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A B S T R A C T

Volatility spillovers are a characteristic of interconnected electricity markets. We use high-frequency prices to
analyze the transmission of volatility across five Australian regional electricity markets. We propose several
models: The first includes only realized variances; the second adds realized covariances; the last two include
positive and negative realized semi(co)variances, separately, obtained from the decomposition of the realized
covariance matrix into components based on the sign of the underlying returns. We carry out the analysis
for both static and dynamic frameworks and relate the behavior of spillovers to major events and policies
affecting the markets. Results show that ignoring covariances results in spillovers being underestimated and
highlight the importance of the role of semi(co)variances in detecting asymmetric spillovers. Finally, we discuss
implications for short-run market participants and long-term planning by regulators.
1. Introduction

In recent years, many countries have moved to deregulate electricity
markets to enhance competition. The goal is to make markets more
efficient. Market interconnection plays a fundamental role because
it is a significant structural characteristic that determines the extent
and speed with which shocks spread across markets. Various indexes
have been proposed for measuring market interdependence. The very
nature of electricity sets it apart from other commodities and financial
assets.1 As a result, volatility risk is a major concern for the efficient
operation of interconnected markets.2 The structural characteristics of
markets also play a significant role in price formation.3 In addition,
the deployment of large scale intermittent generation from renewables
and increases in the capacity for interconnection between organized
markets pose new challenges for market participants. The former is a
further source of uncertainty in price formation, and the latter enables
volatility shocks to be smoothed over more quickly.

In this context, the analysis of volatility spillovers across electricity
markets has become an important issue. An electricity market is likely
to be affected by external shocks coming from neighboring connected
electricity markets. For volatility shocks to propagate between markets

∗ Corresponding author.
E-mail addresses: echanatasig001@ikasle.ehu.eus (E. Chanatásig-Niza), aitor.ciarreta@ehu.eus (A. Ciarreta), ainhoa.zarraga@ehu.eus (A. Zarraga).

1 Electricity prices in worldwide deregulated markets are characterized by mean reversion, seasonality, stationarity, extreme jumps, high volatility, and
non-positive and zero prices (see Chan et al. (2008)).

2 See Ignatieva and Trück (2016) and Apergis et al. (2019) for a discussion on how market risk exposure is associated with these features.
3 See for instance Wilson (2002) for the role of imperfect competition in market design and Cramton (2017) for the gains from interconnection related to the

existence of robust spot markets.

there must be sufficient capacity for interconnection, so the analysis
of spillover effects is especially important for market agents to manage
portfolios for operating in different electricity markets. In the literature,
spillovers are measured in various ways. One approach is to use Markov
Regime Switching models, as done by Lindström and Regland (2012)
to measure interdependence between six European electricity markets.
Another is principal component analysis (see for instance Yan and
Trück (2020) for the Australian market). Other authors use multivariate
GARCH models to study the level of integration of electricity mar-
kets and price convergence, e.g. Worthington et al. (2005) and Higgs
(2009) for the Australian, and Ciarreta and Zarraga (2015) for sev-
eral European markets. Finally, others apply the Diebold and Yilmaz
(2009, 2012, 2014) method (hereinafter referred to as DY) based on
decomposing forecast error variance using a Vector Autoregressive
(VAR) model. This enables various volatility spillover measures to be
constructed at different stages, from pairwise directional to overall
spillovers, thus providing a more comprehensive analysis than other
methods. Examples include Han et al. (2020) and Apergis et al. (2017)
for Australian regional markets and Do et al. (2020) for the Irish and
British markets.
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Fengler and Gisler (2015) extend the DY approach to include covari-
ances in a multivariate Heterogeneous Autoregressive (HAR) model to
analyze spillovers in US financial markets. The inclusion of covariances
seeks to measure the joint variability of pairs of market returns. Their
use enables the way in which the relationship between two markets
affects a third market to be analyzed, which in turn provides a better
understanding of the transmission of spillovers. In interconnected mar-
kets, the volatility received or transmitted is expected to come from
different channels. However, most of the literature on electricity price
volatility uses measures of volatility spillovers that ignore the degree
of relationship between two markets. Park et al. (2006) and Bunn and
Gianfreda (2010) show that the integration of electricity markets could
depend not only on geographical proximity or interconnections but also
on the maturity and importance of markets. In this context, the use
of covariances enables relationships between markets to be described
that are not identified using variances alone. Moreover, the sign of
the covariance shows the tendency in the linear relationship between
pairs of variables. If larger (smaller) returns in one market correspond
to the higher (lower) values in another market, then returns tend to
show similar behavior. In the opposite case, when greater (smaller)
values of one variable mainly correspond to the lower (higher) values
of the other, the covariance is negative. Therefore, ignoring covariances
means that important channels of volatility spillovers may potentially
be missed.

In financial markets, negative (positive) returns are often associ-
ated with upward (downward) volatility. This empirical phenomenon
is often referred to as asymmetric volatility, and is also observed
in electricity prices.4 Thus, Bollerslev et al. (2020) distinguish be-
tween volatility arising from negative return shocks and positive return
shocks. In electricity markets Apergis et al. (2017) and Do et al. (2020)
measure asymmetries in volatility connectedness coming from good
volatility (positive returns) and bad volatility (negative returns). The
former find asymmetric spillovers across Australian regional markets,
and the latter across the Irish and British markets. However, none of
them include covariances in their analyses.

Our contribution is to connect the research line of Fengler and Gisler
(2015) with those of Apergis et al. (2017) and Do et al. (2020). The
former include covariances in a multivariate HAR model using realized
volatility, and the latter analyze asymmetric volatility spillovers across
markets. We hypothesize that the use of covariances improves the
estimation of volatility spillover measures and provides a better under-
standing of market interconnections. We also decompose the realized
covariance matrix into components based on the sign of the price
returns as per Bollerslev et al. (2020) and Bollerslev (2021) and apply
the DY (2009, 2012, 2014) approach to analyze volatility spillovers
across five interconnected electricity markets in Australia using high-
frequency data. Australia is an interesting case study because it is an
isolated country that contains several markets with limited levels of
interconnection, which implies a larger volatility risk; it is heavily
dependent on fossil-fuel generation (especially coal), so it has barriers
to effective transition to renewable generation deployment not faced by
other liberalized markets. Its markets also differ in size and technology
mix.

As far as we know, this approach has not been applied before. We
perform a static analysis and a time-varying dynamic analysis. The
latter enables us to analyze the dynamics of volatility spillovers across
markets and the impact of specific events. The empirical results are
expected to be of interest to market participants. A better understand-
ing of the dynamics of volatility spillovers can help to design efficient
electricity policies and reduce market risk levels.

The rest of the paper is set out as follows. Section 2 overviews the
Australian National Electricity Market. Section 3 presents the data used

4 Knittel and Roberts (2005) and Ciarreta and Zarraga (2016) show ev-
dence of asymmetric responses with a larger effect of positive shocks on
olatility. This is known as the inverse leverage effect.
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in the study. Section 4 outlines the econometric methodology used.
Section 5 presents the results, and Section 6 discusses some conclusions
and recommendations for market participants.

2. Overview of the Australian electricity market

The Australian electricity market comprises two main markets. The
first is the Wholesale Electricity Market (WEM), which has been oper-
ating since 2006 and supplies electricity to the South-West of Western
Australia via the South West Interconnected System. The WEM supplies
power to more than one million customers thanks to its 7,800 km of
transmission lines. The second is the National Electricity Market (NEM),
a wholesale spot market which has been operating since December
1998. It is one of the world’s longest interconnected systems. The
market owns 40,000 km of transmission lines and cables, and covers a
distance of around 5,000 km.5 The NEM supplies electricity to Queens-
land (QLD), New South Wales (NSW), Victoria (VIC), Tasmania (TAS),
and South Australia (SA). Both markets are operated by the Australian
Electricity Market Operator (AEMO), which manages electricity and gas
systems and markets across Australia.

The spot market matches supply offers from power stations with
real time consumption by households and businesses such that a 5-
minute dispatch price is obtained. This represents the cost of supplying
the last megawatt of electricity to meet demand, and is applied to
all participating generators regardless of the level of their original
offer. The dispatch electricity price is important because it is used to
determine the spot price for each 30-minute trading interval. It is the
average of the last six dispatch prices during the preceding half hour.
An increase in the spot price causes generators to increase their energy
outputs by turning on their more expensive generators. Conversely, if
the spot price is decreasing the more expensive generators are turned
down or off.6 The cost of supply has a price floor of Australian $−1, 000
and a maximum price or price cap of $14, 000 (Australian Energy Market
Commission, AEMC, 2020).

