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Abstract

The distribution semantics integrates logic programming and probability theory
using a possible worlds approach. Its intuitiveness and simplicity has made it the
most widely used semantics for probabilistic logic programming, with successful
applications in many domains. When the program has function symbols, the
semantics was defined for special cases: either the program has to be definite
or the queries must have a finite number of finite explanations. In this paper
we show that it is possible to define the semantics for all programs. We also
show that this definition coincides with that of Sato and Kameya on positive
programs. Moreover, we highlight possible approaches for inference, both exact
and approximate.

Keywords: Distribution Semantics, Function Symbols, ProbLog, Probabilistic
Logic Programming

1. Introduction

The distribution semantics has been proposed independently in [1, 2, 3]
and has been rediscovered many times by various authors. It is a particularly
appealing approach for assigning a semantics for probabilistic logic programs
(PLP) because of its clear reference to possible worlds that make programs
readable and intuitive.

In the last few years many languages have been proposed that are based on
the distribution semantics, such as Probabilistic Horn Abduction [2], PRISM [3],
Independent Choice Logic [4], Logic Programs with Annotated Disjunctions [5],
ProbLog [6] and CP-logic [7]. These languages have been successfully applied
in many domains such as natural language processing, biology, chemistry and
medicine.

The definition of the distribution semantics can be given quite simply in the
case of no function symbols in the program: a probabilistic logic program under
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the distribution semantics defines a probability distribution over normal logic
programs called worlds and the probability of a ground query can be obtained
by marginalizing the joint distribution of the worlds and the query. In the case
where the program has function symbols, however, this simple definition does
not work as the probability of individual worlds is zero.

A definition of the distribution semantics for programs with function symbols
was proposed in [2, 8] but restricted to definite programs. The case of normal
programs was taken into account in [4] where the semantics required that the
programs are acyclic. A looser condition was proposed in [9] but still required
each goal to have a finite set of finite explanations.

In this paper we show that the distribution semantics can be defined for all
programs, thus also for programs that have goals with an infinite number of
possibly infinite explanations. We do so by adapting the definition of the well-
founded semantics in terms of iterated fixpoints of [10] to the case of ProbLog,
similarly to the way in which the TP operator has been adapted in [11, 12] to
the case of stratified ProbLog programs using parameterized interpretations. In
the case of an infinite number of possibly infinite explanations, we show that
the probability of queries is defined in the limit and the limit always exists.

We consider the case of ProbLog but the results are equally applicable to all
other languages under the distribution semantics, as there are linear transfor-
mations from one language to another that preserve the semantics.

The possibility of having goals with an infinite number of explanations is
useful for modeling domains with recursive definitions or chains such as those
that are found in model checking or grammar parsing. Some examples of these
domains are illustrated in Section 7.

Moreover, we discuss possible approaches for performing inference, i.e., com-
puting the probability of goals having an infinite number of explanations. Exact
inference algorithms have been presented in [13, 14, 15] but they impose limi-
tations to the form of programs. Approximate inference based on Monte Carlo
sampling can be applied to a larger class of programs directly, as the probability
of following an infinite explanation is null. The web system cplint on SWISH
[16]1 contains many example programs that can be run online with Monte Carlo
inference.

The paper is organized as follows. Section 2 presents preliminary material
on fixpoints and the well-founded semantics. Section 3 introduces the distri-
bution semantics for programs without function symbols. Section 4 discusses
the definition of the distribution semantics with function symbols in the case of
finite set of finite explanations. Section 5 represents the main contribution of
this paper and discusses the case of infinite set of infinite explanations. Section
6 illustrates the relationship with the definition of [8]. Section 7 shows some
examples where the definition applies and Section 8 discusses approaches for
inference. Finally, Section 9 concludes the paper.

1http://cplint.lamping.unife.it/
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2. Preliminaries

2.1. Partial Orders, Complete Lattices, Fixpoints

A relation on a set S is a partial order if it is reflexive, antisymmetric and
transitive. In the following, let S be a set with a partial order ď. a P S is an
upper bound of a subset X of S if x ď a for all x P X. Similarly, b P S is a lower
bound of X if b ď x for all x P X.

An element a P S is the least upper bound of a subset X of X if a is an
upper bound of X and, for all upper bounds a1 of X, we have a ď a1. Similarly,
b P S is the greatest lower bound of a subset X of S if b is a lower bound of X
and, for all lower bounds b1 of X, we have b1 ď b. The least upper bound of X
is unique, if it exists, and is denoted by lubpXq. Similarly, the greatest lower
bound of X is unique, if it exists, and is denoted by glbpXq.

