UNIVERSITY OF LEEDS

This is a repository copy of Application of Advanced Stated Preference Design Methodology.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2109/

Monograph:

Clark, S.D. and Toner, J.P. (1997) Application of Advanced Stated Preference Design Methodology. Working Paper. Institute of Transport Studies, University of Leeds, Leeds, UK.

Working Paper 485

Abstract

Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

White Rose Research Online

http://eprints.whiterose.ac.uk/

$17 T S$

Institute of Transport Studies University of Leeds

This is an ITS Working Paper produced and published by the University of Leeds. ITS Working Papers are intended to provide information and encourage discussion on a topic in advance of formal publication. They represent only the views of the authors, and do not necessarily reflect the views or approval of the sponsors.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/2109

Published paper

Stephen Clark and Jeremy Toner (1997) Application of Advanced Stated Preference Design Methodology. Institute of Transport Studies, University of Leeds, Working Paper 485

Institute for Transport Studies

University of Leeds

EPSRC Research Working Paper

APPLICATION OF ADVANCED STATED PREFERENCE DESIGN METHODOLOGY

Stephen Clark and Jeremy Toner

Document Control Information

Title	$:$	APPLICATION OF ADVANCED STATED PREFERENCE DESIGN METHODOLOGY
Authors $\quad:$	Stephen Clark and Jeremy Toner	
Reference Number	$:$	$9612 / 01$
Version $\quad:$	1.0	
Date	$:$	14 February 1997
Distribution	$:$	SDC, JPT
Availability	$:$	Unrestricted
File	$:$	E:\HOMEISP\WP485.WP6
Authorised by	$:$	Stephen Clark
Signature	$:$	

APPLICATION OF ADVANCED STATED PREFERENCE DESIGN METHODOLOGY

SD Clark
JP Toner

This work was undertaken on a project sponsored by the Engineering and Physical Sciences Research Council (Grant Ref: GR/J81242)

ITS Working Papers are intended to provide information and encourage discussion on a topic in advance of formal publication. They represent only the views of the authors, and do not necessarily reflect the views or approval of the sponsors.

CONTENTS

ABSTRACT 1
1 BACKGROUND 1
2 MODELLING 3
3 NEW DESIGN METHODOLOGY 4
4 TWO VARIABLES 5
4.1 PRODUCING THE DESIGN 5
4.2 TESTING THE DESIGN 9
4.2.1 What's happening in the neighbourhood? 10
4.2.2 Divide and conquer 11
4.2.3 The wider picture 13
5 THREE VARIABLES 13
6 FOUR VARIABLES 16
7 TWO VARIABLES PLUS ASC 18
8 CONSTRAINTS 20
9 CONCLUSIONS 22
REFERENCES 22
APPENDIX 24

Abstract

This paper demonstrates the application of the design methodology developed in the Advanced Stated Preference Design project to stated preference experiments. The paper considers binary response experimental designs of two, three and four variables. In addition the special case of a two variable design with an alternative specific constant is also considered. Alternative optimality criteria are discussed. The paper concludes with recommendations on how to apply the design methodology successfully.

1 BACKGROUND

Many of the issues surrounding the current design process for stated preference (SP) techniques are discussed in Fowkes (1996) so only a brief overview is given here.

The form of the SP experiments considered here are binary response experiments. Here the respondent is presented with a small (typically between 9 and 16) number of scenarios. Each scenario consists of a pair of alternatives (typically, though not necessarily, between two modes), between which the respondent is invited to choose. Each choice is described by a number of attributes (typically including cost and time) which are presented as values. A typical two variable SP design, taken from Fowkes and Nash (1991), is given in table 1.

Scenar io	Alternative A		Alternative B		Difference		
	COST (pence)	TIME (min)	COST (pence)	TIME (min)	COST (pence)	TIME (min)	BVoT (pence/ min)
1	100	30	115	20	15	-10	1.50
2	100	30	125	20	25	-10	2.50
3	100	30	140	20	40	-10	4.00
4	150	45	165	30	15	-15	1.00
5	150	45	175	30	25	-15	1.67
6	150	45	190	30	40	-15	2.67
7	200	60	215	40	15	-20	0.75
8	200	60	225	40	25	-20	1.25
9	200	60	240	40	40	-20	2.00

Table 1 : A possible binary choice SP design
In this design, alternative B is always the faster but more expensive option. This need not always be the case, a mixture of either alternative being the faster, more expensive is acceptable. In fact it is possible to have one of the alternatives being both the faster and cheaper option.
Since individuals are choosing between alternatives, a more succinct representation would be to
express the attributes as the differences in their levels. Thus the question becomes a direct trade-off between savings in time and cost.

A feature of the design in table 1 is that the correlations between all the attribute differences is zero. Such a design is said to be orthogonal. This is the first of two widely used design criteria. The supposed reason for ensuring that this property exists is that this would produce the most efficient estimates from any model estimation procedure, primarily from an analogy with least squares regression (Fowkes, 1996).

Another item of information which can be extracted from the design in table 1 are the boundary values of time (BVoT), ie COST difference divided by TIME difference. These values show at what time valuation individuals are indifferent between alternatives. Thus for scenario 1 , if an individual's value of time is 1.5 pence per minute then they are indifferent between alternatives A and B in this scenario. If their value of time is less than 1.5 , then they would be expected to choose the slower but cheaper option (alternative A). If their value of time is greater than 1.5 , then alternative B should be the preferred option. It is possible to plot a graphical representation of the spread of BVoT's. This plot for the design in table 1 is given in figure 1 .

Figure 1 : Boundary value map of table 1 design
Figure 1 begins to show how effective a design should be at recovering a range of values of time. In the discussion which follows a perfect knowledge on the part of the respondent is assumed (ie deterministic choice). If the respondents are thought to follow compensatory choice processes, some form of randomness is incorporated into the decision process which represents incorrect (or inconsistent) choices.

With reference to the example design, if the value of time is greater than 4.00 then all the respondents will chose the faster, more expensive option. Thus the only clear result will be that the lower bound of value of time is 4.00 . If the value is between 2.67 and 4.00 then all the respondents will chose the faster, more expensive alternative, except for scenario 3, in which case they would select the slower, cheaper option. In this case there is both a lower and upper bound on the value of time. The interval is however wide, at 1.33 . If the value of time is between 1.50 and 1.67 then the choice will be the faster, more expensive mode for scenarios $7,4,8$ and 1 and the slower, cheaper mode for scenarios 5 , 9,6 and 3 . The interval is also narrow at 0.16 . Intuitive inspection suggests that this design would perform well at recovering values of time in the range 1.00 to 2.00 .

This methodology is the second design technique which is widely employed in SP design, namely trying to ensure that there is a reasonable coverage of boundary values near an expected value of time. There is an extension of this technique into a three variable case, where the boundary points become boundary rays, with an intercept and a slope (Fowkes 1991).

In summary, the suggested technique for designing an efficient SP is, up to now, to choose levels
which give orthogonality and also give a reasonable coverage of boundary values.

2 MODELLING

Once an SP design has been designed it is used in an experiment to try and extract a valuation of the measure of interest (in the example given in section 1 it would be the value of time). A model of individuals behaviour is required from which parameter values can be estimated. An assumption used here is to derive a set of utilities, for each alternative, which is a linear combination of the attribute levels. The expression of this utility will be of the form:

1

$$
U_{a}=\beta_{1} \operatorname{COST}_{a}+\beta_{2} \operatorname{TIME}_{a}+\varepsilon
$$

b

$$
U_{b}=\beta_{1} \operatorname{COST}_{b}+\beta_{2} \text { TIME }_{b}+\varepsilon
$$

An individual will be expected to choose the option which has the highest utility, U_{a} or U_{b}, depending on the values for the parameters β_{1} and β_{2}. It is also worth noting that most estimation packages do not directly estimate the β_{i} 's, but instead estimate a scaled β_{i} ie $\Omega \mathrm{B}_{\mathrm{i}}$, where B_{1} and B_{2} are the 'true' β_{i} 's. When estimating values of time (see below) these Ω 's are irrelevant since they cancel out, but if the estimates are to be used for forecasting purposes then the true underlying β_{i} 's will be required. In what follows β_{1} and β_{2} should be strictly interpreted as $\Omega \mathrm{B}_{1}$ and $\Omega \mathrm{B}_{2}$.