Historically, coal is the main generation source in the NEM. In
our sample period (July 2009–February 2019) it accounts on aver-
age for more than 70% of total generation. In 2010, the share of
renewable electricity generation in Australia was still low: It ranked
seventh lowest out of the 28 member countries of the International En-
ergy Agency. According to the Organization for Economic Cooperation
and Development (OECD), Australia was one of the highest emitters
of greenhouse gases (Australian Energy Regulator, AER, 2012). The
country is far from meeting its commitment under the Paris climate
agreement. This led the Australian Government to introduce the Carbon
Price Mechanism (CPM), a policy focused on cutting carbon and other
greenhouse emissions to at least 5% below 2000 levels by 2020 (AER,
2012). The CPM started on 1 July 2012 and ended on 30 June 2014,
and it had a limited effect on the generation mix. For example, com-
paring 2010 with 2019, coal-fired output dropped from 74.6% to 68%,
and renewable generation increased from 6.8% to 17.4% of the total
generation output (Australian Energy Regulator, AER, 2010, 2020).
Carbon generation is larger than the average in OECD countries, which
is around 22% (International Energy Agency, IEA, 2020).

By 2019 total generation in the NEM was 198.73 TWh, about 135.14
TWh of which was from coal power plants, with the rest breaking down
as follows: Gas 15.98 TWh, wind 14.97 TWh, hydro 14.15 TWh, grid-
scale solar 5.82 TWh, rooftop solar 11.82 TWh, and battery energy
storage systems 0.07 TWh (Australian Energy Market Operator, AEMO,
2020). QLD, NSW, and VIC are the regions with the biggest coal fired

5 See Table A.1 in Appendix A for existing interconnection capacity for each
air of regions.

6 There is a contract market for long-term transactions. The contracts
educe retailers’ exposure to wide price fluctuations in the spot market, since
etailers set fixed prices for longer periods of time.
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Fig. 1. Percentage of generation accounted for by each source in 2019.
Source: AEMO (2020) and own work.

Table 1
Percentage of generation accounted for per source and
demand per state in 2019.
Source: AEMO (2020).

Sources Demand

Fossil Non fossil

NSW 81 19 36.6
QLD 87 13 28.7
SA 50 50 6.4
TAS 6 94 5.5
VIC 79 21 22.8

Fossil and Non fossil represent the percentage of each
generation source in each state. Demand represents
the percentage of total electricity demand per state.

power stations whereas SA relies on gas (48%) and wind generation
(38%). TAS is highly dependent on hydro power generation, which
accounts for at least 80% of its total. Fig. 1 illustrates the share of
each resource in the generation mix for 2019. In addition, Table 1
summarizes the percentage of fossil and non-fossil generation and
electricity demand by state in 2019.

Differences in generation capacity, demand size, and technology
mix have significant implications for the net selling positions of the
regions. NSW, QLD and VIC are the largest markets and the generation
mix depends to a large extent on fossil sources. Historically, QLD and
VIC have been net exporters of electricity. However, two years after
the closure of Hazelwood in April 2017, increases in demand with no
further increase in installed capacity made VIC a net importer for the
first time. Both NSW and SA have traditionally been net importers. SA
and TAS are mainly renewable producers and their net positions as
importers or exporters depend heavily on weather conditions (see AER,
2020, and Fig. B.1 in Appendix B).

3. Data

The data-set consists of continuously-recorded 5-minute dispatch
electricity prices from 1 July 2009 to 28 February 2019, measured in
Australian $∕MWh for five regions: NSW, QLD, SA, TAS, and VIC.7 Each
day thus has 288 trading intervals in each of the five regions under
study. Fig. 2 shows the time series of the prices for each market.

7 Source: https://aemo.com.au/energy-systems/electricity/national-
electricity-market-nem/data-nem/market-management-system-mms-
data/dispatch
3

We compute the returns as 𝑟𝑗𝑖 = 𝑃𝑗𝑖−𝑃𝑗𝑖−1, where 𝑃𝑗𝑖 represents the
original electricity price for the 𝑗th market in the 𝑖th interval of time.
The presence of zero and negative prices prevents logarithms in prices
from being taken. Following Andersen et al. (2001) and Bollerslev et al.
(2020) we estimate the realized daily variation and covariation using
the covariance matrix definition, so:

𝑅𝑒𝐶𝑜𝑣 =
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(1)

where 𝑟𝑖 = (𝑟𝑁𝑆𝑊 ,𝑖, 𝑟𝑄𝐿𝐷,𝑖, 𝑟𝑆𝐴,𝑖, 𝑟𝑇𝐴𝑆,𝑖, 𝑟𝑉 𝐼𝐶,𝑖)′ for 𝑖 = 1,… , 𝑚, with 𝑚
being the number of returns in a day.8 Eq. (1) represents the covariance
matrix made up of the realized variance of each market on the diagonal
and the realized covariances across the markets on the off-diagonal.

The realized measures capture the real volatility in the markets but
cannot identify what fractions of the total variation come from positive
and negative returns. Barndorff-Nielsen et al. (2010) decompose the
realized variance into two estimators which capture the variation due
to positive and negative movements. The downside (or negative) real-
ized semivariances focus on squared negative returns while the upside
(or positive) realized semivariances focus on squared positive returns.
In recent papers, Bollerslev et al. (2020) and Bollerslev (2021) pro-
pose the decomposition of the realized covariance matrix into realized
semicovariances dictated by the sign of the underlying high frequency
returns.

Define 𝑟+𝑖 and 𝑟−𝑖 as the positive and negative returns, respectively.
‘‘Concordant’’ realized semicovariance matrices associated with the
realized covariance matrix are:

𝑃 =
𝑚
∑

𝑖=1
𝑟+𝑖 (𝑟

+
𝑖 )

′,

�̂� =
𝑚
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𝑟−𝑖 (𝑟

−
𝑖 )

′

(2)

The concordant matrices 𝑃 and �̂� comprise the positive and neg-
ative realized semivariances on their diagonals, and the positive and
negative realized semicovariances on the off-diagonals. ‘‘Discordant’’
semicovariance matrices are defined as:

�̂� =
𝑚
∑

𝑖=1
𝑟+𝑖 (𝑟

−
𝑖 )

′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
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+
𝑚
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𝑟−𝑖 (𝑟

+
𝑖 )

′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
�̂�−

(3)

where �̂�+ and �̂�− have zeros on their diagonals and the scalar
realized semicovariances obtained from opposite-signed returns on the
off-diagonals. Note that for any sampling frequency 𝑚, 𝑅𝑒𝐶𝑜𝑣 = 𝑃 +
�̂� + �̂�+ + �̂�−.

To obtain series with normal distribution, which is required for
the generalized variance decomposition (see Section 4.2), a variance
stabilizer is applied to the realized measures. We use the transformation
in Uniejewski et al. (2017), which is based on the so-called probability
integral transform (PIT): 𝑍𝑡 = 𝐺−1(𝐹 (𝑋𝑡)), where 𝑋𝑡 is the realized
measure to be transformed, 𝐹 is the distributional forecast of the
cumulative distribution function (cdf) of 𝑋𝑡, and 𝐺−1 is the inverse of
the standard normal cdf.

8 Note that this is a continuous market, so we only miss the first return in
the whole sample.

https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/dispatch
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/dispatch
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/dispatch
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Fig. 2. Intraday dispatch electricity prices in five Australian markets.
4. Methodology

4.1. The multivariate HAR model

Corsi (2009) proposes a Heterogeneous Autoregressive (HAR) model,
which is an AR-type model with the difference that it considers realized
volatility over different time horizons, which enables it to describe
heterogeneity from markets. Based on Corsi (2009), we propose the
following models:

• MHAR-ReVar: Multivariate HAR model using realized variances.
• MHAR-ReCov: Multivariate HAR model using realized variances

and covariances.
• MHAR-ReCov+: Multivariate HAR model using positive realized

semi(co)variances.
• MHAR-ReCov−: Multivariate HAR model using negative realized

semi(co)variances.

