
Citation: Albóniga, O.E.;

González-Mendia, O.; Blanco, M.E.;

Alonso, R.M.

HPLC–(Q)-TOF-MS-Based Study of

Plasma Metabolic Profile Differences

Associated with Age in Pediatric

Population Using an Animal Model.

Metabolites 2022, 12, 739. https://

doi.org/10.3390/metabo12080739

Academic Editors: Paolo Follesa and

Claudia Fattuoni

Received: 13 July 2022

Accepted: 8 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

HPLC–(Q)-TOF-MS-Based Study of Plasma Metabolic Profile
Differences Associated with Age in Pediatric Population Using
an Animal Model
Oihane E. Albóniga 1,2,* , Oskar González-Mendia 3 , María E. Blanco 1 and Rosa M. Alonso 1

1 Department of Analytical Chemistry, Faculty of Science and Technology,
University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain

2 Metabolomics Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Bilbao, Spain
3 Painting Department, Faculty of Fine Arts, University of the Basque Country (UPV/EHU),

Barrio Sarriena s/n, 48940 Leioa, Spain
* Correspondence: oihaneelena.alboniga@ehu.eus

Abstract: A deep knowledge about the biological development of children is essential for appro-
priate drug administration and dosage in pediatrics. In this sense, the best approximation to study
organ maturation is the analysis of tissue samples, but it requires invasive methods. For this reason,
surrogate matrices should be explored. Among them, plasma emerges as a potential alternative
since it represents a snapshot of global organ metabolism. In this work, plasma metabolic profiles
from piglets of different ages (newborns, infants, and children) obtained by HPLC–(Q)-TOF-MS
at positive and negative ionization modes were studied. Improved clustering within groups was
achieved using multiblock principal component analysis compared to classical principal component
analysis. Furthermore, the separation observed among groups was better resolved by using partial
least squares-discriminant analysis, which was validated by bootstrapping and permutation test-
ing. Thanks to univariate analysis, 13 metabolites in positive and 21 in negative ionization modes
were found to be significant to discriminate the three groups of piglets. From these features, an
acylcarnitine and eight glycerophospholipids were annotated and identified as metabolites of in-
terest. The findings indicate that there is a relevant change with age in lipid metabolism in which
lysophosphatidylcholines and lysophoshatidylethanolamines play an important role.

Keywords: metabolic profiles; animal model; mass spectrometry; glycerophospholipids;
pediatric population

1. Introduction

Drug absorption, distribution, metabolism, and excretion (ADME) are substantially
different in children as compared with adults due to time-related development and organ
system maturation processes [1]. Children’s bodies grow and change rapidly during early
life, especially during the first 2 years [2]. In spite of the increase in available information
related to drug absorption and disposition in the pediatric population, the impact of
specific age-related effects on pharmacokinetics (PK) and pharmacodynamics (PD) remains
poorly understood [2]. The main reasons for this lack of knowledge are the scarce number
of clinical trials, the heterogeneity of the pediatric population, and ethical concerns [3].
As a consequence, many drug therapies used in children are unlicensed or prescribed
off-label [4,5], calculating the dose to administer by an estimation of that used in adults,
corrected by the weight or volume of the patient [6,7]. However, the multiple physiological
and anatomical differences generate disparities in ADME processes between children and
adults [8]. To solve this issue, a better understanding of human developmental biology is
needed. In this context, a deeper insight into organ maturation would help to achieve a
more effective and safer drug therapy in accordance with children’s biological age.
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There is an increasing interest in deeply understanding the biological mechanisms
both at the molecular level and in the organism as a whole. For this purpose, metabolomics
is a powerful bioanalytical strategy to explore the current state of the metabolites involved
in a biological process, such as the different phases that occur during organ development
at early life stages. Metabolomics is based on the study of the complete set of metabolites
in a biological sample. In this way, it is a promising tool to improve the knowledge on
age-dependent organ maturation by comparing metabolic profiles from children of different
ages. Although metabolomics has been applied in several areas, such as disease prognosis,
treatment efficiency, and nutrition [9], the number of studies related with the growth or
development of children is scarce [10]. Considering the difficulties in obtaining samples
from pediatric population, the use of animal models has been a recurrent alternative. In
this aspect, minipigs or piglets have demonstrated to be a suitable animal model of children
and are widely used in pediatric studies due to their similarity in size, physiology, organ
development, and so on [11,12]. To the best of our knowledge, only two works have
explored the differences in the metabolic profiles associated with age: one of them in urine
samples collected from neonates during the first 4 months of life [13] and the other one in
piglets’ plasma samples [12].

Metabolic profiles can be obtained from different biological matrices, being the tissue
samples the most appropriate for organ maturation studies. Nevertheless, the difficulties
in taking biopsy materials lead to the use of surrogate samples, such as blood or derived
biofluids (plasma and serum) and urine [14]. The collection of these biofluids is easier,
less invasive, and more affordable, especially for large-scale studies. Furthermore, they
can be analyzed after simple sample treatments, such as protein precipitation or sample
dilution [15–17]. In this sense, blood and its derived biofluids are matrices of special interest
because many compounds are released into them by different organs. These compounds
travel to and from specific tissues, or they are secreted from cells, and normally they are
recycled or excreted to the blood after their metabolism. This issue is decisive as they
represent a potential source of information about the physiological state of an individual
and provide a picture of the global organ or tissue metabolism [18].