A partially ordered set L is a complete lattice if lubpXq and glbpXq exist for
every subset X of L. We let J denote the top element lubpLq and K denote the
bottom element glbpLq of the complete lattice L.

Let L be a complete lattice and T : L Ñ L be a mapping. We say T is
monotonic if T pxq ď T pyq, whenever x ď y. We say that a P L is a fixpoint of
T if T paq “ a. We say that a P L is the least fixpoint of T if a is a fixpoint and,
for all fixpoints b of T , we have a ď b. Similarly, we define greatest fixpoint.

Let L be a complete lattice and T : L Ñ L be monotonic. Then we define
T Ò 0 “ K; T Ò α “ T pT Ò pα´ 1qq, if α is a successor ordinal; T Ò α “ lubptT Ò
β|β ă αuq, if α is a limit ordinal; T Ó 0 “ J; T Ó α “ T pT Ó pα ´ 1qq, if α is a
successor ordinal; T Ó α “ glbptT Ó β|β ă αuq, if α is a limit ordinal.

Proposition 1. Let L be a complete lattice and T : LÑ L be monotonic. Then
T has a lest fixpoint, lfppT q and a greatest fixpoint gfppT q.

2.2. Logic Programming

A normal program P is a set of normal rules. A normal rule has the form

r “ hÐ b1, . . . , bn, c1, . . . , cm (1)

where h, b1, . . . , bn, c1, . . . , cm are atoms.
The set of ground atoms that can be built with the symbols of a program P

is called the Herbrand base and is denoted as BP .
A two-valued interpretation I is a subset of BP . I is the set of true atoms,

so a is true in I if a P I and is false if a R I. The set Int2 of two-valued
interpretations for a program P forms a complete lattice where the partial order
ď is given by the subset relation Ď. The least upper bound and greatest lower
bound are defined as lubpXq “

Ť

IPX I and glbpXq “
Ş

IPX I. The bottom and
top element are respectively H and BP .

A three-valued interpretation I is a pair xIT ; IF y where IT and IF are subsets
of BP and represent respectively the set of true and false atoms. So a is true in I
if a P IT and is false in I if a P IF . A consistent three-valued interpretation I “
xIT ; IF y is such that ITXIF “ H. The union of two three-valued interpretations
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xIT , IF y and xJT , JF y is defined as xIT , IF yYxJT , JF y “ xITYJT , IFYJF y. The
intersection of two three-valued interpretations xIT , IF y and xJT , JF y is defined
as xIT , IF y X xJT , JF y “ xIT X JT , IF X JF y.

The set Int3 of three-valued interpretations for a program P forms a com-
plete lattice where the partial order ď is defined as xIT , IF y ď xJT , JF y if
IT Ď JT and IF Ď JF . The least upper bound and greatest lower bound are de-
fined as lubpXq “

Ť

IPX I and glbpXq “
Ş

IPX I. The bottom and top element
are respectively xH,Hy and xBP ,BP y.

The well-founded semantics (WFS) assigns a three-valued model to a pro-
gram, i.e., it identifies a consistent three-valued interpretation as the meaning
of the program. The WFS was given in [17] in terms of the least fixpoint of an
operator that is composed by two sub-operators, one computing consequences
and the other computing unfounded sets. We give here the alternative definition
of the WFS of [10] that is based on a different iterated fixpoint.

Definition 1. For a normal program P , sets Tr and Fa of ground atoms, and
a 3-valued interpretation I we define the operators OpTruePI : Int2 Ñ Int2

and OpFalsePI : Int2 Ñ Int2 as

OpTruePI pTrq “ ta|a is not true in I; and there is a clause bÐ l1, ..., ln in P , a
grounding substitution θ such that a “ bθ and for every 1 ď i ď n either
liθ is true in I, or liθ P Tr};

OpFalsePI pFaq “ ta|a is not false in I; and for every clause b Ð l1, ..., ln in P
and grounding substitution θ such that a “ bθ there is some i p1 ď i ď nq
such that liθ is false in I or liθ P Fau.

In words, the operator OpTruePI pTrq extends the interpretation I to add the
new true atoms that can be derived from P knowing I and true atoms Tr , while
OpFalsePI pFaq computes new false atoms in P by knowing I and false atoms
Fa. OpTruePI and OpFalsePI are both monotonic [10], so they both have least
and greatest fixpoints. An iterated fixpoint operator builds up dynamic strata
by constructing successive three-valued interpretations as follows.

Definition 2 (Iterated Fixed Point). For a normal program P , let IFPP :
Int3 Ñ Int3 be defined as IFPP

pIq “ I Y xlfppOpTruePI q, gfppOpFalsePI qy.

