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Abstract: Mean-field approximation is a method to investigate the behavior of stochastic models
formed by a large number of interacting objects. A new approximation was recently established,
i.e., the refined mean-field approximation, and its high accuracy when the number of objects is small
has been shown. In this work, we consider the model of the 802.11 protocol, which is a discrete-time
model and show how the refined mean-field approximation can be adapted to this model. Our results
confirm the accuracy of the refined mean-field approximation when the model with N objects is in
discrete time.
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1. Introduction
1.1. Motivation

Stochastic population models study the behavior of a set of objects (or agents) that
interact with each other. In these models, there is a finite set of states for the agents. Thus,
the agents change from one state to another. An agent changes its state in a spontaneous way
or by interacting with other agents. More precisely, the agents change state in a probabilistic
manner that satisfies the Markov property: the probability of changing the state depends
only on the present state (not on the states of the past). Under these conditions, one can
construct a Markov chain; there is a wide range of tools to study its properties (see [1] for a
book on this topic).

Two types of models can be distinguished according to the time at which changes in
the system occur: discrete time models and continuous-time models. Discrete-time models
consider that time is divided into slots and changes occur at the end of each time slot. On
the other hand, continuous-time models consider that transitions take a random time, i.e.,
transitions occur at any time; in particular, it is very often assumed that these times are
exponentially distributed. Therefore, continuous time and discrete time Markov Chains
can be used to model stochastic population models in a very easy manner [1,2].

Discrete time and continuous time Markov chains that can be formulated in this setting
suffer from the state-space explosion. This occurs because the state space of the Markov
chain increases exponentially with the number of objects in the stochastic population model.
Hence, the exact analysis of stochastic population models with a very large number of
objects is an extremely difficult task to carry out (even for numerical analysis), and therefore,
approximation techniques are necessary to study the behavior of these systems.

An example of an approximation technique for large stochastic population models is
the mean-field approximation. The idea of the mean-field approximation is to replace a very
complicated stochastic process with a simpler deterministic dynamical system, i.e., a system
of (possibly non-linear) ordinary differential equations. The mean-field approximation
considers that each object interacts with the average of the rest of the objects. When the
number of objects is large, each object has a negligible effect on the dynamics of the whole
population, and this leads to a simplification of the problem.
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The refined mean-field approximation has been introduced in [3] as an approximation
technique for the stochastic population model which is more accurate than the mean-field
approximation. The idea of the refined mean-field approximation is to consider an addi-
tional term to the mean-field approximation which is a constant divided by the number of
objects in the system. We show how this constant can be computed and illustrate the better
accuracy of the refined mean-field approximation compared to the mean field approxima-
tion (even when the number of objects is small) through the following set of examples in
continuous-time models: the coupon replication model, the supermarket model, the pull
and push strategies model, and the bin packing model. From these examples, the authors
conclude that the relative error of the refined mean field approximation is often less than
1% for systems with ten objects.

1.2. Contributions

In this article, we consider the model of the 802.11 protocol [4] (which falls into the class
of mean field models presented in [5]) to show how the refined mean-field approximation
can be adapted to discrete-time models. Let us now describe this protocol briefly. The
IEEE 802.11 MAC is a set of protocols and technical standards for executing wireless
local area networks, specifically the media access control set. Wi-Fi connection works use
radio waves with frequency jumps, i.e., frequencies that are constantly changing, thus
avoiding interference. Likewise, through Wi-Fi, the devices connected to a given network
can connect to the Internet through a network access point wirelessly or via a cable. That is
why the Wi-Fi consists of a compatible wireless connection between different devices. What
characterizes the 802.11 protocol compared to other wireless networks is its transmission
frequency of billions of waves per second.

The main contribution of this article is to investigate the accuracy of the refined mean-
field approximation of the model presented in [4]. To this end, we used the rmf tool [6],
which is a tool that takes the description of a stochastic model and computes numerically
not only its mean-field approximations but also its refined mean-field approximation. Our
results show that the accuracy of the refined mean field is much better than that of the
mean-field approximation, especially when the number of objects is small.