Taking into account the huge amount of metabolites in biological matrices, discovering
biomarkers and identifying the significant features is a big challenge [19,20]. Even though
multivariate analysis, such as principal component analysis (PCA), has demonstrated to be
a useful tool in metabolomics for clustering and data quality assessment, new chemometric
approaches have been proposed lately. In this way, multiblock methods and correlation
analysis are useful for integrating data generated by different experiments or conditions,
such as positive and negative ionization modes in mass spectrometry.

The aim of this work was the application of metabolomics to study and compare the
metabolic profiles of plasma samples obtained from three groups of piglets of different ages
(newborns, infants, and children) in order to find putative biomarkers that can be related
to organ maturation state. For this purpose, high-performance liquid chromatography
coupled to a hybrid quadrupole-time-of-flight mass spectrometer (HPLC–(Q)-TOF-MS)
system was used at positive and negative ionization modes. Multivariate and univariate
statistical analyses were used for finding significant features in plasma that may reflect the
organ maturation state. Multiblock principal component analysis (MB-PCA) and Pearson
correlation studies were used as complementary tools to assess sample clustering and deal
with metabolite annotation challenge, respectively.

2. Materials and Methods
2.1. Reagent and Solutions

The LC–MS grade formic acid and acetonitrile (ACN) used for the mobile phases’
preparation were purchased from Fisher Scientific (Pittsburgh, PA, USA) and Scharlab, S.L.
(Barcelona, Spain), respectively. The methanol (MeOH) used in the sample and reagent
solution preparation was obtained from Scharlab, S.L. (Barcelona, Spain). In addition,
ultra-high-purity water, obtained from tap water pre-treated by Elix reverse osmosis and a
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Milli-Q system from Millipore (Bedford, MA, USA), was used for mobile phase, reagent
solutions, and sample preparation.

Standard reagents used to assess the proper LC–MS system operation were from dif-
ferent manufacturers: paracetamol, cholic acid, (±) verapamil hydrochloride, simvastatin,
reserpine, and leucine enkephalin acetate salt hydrate were provided by Sigma-Aldrich
(Steinheim, Germany); caffeine and salicylic acid were supplied by Alfa Aesar (Karlsruhe,
Germany) and Fluka Analytical (Bucharest, Romania), respectively. Finally, sodium flu-
vastatin was kindly supplied by Novartis (Basel, Switzerland). A system suitability test
solution (SST) was prepared with the nine compounds at a final concentration of 100 ng/mL
in MeOH:H2O 2:1 (v/v); this solvent composition was chosen as this is similar to the final
solution (supernatant) of plasma samples.

2.2. Study Design and Sample Collection

Plasma samples were collected by the team of the Experimental Neonatal Physiol-
ogy Unit of the BioCruces Health Research Institute (Cruces University Hospital, Basque
Country, Spain), following the European and Spanish regulations for the protection of
experimental animals (86/609/EFC and RD 1201/2005), and the procedure was approved
by the Ethical Committee for Animal Welfare. Samples were obtained from mechanically
ventilated newborn piglets, or group A (<5 days, n = 12); infant piglets, or group B (2 weeks,
n = 12); and child piglets, or group C (4 weeks, n = 12) of Topig F-1 Large White× Landrave
breed. Each group contained the same number of females and males. Whole blood samples
were collected in K2-EDTA tubes, and they were immediately centrifuged at 950× g for
10 min at room temperature in order to obtain plasma. The supernatant was transferred to
a cryovial and stored at −80 ◦C until analysis.

2.3. Plasma Sample Treatment and QC Sample Preparation

Frozen plasma samples were thawed at room temperature, and protein precipitation
was carried out with 50 µL of plasma and 100 µL of cold MeOH. After vortex mixing for
2 min in a Signature Digital Vortex Mixer 945303 (VWR, Radnor, PA, USA), samples were
centrifuged at 16,110× g for 15 min at 10 ◦C in a 5415R Eppendorf centrifuge (Hamburg,
Germany). The clean upper layer was transferred to a chromatographic vial to be injected
into the HPLC–(Q)-TOF-MS system.

A quality control sample (QC) was prepared by taking 5 µL of each plasma sample.
After vortex mixing, 50 µL was taken and treated as previously described. The QC sample
was injected at the beginning of the run to equilibrate the system and then every six
randomized samples. These QCs were used to assess the reproducibility and stability of
the system and when necessary for signal correction within the analytical sequence.