The expectations of (1) can be converted into probabilities such that an individual makes their decision in favour of alternative A if:

罟

$$
\operatorname{Pr}(a)=\operatorname{Pr}\left(U_{a}>U_{b}\right)
$$

更

$$
\operatorname{Pr}(a)=\operatorname{Pr}\left(U_{a}-U_{b}>0\right)
$$

An alternative expression for this choice utility is the utility difference expression:
B

$$
\Delta U=\beta_{1} \Delta \operatorname{COST}+\beta_{2} \Delta T I M E+\Delta \varepsilon
$$

Where Δ COST is $\left(\operatorname{COST}_{\mathrm{b}}-\operatorname{COST}_{\mathrm{a}}\right)$
Δ TIME is $\left(\right.$ TIME $_{b}-$ TIME $\left._{a}\right)$
Both β_{1} and β_{2} are assumed negative since spending extra money or time on a given trip should cause dis-utility. If $\Delta \mathrm{U}$ is greater than 0 then the individual prefers alternative A whilst if it is less than 0 then alternative B is the preferred choice. The values of β_{1} and β_{2} are usually estimated using maximum likelihood techniques.

The probability expression then becomes:

\#

$$
\operatorname{Pr}(a)=\operatorname{Pr}(\Delta U>0)
$$

Which, under certain assumptions about the distribution of the error terms, can be calculated from:

$$
\operatorname{Pr}(a)=\frac{1}{1+e^{\left(\beta_{1} \Delta \operatorname{CoS} T+\beta_{2} \Delta T I M E\right)}}
$$

Thus if this probability is greater than 0.5 then one would assume that the individual will chose alternative A and otherwise alternative B.

The expression $\left(\beta_{2} / \beta_{1}\right)$ gives a valuation for the overall value of time (VoT).
Expressions can be derived for the variances of the parameters β_{1} and β_{2} and the ratio β_{2} / β_{1} (Watson et al, 1996). These expressions involve: $\beta_{1}, \beta_{2}, \Delta$ COST, \triangle TIME and additionally in the later case, $\operatorname{Var}\left(\beta_{1}\right), \operatorname{Var}\left(\beta_{2}\right)$ and $\operatorname{Covariance}\left(\beta_{1}, \beta_{2}.\right)$.

3 NEW DESIGN METHODOLOGY

Given an expression for the variance of the parameters, a sensible approach is to derive a design which, for a given β_{1} and β_{2}, chooses Δ COST and \triangle TIME to minimise these variances. This is essentially the new methodology. In reality the values of β_{1} and β_{2} will be unknown until the survey is conducted which is something of a drawback, however, information from pilot or previous full studies may inform the choice of β_{1} and β_{2}, thereby overcoming this drawback.

It has been shown that the adoption of this methodology will produce a design with certain properties (Wardman and Toner, 1996):

- The $\operatorname{Pr}(\mathrm{a})=\mathrm{p}^{*}$ which will equal 0.9168 or 0.0832 ; and
- The t-ratio of the parameters will be given by the expression:
\emptyset

$$
t^{*}=\frac{\sqrt{n}}{2} \sqrt{\left(u^{2}-4\right)}
$$

where u is the utility difference which produces p^{*} in (5), ie ± 2.399; n is the number of scenarios.

In the case under consideration here there are two parameters whose variance can be minimised. When one variable is at its minimum variance, the other may not be. Thus a number of approaches suggest themselves:
(1) Successive minimisation of $\operatorname{Var}\left(\beta_{1}\right)$ and $\operatorname{Var}\left(\beta_{2}\right)$;
(2) Successive minimisation of $t\left(\beta_{1}\right)$ and $t\left(\beta_{2}\right)$ (minimisation since β_{1} and β_{2} are negative) ;
(3) Weighted minimisation of:

$$
\sum_{i=1}^{2}\left(w_{i} \operatorname{Var}\left(\beta_{i}\right)\right)
$$

(4) Weighted minimisation of:

$$
\sum_{i=1}^{2}\left(w _ { i } \left(t^{*}-\mid t(\text { betasubi }) \mid\right.\right.
$$

Cases (1) and (2) would require iterative minimisation loops, whilst cases (3) and (4) require only one minimisation. Other minimisation criteria are also possible, eg involving the ratio of $t\left(\beta_{\mathrm{i}}\right)$ to t^{*} or a weighted sum of the $\operatorname{Var}\left(\beta_{\mathrm{i}}\right)$'s and $\operatorname{Var}(\operatorname{VoT})$. Since $\operatorname{Var}(\operatorname{VoT})$ is unbounded, however, constraints may be required here. The results presented in this paper were obtained from FORTRAN programs which used the NAG (Ford and Pool, 1984) minimisation routine E04JAF. Similar minimisation routines to perform these tasks can be found in popular spreadsheets.

4 TWO VARIABLES

4.1 PRODUCING THE DESIGN

The initial design used to illustrate the application of the new methodology is that given in table 1. As a first step towards the application of this new methodology an exercise was conducted to ensure that the expressions for the variance parameters were correct. The responses of 20 individuals, with values of $\beta_{1}=-0.1$ and $\beta_{2}=-0.2$, to the design in table 1 were simulated. The ALOGIT package (1992) was then used to estimate the $\hat{\wedge}_{1}, \hat{乙}_{2}, \operatorname{se}\left(\hat{\wedge}_{1}\right)$ and $\operatorname{se}\left(\hat{\llcorner }_{2}\right)$ values from this simulation. These se values are then compared with the same information from the analytical variance expressions. This comparison is given in table 2 :

Method	$\hat{-}_{1}$	$\hat{-}_{2}$	$\operatorname{se}\left(\hat{\sim}_{1}\right)$	$\operatorname{se}\left(\hat{\sim}_{2}\right)$
ALOGIT	-0.1236	-0.2390	0.0194	0.0367
Analytical	-0.1236	-0.2390	0.01936	0.03666

Table 2 : Comparison of ALOGIT and analytical expression results
For this section it has been decided to optimise around given values of $\beta_{1}=-0.1$ and $\beta_{2}=-0.2$. The initial design and the final optimal design for cases (1) and (2) as outlined in section 3, are given in figure 2 . The $t *$ value for a nine scenario design with one individual is 1.9882 . The starting point for both cases is the initial design. Each case has produced a different solution, demonstrating that there is no unique optimal design. In practice, only integer values of TIME and COST differences are of use so the final optimal designs are integerised in figure 2. Both cases have produced near p^{*} and t^{*} values and if non-integer variables are allowed p^{*} values are guaranteed. With the t-ratios only the last optimised parameter, β_{2} in this experiment will be at t^{*}. Each t-ratio is based on one replication of the survey and if many individuals were interviewed then these t-ratios would increase.
The t-ratio of VoT has increased from 3.70 to 12.86 or 12.55 and the correlation between the cost and time difference has also departed from 0 .
Initial design

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
15.	-10.	0.6225	0.3775	1.5000
25.	-10.	0.3775	0.6225	2.5000
40.	-10.	0.1192	0.8808	4.0000
15.	-15.	0.8176	0.1824	1.0000
25.	-15.	0.6225	0.3775	1.6667
40.	-15.	0.2689	0.7311	2.6667
15.	-20.	0.9241	0.0759	0.7500
25.	-20.	0.8176	0.1824	1.2500
40.	-20.	0.5000	0.5000	2.0000

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=0.0000$

	estimate	variance	t-ratio
COST	-0.1000	0.0058	-1.3152
TIME	-0.2000	0.0211	-1.3769
VoT	2.0000	0.2926	3.6976

Case (1)
Design after 10 iterations of $\left[m i n \operatorname{Var}\left(\beta_{1}\right)\right.$ and then min $\left.\operatorname{Var}\left(\beta_{2}\right)\right]$:

COST	TIME	Pn	(1-Pn)
104	4. -64.	0.9168	0.0832
118.	8. -47 .	0.0832	0.9168
177.	. -77.	0.0911	0.9089
112	. -68.	0.9168	0.0832
164.	4. -94.	0.9168	0.0832
183.	. -79.	0.0759	0.9241
123.	. -73.	0.9089	0.0911
169.	. -96.	0.9089	0.0911
193	. -85.	0.0911	0.9089
CORR ((COST, TIME)	$=-0.712$	
	estimate	variance	t-ratio
COST	-0.1000	0.0026	-1.9623
TIME	-0.2000	0.0101	-1.9868
VoT	2.0000	0.0242	12.8606

Case (2)
Design after 10 iterations of $\left[\min t\left(\beta_{1}\right)\right.$ and then min $\left.t\left(\beta_{2}\right)\right]$:

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
89.	-57.	0.9241	0.0759	1.5614
109.	-42.	0.0759	0.9241	2.5952
171.	-74.	0.0911	0.9089	2.3108
126.	-75.	0.9168	0.0832	1.6800
164.	-94.	0.9168	0.0832	1.7447
190.	-83.	0.0832	0.9168	2.2892
116.	-70.	0.9168	0.0832	1.6571
162.	-93.	0.9168	0.0832	1.7419
187.	-82.	0.0911	0.9089	2.2805

CORR (COST,TIME) $=-0.7433$

	estimate	variance	t-ratio
COST	-0.1000	0.0026	-1.9656
TIME	-0.2000	0.0101	-1.9870
VoT	2.0000	0.0254	12.5484

Figure 2 : Initial and final designs for cases (1) and (2)
To illustrate the performance of these two essentially similar approaches, information at each iteration for case (2) is displayed in figures 3, 4 and 5. In these figures the x -axis shows the iteration
stage, 0 is the starting point, 1 is after minimisation of $t\left(\beta_{1}\right), 2$ is after minimisation of $t\left(\beta_{2}\right)$ and 3 is the final result.

Figure 3 shows that the parameter being optimised reaches the t^{*} value, whilst the other loses the t^{*} value. As the iterations progress, however, the extent of this loss deteriorates. The t-ratio for VoT after an initial dip, rises with each iteration. Figure 5 shows the nature of the design at each iteration. The positive line is the maximum cost difference across all nine scenarios whilst the negative line is the minimum time difference across all nine scenarios.

A clear saw-tooth pattern is apparent in this figure. A minimisation of $t\left(\beta_{1}\right)$ increases the maximum COST difference whilst decreasing the absolute value of the TIME difference. A minimisation of $\mathrm{t}\left(\beta_{2}\right)$ produces the opposite effect. The more iterations, the larger these maximum and minimum differences become and the larger the resultant $t(V o T)$. These large differences may be impractical. If the maximum permissable COST difference was set at +100 and the minimum permissable TIME difference at -50 , then the result after the second minimisation of $t\left(\beta_{2}\right)$ would be selected, with a
$t(\operatorname{VoT})=5.6758$, which is still an improvement on the starting value of $t(V o T)=3.6976$. The actual design is provided in figure 6.

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
46.	-35.	0.9168	0.0832	1.3143
53.	-14.	0.0759	0.9241	3.7857
80.	-28.	0.0832	0.9168	2.8571
51.	-37.	0.9089	0.0911	1.3784
73.	-49.	0.9241	0.0759	1.4898
81.	-29.	0.0911	0.9089	2.7931
55.	-40.	0.9241	0.0759	1.3750
76.	-50.	0.9168	0.0832	1.5200
88.	-32.	0.0832	0.9168	2.7500

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.1317$

	estimate	variance	t-ratio
COST	-0.1000	0.0028	-1.8804
TIME	-0.2000	0.0101	-1.9868
VoT	2.0000	0.1242	5.6758

Figure 6 : Final Design with 'reasonable' differences
The final designs in cases (3) and (4), with equal weight given to COST and TIME are given in figure 7.

Case (3)				
Design after one minimisation of $\Sigma t\left(\beta_{i}\right)$:				
COST	T TIME	Pn	(1-Pn)	BVoT
696.	. -360.	0.9168	0.0832	1.9333
628.	8. -302.	0.0832	0.9168	2.0795
1227.	7. -601.	0.0759	0.9241	2.0416
763.	3. -394.	0.9241	0.0759	1.9365
1075.	5. -550.	0.9241	0.0759	1.9545
1310.	. -643.	0.0832	0.9168	2.0373
842.	. -433.	0.9168	0.0832	1.9446
1150.	. -587.	0.9168	0.0832	1.9591
1466.	. -721.	0.0832	0.9168	2.0333
CORR (C	(COST, TIME)	$=-0.99$		
	estimate	variance	t-ratio	
COST	-0.1000	0.0025	-1.9873	
TIME	-0.2000	0.0101	-1.9872	
Vot	2.0000	0.0005	86.2491	

Case (4)				
Design after one minimisation of $\Sigma\left(t^{*}-t\left(\beta_{i}\right)\right)^{2}$				
COST	T TIME	Pn	(1-Pn)	BVoT
351	1. -188.	0.9241	0.0759	1.8670
317	7. -147.	0.0911	0.9089	2.1565
555	5. -266.	0.0911	0.9089	2.0865
416	6. -220.	0.9168	0.0832	1.8909
481	1. -253.	0.9241	0.0759	1.9012
685	5. -331.	0.0911	0.9089	2.0695
426	6. -225.	0.9168	0.0832	1.8933
620	0. -322 .	0.9168	0.0832	1.9255
703	. -340.	0.0911	0.9089	2.0676
CORR (COST, TIME) $=-0.9852$				
	estimate	variance	t-ratio	
COST	-0.1000	0.0025	-1.9859	
TIME	-0.2000	0.0101	-1.9862	
Vot	2.0000	0.0021	44.1309	

Figure 7 : Initial and final designs for cases (3) and (4)
Both these cases have quickly produced higher $\mathrm{t}(\mathrm{VoT})$ values than those seen for cases (1) and (2). Case (4) has near p* across all scenarios and t* values for both parameters. The drawback, especially in case (3), is much higher COST and TIME differences.

4.2 TESTING THE DESIGN

The results in figures 2 and 6 show how well the design performs at recovering values of β_{1} and β_{2} around which the design is optimised. The next question is how an optimised design will perform when recovering other combinations of β_{1} and β_{2} ? Three situations may arise:
(1) It is known with a fair degree of confidence the vicinity of the β_{1} and β_{2} values;
(2) It is known with a great deal of confidence a range of β_{1} and β_{2} values
(3) Nothing is known about the location of the β_{1} and β_{2} values.

To explore these situations three experiments are conducted. The first is to sample alternative β_{1} and β_{2} values in the neighbourhood of the design values, and test them with the design (situation 1). The second is to use the methodology to try and recovering different combinations of β_{1} and β_{2} values (situation 2). The final experiment is to construct a grid of β_{1} and β_{2} values and test the performance of the design on this grid (situation 3).

4.2.1 What's happening in the neighbourhood?

An optimal design is constructed, based on the second iteration of β_{2} in case (2).

A large sample of five hundred alternative values of β_{1} and β_{2} are randomly sampled from the triangular distributions in the upper portion of figure 8 . These values produce the distribution of VoT given in the lower portion of figure 8. Extremes of as large as 5.0 have been allowed. The t-ratios for these 500 alternative values are then calculated on the separate assumptions of the use of the initial, (orthogonal) design and the optimal design.

The distribution of the $t\left(\beta_{1}\right), t\left(\beta_{2}\right)$ and $t(V o T)$ under these two assumptions are given in figures 9 to 11 .

The optimal design has produced a more uniform distribution of t-ratios for β_{1} and β_{2} in comparison with the more peaked distribution provided by the orthogonal design. The optimal design has produced fewer small t-ratios and more high t-ratios for $t(V o T)$ than the orthogonal design.