1.3. Organization

The rest of the article is organized as follows. In Section 2 we put our work in
the context of the existing literature, and in Section 3 we present the refined mean-field
approximation. In Section 4, we describe the 802.11 protocol model and the results we have
obtained. Finally, in Section 5, we provide the main conclusions of our work.

2. Related Work

Mean-field approximation is a widely used technique to approximate the dynamics of
a stochastic system formed by a very large number of agents. For instance, it is used in the
analysis of distributed queuing systems [7–9], in multi-agent reinforcement learning [10],
neuronal networks [11], bike-sharing systems [12] and cache replacement algorithms [13].
The main advantage of the mean-field approximation is that it provides a very good
approximation of stochastic models with a very large number of objects; see [14,15]. The
authors in [16] showed that discrete time Markov decision processes also converge to a
deterministic process when the number of objects tends to infinity.

The author in [17] showed that the mean-field approximation is 1/N-accurate when
the estimation parameter is the expected value of the stochastic process (in contrast to the
classical mean field approximation, which estimates the stochastic process). Using this nice
accuracy property, the authors in [3] introduced a new approximation technique that refines
the mean-field approximation, and they called it the refined mean-field approximation.
This refinement consists of adding a constant term divided by the number of objects in
the systems to the mean-field approximation. The authors in [18] developed a further
approximation by considering not only the convergence to the transient state, but also
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a second additional term to the mean-field approximation which is proportional to the
inverse of the square of the number of objects. The authors in [19] studied the refined
mean-field approximation of a synchronized population.

Recently, mean field models have been also studied from the perspective of game
theory [20–30]. These models consider that a player is under competition with the mass
and assume that, given that the size of the mass is extremely big, the action taken by the
player does not influence the dynamics of the mass.

3. The Refined Mean-Field Approximation

We consider a stochastic population process in discrete time with N objects, where the
objects are in D < ∞ possible states. Let SN

n (t) be state of the object n at time t. We denote
by X(N)

i (t) the proportion of objects at state i in time t, i.e.,

X(N)
i =

1
N

N

∑
n=1

1SN
n (t)=i . (1)

The vector X(N) = (X(N)
0 , . . . , X(N)

D−1) is a discrete-time Markov chain.
We assume there exists a set of vectors L ∈ Rd and a set of functions βl such that the

aforementioned Markov chain changes from state x to state x + l/N at rate Nβl .
We define the drift as a function such that, for every state x, it is associated the value

f (x), where
f (x) = ∑

l∈L
lβl .

According to this definition, f (x)dt is the expected variation of X(N) at state t during
a small interval of time dt, i.e.,

E[X(t + dt)− X(t)|X(t) = x] = f (x)dt + o(dt).

The mean-field approximation is the solution of the following ordinary differential
equation:

ẋ = f (x).

We assume that the above equation has a single solution, and we denote it by π.
According to the result of [15], we have that

lim
N→∞

E[X(N)] = π,

which is true when the drift is continuous. This result means that π approximates very
well the expected value of the Markov chain when the number of objects is large. Therefore,
it is known in the literature as the mean-field approximation. The authors in [3] showed
that there exists a constant K such that

lim
N→∞

E[X(N)] = π +
K
N

.

As a consequence, the value of π + K/N (i.e., the refined mean-field approximation)
provides a better approximation than the mean-field approximation π for any number
of objects.

The value of K is expressed as a function of the Jacobian and the Hessian matrices
of the drift, and the solution of a single Lyapunov equation. Therefore, as it has been
shown in [3], its analytical value can be obtained for small examples. However, in more
complicated models, it is required to compute this constant using numerical software. In
this work, we used the rmf tool [6] to compute this constant.

In this section, we have described the refined mean-field approximation in a general
setting. We refer to [3] for all the technical details and proofs of the result we have presented
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in this section. In the next section, however, we give an example of the 802.11 protocol
model, and we analyze the refined mean-field approximation for this model.