2.4. HPLC–(Q)-TOF-MS Analysis

Metabolomics analysis of plasma supernatants was performed using a 1200 series
HPLC system coupled to a 6530 series hybrid quadrupole time-of-flight mass spectrometer
(Q-TOF-MS) from Agilent Technologies (Santa Clara, CA, USA), equipped with an Agilent
Jet Stream electrospray (ESI) source. Samples were randomized along the run to reduce any
time-related effects. Chromatographic separation was carried out injecting 5 µL of plasma
supernatant on a Zorbax SB-C18 reversed phase chromatography column (2.1 × 100 mm,
3.5 µm) equipped with a C8 guard column (2.1 × 12 mm, 5 µm), both from Agilent
Technologies, at 35 ◦C and a flow rate of 0.4 mL/min. A binary solvent system consisting
of 0.1% formic acid and 5% ACN in water (phase A) and 0.1% formic acid in ACN (phase
B) was used for the elution. The gradient started from 0 to 100% B over 10 min, remained at
100% B for 2.5 min, returned to starting conditions in 1.5 min, and re-equilibrated for 5 min.
The mass spectra data were acquired firstly in positive and then in negative ionization
modes with capillary voltages of +3800 V and −2500 V, respectively. The other ESI source
parameters were set as follows: dry gas (nitrogen) temperature, 325 ◦C; dry gas flow,
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10 L/min; nebulizer gas (nitrogen) pressure, 30 psig; sheath gas temperature, 350 ◦C; sheath
gas flow, 11 L/min; skimmer, 65 V; fragmentor, 125 V, and octopole RF peak, 750 V.

The MS detector operated in a low mass range (<1700 m/z) and a 2 GHz extended
dynamic range, and centroid acquisition mode was used for data collection and storage.
A reference solution was directly infused into the source to ensure mass accuracy, repro-
ducibility, and continuous internal calibration during the analysis. Two reference masses for
each ionization mode, at m/z 121.0509 (purine, [C5H4N4+H]+) and m/z 922.0098 (HP-921,
[C18H18O6N3P3F24+H]+) for the positive mode and m/z 112.9855 (TFANH4, [C2H4O2NF3-
NH4]−) and m/z 966.0007 (HP-921COOH, [C18H18O6N3P3F24-COOH]−) for the negative
mode, were used during the HPLC–(Q)-TOF-MS run. Firstly, the analysis was carried out
in the MS scan mode, where isolation or fragmentation was not applied, and all the ions
were conducted through the quadrupole. For this acquisition mode, the mass data was
collected at a scan rate of 2 scans/s between m/z 50 and 1200. Then, MS/MS analysis was
carried out for the compounds of interest at a scan rate of 5 scans/s using m/z dependent
collision energies: 25 V for m/z lower than 300, 30 V for m/z between 300 and 850, and
35 V for m/z greater than 850. Additionally, the SST and a blank sample (MeOH:H2O, 2:1,
v:v) were injected in the HPLC–(Q)-TOF-MS at the beginning, in the middle, and at the
end of each sequence in order to control the analytical performance (HPLC system and MS
instrument) and detect and/or remove artifacts, interferences, or pollutants in the solvents.

The data were acquired using the Agilent MassHunter Workstation version B.05.01,
and the raw data were processed with the MassHunter Qualitative version B.07.00, both
from Agilent Technologies.

2.5. Data Preprocessing

Metabolomic data were treated to reduce the complexity and to obtain a two-dimensional
table (matrix) with a list of features (pairs of mass-to-charge ratio (m/z)–retention time (RT))
with their intensities. Firstly, LC–MS raw data were checked using the MassHunter Qual-
itative software to determine the chromatographic performance quality and the system
mass accuracy as well as QC injection reproducibility and pressure stability. Then, raw data
were converted into the open format mzXML using msConverter (proteoWizard) [21] from
0 to 13.5 min so that features coming from the cleaning step of the elution gradient were
removed. The detection of features was carried out in R 3.4.3 (https://www.r-project.org/;
accessed on 11 November 2019) using the XCMS 1.52.0 package (Metlin, La Jolla, CA,
USA) [22,23]. The algorithm parameters were optimized with the freely available Iso-
topologue Parameters Optimization (IPO) [24] package following the criteria reported
by Alboniga et al. [25], and they are displayed in Table 1. CentWave was the algorithm
employed for peak detection, the obiwarp algorithm was used for retention time correc-
tion, and the density algorithm was used for grouping. Afterward, and in order to avoid
zero values in the resulting matrix that could bias the statistical analysis, a filling step
was carried out to force the integration of peaks where no signal was detected. Finally,
CAMERA 1.32.0 package (Bioconductor Open Source Software for Bioinformatics) [26] was
used for isotopologues and adducts detection. The resultant matrix for each ionization
mode was treated and filtered before statistical analysis as follows: the isotopes identified
by CAMERA ([M + 1], [M + 2], and [M + 3]), the features before the injection peak (less
than 1 min), and the features with percentage of relative standard deviation (%RSD) in the
QCs greater than 20% were removed [27].

https://www.r-project.org/
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Table 1. XCMS parameters for plasma samples at both ionization modes used in this study.

Algorithm Parameter ESI+ ESI−

CentWave
ppm 31.68 31

peakwidth 22.01, 81.26 20, 80
mzdiff −0.0123 −0.0120

Obiwarp
profStep 0.7324 1
gapInit 0.7552 0.9280

gapExtend 2.400 2.688

Density Bw 0.250 0.879
mzwid 0.0270 0.0342

2.6. Multivariate Analysis

Plasma data matrices obtained for positive (Plasma ESI+) and negative (Plasma ESI−)
ionization modes in the previous step were further processed using MATLAB software (The
MathWorks, Naticks, MA, USA) and the toolbox freely available online at https://github.
com/Biospec/cluster-toolbox-v2.0; accessed on 11 November 2019. Intensity drop was
corrected with the QC correction function included in the toolbox, and then, autoscaling
or logarithm (log10) scaling was applied to avoid experimental variations that may cause
differences in orders of magnitude among different metabolites [28].