4.2.2 Divide and conquer

Instead of using all nine scenarios to try and recover a fixed combination of β_{1} and β_{2} values, it may be more efficient to partition the scenarios. Thus the first three scenarios could be used to recover $\beta_{1}{ }^{\text {a }}$ and $\beta_{2}{ }^{\text {a }}$, the next three $\beta_{1}{ }^{\mathrm{b}}$ and $\beta_{2}{ }^{\mathrm{b}}$ and the last three $\beta_{1}{ }^{\mathrm{c}}$ and $\beta_{2}{ }^{\mathrm{c}}$ values. Careful consideration needs to be given to the approach adopted. Issues worth considering are:
(a) Should the exercise treat each design as an series of independent mini-SP's? This would involve an approach similar to that used above but only using the appropriate scenarios during each optimisation. The scenarios would then be assembled for the full SP.
(b) Would the allocation of scenarios to β_{1} and β_{2} combinations be significant?
(c) An integrated SP may be required, were the full design is used to calculate the variance expressions during optimisation (unlike (a) above) but only the relevant scenarios are changed during optimisation.
(d) In this case, is the order in which each combination is optimised significant?

To explore issue (a) the nine scenario design of table 1 is used to recover β_{1} and β_{2} values of $(-0.1,-0.2),(-0.1,-0.1),(-0.1,-0.3)$. The first three scenarios in the design are used to optimise around $(-0.1,-0.2)$. When this is complete, these scenarios are put to one side and the next three scenarios are used to optimise around ($-0.1,-0.1$). The third set of parameters, $(-0.1,-0.3)$ are similarly used for the final set of three scenarios. When this last stage has been completed all three sets of three scenarios are brought together in one design. The detailed output of this exercise is given in the appendix. The results are compared with the performance of the orthogonal design and summarised as Optimal (1) in table 3.

In all but one case (given in italics) this new design has produced an improvement in the t-ratios, and always an improvement for $\mathrm{t}(\mathrm{VoT})$.

The rows labelled Optimal (2) shows the effect of allocating the parameter combinations to different scenarios (issue b above). Here $(-0.1,-0.2)$ has been allocated to scenarios 4,5 and $6 ;(-0.1,-0.1)$ to scenarios 7,8 and 9 and $(-0.1,-0.3)$ to 1,2 and 3 . Clearly this has an effect since Optimal (1) is different to Optimal (2) but the improvement over the optimal design is still present.

$\left(\beta_{1}, \beta_{2}\right)$		$t\left(\beta_{1}\right)$	$t\left(\beta_{1}\right)$	t (VoT)
(-0.1,-0.2)	Orthogonal	-1.3152	-1.3769	3.6976
	Optimal (1)	-1.3634	-1.3702	5.6892
	Optimal (2)	-1.3919	-1.3914	5.7753
(-0.1,-0.1)	Orthogonal	-1.1956	-0.7963	1.6792
	Optimal (1)	-1.7896	-1.5661	3.5299
	Optimal (2)	-1.6186	-1.4278	3.9043
$(-0.1,-0.3)$	Orthogonal	-1.1264	-1.4273	3.0628
	Optimal (1)	-1.4679	-1.4602	4.9610
	Optimal (2)	-1.2521	-1.3885	5.4198

Table 3 : Comparison of Orthogonal and Optimal designs

The alternative approach suggested in (c) above is where the full design is used to calculate the variance values, but only a subset of the scenarios are allowed to change during optimisation.

The first three scenarios are once again optimised around $(-0.1,-0.2)$ as above, but all nine scenarios are used to calculate the variances during optimisation. When this stage has been completed the next three scenarios are used to optimise for ($-0.1,-0.1$), again changing only these scenarios but using the full design to calculate the variances. After stage three, where the design is around $(-0.1,-0.3)$ the final design is complete.

A fuller account of this complex process, with only two iterations, is show in appendix A. Adopting this approach gives the summary results presented as Optimal (1) in table 4. This approach has produced an improvement in the t-ratios over the orthogonal design. No consistent pattern emerges when the optimal results in table 3 are compared with those in table 4.

The Optimal (2) rows in table 4 show the change when a different ordering is used in the optimisation process. The parameter pairs are still associated with the same scenarios, but the pair $(-0.1,-0.3)$ is optimised first, then $(-0.1,-0.2)$ and finally $(-0.1,-0.1)$. With a non-integrated design this subtle change in the ordering would have no effect, however, as can be seen in table 4, the integrated case this has produced different results.

$\left(\beta_{1}, \beta_{2}\right)$		t (β_{1})	$t\left(\beta_{1}\right)$	t (VoT)
(-0.1, -0.2)	Orthogonal	-1.3152	-1.3769	3.6976
	Optimal (1)	-1.6737	-1.6380	4.4300
	Optimal (2)	-1.5126	-1.6157	5.4991
(-0.1,-0.1)	Orthogonal	-1.1956	-0.7963	1.6792
	Optimal (1)	-1.6402	-1.7142	5.0985
	Optimal (2)	-1.3823	-1.4469	4.6902
$(-0.1,-0.3)$	Orthogonal	-1.1264	-1.4273	3.0628
	Optimal (1)	-1.3555	-1.4075	4.9854
	Optimal (2)	-1.4544	-1.4500	6.4594

Table 4 : Comparison of Orthogonal and Optimal integrated designs

4.2.3 The wider picture

An optimal design is constructed, based on the second iteration of β_{2} in case (2). This design was then used to calculate a grid of $\mathrm{t}(\mathrm{VoT})$ values based on values of β_{1} and β_{2} in the range $[-0.05,-1.00]$ in steps of -0.05 . Figure 12 shows the 3D plot for the orthogonal design whilst figure 13 shows the corresponding plot for the optimal design.

Figure 12 is characterised by a shallow but wide plateau, whilst figure 13 has two sharper, more concentrated, ridges. Inspection of these two graphs suggests that if the actual β_{1} and β_{2} values fall within either of these two ridges then the optimal design is best, otherwise the orthogonal design may be better.

5 THREE VARIABLES

The three variable design is a natural extension to that of two variables. Here the utility equations are given by the expressions:

I

$$
U_{a}=\beta_{1} \operatorname{COST}_{a}+\beta_{2} \text { TIME }_{a}+\beta_{3} \text { DEPARTURE }_{a}+\varepsilon
$$

あ

$$
U_{b}=\beta_{1} \operatorname{COST}_{b}+\beta_{2} \text { TIME }_{b}+\beta_{3} \text { DEPARTURE }_{b}+\varepsilon
$$

A complicating factor is that the construction of point based boundary values are no longer possible. By way of example consider the SP design given in table 5, taken from a study by Preston and Wardman (1991).

	Alternative A			Alternative B			Difference (B-A)				
	$\begin{gathered} \text { COST } \\ (\text { pence }) \end{gathered}$	$\begin{aligned} & \text { TIME } \\ & (\mathrm{min}) \end{aligned}$	$\begin{gathered} \text { DEPART } \\ (\mathrm{min}) \end{gathered}$	COST (pence)	$\begin{aligned} & \text { TIME } \\ & (\min) \end{aligned}$	$\begin{aligned} & \text { DEPART } \\ & (\min) \end{aligned}$	COST (pence)	$\begin{aligned} & \text { TIME } \\ & (\min) \end{aligned}$	$\begin{gathered} \text { DEPART } \\ (\min) \end{gathered}$	Intercept	Slope
1	50	40	0	50	25	30	0	-15	30	0.00	2.0
2	30	45	0	0	25	30	-30	-20	30	-1.50	1.5
3	100	45	0	50	35	30	-50	-10	30	-5.00	3.0
4	75	40	0	0	35	30	-75	-5	30	-15.0	6.0
5	0	40	0	0	35	60	0	-5	60	0.00	12.0
6	80	45	0	50	35	60	-30	-10	60	-3.00	6.0
7	50	45	0	0	25	60	-50	-20	60	-2. 50	3.0
8	125	40	0	50	25	60	-75	-15	60	-5.00	4.0
9	50	45	0	50	25	30	0	-20	30	0.00	1.5
10	30	40	0	0	25	30	-30	-15	30	-2.00	2.0
11	100	40	0	50	35	30	-50	-5	30	-10.0	6.0
12	75	45	0	0	35	30	-75	-10	30	-7.50	3.0
13	0	45	0	0	35	60	0	-10	60	0.00	6.0
14	80	40	0	50	35	60	-30	-5	60	-6.00	12.0
15	50	40	0	0	25	60	-50	-15	60	-3.33	4.0
16	125	45	0	50	25	60	-75	-20	60	-3.75	3.0

Table 5 : A possible binary choice three variable SP design
Fowkes (1991) proposes that a boundary ray map may be constructed from this design, where the intercept and slope of the ray are given by the following expression.
8 BVoT $=\frac{\Delta C O S T}{-D E L T A T I M E}+V o D \frac{\triangle D E P A R T U R E}{-\Delta T I M E}$

The boundary value map for the design in table 5 is given in figure 14.