4. The 802.11 Protocol Model

In this section, we concentrate of the 802.11 model. First, we present this model and
how the refined mean-field approximation technique can be adapted to this discrete-time
model. Then, we describe how the mean field approximation is accurate when the popula-
tion size is large. Moreover, we compare the accuracy of the mean-field approximation and
the refined mean-field approximation for different instances. Finally, we study how the
complexity of the system influences the accuracy of the approximations under consideration
in this article.

4.1. Model Description

In [4], the authors presented a discrete-time model in which N devices aim to trans-
mit information through a common channel. It is considered that the space-set is S =
{0, 1, . . . , D− 1}. The state of a device represents its priority to transmit in a given time
slot. A device that is at state s ∈ S at a given time slot tries to transmit in that time slot with
probability qs/N. This means that each state determines the probability at which a device
in that state tries to transmit. Figure 1 shows the model under study in this article.

  D-1

    1

    2

    0

Collision or
Successful 
transmission

qD-1

q2

q1

q0

Figure 1. The model under study in this article.

When there is a single device that tries to transmit information in one time slot, there
is no collision on the transmission, and therefore, the transmission is considered to be
successful. However, collision occurs when there is more that one device trying to transmit
in the same time slot. In this case, none of the transmission tries are successful.

We now present the dynamics of the system, i.e., how the transmitters change from
one state to another over time. When there is no collision at a given time slot, the state of
the device that transmits is zero in the next time slot. On the other hand, where there is
collision, the states of all the devices that try to transmit in that time slot increase by one
(except for the devices at state D− 1, whose state at the next time slot is zero).

We denote by X(N)
i (t) the number of devices at state i at time t, and by X(N)(t) the

vector whose i-th component is X(N)
i (t). When a device is at state i, we define γ

(N)
i (X(t))



Sensors 2022, 22, 8754 5 of 13

as the probability that one or more devices tries to transmit during the same time slot,
i.e., the probability of collision at time t. This can be written as follows:

γ
(N)
d (X(t)) = 1−

ΠD−1
s=0 (1− qs

N )NX(N)
s (t)

1− qd
N

. (2)

In Figure 2, we illustrate the dynamics of one device when D = 5.

q0

q1 q2 q3 q4

q0γ
(N)
0

q1γ
(N)
1 q2γ

(N)
2 q3γ

(N)
3

q1(1− γ
(N)
1 )

q2(1− γ
(N)
2 )

q3(1− γ
(N)
3 )

q4

Figure 2. Example of the dynamics of the 802.11 model with D = 5.

If we assume that the duration of time steps is exponentially distributed with mean
1/N, the population process is determined by following transitions: for d = 0, . . . , D− 2

X(t) −→ X(t) +
1
N
(e0 − ed) with rate Nqdxd(t)(1− γ

(N)
d (X(t)))

X(t) −→ X(t) +
1
N
(ed+1 − ed) with rate Nqdxd(t)γ

(N)
d (X(t))

(3)

and
X(t) −→ X(t) +

1
N
(e0 − eD−1) with rate NqD−1xD−1(t), (4)

where ed is the d-th element of the canonical basis.
Let us now describe each of the transitions. The transition X(t) −→ X(t) + 1

N (e0 − ed)
means that the transmission of a device at state d has been successful in that time slot, and
therefore, the state of one device changes to zero. The transition X(t) −→ X(t) + 1

N (ed+1 −
ed) means that there has been collision since more than one device has tried to transmit.
The last transition, i.e., X(t) −→ X(t) + 1

N (e0 − eD−1), means that a device at state D− 1
changes to state zero regardless of the existence of a collision or not.