The models suffer from a high-dimensional parameter space. To deal
with this issue we estimate them using the Least Absolute Shrinkage
and Selection Operator (LASSO) proposed by Tibshirani (1996). Au-
drino and Knaus (2016) suggest that LASSO performs favorably when
the data generator process is the HAR model.
4

4.1.1. The MHAR-ReVar model
We specify the model as:

𝑌𝑡 = 𝛽0 +
∑

ℎ∈{1,7,30}
𝛽ℎ𝑌ℎ,𝑡−1 + 𝜖𝑡 (4)

where 𝑌𝑡 denotes a column vector formed by the 𝑁 realized variances
(𝑁 = 5 markets), 𝛽0 is an 𝑁 × 1 vector containing the intercepts, 𝛽ℎ is
an 𝑁 × 𝑁 coefficient matrix, 𝜖𝑡 is an 𝑁 × 1 vector of zero mean and
finite variance innovations, and 𝑌ℎ,𝑡−1 is the h-period average of the
past realized variances:

𝑌ℎ,𝑡−1 =
1
ℎ

ℎ
∑

𝑖=1
𝑌𝑡−𝑖

The choice of ℎ corresponds to one day (ℎ = 1), one week (ℎ
= 7), and one month (ℎ =30). Introducing different horizons means
that three primary volatility components can be described: short-term,
medium-term, and long-term. The importance of including them is that
volatility over longer time intervals has a stronger influence on shorter
time intervals than conversely (Corsi, 2009).

4.1.2. The MHAR-ReCov model
To analyze the role of covariances in the transmission mecha-

nism, we consider an unrestricted model which takes into account
realized variances and covariances as in Fengler and Gisler (2015). As-
suming that markets are interconnected through common information
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flows, including covariances in the models reduces the loss of spillover
information. We specify the model as:

𝑌𝑡 = 𝛽0 +
∑

ℎ∈{1,7,30}
𝛽ℎ𝑌ℎ,𝑡−1 + 𝜖𝑡 (5)

where 𝑌𝑡 = 𝑣𝑒𝑐ℎ(𝑅𝑒𝐶𝑜𝑣) is the K-dimensional, half-vectorized time-
daily realized covariance matrix of size 𝑁 , i.e. 𝐾 = 𝑁(𝑁 + 1)∕2,

stimated using the high-frequency data of 𝑁 electricity markets.9 𝛽0
s a vector containing 𝐾 intercepts, 𝛽ℎ are 𝐾 × 𝐾 coefficient matrices,
̃ℎ,𝑡−1 contains the three volatility components corresponding to time
orizons of one day, one week, and one month, and 𝜖𝑡 is a 𝐾 ×1 vector
f zero mean and finite variance innovations.

.1.3. The MHAR-ReCov+ and MHAR-ReCov− models
Following Bollerslev et al. (2020) and Bollerslev (2021), we specify

he MHAR-ReCov model allowing for positive and negative semi(co)
ariances separately, taking advantage of the information given by the
igns of the returns.
∗
𝑡 = 𝛽∗0 +

∑

ℎ∈{1,7,30}
𝛽∗ℎ𝑌

∗
ℎ,𝑡−1 + 𝜖∗𝑡 (6)

or the MHAR-ReCov+ model, 𝑌 ∗
𝑡 is a 𝐾 dimensional vector which

ontains the positive realized semi(co)variances of each element be-
onging to the lower triangular realized covariance matrix, which are
alculated using 𝑃 and �̂�+ from Eqs. (2) and (3), 𝛽∗0 is a 𝐾 × 1 vector

of intercepts, 𝛽∗ℎ is a 𝐾 × 𝐾 coefficient matrix, 𝑌 ∗
ℎ,𝑡−1 contains positive

semi(co)variances estimated in Eqs. (2) and (3) corresponding to time
horizons of one day, one week, and one month, and 𝜖∗𝑡 is a 𝐾 × 1
vector of zero mean and finite variance innovations. Analogously, the
MHAR-ReCov− model contains the negative realized semi(co)variances
calculated using �̂� and �̂�− from Eqs. (2) and (3).

As Fengler and Gisler (2015) show, the multivariate HAR models
proposed are constrained VAR(30) models in which the DY (2009,
2012) methodology, explained below, can be applied.

4.2. Volatility spillover measures

DY (2009, 2012) propose estimating volatility spillovers using the
forecast error variance decomposition from a vector autoregressive
model (VAR) using the Generalized Variance Decomposition (GVD)
proposed by Koop et al. (1996) and Pesaran and Shin (1998). DY (2009,
2012) consider a covariance stationary VAR(p) model:

𝑌𝑡 =
𝑝
∑

𝑖=1
𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡,

where 𝑌𝑡 represents the vector of dependent variables in Eqs. (4), (5)
and (6), 𝜙𝑖 represents a coefficient matrix, and 𝜀 ∼ (0, 𝛴) is a vector
of independently and identically distributed disturbances. The moving
average representation of the VAR is:

𝑌𝑡 =
∞
∑

𝑖=0
𝐴𝑖𝜀𝑡−𝑖

where 𝐴𝑖 represents a matrix obtained by the recursion 𝐴𝑖 = 𝜙1𝐴𝑖−1 +
𝜙2𝐴𝑖−2 +… + 𝜙𝑝𝐴𝑖−𝑝 with 𝐴0 being the identity matrix and 𝐴𝑖 = 0 for
𝑖 < 0.

The variance decomposition identifies the percentage of the H-step-
ahead error variance in forecasting 𝑌𝑖 associated with shocks to 𝑌𝑗
for 𝑗 ≠ 𝑖. As DY (2012) explain, this requires orthogonal innovations
which can be calculated using Cholesky factorization or the method
in Koop et al. (1996) and Pesaran and Shin (1998). We employ the
latter approach because it has the advantage of producing variance

9 𝑣𝑒𝑐ℎ(.) corresponds to the lower triangular elements of the realized
ovariance matrix. Note that with five markets in the system (𝑁 = 5), there is
15 × 1 column vector (five variance equations and 10 covariance equations).
5

r

decomposition invariant to the ordering of the variables. For a forecast
horizon 𝐻 , the decomposition of the error variance into the variance
components attributable to the different variables is given by:

𝜃𝑔𝑖𝑗 (𝐻) =
𝜎−1𝑗𝑗

∑𝐻−1
ℎ=0 (𝑒′𝑖𝐴ℎ𝛴𝑒𝑗 )2

∑𝐻−1
ℎ=0 (𝑒′𝑖𝐴ℎ𝛴𝐴′

ℎ𝑒𝑖)
,

here 𝑔 refers to the GVD method, 𝜎𝑗𝑗 is the variance of the error term
or the 𝑗th equation, and 𝑒𝑖 is the binary selection vector, with one

as the 𝑖th element and zero otherwise. DY (2012) propose normalizing
each entry in the variance decomposition matrix so that the sum of
contributions to the forecast error variance is one. The fraction of the
H-step-ahead forecast-error variance of 𝑌𝑖 due to exogenous shocks to
𝑌𝑗 is given by:

𝜃𝑔𝑖𝑗 (𝐻) =
𝜃𝑔𝑖𝑗 (𝐻)

∑𝑁
𝑗=1 𝜃

𝑔
𝑖𝑗 (𝐻)

We estimate an aggregate index, the total volatility spillover index
TSI), which measures the contribution of volatility spillover shocks
cross variables to the total forecast error variance:

𝑔(𝐻) =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝜃

𝑔
𝑖𝑗 (𝐻)

∑𝑁
𝑖,𝑗=1 𝜃

𝑔
𝑖𝑗 (𝐻)

⋅ 100 =

∑𝑁
𝑖,𝑗=1,𝑖≠𝑗 𝜃

𝑔
𝑖𝑗 (𝐻)

𝑁
⋅ 100

The TSI also makes it possible to identify the directional spillovers,
hich are estimated using the normalized elements of the generalized
ecomposition matrix. The spillovers transmitted by market 𝑖 to all

other markets 𝑗 are defined as:

𝑆𝑔
.𝑖 (𝐻) =

∑𝑁
𝑗=1
𝑗≠𝑖

𝜃𝑔𝑗𝑖(𝐻)

𝑁
⋅ 100

Analogously, the spillovers received by market 𝑖 from all markets 𝑗
are measured by:

𝑆𝑔
𝑖. (𝐻) =

∑𝑁
𝑗=1
𝑗≠𝑖

𝜃𝑔𝑖𝑗 (𝐻)

𝑁
⋅ 100

DY (2012) define the net directional spillovers from market 𝑖 to all
markets 𝑗 as the difference between the volatility spillovers transmitted
to and those received from the rest of the markets:

𝑆𝑔
𝑖 (𝐻) = 𝑆𝑔

.𝑖 (𝐻) − 𝑆𝑔
𝑖. (𝐻)

Additionally, the use of semi(co)variances in the estimation of
odel (6) enables a distinction to be drawn between spillovers coming

rom positive and negative returns and therefore it is possible to
uantify the asymmetries in the volatility spillovers over time.