The units of journey time and departure time change are in single legs of a journey whilst the cost is for a round trip of two legs. To keep the units consistent the costs have been halved. This map is characterised by non-positive intercepts with the VoT axis and positive slopes. Note that for the t-ratios, the information presented is based on only one replication of the survey. The information in figure 14 does not suggest that the t-ratios of VoT or VoD from the surveys will be as low as 0.5731 or 0.8555

If the methodology of case (2) is adopted to optimise this design then after the first iteration the map in figure 15 results and the final map after 10 iterations is given in figure 16.

© 1996, Institute for Transport Studies, Leeds, UK

After only one iteration, the t-ratio of the last optimised parameter (\triangle DEPARTURE) is near its t* value of 2.6510, and the t-ratios of VoT and VoD have shown considerable improvement. The p values are also close to p^{*}.

During the iterative process the same features as were seen for the two variable case are apparent, namely: optimised parameter near t*; other parameters sub-t* but improving; p's at or near p* and increases in the magnitude of the differences. After ten iterations, the t-ratios for VoT and VoD are high at 11.7439 and 10.5658 .

Much of the discussion of section 4.2 with regard to the testing of the design is relevant to a three variable design. The performance will be good in the neighbourhood of the design point and divide and conquer approaches are equally applicable to a three variable design. An idea of the wider picture is difficult to gain since a 4D plot would be required to show the performance of each design at distant points.

6 FOUR VARIABLES

The application of this methodology to a four variable design begins to show its utility over traditional approaches for designing SP experiments. Clearly a graphical representation of the design is difficult to envisage, requiring a 3D plot of graphical planes.

The test design for a binary choice case is shown in table 6. This design is taken from Toner (1991). For space considerations, only the difference values for the variables are shown.

	Fare (pence)	Walk (min)	Wait (min)	IVTime (min)
1	150	-12	-10	-10
2	150	-7	-6	-7
3	150	-4	-3	-4
4	50	-12	-6	-4
5	50	-7	-3	-10
6	50	-4	-10	-7
7	80	-12	-3	-7

8	80	-7	-10	-4
9	80	-4	-6	-10

Table 6 : A possible binary choice four variable SP design (in differences)
The initial design and the optimised designs which result after the first iteration and after 10 iterations are given in figure 17.

```
Initial design
\begin{tabular}{rrrccc} 
COST & WALK & WAIT & IVTIME & Pn & \((1-\mathrm{Pn})\) \\
150. & -12. & -10. & -10. & 0.1516 & 0.8484 \\
150. & -7. & -6. & -7. & 0.1000 & 0.9000 \\
150. & -4. & -3. & -4. & 0.0718 & 0.9282 \\
50. & -12. & -6. & -4. & 0.4611 & 0.5389 \\
50. & -7. & -3. & -10. & 0.4502 & 0.5498 \\
50. & -4. & -10. & -7. & 0.4693 & 0.5307 \\
80. & -12. & -3. & -7. & 0.3189 & 0.6811 \\
80. & -7. & -10. & -4. & 0.3208 & 0.6792 \\
80. & -4. & -6. & -10. & 0.3165 & 0.6835
\end{tabular}
\begin{tabular}{lllll} 
& COST & WALK & WAIT & IVTIME \\
COST & 1.0000 & 0.0000 & 0.0000 & 0.0000 \\
WALK & 0.0000 & 1.0000 & 0.0000 & 0.0000 \\
WAIT & 0.0000 & 0.0000 & 1.0000 & 0.0000 \\
IVTIME & 0.0000 & 0.0000 & 0.0000 & 1.0000
\end{tabular}
\begin{tabular}{lrr} 
& estimate & t-ratio \\
Cost & -0.0200 & -0.8976 \\
Walk T & -0.0340 & -0.1778 \\
Wait T & -0.0440 & -0.1965 \\
IVTime & -0.0430 & -0.1815 \\
& & estimate \\
Walk/C & 1.7000 & 0.1878 \\
Wait/C & 2.2000 & 0.2077 \\
Time/C & 2.1500 & 0.1940
\end{tabular}
Design after min(t(\mp@subsup{\beta}{1}{})),min(t(\mp@subsup{\beta}{2}{})),min(t(\mp@subsup{\beta}{3}{})),min(t(\mp@subsup{\beta}{4}{}))
\begin{tabular}{rrrccc} 
COST & WALK & WAIT & IVTIME & Pn & \((1-\mathrm{Pn})\) \\
144. & -81. & 16. & 36. & 0.0849 & 0.9151 \\
141. & -23. & -9. & 17. & 0.0853 & 0.9147 \\
138. & -9. & -18. & 18. & 0.0805 & 0.9195 \\
91. & -303. & 69. & 182. & 0.0847 & 0.9153 \\
211. & 16. & 74. & -242. & 0.9158 & 0.0842 \\
155. & 117. & -170. & 66. & 0.0805 & 0.9195 \\
377. & -211. & -25. & -39. & 0.9177 & 0.0823 \\
129. & 7. & -98. & -20. & 0.9133 & 0.0867 \\
48. & 112. & 62. & -118. & 0.0815 & 0.9185
\end{tabular}
\begin{tabular}{lrrrr} 
& \multicolumn{1}{c}{ COST } & \multicolumn{1}{c}{ WALK } & \multicolumn{1}{c}{ WAIT } & IVTIME \\
COST & 1.0000 & -0.3459 & -0.1527 & -0.2405 \\
WALK & -0.3459 & 1.0000 & -0.3670 & -0.4856 \\
WAIT & -0.1527 & -0.3670 & 1.0000 & -0.2846 \\
IVTIME & -0.2405 & -0.4856 & -0.2846 & 1.0000
\end{tabular}
\begin{tabular}{lrr} 
& estimate & t-ratio \\
Cost & -0.0200 & -1.5593 \\
Walk T & -0.0340 & -1.6787 \\
Wait T & -0.0440 & -1.5530 \\
IVTime & -0.0430 & -1.9880 \\
& & \\
& estimate & t-ratio \\
Walk/C & 1.7000 & 2.8066 \\
Wait/C & 2.2000 & 2.2372 \\
Time/C & 2.1500 & 2.5254
\end{tabular}
```



```
10 times
\begin{tabular}{rrrccc} 
COST & WALK & WAIT & IVTIME & Pn & \((1-\mathrm{Pn})\) \\
550. & -238. & -321. & 317. & 0.0820 & 0.9180 \\
585. & 67. & -473. & 215. & 0.0823 & 0.9177 \\
350. & -61. & -387. & 337. & 0.0840 & 0.9160 \\
-91. & -702. & 113. & 538. & 0.0818 & 0.9182 \\
1039. & 265. & 209. & -850. & 0.0805 & 0.9195 \\
335. & 799. & -914. & 92. & 0.9164 & 0.0836 \\
1645. & -1007. & 224. & -254. & 0.9171 & 0.0829 \\
516. & -12. & -147. & -136. & 0.9171 & 0.0829 \\
121. & 469. & 8. & -379. & 0.0816 & 0.9184
\end{tabular}
\begin{tabular}{lrrrr} 
& \multicolumn{1}{c}{ COST } & \multicolumn{1}{c}{ WALK } & \multicolumn{1}{c}{ WAIT } & IVTIME \\
COST & 1.0000 & -0.3821 & 0.3581 & -0.5315 \\
WALK & -0.3821 & 1.0000 & -0.5898 & -0.2778 \\
WAIT & 0.3581 & -0.5898 & 1.0000 & -0.4592 \\
IVTIME & -0.5315 & -0.2778 & -0.4592 & 1.0000
\end{tabular}
\begin{tabular}{lrl} 
& estimate & t-ratio \\
Cost & -0.0200 & -1.9576 \\
Walk T & -0.0340 & -1.9609 \\
Wait T & -0.0440 & -1.9610 \\
IVTime & -0.0430 & -1.9881 * \\
& estimate & t-ratio \\
Walk/C & 1.7000 & 10.6499 \\
Wait/C & 2.2000 & 10.0233 \\
Time/C & 2.1500 & 10.7921
\end{tabular}
```

Figure 17 : Initial, first optimised and final designs for table 6
Once again all the features seen for the two variable situation occur here. The p values are close to p^{*}, as seen previously.