When N tends to infinity, we have that γ
(N)
i (x) tends to 1− e−∑d−1

k=0 qkxk . Hence, for this
model, the drift is given by

f0(x) = −q0x0 + qD−1xD−1 +
D−2

∑
d=0

qdxd(1− γ(x))

and
fd(x) = γ(x)qd−1xd−1 − qdxd,

with d = 1, . . . , D− 1. This gives the following ordinary differential equation

ẋ0 = f0(x)

and
ẋd = fd(x)

for d = 1, . . . , D− 1. The solution of this ordinary differential equation is the mean-field
approximation, and it will be our focus in the next section.
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4.2. Mean-Field Approximation

We now concentrate on the mean-field approximation of the 802.11 model. For this
case, we consider that D = 5 and q0 = 1/2, and qd+1 = qd/2, for d = 0, . . . , D− 2. We also
consider that, at time zero, all the devices are in state zero.

We studied how the stochastic process that describes the dynamics of the system
approximates the mean-field approximation when the number of devices is large. We also
studied the evolution of this model up to 50 s. In all the cases, we represent by a dashed
line the mean-field approximation and by a solid line a trajectory of the stochastic process
X(N)

i , when i = 0, 1, 2, 3, 4, 5. Likewise, in the following figures, we plot in blue the curves
that represent the mean-field approximation and the dynamics of the stochastic process
when the state is 0, i.e, for x0; in orange, we represent state 1, i.e., x1; in green state 2, i.e., x2;
in red state 3, i.e., x3, and finally, in violet state 4, i.e., x4. All the figures of this section have
been obtained using the command plot_ODE_vs_simulation of the rmf tool [6].

In Figure 3, we consider there are N = 10 devices, and can we see that the solid lines
and the dashed ones are not close. This means that the mean field approximation does not
provide an accurate value when N = 10.

0 10 20 30 40 50
Time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

ns

x_0
x_1
x_2
x_3
x_4

Figure 3. Mean-field approximation for N = 10 devices. Time in seconds.

Let us now consider that N = 50. In Figure 4, we show that the dynamics of the
stochastic processes are closer to the mean-field approximation for this case. This suggests
that the accuracy of the mean-field approximation increases with N.
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Figure 4. Mean-field approximation for N = 50 devices. Time in seconds.

There are N = 100 devices in Figure 5, and we can observe that all the trajectories are
quite close to the mean-field approximation. Therefore, we confirm that the accuracy of the
mean-field approximation increases with N.

0 10 20 30 40 50
Time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0
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op

or
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x_0
x_1
x_2
x_3
x_4

Figure 5. Mean-field approximation for N = 100 devices. Time in seconds.

Finally, in Figures 6 and 7, we consider N = 500 and N = 1000, respectively, and we
note that the mean-field approximation is very close to the dynamics of the system in both
cases. This means that the mean-field approximation is very accurate when N is very large.
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Figure 6. Mean-field approximation for N = 500 devices. Time in seconds.
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Figure 7. Mean-field approximation for N = 1000 devices. Time in seconds.

These experiments show that the mean-field approximation is very accurate when the
number of devices is very large, but when the number is devices is small, the accuracy is
not good. In the following section, we will see that the refined mean-field approximation is
accurate when the number of devices is small as well.
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4.3. Refined Mean-Field Approximation

We now focus on the refined mean-field approximation. We computed numerically
the mean of XN

i for different values of N, and we aimed to compare the obtained values
with the mean-field approximation (mf) and the refined mean-field approximation (rmf) at
the steady state. These values were obtained using the command compare_refinedMF of
the rmf tool [6]. The results we obtained are presented in Table 1.

Table 1. Accuracy of mean-field approximation (mf) and refined mean-field approximation (rmf)
when N = 5, 10, 20.

x0 x1 x2 x3 x4

Sim (N = 5) 0.4453838 0.2774466 0.1346177 0.0753470 0.0344656

Sim (N = 10) 0.4680003 0.2704071 0.1522602 0.0667931 0.0255959

Sim (N = 20) 0.4703394 0.2569733 0.1484465 0.0731954 0.0410477

mf 0.4698643 0.2607008 0.1446480 0.0802569 0.0445300

Rmf (N = 5) 0.4653996 0.2744316 0.1469139 0.0754686 0.0377863

Rmf (N = 10) 0.4672855 0.2676632 0.1458856 0.0779468 0.0412189

Rmf (N = 20) 0.4687482 0.2641335 0.1452145 0.0790598 0.0428440

Our first conclusion from the simulations results we present in the above table is that
the refined mean-field approximation is more accurate than the mean-field approximation.
We observe that, when N = 20, both approximations, as expected, are accurate. However,
when N = 5 and N = 10, the relative error of the refined mean field approximation is much
smaller. For instance, for x1, the relative error of the refined mean-field approximation is
1% for N = 5, and it is the same for N = 10, whereas for the mean field approximation, the
relative error for N = 5 is 6%, and for N = 10 it is 3%.