Following Baruník et al. (2015) we compute the spillover asymme-
ry measure (𝑆𝐴𝑀) as:

𝐴𝑀 = 𝑆+ − 𝑆−

here 𝑆+ and 𝑆− are volatility spillover measures due to positive
nd negative semi(co)variances, i.e. obtained from MHAR-ReCov+ and
HAR-ReCov− models, respectively. A positive 𝑆𝐴𝑀 indicates that

pillovers from positive realized semi(co)variances are larger than those
rom negative realized semi(co)variances, and the opposite is true for a
egative 𝑆𝐴𝑀 . By contrast, if 𝑆𝐴𝑀 takes a value of zero the volatility
pillover measures are symmetric.

. Results

This section presents the empirical findings on volatility spillovers
n the Australian NEM. The results are divided into two subsections:
tatic analysis and dynamic analysis. The former enables the volatility
pillovers to be analyzed using the full sample. The latter enables the
ime-varying dynamics of volatility spillovers to be analyzed using a

olling window of 365 days.
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DY (2014) explain that as the forecast horizon lengthens there may
be more chances for connectedness to appear. However, in electricity
markets short-term fluctuations are important because price level and
volatility can change from one day to another and within a day, despite
seasonal fluctuations. We therefore select one-day-ahead as our fore-
cast horizon. This is also the horizon used by AEMO for pre-dispatch
forecasts.

5.1. Static analysis

We estimate models (4), (5), and (6) using LASSO for the full
sample. Tables 2, 3, and 4 summarize the volatility spillover results.
The 𝑖𝑗th entry in each table represents the contribution to the forecast-
rror variance of the realized (co)variance 𝑖 from innovations to the
ealized (co)variance 𝑗. All tables show both the direction and the size
f the spillovers in the market10. ‘‘Directional TO others" measures the
pillovers from each market to the rest and is obtained as the sum of
he elements of the column corresponding to each market excluding
he current one. ‘‘Directional FROM others" measures the spillovers to
ach market from the rest and is obtained as the sum of the elements
f the row corresponding to each market excluding the current one.
he last row contains the net volatility spillovers and the value of
he TSI. The net directional spillovers identify whether a state is a
ontributor to or recipient of volatility. A negative value indicates that
he spillovers transmitted by the market are lower than those received,
hile a positive value indicates the opposite.

Table 2 reports the variance spillovers estimated with the MHAR-
eVar. The TSI is 47.40%, so approximately 47% of the forecast error
ariance for the entire market comes from spillover effects, while the
est is due to internal shocks in the regional markets. This result is close
o that obtained by Han et al. (2020) in the NEM for 2010–2017 and
ighlights that most of the volatility of the markets is explained by their
wn shocks.

Regarding directional spillovers, NSW is the largest transmitter and
eceiver (𝑆𝑔

.𝑁𝑆𝑊 = 77.28% and 𝑆𝑔
𝑁𝑆𝑊 . = 59.89%) of spillovers. This

esult is expected since NSW is the biggest market and its degree of
nterconnection with VIC (one interconnector) and QLD (two inter-
onnectors) is one of the largest. NSW also has the largest generation
apacity in the market, and is a historical net importer in the NEM (see
able A.1 in Appendix A). As expected, lower spillover effects are ob-
erved between those regions which are not physically interconnected.
he pairwise spillovers from QLD to SA and from QLD to TAS are
he lowest (2.76% and 1.82%), and those from SA to QLD and from
AS to QLD (3.57% and 1.91%) are also low. Finally, NSW and VIC
re both net-contributors, while QLD, SA, and TAS are net-recipients.
ur findings indicate that overall QLD, SA, and TAS are affected by

luctuations in NSW and VIC.
Table 3 shows the spillovers estimated from the MHAR-ReCov

odel. The TSI indicates that approximately 68% of the volatility
orecast error variance comes from spillovers. This value is larger
han that of the MHAR-ReVar model, which evidences that excluding
ovariances from the volatility measures means losing a channel of
nformation in the NEM and therefore underestimating the spillovers.
ovariances permit an explanation to be found as to how volatility

n market 𝑖 can affect the relationships between other markets. For
xample, agents in market 𝑖 could import electricity to cover demand
r to obtain a financial benefit by exporting to other regions where
rices are higher. This last behavior can be explained with the use of
ovariances.

Pairwise directional spillovers provide a better understanding of
he connection between electricity markets. As expected, the highest

10 We test the significance of all the spillover measures using bootstrapped
tandard errors with 1000 resamplings calculated following the approach
n Lütkepohl (2000) for VAR models.
6

spillovers are the diagonal elements which represent the share of own
(co)variances. As regards off-diagonal elements, the highest pairwise
directional spillovers are those for the variance of QLD and the covari-
ance QLD-NSW (23.40% and 22.66%, respectively). In this case, the
price volatility in QLD is highly affected by the strong link between the
QLD and NSW markets. We attribute this result to technical conditions
between the two markets such as close alignment of prices and a fairly
stable duration of network congestion.

There are also high pairwise directional spillovers between the vari-
ance of SA and SA-NSW covariance (20.46% and 22.23%, respectively).
Although these markets are not physically connected, the results sug-
gest a strong link between them. Park et al. (2006) mention that the
maturity and importance of one market could affect others which are
physically further away. In the case of SA-NSW covariance we argue
that the fact that they are historical importers leads the two regions to
share similar patterns.

High pairwise directional spillovers are also observed between the
VIC-NSW and VIC-SA covariances (14.53% and 17.45%). Both regions
are interconnected with VIC and import electricity from it. It could
therefore be inferred that price volatility between VIC-NSW is affected
by the VIC-SA covariance. From an economic perspective this makes
sense because generators would prefer to sell their surpluses in the
region that offers the higher price as long as transmission between the
regions is possible.

Other noteworthy directional spillovers are those between the co-
variances VIC-TAS and TAS-SA (15.40% and 15.88%). This result sug-
gests that the price variation between TAS and SA is affected by the
covariance between VIC and TAS. In this case, VIC plays the role of a
transit state between SA and TAS so at certain times of the day it can
profit from that position. Thus, traders find opportunities for arbitrage
between these two markets.

By contrast, the lowest pairwise directional spillovers, though they
are still significant, are those for the variance of TAS and the covariance
SA-QLD, and for the variance of TAS and the covariance QLD-NSW
(all below 1%). QLD can be considered a peripheral state which is
fully connected only to NSW. Its relationships with other geographically
distant markets are thus less important, which explains the results.

Various features also stand out in Table 3. For the ‘‘Directional
TO others" row the biggest spillover transmitters are found to be the
covariance VIC-NSW (98.43%) and the variances of VIC and NSW
(96.89% and 87.91%). This is not surprising because VIC and NSW
are the most connected regions in the NEM. This result is similar to
that obtained by Han et al. (2020), who explain that factors such as
consumption, the level of interconnections, and the capacity for the
generation and exporting of electricity to other markets in NEM enable
VIC be the biggest transmitter. This result contrasts with that obtained
for the MHAR-ReVar model, where VIC is the second-biggest spillover
transmitter (56.95%) behind NSW (77.28%). The reason for this dif-
ference is that the MHAR-ReCov model takes into account the linkage
between the markets through covariances, which further explain the
transmission of spillovers. These results remain when the ‘‘Directional
FROM others" column is analyzed. The covariance VIC-NSW and the
variances of VIC and NSW receive the largest spillovers.