7 TWO VARIABLES PLUS ASC

The equation for the utility of each mode given in (1) can be modified to include an alternative specific constant (ASC). The role of this constant is to account for factors which are not specifically included in the design when determining the attractiveness of one mode over another. The revised form of equation (1) becomes:

$$
\begin{gathered}
U_{a}=A S C+\beta_{1} \operatorname{COST}_{a}+\beta_{2} \text { TIME }_{a}+\varepsilon \\
U_{b}=\quad \beta_{1} \operatorname{COST}_{b}+\beta_{2} \text { TIME }_{b}+\varepsilon
\end{gathered}
$$

If the ASC is estimated to be negative then, all other things being equal, $U_{a}<U_{b}$ and alternative B would be preferred over A. If the ASC is positive then A would be the preferred mode. This revised form can be cast into the general form of an SP by setting one of the variables to a constant value. Table 7 gives an illustrative example of a two variable design with a range of ASC's, taken from Fowkes (1991).

Alternative A	Alternative B	Difference $(A-B)$	ASC for option A

	$\begin{gathered} \text { COST } \\ (£) \end{gathered}$	$\begin{aligned} & \text { TIME } \\ & (\min) \end{aligned}$	$\begin{gathered} \text { COST } \\ (£) \end{gathered}$	$\begin{aligned} & \text { TIME } \\ & (\min) \end{aligned}$	$\Delta \mathrm{COST}$	$\triangle \mathrm{TIME}$	$\begin{gathered} \mathrm{BVOT} \\ \mathrm{ASC}=0 \end{gathered}$	pence/min)	
1	40	460	20	260	20.00	240.00	10.00	9.00	7.50
2	60	460	50	260	10.00	250.00	5.00	4.00	2.50
3	60	610	50	210	10.00	200.00	2.50	2.00	1.25
4	40	310	20	210	20.00	190.00	20.00	18.00	15.00
5	60	460	20	360	40.00	320.00	40.00	38.00	35.00
6	40	310	50	360	-10.00	370.00	20.00	24.00	30.00

Table 7 : Two variable with an ASC design
If there is an expectation that the ASC is zero then the methodology used in section 4 can be applied. Otherwise the optimisation process must take account of the presence of the ASC but must not alter its value since it is, like β_{1} and β_{2}, a given parameter.

Figure 18 shows the results after 15 iterations of $\min \left(t\left(\beta_{1}\right)\right)$ and $\min \left(t\left(\beta_{2}\right)\right)$ with ASC's of 2.00 and 5.00. Initial design with $A S C=2.00$

ASC	COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
2.	20.	-200.	0.0573	0.9427	0.0900
2.	10.	-200.	0.5498	0.4502	0.0400
2.	10.	-400.	0.8022	0.1978	0.0200
2.	20.	-100.	0.0323	0.9677	0.1800
2.	40.	-100.	0.0001	0.9999	0.3800
2.	-10.	50.	0.9910	0.0090	0.2400

CORR	COST, TIME)	$=-0$	-0. 5247		
ASC	2.00000		6.63744	0.77630	
COST	-0.30000		0.08949 -	-1.00285	
TIME	-0.00600		0.00017 -	-0.45634	
T/C	0.02000	15450	0.01465	0.00016	
Design after 10 iterations					
ASC	COST	TIME	Pn	(1-Pn)	BVoT
2	. 178.	-214.	0.0000	$0 \quad 1.0000$	0.8224
2	5.	-283.	0.9001	10.0999	0.0106
2	19.	-977.	0.8968	$8 \quad 0.1032$	0.0174
2	. 19.	-160.	. 0.0607	70.9393	0.1062
2	. 18.	-128.	0.0671	10.9329	0.1250
2	. -1.	814.	0.0702	20.9298	0.0037

CORR (COST,TIME) $=-0.2230$

ASC	2.00000	2.70369	1.21633
COST	-0.30000	0.08331	-1.03938
TIME	-0.00600	0.00002	-1.46319
T/C	0.02000	1111.05481	0.00060

Initial design with ASC=5.00

ASC	COST	TIME	Pn	$(1-\mathrm{Pn})$	BVoT
5.	20.	-200.	0.5498	0.4502	0.0750

© 1996, Institute for Transport Studies, Leeds, UK

Figure 18 : Initial and final designs for $\mathbf{A S C =} \mathbf{2 . 0 0}$ and ASC=5.00.
In both cases the final design has produced improvements in the t-ratios for all parameters. For the case where $\mathrm{ASC}=2.00$, the final optimised design does not possess p * values, the first time this feature has been noted. When ASC $=5.00$ the design does contains some near p^{*} but also some 1.0 or 0.0 p's. The final $\mathrm{t}\left(\beta_{2}\right)$ value in this design, 1.32280 corresponds to a $\mathrm{t}^{*}=1.32548$ with $\mathrm{n}=4$, ie the number of scenarios with $\mathrm{p}^{* ' s .}$

8 CONSTRAINTS

One undesirable feature of this methodology is the tendency to produce large magnitude differences in the variables. This may be practically impossible or infeasible. One approach is to set limits on these differences. The optimisation process can either be stopped when any of these limits are exceeded or constrained to operate within these limits. The first approach was adopted in section 4 where the design after only two iterations was chosen as the best. This design still gave a reasonable increase in all the $\mathrm{t}-$ ratio's over the initial design. The second approach is to specify constraints in the optimisation process. By way of example, the \triangle COST variable can be constrained to lie within $[1,100]$ and the Δ TIME to be within $[-50,-1]$. When this modification is applied, the results are as given in figure 19.

Initial design (as given in figure 2)				
COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
15.	-10.	0.6225	0.3775	1.5000
25.	-10.	0.3775	0.6225	2.5000
40.	-10.	0.1192	0.8808	4.0000

Figure 19 : Constrained two variable design
The final design does yield higher t-ratios for the parameters and the VoT than those in the initial design. For comparison purposes the $t(V o T)$ value after the second iteration of an unconstrained optimisation was 5.6758. Notice some redundancy in the scenarios with some BVoT's making multiple appearances.

9 CONCLUSIONS

This paper has demonstrated that the methodology devised can be applied to practical binary choice Stated Preference designs. To summarise, the methodology is:

- simple in its application;
- able to deliver real, quantifiable benefits over traditional SP design methodologies;
- \quad is applicable to an n-variable design, $n>2$;
- can accommodate designs with alternative specific constants;
- flexible enough to code an incorporate a variety of user requirements;
- works within constraints;
- simple to implement in spreadsheets or FORTRAN code.

REFERENCES

Hague Consulting Group (1992). "ALOGIT Users' Guide, version 3.2".
Ford, B and Pool, JCT (1984). "The Evolving NAG Library Service. Sources and Development of Mathematical Software." Prentice-Hall, pp375-397.

Fowkes, AS (1991). "Recent developments in Stated Preference techniques in transport research". PTRCSAM, Sussex 1991, published as Transportation Planning Methods, Code P347, pp.251-263, PTRC, London

Fowkes, AS (1996). "The development of Stated Preference Techniques in Transport Planning". ITS Working Paper 479, Institute for Transport Studies, University of Leeds, Leeds.