Multivariate analysis was performed on the scaled matrices to explore the relationship
among samples. For this purpose, PCA was employed to reduce the dimensionality of the
data [29,30] and the PCA score plot was analyzed to determine the group clustering, the
data quality, and the presence of outliers [31].

Furthermore, partial least squares-discriminant analysis (PLS-DA), a particular case
of the PLS algorithm, was used to model the relationship between the measured features
and the target class label (newborn, infant, and child piglets) when clear clustering was
not achieved by PCA modeling. PLS-DA has the main advantage of handling collinear
and noisy data, which are common outputs from metabolomics experiments [30]. More-
over, the PLS-DA method also helps to solve classification problems by maximizing the
separation among the classes through extracting the latent variables [32,33]. However,
the overoptimistic nature of the PLS-DA classification method, also known as overfitting,
requires a suitable validation method to obtain an appropriate and reliable classification
model [34,35]. For this purpose, bootstrapping with replacement (1000 interactions) was
used to generate the multiple training and test data sets (splitting the data) [34] in combi-
nation with permutation testing (1000 permutations), where sample labels are randomly
permuted and a new classification model is calculated [36]. The double-check validation
method generates an average confusion matrix and a correct classification rate (CCR) graph
to evaluate the distribution of a random classification and assess the statistical significance
of the model by considering all the possible permutations (p-value) [36].

Finally, multiblock modeling, a useful method designed to find the underlying rela-
tionship between data matrices of possible related data sets, was used to improve group
clustering compared to classical PCA and to study the correlations between the positive
and negative data sets. For this aim, the plasma data obtained in positive and negative
ionization modes were joined into a single multiblock data structure to perform MB-PCA
modeling [37,38]. The algorithm employed for this purpose was the CPCA-W proposed
by Westerhuis et al. [39]. The filtered matrices obtained in the preprocessing step were
further treated to build the MB-PCA model. First, QC correction was done and QC samples
were removed. Afterward, autoscaling was applied and the square root of the number of
variables in each block (1/

√
n, n being the number of variables in the block) was used to

avoid dimensionality differences between matrices [37]. Then, the multiblock matrix was
used to perform the MB-PCA analysis in order to evaluate the clustering within groups
when different ionization modes were joined together.

https://github.com/Biospec/cluster-toolbox-v2.0
https://github.com/Biospec/cluster-toolbox-v2.0
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2.7. Univariate Analysis

In order to obtain the significant features, univariate analysis was carried out to
find features that discriminate the three groups of piglets under study (newborns (A),
infants (B), and children (C)). For this purpose, parametric tests (one-way ANOVA with a
false discovery rate (FDR)) were applied to find significant differences among the studied
groups. Since this test does not establish where the difference lies, a multiple comparison
test (post-hoc Tukey HSD (honestly significant differences)) was applied in order to select
only those features that are different among the three groups of piglets (A 6= B 6= C).
Afterward, as ANOVA works under normality assumption, Lilliefors test was used to study
the normal distribution. In all those features that did not show a normal distribution, the
Kruskal–Wallis non-parametric test was applied to study differences among the studied
groups. Therefore, a feature was considered significant when the p-value was lower than
0.001 and fulfilled the criteria for the post-hoc Tukey HSD test (A 6= B 6= C).

2.8. MS/MS-Based Metabolites Annotation

All the significant features obtained in the univariate analysis were further studied to
determine the peak quality. For this purpose, extracted ion chromatograms (EICs) were
obtained with the MassHunter Qualitative software incorporated in the HPLC–(Q)-TOF-
MS system and peak shapes were studied. Only those peaks clearly differentiated from the
noise signal were considered for further experimental fragmentation analysis.

Then, Pearson pair-wise correlation studies were performed in the scaled matrix in
order to facilitate metabolite annotation and to obtain information in both ionization modes.
Thereby, a significant feature in one ionization mode, which also distinguishes the three
groups, had to be detected in the other ionization mode with a correlation coefficient greater
than 0.8 [37]. Finally, two features coming from the same molecule have to elute at same RT.
Thus, among those previously selected features, only those with a comparable retention
time in the ESI+ and ESI− data runs were chosen. The time window used to consider that
two features elute at the same retention time was two times the maximum variability in the
SST compounds.

Finally, the features selected in the previous steps were analyzed by tandem MS in or-
der to obtain their fragmentation pattern. The fragmentation experiments were performed
under the same chromatographic conditions as MS scan analysis and using the MS/MS
conditions described in Section 2.4. Metabolite annotation was based on the comparison of
the experimental mass obtained in the MS scan analysis with the theoretical accurate mass
in online databases. Furthermore, the isotopic pattern was studied and compared with the
available databases, such as METLIN [40], Human Metabolome Database (HMDB) [41],
mzCloud [42], MyCompoundID [43], and LIPID MAPS [44]. A mass tolerance below 5 ppm
was accepted. Then, the molecular feature extraction (MFE) algorithm provided by the
MassHunter Qualitative Analysis software was also used to obtain a possible formula
in order to have a starting point and improve the metabolite annotation. MFE considers
the accurate mass, isotopic patterns, relative abundances, and m/z distances to obtain a
possible formula with an average ID score (%) [45]. Afterward, the experimental MS/MS
spectra were compared with the MS/MS spectra information available in the databases
to verify the coincidence by comparing the fragmentation. Finally, some metabolites that
were not in the databases were annotated combining fragmentation pattern study with
literature searching.