Just as important but of smaller size are the directional spillovers
that the variance of NSW and the covariance SA-NSW receive (𝑆𝑔

𝑁𝑆𝑊 . =
4.30% and 𝑆𝑔

𝑆𝐴−𝑁𝑆𝑊 . = 73.14%) and those that they transmit (𝑆𝑔
.𝑁𝑆𝑊

= 87.91% and 𝑆𝑔
.𝑆𝐴−𝑁𝑆𝑊 = 81.00%). The smallest directional spillovers

are those of the covariances TAS-QLD, and SA-QLD, and the variance
of TAS, so they are the least significant spillover receivers but also the
least significant spillover transmitters. This is expected since TAS has
the lowest interconnection capacity and is thus unable to transmit or
receive much volatility to or from the other markets. In the case of
TAS-QLD and SA-QLD covariances, geographical distance and lack of
interconnections explain the results.

Analysis of the ‘‘NET Directional" row shows that the results for the

variances are similar to those obtained in Table 2. For the full sample
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Table 2
Spillovers based on MHAR-ReVar for the full sample period.

NSW QLD SA TAS VIC Directional
FROM others

NSW 40.11 18.75 18.40 8.85 13.88 59.89
QLD 26.42 58.87 3.57 1.91 9.24 41.13
SA 21.50 2.76 49.45 4.16 22.13 50.55
TAS 14.29 1.82 6.37 65.83 11.70 34.17
VIC 15.07 6.63 21.91 7.66 48.73 51.27
Directional TO others 77.28 29.96 50.25 22.57 56.95 237.01
NET Directional 17.39 −11.17 −0.30 −11.60 5.68 TSI=47.40

The table shows spillovers for the full sample for a forecast horizon of 1 day based on the
MHAR-ReVar model. The 𝑖𝑗 entry of the upper-left 5 × 5 submatrix estimates the fraction of
one-day-ahead error variance in forecasting market 𝑖 due to exogenous shocks to market 𝑗. The
‘‘Directional FROM others‘‘ and ‘‘Directional TO others’’ figures represent the directional spillovers,
and ‘‘NET Directional" represents the net directional spillovers. Bootstrapped standard errors with
1000 resamplings are used to test the significance of the spillover measures. All the measures are
statistically significant at the 1% level.
Table 3
Spillovers based on MHAR-ReCov for the full sample.

NSW QLD SA TAS VIC QLD -
NSW

SA -
NSW

TAS -
NSW

VIC -
NSW

SA -
QLD

TAS -
QLD

VIC -
QLD

TAS -
SA

VIC -
SA

VIC -
TAS

Directional
FROM others

NSW 25.70 11.92 11.67 5.61 8.60 7.78 10.48 3.07 4.09 1.55 0.92 1.82 1.24 2.99 2.56 74.30
QLD 15.49 34.36 2.05 1.14 5.21 22.66 2.34 0.85 3.66 2.63 1.29 3.35 1.13 2.46 1.38 65.64
SA 13.20 1.64 30.16 2.53 13.38 0.81 22.23 1.13 4.26 1.07 0.64 1.21 0.99 3.53 3.24 69.84
TAS 8.14 1.05 3.56 37.28 6.60 0.59 3.24 21.71 3.94 0.48 1.23 0.76 3.47 3.08 4.87 62.72
VIC 7.62 3.26 11.08 3.93 24.87 2.09 9.30 2.78 11.36 2.03 1.02 2.86 3.27 9.41 5.13 75.13
QLD-NSW 10.27 23.40 0.97 0.58 3.27 33.51 1.51 0.83 4.17 7.26 2.73 5.43 1.78 3.09 1.19 66.49
SA-NSW 10.97 1.73 20.46 2.18 10.28 1.12 26.86 1.70 6.88 3.38 1.87 3.11 1.57 3.82 4.08 73.14
TAS-NSW 3.90 0.67 1.37 19.42 4.05 0.75 2.10 31.81 6.76 1.67 4.57 1.83 9.50 5.19 6.43 68.19
VIC-NSW 3.80 2.42 3.74 2.45 11.79 2.83 6.37 4.90 23.66 3.62 2.27 6.99 6.11 14.53 4.54 76.34
SA-QLD 2.25 2.93 1.33 0.49 3.19 8.59 5.03 2.01 6.04 38.74 5.82 17.59 1.55 3.57 0.87 61.26
TAS-QLD 1.60 1.79 0.88 1.38 2.10 3.68 2.92 6.35 4.27 6.24 42.51 8.61 6.74 1.74 9.19 57.49
VIC-QLD 2.46 3.44 1.46 0.70 4.42 5.57 4.20 2.12 10.72 15.27 7.25 34.68 1.44 4.53 1.74 65.32
TAS-SA 1.71 1.04 1.22 3.41 4.98 1.72 2.04 10.14 8.69 1.32 5.16 1.16 32.60 8.93 15.88 67.40
VIC-SA 3.28 1.97 3.71 2.34 11.76 2.61 4.35 4.48 17.45 2.75 1.18 3.54 7.57 28.41 4.60 71.59
VIC-TAS 3.23 1.27 3.60 4.36 7.27 1.10 4.89 6.69 6.15 0.70 6.81 1.39 15.40 5.01 32.13 67.87
Directional TO
others

87.91 58.52 67.10 50.51 96.89 61.90 81.00 68.77 98.43 49.96 42.75 59.65 61.75 71.86 65.70 1022.70

NET Directional 13.62 −7.11 −2.74 −12.21 21.75 −4.58 7.86 0.58 22.09 −11.29 −14.73 −5.67 −5.65 0.27 −2.17 TSI= 68.18

The table shows spillovers for the full sample for a forecast horizon of 1 day based on the MHAR-ReCov model. The 𝑖𝑗 entry of the upper-left 15 × 15 submatrix estimates the fraction of one-day-ahead error variance
in forecasting market 𝑖 due to exogenous shocks to market 𝑗. The ‘‘Directional FROM others‘‘ and ‘‘Directional TO others’’ figures represent the directional spillovers, and ‘‘NET Directional" represents the net directional
spillovers. Bootstrapped standard errors with 1000 resamplings are used to test the significance of the spillover measures. All the measures are statistically significant at the 1% level.
Table 4
Spillovers based on MHAR-ReCov+ and MHAR-ReCov− for the full sample.

NSW QLD SA TAS VIC QLD -
NSW

SA -
NSW

TAS -
NSW

VIC -
NSW

SA -
QLD

TAS -
QLD

VIC -
QLD

TAS -
SA

VIC -
SA

VIC -
TAS

Directional
FROM others

Panel A: Spillovers based on MHAR-ReCov+
NSW 26.08 12.01 11.83 5.66 8.63 8.45 9.81 3.16 4.17 0.81 0.82 1.29 1.46 3.37 2.45 73.92
QLD 15.69 35.23 2.01 1.17 5.31 23.86 1.91 0.73 3.31 2.23 1.06 2.59 0.99 2.54 1.37 64.77
SA 13.06 1.58 30.10 2.46 13.10 1.08 21.88 1.23 4.84 0.58 0.51 1.22 1.19 4.08 3.09 69.90
TAS 8.14 1.07 3.54 37.26 6.46 0.57 2.90 22.32 4.02 0.42 1.52 0.71 3.76 3.21 4.10 62.74
VIC 7.56 3.28 11.02 3.86 24.96 2.29 9.17 2.69 12.07 1.66 0.93 2.87 3.04 9.83 4.78 75.04
QLD-NSW 11.59 25.42 1.33 0.55 3.63 35.35 1.65 0.54 3.48 5.44 1.93 4.28 1.12 2.36 1.34 64.65
SA-NSW 10.35 1.36 20.96 1.97 10.37 1.16 27.84 1.61 7.83 2.38 1.13 3.15 1.54 4.36 3.99 72.16
TAS-NSW 4.30 0.66 1.69 20.48 4.29 0.52 2.11 32.32 6.35 1.00 5.53 1.88 9.09 4.61 5.19 67.68
VIC-NSW 3.91 2.18 4.40 2.51 12.71 2.27 7.14 4.49 24.05 2.61 2.08 7.30 4.89 14.77 4.69 75.95
SA-QLD 1.37 2.91 0.90 0.57 3.25 6.95 4.08 1.54 5.35 44.77 5.59 18.51 0.95 2.28 0.99 55.23
TAS-QLD 1.62 1.64 0.79 1.91 2.01 2.62 1.94 8.04 4.25 5.53 44.20 8.49 8.06 1.96 6.93 55.80
VIC-QLD 1.88 2.81 1.61 0.75 4.63 4.21 4.36 2.34 11.56 14.50 7.04 36.34 1.39 4.67 1.91 63.66
TAS-SA 2.21 1.05 1.63 3.92 5.15 1.14 2.12 10.50 7.59 0.61 6.26 1.16 35.88 8.52 12.23 64.12
VIC-SA 3.75 2.08 4.42 2.46 12.44 1.98 4.83 3.99 17.79 1.35 1.22 3.54 6.81 28.61 4.73 71.39
VIC-TAS 3.37 1.43 3.87 3.92 7.41 1.31 5.16 5.75 6.92 0.80 5.21 1.62 11.78 5.50 35.96 64.04
Directional TO
Others