Fowkes, AS and Nash, CA (eds) (1991). "Analysing Demand for Rail Travel". Avebury Publishing Group, Chapter 4, pp33-56.

Fowkes, AS and Wardman, M (1993). "Non-orthogonal Stated Preference design". PTRC-SAM, UMIST 1993, published as Transportation Planning Methods, Code P366, pp.91-97, PTRC, London

Toner, JP (1991). "The economics of regulation of the taxi trade in British towns". Unpublished PhD Thesis, University of Leeds, Leeds, UK.

Preston, J and Wardman, M (1991). "The use of hypothetical questioning techniques to assess the future demand for travel in the Nottingham area". UTSG 23rd Annual Conference, University of Nottingham.

Wardman, M and Toner, JP (1996). "Issues in Model Specification". Paper to PTRC Conference on Value of Time, London, October 1996.

Watson, SM, Toner, JP, Fowkes, AS and Wardman, M (1996). "Efficiency Properties of Orthogonal Stated Preference Designs". Proceedings of PTRC Summer Annual Meeting, Seminar D, pp1-10.

APPENDIX

Non-integrated

The three parameter pairs (-0.1,-0.2), (-0.1,-0.1) and (-0.1,-0.3) with the initial design

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
15.	-10.	0.6225	0.3775	1.5000
25.	-10.	0.3775	0.6225	2.5000
40.	-10.	0.1192	0.8808	4.0000
15.	-15.	0.8176	0.1824	1.0000
25.	-15.	0.6225	0.3775	1.6667
40.	-15.	0.2689	0.7311	2.6667
15.	-20.	0.9241	0.0759	0.7500
25.	-20.	0.8176	0.1824	1.2500
40.	-20.	0.5000	0.5000	2.0000

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=0.0000$

COST	-0.1000	0.0058	-1.3152	
TIME	-0.2000	0.0211	-1.3769	
VOT	2.0000	0.2926	3.6976	
COST	TIME	Pn	$(1-P n)$	BVOT
15.	-10.	0.3775	0.6225	1.5000
25.	-10.	0.1824	0.8176	2.5000
40.	-10.	0.0474	0.9526	4.0000
15.	-15.	0.5000	0.5000	1.0000
25.	-15.	0.2689	0.7311	1.6667
40.	-15.	0.0759	0.9241	2.6667
15.	-20.	0.6225	0.3775	0.7500
25.	-20.	0.3775	0.6225	1.2500
40.	-20.	0.1192	0.8808	2.0000

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=0.0000$

	estimate	variance	t-ratio	
COST	-0.1000	0.0070	-1.1956	
TIME	-0.1000	0.0158	-0.7963	
VoT	1.0000	0.3546	1.6792	
COST	TIME	Pn	$(1-P n)$	BVOT
15.	-10.	0.8176	0.1824	1.5000
25.	-10.	0.6225	0.3775	2.5000
40.	-10.	0.2689	0.7311	4.0000
15.	-15.	0.9526	0.0474	1.0000
25.	-15.	0.8808	0.1192	1.6667
40.	-15.	0.6225	0.3775	2.6667
15.	-20.	0.9890	0.0110	0.7500
25.	-20.	0.9707	0.0293	1.2500
40.	-20.	0.8808	0.1192	2.0000

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=0.0000$

	estimate	variance	t-ratio
COST	-0.1000	0.0079	-1.1264
TIME	-0.3000	0.0442	-1.4273
VoT	3.0000	0.9594	3.0628

Optimise (-0.1,-0.2)				
Cost	TIME	Pn	(1-Pn)	BVoT
61.	. -42.	0.9089	0.0911	1.4524
22.	. 1.	0.0832	0.9168	-22.0000
38.	. -7.	0.0832	0.9168	5.4286
	estimate	variance	t-ratio	
COST	-0.1000	0.0100	-0.9994	
TIME	-0.2000	0.0304	-1.1470	
Vot	2.0000	0.8794	2.1328	
COST	TIME	Pn	(1-Pn)	BVot
90.	. -57.	0.9168	0.0832	1.5789
33.	. -4.	0.0759	0.9241	8.2500
57.	. -17.	0.0911	0.9089	3.3529
	estimate	variance	t-ratio	
COST	-0.1000	0.0086	-1.0775	
TIME	-0.2000	0.0304	-1.1469	
Vot	2.0000	0.4153	3.1033	
Optimise (-0.1,-0.1)				
COST	TIME	Pn	(1-Pn)	BVoT
59.	. -83.	0.9168	0.0832	0.7108
24.	. 1.	0.0759	0.9241	-24.0000
35.	. -11.	0.0832	0.9168	3.1818
	estimate	variance	t-ratio	
COST	-0.1000	0.0102	-0.9915	
TIME	-0.1000	0.0076	-1.1474	
Vot	1.0000	0.2505	1.9980	
COST	TIME	Pn	(1-Pn)	BVoT
89.	. -113.	0.9168	0.0832	0.7876
35.	. -11.	0.0832	0.9168	3.1818
54.	. -30.	0.0832	0.9168	1.8000
	estimate	variance	t-ratio	
COST	-0.1000	0.0087	-1.0736	
TIME	-0.1000	0.0076	-1.1479	
Vot	1.0000	0.1087	3.0328	
Optimise (-0.1,-0.3)				
COST	TIME	Pn	(1-Pn)	BVoT
32.47.	. -19.	0.9241	0.0759	1.6842
	. -24.	0.9241	0.0759	1.9583
	. -18.	0.0759	0.9241	4.3889
estimate		variance	t-ratio	
COST	-0.1000	0.0091	-1.0475	
TIME	-0.3000	0.0685	-1.1465	
Vot	3.0000	1.3551	2.5771	
$\begin{array}{r}\text { COST } \\ 42 \\ \hline 12 .\end{array}$	TIME	Pn	(1-Pn)	BVoT
	. -22.	0.9168	0.0832	1.9091
62.104.	. -29.	0.9241	0.0759	2.1379
	. -27.	0.0911	0.9089	3.8519
estimate		variance	t-ratio	
COST	-0.1000	0.0082	-1.1022	
TIME	-0.3000	0.0685	-1.1464	
Vot	3.0000	0.6931	3.6036	

All three segments are assembled to give the final design and the t-ratios are calculated.

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
90.	-57.	0.9168	0.0832	1.5789
33.	-4.	0.0759	0.9241	8.2500
57.	-17.	0.0911	0.9089	3.3529
89.	-113.	1.0000	0.0000	0.7876
35.	-11.	0.2142	0.7858	3.1818
54.	-30.	0.6457	0.3543	1.8000
42.	-22.	0.5498	0.4502	1.9091
62.	-29.	0.4013	0.5987	2.1379
104.	-27.	0.0067	0.9933	3.8519

$\mathrm{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.6348$				
	estimate	variance	t-ratio	
COST	-0.1000	0.0054	-1.3634	
TIME	-0.2000	0.0213	-1.3706	
VoT	2.0000	0.1236	5.6893	
COST	T TIME	Pn	(1-Pn)	BVoT
90	. -57.	0.0356	0.9644	1.5789
33	3. 4.	0.0522	0.9478	8.2500
57	7. -17.	0.0180	0.9820	3.3529
89	9. -113.	0.9168	0.0832	0.7876
35	5. -11.	0.0832	0.9168	3.1818
54	4. -30.	0.0832	0.9168	1.8000
42	. -22.	0.1192	0.8808	1.9091
62	. -29.	0.0356	0.9644	2.1379
104	4. -27.	0.0005	0.9995	3.8519