3. Results
3.1. Multivariate Analysis

After preprocessing the converted mzXML raw data with XCMS and filtering the
matrices to remove the injection peak features, the isotopes, and the non-repeatable features
(%RSD > 20 in the QCs), 2207 features in Plasma ESI+ and 1855 features in Plasma ESI−
were obtained. Autoscaling was used for Plasma ESI+ data set and log10 for Plasma ESI−
before PCA modeling in order to study the quality of the analysis and determine group
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clustering. Afterward, the QC correction function incorporated in the MATLAB toolbox
was applied to both data sets and PCA was performed again (see Supporting Information,
Figure S1).

Once adequate results were achieved, the QC group was removed from the PCA in
order to assess the group clustering. As shown in Figure 1, the three groups (newborns
(A), neonates (B), and infants (C)) reveal a clear tendency in the PC1 even though they are
not totally separated and some groups overlap. In Plasma ESI+, group C is separated from
B and A, whereas in Plasma ESI−, group A is the one clearly separated from B and C.
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Figure 1. PCA score plots obtained after QC samples were removed for the matrices of (A) Plasma
ESI+ and (B) Plasma ESI−. Piglet groups: newborns (A), infants (B), and children (C). TEV = total
explained variance.

Due to the overlapping observed between groups A and B in Plasma ESI+ and between
groups B and C in Plasma ESI−, supervised analysis by PLS-DA was performed. In
Figure 2, the PLS-DA score plot models are shown, where a clear separation among groups
was found.
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Owing to the overfitting nature of the PLS-DA method, a proper validation was per-
formed to determine if the classification was fortuitous. For this purpose, bootstrapping
with replacement with 1000 interactions was applied for splitting the data. The bootstrap-
ping method was combined with permutation testing (n = 1000), which assessed if the
real classification was better than any other possible classification. The resultant average
confusion matrices and correct classification rate (CCR) graphs are shown in Figure S2
for Plasma ESI+ and Figure S3 for Plasma ESI− (see Supporting Information). More than
90% of the samples were correctly allocated except for infants (B) in Plasma ESI+ and
children (C) in Plasma ESI−. The misassignments observed for these groups are consistent
with the distribution shown in the PCA score plots (Figure 1). Finally, the CCR results
show that the real classification (observed distribution) is significantly better than any other
random classification (null distribution) with p-value less than 1.0 × 10−3. This means that
the classification models were validated and the classification is not fortuitous.

Finally, MB-PCA modeling was performed using the filtered matrices of 2207 features
for Plasma ESI+ and 1855 for Plasma ESI−. After autoscaling the matrices, which is required
for MB-PCA modeling, block-weighting was applied. Then, the data were arranged into
two blocks: the first block contained all the samples in positive ionization mode (Plasma
ESI+ or Block 1) and the second block in negative ionization mode (Plasma ESI− or Block 2).
The resultant MB-PCA super score plot, which represents the common trend across Plasma
ESI+ and Plasma ESI−matrices [37], is shown in Figure 3, and the block score are shown
in Figure 4 (upper score plots). In all cases, clear separation between group A and the other
groups (B and C) was obtained but groups B and C were still partially overlapping.

In order to assess the clustering improvements when data were fused, the block score
PCAs (upper score plots in Figure 4) were compared with the classical PCA (lower score
plots in Figure 4). As can be seen, the Plasma ESI+ data set has similar clustering in both
cases, with the tendency appearing mainly in the PC1. In the case of Plasma ESI−, a new
classical PCA was performed after applying autoscaling (initially log10 was used) and QC
correction in order to properly compare the clustering among groups with that observed in
the block score PCA (right score plots in Figure 4). As can be seen, in both cases, group A
was clearly separated in the PC1 from groups B and C. However, infants (B) and children (C)
clustered together when classical PCA was performed. Even though total clustering was
not achieved in Plasma ESI−, an improvement was observed when data were fused.
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3.2. Univariate Analysis

The univariate analysis pipeline described previously was followed in order to find
significant features that can explain the differences between different groups of samples. It
is important to highlight that univariate analysis was applied in the filtered matrix used for
PCA building as PLS-DA was only employed for classification modeling. In Table 2, the
number of features obtained in each step of the pipeline is shown. Finally, the number of
significant features obtained was 27 and 74 for Plasma ESI+ and Plasma ESI−, respectively.

Table 2. Number of features of interest in the Plasma ESI+ and Plasma ESI− data sets after applying
univariate statistical analysis.