88.80 59.45 69.99 52.21 99.40 58.41 79.05 68.94 99.55 39.92 40.83 58.61 56.06 72.07 57.78 1001.05

NET Directional 14.89 −5.32 0.08 −10.53 24.35 −6.25 6.89 1.26 23.60 −15.31 −14.97 −5.05 −8.06 0.67 −6.26 TSI = 66.74
Panel B: Spillovers based on MHAR-ReCov−
NSW 24.95 11.45 11.32 5.46 8.36 8.21 10.79 3.29 4.30 2.23 0.84 2.16 1.37 2.61 2.66 75.05
QLD 15.10 33.94 2.01 1.11 5.24 22.91 2.32 1.05 3.90 2.70 1.26 3.64 1.29 2.25 1.29 66.06
SA 13.07 1.64 29.97 2.56 13.47 0.87 22.34 1.12 4.01 1.69 0.63 1.27 1.16 3.10 3.10 70.03
TAS 8.03 1.03 3.57 36.92 6.62 0.76 3.66 21.58 4.23 0.72 0.85 0.92 3.09 3.01 5.01 63.08
VIC 7.56 3.31 11.22 3.98 24.88 2.19 9.54 2.73 11.06 2.66 0.94 2.96 3.37 8.73 4.86 75.12
QLD-NSW 11.15 24.07 1.09 0.77 3.52 33.88 1.54 1.48 4.24 5.44 2.06 4.87 1.93 2.85 1.11 66.12
SA-NSW 11.37 1.74 20.22 2.41 10.27 1.16 26.18 2.05 6.19 4.62 1.74 3.15 1.58 3.51 3.82 73.82
TAS-NSW 4.25 0.82 1.43 19.39 3.96 1.30 2.66 31.58 6.67 1.83 3.70 1.95 8.81 5.54 6.12 68.42
VIC-NSW 4.20 2.66 3.64 2.71 11.75 2.92 5.94 4.97 24.07 3.94 2.00 7.38 5.19 14.39 4.25 75.93
SA-QLD 3.39 3.10 2.24 0.60 4.09 6.21 6.96 2.12 6.15 37.84 5.84 16.16 1.47 2.82 1.01 62.16
TAS-QLD 1.53 1.77 0.86 1.09 1.94 2.93 2.84 5.61 3.96 6.99 45.00 9.23 7.27 1.90 7.09 55.00
VIC-QLD 3.00 3.76 1.65 0.75 4.56 4.92 4.31 2.21 11.06 14.33 7.03 35.02 1.34 4.19 1.89 64.98
TAS-SA 1.90 1.20 1.44 3.24 5.31 1.96 2.20 10.15 7.71 1.54 5.45 1.18 34.65 9.98 12.09 65.35
VIC-SA 3.06 1.88 3.40 2.45 11.29 2.43 4.10 5.10 17.58 2.46 1.17 3.37 8.16 29.34 4.21 70.66
VIC-TAS 3.67 1.22 3.80 4.97 7.58 1.11 5.12 6.96 6.29 1.02 5.35 1.76 11.90 5.12 34.13 65.87
Directional TO
others

91.28 59.61 67.88 51.47 97.96 59.86 84.31 70.41 97.35 52.17 38.88 60.00 57.93 70.01 58.51 1017.66

NET Directional 16.24 −6.44 −2.15 −11.61 22.84 −6.26 10.50 1.99 21.42 −9.99 −16.12 −4.98 −7.43 −0.65 −7.35 TSI = 67.84

The table shows spillovers for the full sample for a forecast horizon of 1 day based on the MHAR-ReCov model. The 𝑖𝑗 entry of the upper-left 15 × 15 submatrix in each panel estimates the fraction of one-day-ahead
error variance in forecasting market 𝑖 due to exogenous shocks to market 𝑗. The ‘‘Directional FROM others‘‘ and ‘‘Directional TO others’’ figures represent the directional spillovers, and ‘‘NET Directional’’ represents the
et directional spillovers. Bootstrapped standard errors with 1000 resamplings are used to test the significance of the spillover measures. All the measures are statistically significant at the 1% level.
eriod NSW and VIC are net-contributors (13.62% and 21.75%) while
he remaining markets are net-recipients. In the case of covariances the
et-contributors to the volatility in the NEM are formed by four pairs
7

of covariances: VIC-NSW, SA-NSW, TAS-NSW and VIC-SA. It is clearly
dominated by the VIC-NSW pairwise positive contribution as it involves
the two largest markets.
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Table 5
Spillover contributions for the full sample.

MHAR-ReCov MHAR-ReCov+ MHAR-ReCov−

Cross variance spillovers 21.83% 23.22% 22.81%
Cross covariance spillovers 20.53% 20.87% 20.95%
Own variance spillovers 13.46% 13.73% 13.38%
Own covariance spillovers 44.18% 42.18% 42.87%

The table shows the spillover contributions to the TSI from variances and covariances
based on the MHAR-ReCov, MHAR-ReCov+, and MHAR-ReCov− models for the full
sample.
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Table 4 shows the spillover measures based on MHAR-ReCov+ and
HAR-ReCov− models (panels A and B, respectively). The measures are

imilar in size to those from the MHAR-ReCov model ignoring the sign
f the returns. However, in general, larger spillovers are observed for
egative semi(co)variances. Specifically, for TSI 66.74% of the forecast
rror variance for the entire market is due to spillover effects when only
ositive semi(co)variances are considered while the figure is 67.84%
hen only negative semi(co)variances are considered. These figures
vidence the presence of asymmetric spillovers.

Following Fengler and Gisler (2015), Table 5 reports own variance
pillovers (defined as the spillovers from variances to variances), cross
ovariance spillovers (defined as the spillovers from covariances to
ariances), and own covariance and cross variance spillovers, defined
nalogously, for the MHAR-ReCov, MHAR-ReCov+, and MHAR-ReCov−
odels.

The largest contribution to TSI comes from own covariance spillovers
ore than 40% of the TSI is explained by the spillovers from covari-

nces to covariances. By contrast, only around 13% is explained by
wn variance spillovers. This underscores the importance of including
ovariances in the model and also reveals features of strong interde-
endence in the NEM. Finally, cross variance and cross covariance
pillovers contribute approximately 20% each to TSI. Asymmetric be-
avior is also observed. Cross and own variance spillovers are larger for
ositive realized measures while cross and own covariance spillovers
re larger for negative realized measures.

To summarize, the results suggest that there is interdependence
etween the markets which is better described when semi(co)variances
re included. Covariances enable a better description to be obtained
f the role of interconnection between VIC and VIC-NSW, which can
e considered the core of the NEM. Additionally, findings suggest that
ncluding covariances improves TSI estimation. For the NEM, Han et al.
2020) report a TSI close to 35% using realized measures and Apergis
t al. (2017) a figure of 52% using realized variances. In our analysis
he TSI is 68.18% when semi(co)variances are included.

.2. Dynamic spillover analysis

We estimate models (4), (5), and (6) using a 365-day rolling win-
ow, allowing the spillovers to change over time. This dynamic analysis
nables the expected impact of different events to be analyzed, such
s coal plant closures, high demand in the market, extreme weather
onditions, and technical failures (see Table C.1 in Appendix C), plus
hat of regulation policies on spillovers across markets.

.2.1. Total spillover index
Fig. 3 shows the time-varying TSI for the MHAR-ReVar and MHAR-

eCov models. It does not remain constant over time and takes values
hat deviate from those obtained for each model using the full sample.
he lowest figure in the TSI series is for the MHAR-ReVar model, whose
alues range between 37% and 56%. By contrast, the TSI values range
etween 56% and 77% for the MHAR-ReCov, which shows that most
f the total forecast error variance is explained by spillovers. This is in
ine with the result obtained in the static analysis and highlights that
8

gnoring covariances leads to the TSI being underestimated. Therefore,
e continue the comparative analysis with the models that include
ovariances.