The tool we have used to obtain the above results gives as output the values of K for
the refined mean-field approximation of this model. More precisely, for this model, we get
the following vector:

K = [−0.0222694, 0.0679408, 0.0113840, −0.0236459, −0.0334095].

Taking into account that the mean-field approximation for this instance is given by

π = [0.4698643, 0.2607008, 0.1446480, 0.0802569, 0.0445300]

and the above value of the vector K, we conclude that, for i = 0, . . . , 4, the refined mean-field
approximation for this model is given by:

• for state 0, 0.4698643− 0.0222694/N
• for state 1, 0.2607008 + 0.0679408/N
• for state 2, 0.1446480 + 0.0113840/N
• for state 3, 0.0802569− 0.0236459/N
• for state 4, 0.0445300− 0.0334095/N

This additional term, which is a constant time 1/N, suggests an improvement on the
accuracy of the refined mean-field approximation with respect to the mean-field approxi-
mation (which does not consider this additional term).

4.4. Accuracy vs. Complexity

We aimed to study how the complexity of the model influences the accuracy of the
mean-field approximation and refined mean field approximation. For this purpose, we
considered that D = 15, and the rest of the parameters were the same as in the previous
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section. We note that, for this case, the number of transitions of the Markov chain that
defines the dynamic of one object (see Figure 2 for the case D = 5) increased to 30.

In the following tables (see Tables 2–4), we represent the results we obtained using the
command compare_refinedMF of the rmf tool [6].

Table 2. Accuracy of mean-field approximation (mf) and refined mean-field approximation (rmf)
when N = 5, 10, 20 for x0, . . . , x4.

x0 x1 x2 x3 x4

Sim (N = 5) 0.3544870 0.2331678 0.1355447 0.0603250 0.0447286

Sim (N = 10) 0.3797964 0.2525756 0.1514744 0.0833863 0.0451816

Sim (N = 20) 0.3876362 0.2416717 0.1481701 0.0845466 0.0490803

mf 0.3861529 0.2374208 0.1459751 0.0897510 0.0551827

Rmf (N = 5) 0.3835102 0.2565318 0.1549694 0.0902781 0.0417492

Rmf (N = 10) 0.3797964 0.2525756 0.1514744 0.0833863 0.0451816

Rmf (N = 20) 0.3812561 0.2462875 0.15092110 0.0908213 0.0512771

Table 3. Accuracy of mean-field approximation (mf) and refined mean-field approximation (rmf)
when N = 5, 10, 20 for x5, . . . , x9.

x5 x6 x7 x8 x9

Sim (N = 5) 0.0286355 0.0260564 0.0168371 0.0493625 0.0192964

Sim (N = 10) 0.0382880 0.0100355 0.0058542 0.0005560 0.0017155

Sim (N = 20) 0.0306790 0.0192795 0.0067368 0.0008361 0.0238537

mf 0.0339290 0.0208619 0.0128282 0.0078896 0.0048545

Rmf (N = 5) 0.0293418 0.0164655 0.0091352 0.0050014 0.0026952

Rmf (N = 10) 0.0323172 0.0191875 0.0113629 0.0067129 0.0039576

Rmf (N = 20) 0.0327822 0.0197628 0.0119050 0.0071675 0.0043147

Table 4. Accuracy of mean-field approximation (mf) and refined mean-field approximation (rmf)
when N = 5, 10, 20 for x10, . . . , x14.