Plasma ESI+ Plasma ESI−
Total number after matrix filtering 2207 1855

ANOVA and FDR (p < 0.001) 225 489
Post-hoc Tukey HSD test (A 6= B 6= C) 36 89

Fulfil normality 26 73
Do not fulfil normality 10 16

Kruskal–Wallis (p <0.001) 1 1
Total significant features 27 74
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3.3. MS/MS-Based Metabolite Annotation

The m/z values of the significant features obtained after the univariate analysis in
Plasma ESI+ and Plasma ESI− data sets (Table 2) were extracted from the chromatogram
using the MassHunter Qualitative software in order to determine if they were real peaks or
artifacts. Among the total significant features, 13 out of 27 in Plasma ESI+ and 21 out of
74 in Plasma ESI− were considered to be real peaks. Then, Pearson correlation analysis
was performed and the correlation coefficients were calculated. Those pairs of features
formed by at least one feature that distinguishes the three groups of piglets (A 6= B 6= C) in
a significant way (p-value < 0.001) and with a correlation coefficient greater than 0.8 were
considered. In some cases, the pairs of features ionized in one mode could be paired with
several features in the other ionization mode. This means that they may belong to the same
metabolite, as adducts or isotopes not identified by CAMERA or in-source fragments of
that metabolite.

Finally, MS/MS experiments were carried out to obtain the fragmentation pattern
of those features selected from the univariate analysis (see Table 3) and the correlation
studies (see Supporting Information, Table S1). In Table 3, the significant features obtained
from the univariate analysis that were considered real peaks are displayed with their
m/z value, RT, trend within groups, and putative annotation based on MS/MS studies.
Finally, those pairs of metabolites after Pearson correlation studies are included in Table S1
in the Supporting Information.

Table 3. Significant features in plasma samples at positive and negative ionization modes that are
considered real peaks after applying univariate analysis in the independent data sets. The table
includes the m/z values, the retention time (RT), tendency, q-value (p-value after applying false
discovery rate), the putative annotation, and the ion specie.

Plasma ESI+ Plasma ESI−

m/z RT (Min) Regulation a q-Value Annotation Ion
Specie m/z RT (Min) Regulation a q-Value Annotation Ion

Specie

400.1157 6.6 Up 1.2 × 10−5 Unknown 398.0972 6.5 Up 4.55 × 10−9 Unknown -
364.0715 6.8 Up 4.43 × 10−5 Unknown 343.0242 6.8 Up 5.52 × 10−8 Unknown -
271.9848 6.8 Up 6.24 × 10−5 Unknown 457.0161 6.8 Up 3.70 × 10−9 Unknown -
212.5111 6.9 Up 1.06 × 10−5 Unknown 428.1105 7.7 Up 5.00 × 10−6 Unknown -
211.0713 10.4 Up 5.86 × 10−5 Unknown 415.1959 8.0 Up 1.16 × 10−9 Unknown -

200.2004 11.1 Up 2.35 × 10−4 Unknown 586.3141 10.0 Up 3.42 × 10−7 LPC (20:5) [M-
COOH]−

714.2590 9.3 Down 2.28 × 10−5 Unknown 615.3475 10.7 Up 5.34 × 10−6 LPC class -
356.2795 9.7 Down 5.67 × 10−5 Acylcarnitine - 411.2371 8.2 Down 1.00 × 10−14 Unknown -
628.2926 10.5 Down 4.53 × 10−5 Unknown 350.2097 9.0 Down 2.68 × 10−9 Unknown -
544.3400 10.5 Down 2.51 × 10−4 LPC (20:4) [M+H]+ 497.3464 9.4 Down 5.38 × 10−8 Unknown -
300.6346 10.6 Down 1.74 × 10−4 Unknown 513.3004 9.9 Down 7.34 × 10−5 Unknown -

530.3254 11.0 Down 4.34 × 10−4 LPE (22:4) [M+H]+ 447.3090 10.7 Down 1.51 × 10−10 Unknown -
LPC (17:1) [M+Na]+ 973.6249 10.9 Down 2.20 × 10−6 Unknown -

548.3703 11.5 Down 1.58 × 10−4 LPC (20:2) [M+H]+ 478.2922 10.9 Down 1.72 × 10−5 LPE (18:1) [M-
H]−

235.0707 5.6 Other 2.32 × 10−4 Unknown -
315.1055 6.0 Other 6.89 × 10−6 Unknown -
230.0111 6.5 Other 3.96 × 10−6 Unknown -
117.6456 8.1 Other 1.91 × 10−8 Unknown -
815.5669 8.9 Other 1.38 × 10−4 Unknown -

436.2815 11.0 Other 1.33 × 10−7 LPE (15:1) [M-
H]−

526.3490 11.5 Other 5.49 × 10−11 Unknown -

a Up: Newborns (A) lower than infants (B) and children (C) (A < B < C). Down: Children (C) lower than infants
(B) and newborns (A) (A > B > C). Other: Newborns (A) and children (C) lower than infants (B) (B > A and C).