Overall, the TSI has a seasonal component. It shows an upward
rend during the summer months, when there are unusual increases
n demand associated with higher temperatures. Nationwide extreme
eather conditions tend to increase the TSI. This is accentuated by the

act that heat-waves have increased in number and duration (Trancoso
t al., 2020). Examples are January–February 2011, when the AER
eports days with higher demand than forecast in VIC, NSW and QLD,
nd a blackout in QLD, which produced higher spillovers in the NEM
see Table C.1 in Appendix C for more details); late December 2012 to
arly January 2013, when the whole country experienced a heat-wave;
nd widespread heat-waves in January 2019. There are also market
onditions such as congestions and shutdowns that affect volatility
ransmissions (see Table C.1 in Appendix C).

We find that the TSI does not behave significantly differently during
he CPM period than during the periods immediately before and after
t. Han et al. (2020) and Apergis et al. (2017) find that the TSI was
enerally lower and more stable during the carbon pricing period than
uring the periods before and after. The introduction of the CPM and
ome external factors such as outages and a decrease in generation led
o an increase in the TSI until October 2012. Prices remained high
uring the CPM period, so volatility spillovers decreased. In summer
013–2014 prices rose due to high temperatures, which pushed up
emand and volatility spillovers. The end of the CPM did not lead to
n immediate reduction in prices. Indeed, it took between two and six
onths for wholesale prices to fall, which led to a steady reduction in

olatility spillovers at the end of 2014 (Australian Energy Regulator,
ER, 2014). However, there are some mild upward movements mainly
ue to a number of closures of coal plants from August to November
014 in VIC and NSW with a loss of more than 1300 MW.

It should be noted that there is a decrease in volatility spillovers
rom 2016 with the exception of some upward movements due to cer-
ain events reported by AER. Specifically, in May 2016 two coal plants
ere closed in SA, resulting in an increase in prices in the NEM and thus

o upward movements in the TSI. In September and December 2016
he entire system suffered failures, which affected principally SA. The
iggest occurred in the Heywood Interconnector.11 The failure caused
EMO to suspend the market in SA and applied administered pricing
rrangements from 28 September to 11 October (Australian Energy
egulator, AER, 2017). The closure of Hazelwood power station in
pril 2017 with a drop of 20% in generation capacity in VIC is also re-

lected in higher volatility spillovers. Apergis et al. (2017) find that the
pillover index in the NEM in 2010–2016 is lower than in 2002–2010
nd argue that this could be due to the implementation of the CPM
ogether with the planned transition to an emissions trading scheme
ETS), which could make markets less competitive. They also expect

lower degree of connectedness when the ETS is in full operation.
here have also been investments in transmission which have helped to
educe transmission congestion (Brinsmead et al., 2014). These factors
xplain the steady decline in the TSI observed from 2016 onwards.

11 In 2016 Heywood was the NEM’s most congested interconnector, partly
because an upgrade periodically limited its capacity.
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Fig. 3. Time-varying TSI based on MHAR-ReVar and MHAR-ReCov models.
Fig. 4. Time-varying TSI based on MHAR-ReCov+ and MHAR-ReCov− models.
Fig. 4 shows the time-varying total volatility spillover indexes de-
rived from positive and negative realized semi(co)variances separately
(Panel A), and the corresponding time-varying 𝑆𝐴𝑀 (Panel B). The
9

figure enables the time-varying role of spillovers from different signed
returns to be analyzed, and how they could have been affected by
events in the NEM during the sample period. Although both TSI series
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display a similar pattern, spillovers from negative realized
semi(co)variances are in general larger than those from positive ones.
Specifically, the TSI ranges from 53% to 76% for the MHAR-ReCov+
model and from 55% to 78% for the MHAR-ReCov− model. The be-
inning of the sample period is marked by the dominance of spillovers
rom negative returns, as a result of the presence of negative prices
nd decrease in demand. Nonetheless, after the entry of the CPM this
ominance started to decrease and spillovers from positive returns
ecame the main drivers by the end of 2012 and for most of 2013.
s mentioned, the introduction of this carbon tax policy led to an
verall increase in prices due to the shutdown of large-scale coal power
lants (in NSW and VIC) and deployment of intermittent renewable
eneration (in SA) with no change in the capacity for interconnec-
ion (Australian Energy Regulator, AER, 2013). However in 2014,
hile the CPM was still in force, negative volatility drivers dominated
ositive ones, because price spikes became less frequent and volatility
ue to renewable generation increased (Australian Energy Regulator,
ER, 2014). For much of 2016, spillovers in the NEM were driven by
ositive returns. The closure of various coal plants in SA could explain
he increase in prices in this period. From 2017 onwards, negative
pillovers are larger than positive ones, though they are smaller.

.2.2. Directional spillovers
Fig. 5 shows the spillover transmissions ‘‘from" and ‘‘to", as well

s net spillovers for variances in the MHAR-ReCov model. Panel A
hows the spillovers ‘‘from" and ‘‘to" for each region distinguishing the
ontributions of variances and covariances. In general, the contribution
f variances is more stable and smaller than that of covariances for all
egions except TAS where the pattern of variance contribution changes
oticeably over time. We also observe that the pattern of spillovers
s determined by the covariance contribution, which is more volatile.
10

n the case of NSW, the contribution from variance and covariance to
spillovers is similar. We relate this result to the characteristics of NSW,
such as demand size (see Table 1) and its interconnection capacity (see
Table A.1 in Appendix A). By contrast, the spillovers associated with
VIC show a larger contribution from covariances. This highlights the
fact that VIC is the most interconnected region. In the case of TAS the
contribution of variance shows two downward movements. The first is
related to the entry into force of the CPM. Although TAS increased its
exports it did not have much effect on prices in neighboring regions.
The second valley reflects the outage in the Basslink interconnector,
which put the cable out of operation for almost six months.

Panel B of Fig. 5 shows the region’s net position over time. VIC
and NSW are the biggest transmitters and recipients of spillovers in the
NEM, which was expected as these are the two largest and most inter-
connected markets. Moreover, both states are net-transmitters through-
out the sample period, as in the static analysis. By contrast, QLD, SA
and TAS are mostly net-recipients.

Fig. D.1 in Appendix D shows the spillover transmissions ‘‘from"
and ‘‘to", as well as net spillovers for the covariances in the MHAR-
ReCov model. The most important spillovers transmitted ‘‘to" others
come mostly from VIC-NSW, VIC-SA, SA-NSW, and QLD-NSW. In the
case of VIC-NSW and VIC-SA covariances the transmission of spillovers
affects other covariances. As mentioned in the static analysis, NSW and
SA are net importers of electricity from VIC. Thus, the link described
by the covariances between these three markets is expected to remain
steady and strong over time.

The volatility in QLD-NSW covariance is observed to affect mainly
variances. This is consistent with the findings of the static analysis,
where it is evident that 𝑅𝑒𝑉 𝑎𝑟𝑄𝐿𝐷 is affected by this covariance. This
is because QLD is the largest exporter to NSW.

The time-varying spillovers based on the MHAR-ReCov+ and MHAR-
ReCov− models share a similar pattern to those obtained from the
MHAR-ReCov model (see Fig. 6 for variances, and Fig. D.2 in Ap-

pendix D for covariances). Therefore, results decomposing covariance
Fig. 5. Time-varying spillovers based on MHAR-ReCov.
Note: Panel A shows the contribution of variances (dark orange) and covariances (light orange) to the directional spillovers. Panel B shows the net directional spillovers. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Time-varying spillovers based on MHAR-ReCov+ and MHAR-ReCov−.
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ccording to the sign of the returns reinforce the role of VIC and NSW
s the main transmitters of volatility in the NEM. Nonetheless, some
symmetric spillovers are observed, depending on the region and the
irection of transmissions. In general, increases in demand and coal
lant closures reported by AER are followed by increases in prices,
o that spillovers from positive returns dominate those from negative
eturns. Analogously, when prices decrease the dominant spillovers are
hose from negative returns.

.3. Summary of results

To summarize, the results of the static and dynamic analyses shed
ight on several issues. It is shown that covariances cannot be ignored
n the analysis of spillovers. The largest covariances are related to
irectly connected markets, but there are other equally important co-
ariances that reveal relationships between non-connected markets. To
mprove market integration, covariances enable regions with potential
pportunities for interconnection investment to be identified.