CORR (COST,TIME) $=-0.6348$

	estimate	variance	t-ratio	
COST	-0.1000	0.0031	-1.7896	
TIME	-0.1000	0.0041	-1.5661	
VoT	1.0000	0.0803	3.5299	
COST	TIME		Pn	$(1-\mathrm{Pn})$
90.	-57.	0.9997	0.0003	1.5789
33.	-4.	0.1091	0.8909	8.2500
57.	-17.	0.3543	0.6457	3.3529
89.	-113.	1.0000	0.0000	0.7876
35.	-11.	0.4502	0.5498	3.1818
54.	-30.	0.9734	0.0266	1.8000
42.	-22.	0.9168	0.0832	1.9091
62.	-29.	0.9241	0.0759	2.1379
104.	-27.	0.0911	0.9089	3.8519

CORR (COST,TIME) $=-0.6348$

	estimate	variance	t-ratio
COST	-0.1000	0.0046	-1.4679
TIME	-0.3000	0.0422	-1.4602
VoT	3.0000	0.3657	4.9610

Integrated

The starting designs are the same as those for the non-integrated process

$(-0.1,-0.2)$					
COST	TIME	Pn	(1-Pn)	BVoT	
104.	-64.	0.9168	0.0832	1.6250	Only change
47.	-11.	0.0759	0.9241	4.2727	these three
94	-35.	0.0832	0.9168	2.6857	scenarios
15.	-15.	0.8176	0.1824	1.0000	
25	-15.	0.6225	0.3775	1.6667	
40.	-15.	0.2689	0.7311	2.6667	
15	-20.	0.9241	0.0759	0.7500	
25	-20.	0.8176	0.1824	1.2500	
40.	-20.	0.5000	0.5000	2.0000	
$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.8316$					
	timate	variance	t-ratio		
COST	-0.1000	0.0041	-1.5593		
TIME	-0.2000	0.0149	-1.6375		
Vot	2.0000	0.1505	5.1550		
Optimise (-0.1,-0.1)					
COST	TIME	Pn	(1-Pn)	BVoT	
104.	-64.	0.0180	0.9820	1.6250	
47.	-11.	0.0266	0.9734	4.2727	
94	-35.	0.0027	0.9973	2.6857	
163.	-187.	0.9168	0.0832	0.8717	Only change
5.	19.	0.0832	0.9168	-0.2632	these three
34.	-10.	0.0832	0.9168	3.4000	scenarios
15.	-20.	0.6225	0.3775	0.7500	
25.	-20.	0.3775	0.6225	1.2500	
40.	-20.	0.1192	0.8808	2.0000	
CORR (COST, TIME) $=-0.9099$					
	timate	variance	t-ratio		
COST	-0.1000	0.0043	-1.5333		
TIME	-0.1000	0.0039	-1.6025		
Vot	1.0000	0.0363	5.2499		
Optimise (-0.1,-0.3)					
COST	TIME	Pn	(1-Pn)	BVoT	
104.	-64.	0.9998	0.0002	1.6250	
47.	-11.	0.1978	0.8022	4.2727	
94.	-35.	0.7503	0.2497	2.6857	
163.	-187.	1.0000	0.0000	0.8717	
5.	19.	0.0020	0.9980	-0.2632	
34.	-10.	0.4013	0.5987	3.4000	
-42.	6.	0.9168	0.0832	7.0000	Only change
-16.	-3.	0.9241	0.0759	-5.3333	these three
26.	-17.	0.9241	0.0759	1.5294	scenarios
CORR (COST, TIME) $=-0.8693$					
	stimate	variance	t-ratio		
CosT	-0.1000	0.0054	-1.3555		
TIME	-0.3000	0.0454	-1.4075		
Vot	3.0000	0.3621	4.9854		

The three parameter pairs with optimal design

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVoT
104.	-64.	0.9168	0.0832	1.6250
47.	-11.	0.0759	0.9241	4.2727
94.	-35.	0.0832	0.9168	2.6857
163.	-187.	1.0000	0.0000	0.8717
5.	19.	0.0134	0.9866	-0.2632
34.	-10.	0.1978	0.8022	3.4000
-42.	6.	0.9526	0.0474	7.0000
-16.	-3.	0.9002	0.0998	-5.3333
26.	-17.	0.6900	0.3100	1.5294

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.8693$

	estimate	variance	t-ratio	
COST	-0.1000	0.0036	-1.6737	
TIME	-0.2000	0.0149	-1.6380	
VoT	2.0000	0.2038	4.4300	
COST	TIME		Pn	$(1-\mathrm{Pn})$
104.	-64.	0.0180	0.9820	1.6250
47.	-11.	0.0266	0.9734	4.2727
94.	-35.	0.0027	0.9973	2.6857
163.	-187.	0.9168	0.0832	0.8717
5.	19.	0.0832	0.9168	-0.2632
34.	-10.	0.0832	0.9168	3.4000
-42.	6.	0.9734	0.0266	7.0000
-16.	-3.	0.8699	0.1301	-5.3333
26.	-17.	0.2891	0.7109	1.5294

$\operatorname{CORR}(C O S T, T I M E)=-0.8693$

	estimate	variance	t-ratio	
COST	-0.1000	0.0037	-1.6402	
TIME	-0.1000	0.0034	-1.7142	
VoT	1.0000	0.0385	5.0985	
COST	TIME		Pn	$(1-\mathrm{Pn})$
104.	-64.	0.9998	0.0002	1.6250
47.	-11.	0.1978	0.8022	4.2727
94.	-35.	0.7503	0.2497	2.6857
163.	-187.	1.0000	0.0000	0.8717
5.	19.	0.0020	0.9980	-0.2632
34.	-10.	0.4013	0.5987	3.4000
-42.	6.	0.9168	0.0832	7.0000
-16.	-3.	0.9241	0.0759	-5.3333
26.	-17.	0.9241	0.0759	1.5294

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.8693$

	estimate	variance	t-ratio
COST	-0.1000	0.0054	-1.3555
TIME	-0.3000	0.0454	-1.4075
VoT	3.0000	0.3621	4.9854

The three parameter pairs with optimal design

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
140.	-82.	1.0000	0.0000	1.7073
-9.	16.	0.0198	0.9802	0.5625
28.	-2.	0.0998	0.9002	14.0000
145.	-169.	1.0000	0.0000	0.8580
37.	-13.	0.5498	0.4502	2.8462
67.	-43.	0.9980	0.0020	1.5581
-145.	40.	0.9241	0.0759	3.6250
-71.	16.	0.9089	0.0911	4.4375
-159.	61.	0.0832	0.9168	2.6066

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.8878$

	estimate	variance	t-ratio
COST	-0.1000	0.0047	-1.4544
TIME	-0.3000	0.0428	-1.4500
VoT	3.0000	0.2157	6.4594

COST	TIME	Pn	$(1-\mathrm{Pn})$	BVOT
140.	-82.	0.9168	0.0832	1.7073
-9.	16.	0.0911	0.9089	0.5625
28.	-2.	0.0832	0.9168	14.0000
145.	-169.	1.0000	0.0000	0.8580
37.	-13.	0.2497	0.7503	2.8462
67.	-43.	0.8699	0.1301	1.5581
-145.	40.	0.9985	0.0015	3.6250
-71.	16.	0.9802	0.0198	4.4375
-159.	61.	0.9759	0.0241	2.6066

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.8878$

	estimate	variance	t-ratio	
COST	-0.1000	0.0044	-1.5126	
TIME	-0.2000	0.0153	-1.6157	
VoT	2.0000	0.1323	5.4991	
COST	TIME		Pn	$(1-\mathrm{Pn})$
140.	-82.	0.0030	0.9970	1.7073
-9.	16.	0.3318	0.6682	0.5625
28.	-2.	0.0691	0.9309	14.0000
145.	-169.	0.9168	0.0832	0.8580
37.	-13.	0.0832	0.9168	2.8462
67.	-43.	0.0832	0.9168	1.5581
-145.	40.	1.0000	0.0000	3.6250
-71.	16.	0.9959	0.0041	4.4375
-159.	61.	0.9999	0.0001	2.6066

$\operatorname{CORR}(\mathrm{COST}, \mathrm{TIME})=-0.8878$

	estimate	variance	t-ratio
COST	-0.1000	0.0052	-1.3823
TIME	-0.1000	0.0048	-1.4469
VoT	1.0000	0.0455	4.6902