In order to annotate the metabolites, the experimental accurate mass and the MS/MS
spectra were compared with those available in METLIN, HMDB, mzCloud, MyCompound
ID, and LIPID MAPS. The lack of many MS/MS spectra in databases with an acceptance
mass error < 5 ppm for our selected compounds led to deeper investigations to annotate
metabolites of interest. In this sense, the MS/MS fragmentation pattern was studied
through the significant features to obtain information about class types (see Table 3).
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The study of the MS/MS patterns in Plasma ESI+ allowed the discovery of a feature
with m/z 184.0718, which was common among several metabolites. The m/z 184.0718
is known to be the protonated phosphocholine (C5H15NO4P), which is a characteristic
fragment of compounds with a phosphocholine head group, such as phospholipids (PL) and
glycerophospholipids (GPLs). The fragmentation pattern of the protonated phosphocholine
found in METLIN was used and compared with the experimental MS/MS of the metabolites
of interest, in order to classify or annotate them. For instance, the fragmentation pattern
obtained experimentally (see Figure 5) for the significant metabolite with m/z 544.3400
and RT 10.54 min confirms that it belongs to a lipid class with a phosphocholine head
group. In order to annotate the lipid class of this feature, LIPID MAPS [44] database and
literature [46] were used and it was annotated as lysophosphatidylcholine (LPC) C20:4
(LPC(20:4)), which means that it has a monounsaturated fatty acid with 20 carbons as well
as the phosphocholine head group. Following the same procedure, another two metabolites
were annotated as LPCs: LPC (20:2) with m/z 548.3703 and RT 11.52 min (see Supporting
Information, Figure S4) and LPC class with m/z 300.6346 and RT 10.55 min (see Supporting
Information, Figure S5).
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Figure 5. Experimental fragmentation pattern of the significant feature with m/z = 544.3400 and
RT = 10.54 min, which has a phosphocholine in its structure.

It is important to point out that the metabolite with m/z 530.3244 at RT 11.04 min
(Figure 6) could initially be assigned to two lipid classes, lysophoshatidylethanolamine
(LPE) and LPC. This metabolite was putatively annotated as LPE (22:4) [M+H]+ because the
MS/MS contained the m/z 389.3089, which fits with the loss of the phosphoethanolamine
(m/z 141.0165) [46]. The other putative annotation given (LPC (17:1) [M+Na]+) has two
fragments of the phosphocholine head group (m/z 104.1046 and m/z 66.0950) as well as
the characteristic m/z 184.0681. The lack of the sodiated phosphocholine fragment ion
(m/z 146.9817), characteristic of the fragmentation of sodium adducts of LPCs, made this
annotation less reliable but still feasible. In order to elucidate this metabolite as LPE (22:4)
or LPC (17:1), the correlated feature in negative ionization mode (m/z 528.3077 and RT
11.01 min), obtained by Pearson correlation analysis, was studied. The m/z 528.3077 of this
feature was annotated as LPE (22:4) [M-H]− by LIPID MAPS with less than 5 ppm of error.
Thus, Pearson correlation analysis facilitated metabolite annotation and demonstrated to
be a complementary useful tool.

Furthermore, among the significant features in positive ionization mode, an acylcar-
nitine class feature was found. The comparison of the MS/MS spectra from METLIN of
acetyl-carnitine with the MS/MS obtained for the feature with m/z 356.2795 and RT 9.7 min
showed the characteristic fragment of m/z 85.0268 (see Supporting Information, Figure S6).
This means that this significant feature belongs to the acylcarnitine class. Although several
studies deal with the characterization of acylcarnitines using MS, the annotated acylcarni-
tine in this work is not among those included in the literature [47–50].
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Figure 6. Experimental MS/MS spectrum for the significant feature in positive ionization mode with
m/z 530.3253 and RT 11.04 min.

The pipeline applied to the Plasma ESI+ significant features was also followed for the
negative ionization mode in order to annotate the metabolites of interest. The MS/MS spec-
tra for the annotated metabolites in negative ionization mode are shown in the Supporting
Information (Figures S7–S10). All of them were annotated based on the fragmentation
pattern described by Godzien et al. [46] and the mass coincidence with LIPID MAPS. The
annotated metabolites are displayed in Table 3.

The metabolite of interest with m/z 586.3140 at RT 10.03 min (see Supporting Infor-
mation, Figure S7) was annotated as LPC (20:5) ([M+COOH]−) due to the presence of an
ion (m/z 526.2992) resulting from the loss of 60.0222 (methyl formate), which is the main
characteristic fragment for the recognition of this adduct [46]. Then, three other metabolites
were annotated: one as an LPC class with m/z 615.3475 and RT 10.69 min (see Supporting
Information, Figure S8), one as an LPE (18:1) (see Supporting Information, Figure S9) with
m/z 478.2922 and RT 10.89 min, and one as an LPE (15:1) (see Supporting Information,
Figure S10) with m/z 436.2815 and RT 10.98 min.

4. Discussion

Taking into account the annotated metabolites, further literature search was carried
out to determine the biological role of this class of metabolites. The annotated metabolites
belong mainly to different lipid species. Indeed, this complex family of biomolecules has
been associated with several biological pathways, some of which are significantly modified
with age.

There have been reported more than 600 distinct molecular species covering the six
main mammalian lipid categories (sterol lipids, glycerophospholipids, glycerolipids, sphin-
golipids, fatty acids, and prenol lipids) [51]. Among them, GPLs enclose a high proportion
of total lipids present in plasma and over 200 species were detected in the human plasma
standard reference material (SRM) [51,52]. This family is of special interest in this study
because most of the annotated metabolites (LPEs and LPCs) belong to lysophospholipids
(LPLs), which are substrates or intracellular products of GPLs [53].