Our results suggest a strong link between NSW and SA, which backs
roject Energy Connect (Australian Energy Regulator, AER, 2020) to
uild a new interconnector between the power grids of SA and NSW and
dd a connection between VIC and SA in addition to the existing Hey-
ood and Murraylink. The construction of a new interconnector could
rovide lower power prices, improve energy security, and increase
conomic activity between these regions.

Finally, the significance of the sign of the underlying returns cannot
e disregarded. The average spillovers in the entire market are in gen-
ral larger for negative than for positive returns, which indicates that
rice drops provoke more volatility in the entire market. This indicates
hat hedging is advisable for businesses to protect against energy price
11

olatility, especially that which comes from negative returns. s
. Conclusions

This study analyzes the pattern of volatility spillovers across five
egional markets in the Australian NEM using 5-minute prices for a
ample period from 1 July 2009 to 28 February 2019. It investigates the
ole of covariances and the presence of asymmetries in the transmission
echanism of volatility spillovers. To that end, we decompose the real-

zed covariance matrix following Bollerslev et al. (2020), then estimate
he spillover indexes originally proposed by DY (2009, 2012). Finally,
e propose several models which are estimated in a comparative static
nd dynamic analysis.

Results show that including covariances in the model raises the TSI,
hich shows their importance in explaining volatility spillovers across
arkets. Most of the volatility observed in each market is explained

y external factors that have greater effects on neighboring markets
ore than on their own. Moreover, the effect of positive and negative

hocks analyzed separately is different, which indicates that there are
symmetries in volatility spillovers.

The results of the static and dynamic analyses are along the same
ines, but the latter identifies episodes of volatility spillovers through-
ut the sample period which can be related to market structural
hanges, weather conditions and technical operation of the system.

We show that the use of covariances helps to identify links that can-
ot be observed using variances alone. They also enable the importance
f the role of interconnections in explaining volatility spillovers to be
escribed. We propose the use of covariances in spillover measures to
void underestimating strong links between non-interconnected mar-
ets. Identifying volatility spillovers is crucial to improving integration
n NEM because market alignment increases liquidity and reduces the
olatility of electricity prices.

Our analysis presents useful information for market participants and
egulators. In the short-run, given market structural characteristics, we
how how the NEM reacts to different events such as plant closures,
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deployment of intermittent RES generation, days with extreme weather
conditions, and outages. Hence, market participants might optimize
their short- or long-term investment strategies in light of these results.

Regarding long-term planning by regulators, the Department of
Industry, Science, Energy and Resources of the Australian Government
indicates that Australia could be powered by renewable energy by 2030
in an optimistic scenario (Australian Government, 2000). The roadmap
to net-zero emissions even by 2050 implies decommissioning a large
proportion of fossil-fuel generation. Our analysis shows that volatility
spillovers could be larger if this process was unbalanced across states
and appropriate investments in interconnections are not made. In this
context, Project Energy Connect (Australian Energy Regulator, AER,
2020) is a role model.
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Appendix A. Interconnectors in the Australian NEM

See Table A.1.

Table A.1
Interconnector Capacity in the NEM.

From To Nominal capacity

Terranora Interconnector
NSW Queensland 107 MW
Queensland NSW 210 MW
QN Interconnector
NSW Queensland 300 to 600 MW
Queensland NSW 1078 MW
VIC1-NSW1 Interconnector
Victoria NSW 700 to 1600 MW
NSW Victoria 400 to 1350 MW
Basslink Interconnector
Tasmania Victoria 594 MW
Victoria Tasmania 478 MW
Heywood Interconnector
Victoria South Australia 600 MW
South Australia Victoria 500 MW
Murraylink Interconnector
Victoria South Australia 220 MW
South Australia Victoria 200 MW

The table contains information about the nominal capacity of
the transmission lines that connect the various NEM regions
(interconnectors).

Appendix B. Cross-border electricity exchange balance for the
sample period

See Fig. B.1.
Fig. B.1. Cross-border exchange balance per state.
Note: Negative (positive) values indicate a net importing (exporting) position of the state.



Energy Economics 111 (2022) 106076E. Chanatásig-Niza et al.
Appendix C. Major events in the NEM

See Table C.1.

Table C.1
Events in the NEM reported by the AER.
Source: State of Energy Market reports provided by AER.

Date Region Causes identified by the AER

Coal plant closures

3 July 2012 NSW Munmorah Power Station was retired by Delta Electricity in 2012. Its
capacity was 600 MW. First plant in NSW to shutdown under CPM.

1 December 2012 QLD Collinsville Power Station closed in 2012 with the loss of 180 MW. First
plant in QLD to shutdown under CPM.

30 August 2014 VIC Morwell Power Station closed in 2014 after 56 years operating. Its capacity
was 195 MW.

31 October 2014 NSW Redbank Power Station, located in the Hunter Valley, had a capacity of 151
MW.

1 November 2014 NSW Wallerawang was a thermal coal power station located near the town of the
same name. In 2014 EnergyAustralia announced that the plant would close
due to lack of access to competitively priced coal, high operating costs and
a decrease in energy demand. Capacity at Wallerawang was 1000 MW.

8 May 2016 SA Playford B Power Station was located at Port Paterson. It was coal powered
and had a capacity of 240 MW.

9 May 2016 SA Northern Power Station was located at Port Paterson. It was coal powered
and had a capacity of 540 MW.

1 April 2017 VIC The Hazelwood power station was a 1600 MW generator located in the La
Trobe Valley in Victoria. The plant accounted for around 15% of installed
capacity and supplied 20% of the state’s electricity.

Days with high demand

31 January, 1 and 2 February
2011

VIC, NSW, QLD High temperatures led to demand reaching its highest level in Victoria, and
New South Wales for the summer. The events affected neighboring regions
such as Queensland.

29 November 2012 VIC, SA Prices were driven by higher than expected temperatures causing electricity
demand in Victoria and South Australia to significantly exceed forecasts.

15 December 2013 SA The hottest December day since 1931.
19 and 20 December 2013 NSW, SA High demand due to extreme heat was a key contributor. A plant outage, a

lower than forecast contribution from wind and constraints limiting
interconnector import flows also contributed to tight supply conditions.

15 January 2014 SA, VIC Prices were lower than forecast during one of south east Australia’s most
intense heatwaves on record. Spare generation capacity was extremely tight
on the day.

17 December 2014, and 15
and 18 January 2015

QLD Events occurred on days of high temperatures and high demand, and
network constraints affected supply in some instances.

5 March 2015 QLD, NSW A heatwave in Brisbane caused maximum demand, setting a new
Queensland record on 5 March, and long term network constraints limited
electricity imports from NSW.

18 January 2017 QLD Queensland recorded persistently high prices over January and February
2017. On this day, the events were intensified by peak demand, rising to
record levels.

8 February 2017 NEM A heatwave, when 42 degree temperatures fueled above forecast demand at
a time when wind generation was below forecast.

19 January 2018 VIC, SA High temperatures all around Australia but more intense in VIC and SA,
coupled with a Victoria generator outage and bushfire risks.

24 and 25 January 2019 VIC, SA 2019. Record temperatures in the whole country, particularly high in VIC
and SA, caused a surge in demand. This surge coincided with unexpected
equipment failures.

Technical issues

3 February 2011 QLD Cyclone Yasi affected North Queensland, causing more than 170,000 homes
to lose electricity.

21 December 2015 TAS A fault occurred on the Basslink Interconnector running between Victoria
and Tasmania, separating Tasmania from the National Electricity Market.
The link was restored on 13 June 2016.

28 September 2016 SA Extreme weather and infrastructure failures caused the entire state of South
Australia to be blacked out for several hours.

1 December 2016 SA The market experienced disruption soon after midnight, when a fault on one
of the Heywood interconnector’s two lines occurred during maintenance on
the other line. SA was isolated from the NEM.
13
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Appendix D. Directional spillovers for covariances

See Figs. D.1 and D.2.

Fig. D.1. Time-varying spillovers based on MHAR-ReCov (Covariances).
Note: Panel A shows the contribution of variances (dark orange) and covariances (light orange) to the directional spillovers. Panel B shows the net directional spillovers.

Fig. D.2. Time-varying spillovers based on MHAR-ReCov+ and MHAR-ReCov− (Covariances).
14
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Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2022.106076.
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