x10 x11 x12 x13 x14

Sim (N = 5) 0.0010142 0.0006991 0.0000025 0.0000007 0.0000001

Sim (N = 10) 0.0019843 0.0010403 0.0000352 0.0000012 0.0000001

Sim (N = 20) 0.0022454 0.0012491 0.0001233 0.0000126 0.0000009

mf 0.0029755 0.0016016 0.0005050 0.0000684 0.0000037

Rmf (N = 5) 0.0014102 0.0004926 0.0000630 0.0000046 0.0000003

Rmf (N = 10) 0.0023148 0.0011025 0.0000134 0.0000099 0.0000007

Rmf (N = 20) 0.0025841 0.0013244 0.0003130 0.0000160 0.0000011

These tables show that the properties observed for D = 5 still hold when D = 15. This
means that the refined mean-field approximation is accurate even when the complexity of
the model is high.

We see that the simulation results are closer to the mean-field approximation when
N is larger. However, we also observe that the refined mean-field approximation with N
small provides better accuracy than the mean-field approximation.
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The rmf tool also provides the value of K for each of the states. In this case, we
obtained a vector K with positive and negatives values. According to the obtained values
of the vector K and the mean-field approximation (see the values of the row mf in the
previous tables), the refined mean-field approximation can be computed as follows:

• for state 0, 0.3861529− 0.0132138/N
• for state 1, 0.2374208 + 0.0955549/N
• for state 2, 0.1459751 + 0.0449719/N
• for state 3, 0.0897510 + 0.0026352/N
• for state 4, 0.0551827− 0.0171673/N
• for state 5, 0.0339290− 0.0229363/N
• for state 6, 0.0208619− 0.0219818/N
• for state 7, 0.0128282− 0.0184648/N
• for state 8, 0.0078896− 0.0144407/N
• for state 9, 0.0048545− 0.0107968/N
• for state 10, 0.0029755− 0.0078263/N
• for state 11, 0.0016016− 0.0055451/N
• for state 12, 0.0005050− 0.0038401/N
• for state 13, 0.0000684− 0.0025717/N
• for state 14, 0.0000037− 0.0016615/N

These experiments show that the refined mean-field approximation is also accurate
when the complexity of the model increases.

5. Conclusions

We analyzed the refined mean-field approximation for the 802.11 model. First, we
presented the concept of the mean-field approximation as the limit of population stochastic
processes with N objects when the number of objects tends to infinity. The mean-field
approximation consists, indeed, in calculating the solution of an ordinary differential equa-
tion, which is built using the drift of the population stochastic process with N objects. Then,
we described the result of [17], where the author showed that the mean-field approximation
is 1/N accurate when the estimation is carried out on the expected value of the stochastic
process. Using this result, the authors of [3] introduced the refined mean-field approxi-
mation, which is a refinement of the mean-field approximation that is accurate not only
for stochastic processes with a very large number of objects, but also when the number of
objects is small.

We consider as an example of the above theory the 802.11 model. We would like to
remark that using it to study the mean-field approximation has been done in [4]. Here,
we went beyond the analysis presented in [4] by considering the refined mean-field ap-
proximation and comparing the accuracy of the mean-field approximation and the refined
mean-field approximation when the number of objects is small. Our simulations showed
that the refined mean field provides better accuracy than the mean-field approximation in
all the cases, and when the number of devices is small especially, the accuracy improvement
of the refinement is very large.

As future work, we aim to consider other stochastic models and compare the accuracy
of the mean-field approximation and the refined mean-field approximation, both when
the the number of objects is small and when the number of objects is large. We believe
that the tool we have used in this article to explore the properties of the refined mean-field
approximation for the 802.11 model can be very useful for this purpose.

We would also like to analyze using this tool the most recent results on the refined
mean-field approximation, such as considering a second additional term (to provide an
even more accurate approximation when the number of objects is small) or heterogeneity
of objects in the stochastic model under consideration.

Finally, we are interesting in incorporating to the tool we have used in this article
the analysis of game-theory-based stochastic models and their convergence to the derived
mean field equilibrium.
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