LPLs are small bioactive lipid molecules containing a single fatty acyl chain and a
polar head group. The diversity on LPLs is based on the polar head group and the fatty
acyl chain coupled to the glycerol backbone. At the same time, certain LPL subclasses,
such as LPEs and LPCs, can have different fatty acyl chains linked. The intracellular
production of LPLs from GPLs consists in the de-acylation by hydrolysis of the carboxyl
ester bonded at the sn-1 or sn-2 position by the action of the phospholipase A2 to release
the fatty chain. This is further re-acylated by lysophospholipid acyltransferase (LPLATs)
to generate a new specie, which can be different from the original de-acylated one. This
process is known as Lands’ cycle or the remodeling pathway and involves several enzymes.
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In the case of LPLs in plasma, they can be generated by the action of lecithin:cholesterol
acyltransferase (LCAT), which is expressed and secreted primarily from the liver. LCAT, a
phospholipase A2 enzyme, is related to lipoprotein metabolism and might be susceptible to
present changes in the expression related to the organ maturation state in liver.

Thus, the significant difference observed in several LPC and LPE levels (see Figure S11)
between newborn, infant, and child piglets could be explained by the immaturity or differ-
ent states of activity in the enzymes involved in Lands’ cycle or in the expression of the
LCAT. It is known that both GPLs and LPLs are involved in several biological functions,
such as the source of energy, cell membrane components, and cellular signaling messen-
gers [54]. Furthermore, it is reported that LPLs increase under pathological conditions
so they are gaining special interest as diagnostic and/or pharmaceutical markers [55,56].
However, no studies correlating GPLs or LPLs with children were found. Consequently,
further studies are needed to obtain more information on and clarify the relationship of the
LPCs and LPEs with the organ maturation state in the pediatric population.

In addition to the LPL compounds, an acylcarnitine class metabolite was annotated.
The acylcarnitine did not match with available databases or the literature. The acylcarnitine
follows a down-regulated tendency among newborn, infant, and child groups. The ten-
dency of this annotated acylcarnitine (m/z 356.2795), which belongs to the acylcarnitines
class with more than four carbons in the linked fatty acid (short-chain fatty acid) [57], is
in agreement with Cavedon et al. [58], where the medium- and long-chain acylcarnitines
decreased with age. However, the down-regulated tendency is not in agreement with the
work of Novak et al. [59], in which, it was observed that total acylcarnitine levels grow
with age.

5. Conclusions

The comparison between plasma metabolic profiles obtained from newborn, infant,
and child piglets showed a clear tendency within groups. However, no clear clustering
was achieved. The supervised analysis and its validation finally demonstrated that there
are differences between the three groups of piglets and that the classification is not fortu-
itous (p-value < 1.0 × 10−3). Furthermore, the multiblock principal component analysis
(MB-PCA) has demonstrated to be a promising tool to obtain complementary information
and to improve the clustering within groups compared to classical PCA.

Univariate analysis identified 13 and 27 metabolites for Plasma ESI+ and Plasma ESI−
data sets, respectively. These metabolites were considered for further MS/MS studies,
which finally allowed the annotation of nine metabolites as putative biomarkers. Among
them, the main class of annotated metabolites in plasma belongs to lipid classes, mainly
LPCs (LPC (20:4), (20:2), and (20:5)) and LPEs (LPE (18:1), (15:1), and (22:4)), which are part
of the second-most-abundant lipid class in plasma (GPLs) and were down-regulated or
up-regulated among groups (see Figure S11). Furthermore, other lipids were found within
the annotated metabolites but no class could be assigned. The absence of studies related
with LPC and LPE tendency in children makes the findings in this study highly relevant to
improve the knowledge of age-related development in the pediatric population.

In summary, annotated metabolites are considered to be putative biomarkers of the
physiological state and global organ metabolism among piglets of different ages (newborns,
infants, and children). Among them, lipids are found to be of special interest, which
suggests that a lipidomics approach could be relevant for further studies. Certainly, other
complementary techniques for the analysis of more polar molecules or volatile compounds
would provide a broader picture of and new information about the changes occurring
in pediatric metabolism. Moreover, as plasma could be considered the main transport of
metabolites released to and from tissues, it is a feasible matrix to investigate other tissues
and their maturation state with age. Therefore, the findings presented in this work could be
considered an important starting point for further investigations on organ maturation and
development process in children, which could lead to improvement in the knowledge on
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organ maturation development, which at the same time would lead to better drug dosing
in the pediatric practice.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/metabo12080739/s1. Figure S1 shows the PCA score plot obtained
after scaling the matrices and after QC correction for Plasma ESI+ and Plasma ESI−. Figures S2 and S3
show the validation results for Plasma ESI+ and Plasma ESI−, respectively, where the average confu-
sion matrices and the correct classification rate graphs are included. In Figures S4–S10, the MS/MS
spectra and the fragmentation pattern of the significant features in positive or negative ionization
modes are shown. Figure S11 shows the tendency for two significant LPCs. Table S1 displays
those pairs of correlated features obtained by Pearson correlation studies that were considered for
MS/MS studies.
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