(k) · δi, j+k

and

β j,k =
{
2 j if j ≥ k
2k if j < k.

To prove Inequality (C.1), let us demonstrate that
ai ≤ bi ,∀i = 1, . . . , 2D, and ai < bi for at least one index
i . For any i , note that if i 
= j + k, there is no coefficient.
Otherwise, when j > k, then 2 j > i ; when j = k, the coef-
ficient of the summation is the same, and when k > j , then
2k > i . Therefore, it is demonstrated that

h(θ) = 1

ϕ2(θ)

2D∑

i=1

(ai − bi )e
−iθ < 0.

��
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