IFPP is monotonic [10] and thus as a least fixed point lfppIFPP
q. Moreover, the

well-founded model WFM pP q of P is in fact lfppIFPP
q. Let δ be the smallest

ordinal such that WFM pP q “ IFPP
Ò δ. We refer to δ as the depth of P . The

stratum of atom a is the least ordinal β such that a P IFPP
Ò β (where a may

be either in the true or false component of IFPP
Ò β). Undefined atoms of the

well-founded model do not belong to any stratum – i.e. they are not added to
IFPP

Ò δ for any ordinal δ.
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3. The Distribution Semantics for Programs without Function Sym-
bols

We present the distribution semantics for the case of ProbLog [6] as it is the
language with the simplest syntax. A ProbLog program P is composed by a set
of normal rules R and a set F of probabilistic facts. Each probabilistic fact is of
the form pi :: fi where pi P r0, 1s and fi is an atom2, meaning that each ground
instantiation fiθ of fi is true with probability pi and false with probability
1 ´ pi. Each world is obtained by selecting or rejecting each grounding of all
probabilistic facts.

An atomic choice indicates whether grounding fθ of a probabilistic fact
F “ p :: f is selected or not. It is represented with the triple pf, θ, iq where
i P t0, 1u. A set κ of atomic choices is consistent if it does not contain two
atomic choices pf, θ, iq and pf, θ, jq with i ‰ j (only one alternative is selected
for a ground probabilistic fact). The function consistentpκq returns true if κ
is consistent. A composite choice κ is a consistent set of atomic choices. The
probability of composite choice κ is P pκq “

ś

pfi,θ,1qPκ
pi

ś

pfi,θ,0qPκ
1´pi where

pi is the probability of the i-th probabilistic fact Fi. A selection σ is a total
composite choice, i.e., it contains one atomic choice for every grounding of every
probabilistic fact. A world wσ is a logic program that is identified by a selection
σ. The world wσ is formed by including the atom corresponding to each atomic
choice pf, θ, 1q of σ.

The probability of a world wσ is P pwσq “ P pσq. Since in this section we
are assuming programs without function symbols, the set of groundings of each
probabilistic fact is finite, and so is the set of worlds WP . Accordingly, for
a ProbLog program P, WP “ tw1, . . . , wmu. Moreover, P pwq is a distribution
over worlds:

ř

wPWP
P pwq “ 1. We call sound a program for which every world

has a two-valued well-founded model. We consider only sound programs, as the
uncertainty should be handled by the choices rather than by the semantics of
negation.

Let q be a query in the form of a ground atom. We define the conditional
probability of q given a world w as: P pq|wq “ 1 if q is true in w and 0 otherwise.
Since the program is sound, q can be only true or false in a world. The proba-
bility of q can thus be computed by summing out the worlds from the joint dis-
tribution of the query and the worlds: P pqq “

ř

w P pq, wq “
ř

w P pq|wqP pwq “
ř

w|ùq P pwq.

4. The Distribution Semantics for Programs with Function Symbols

When a program contains functions symbols there is the possibility that its
grounding may be infinite. If so, the number of atomic choices in a selection
that defines a world is countably infinite and there is an uncountably infinite

2With an abuse of notation, sometimes we use F to indicate the set containing the atoms
fis. The meaning of F will be clear from the context.
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number of worlds. The probability of each individual world is given by an
infinite product. We recall the following result from [18, page 218].

Lemma 1. If pi P r0, bs for all i “ 1, 2, . . . with b P r0, 1q, then the infinite
product

ś8

i“1 pi converges to 0.

Each factor in the infinite product giving the probability of a world is
bounded away from one, i.e., it belongs tor0, bs for a b P r0, 1q. To see this
it is enough to pick b as the maximum of all the probabilistic parameters that
appear in the program. This is possible if the program does not have flexi-
ble probabilities [19] or probabilities that depend on values computing during
program execution.

So if the program does not contain flexible probabilities, the probability of
each individual world is zero and the semantics of Section 3 is not well-defined.

Example 1. Consider the program

pp0q Ð up0q. tÐ  s. F1 “ a :: upXq.
ppspXqq Ð ppXq, upXq. sÐ r, q. F2 “ b :: r.

q Ð upXq.

The set of worlds is infinite and uncountable. In fact, each world can be put
in a one to one relation with a selection and a selection can be represented as
a countable sequence of atomic choices of which the first involves fact f2, the
second f1{tX{0u, the third f1{tX{sp0qu and so on. The set of selections can be
shown uncountable by Cantor’s diagonal argument. Suppose the set of selections
is countable. Then the selections could be listed in order, suppose from top to
bottom. Suppose the atomic choices of each selection are listed from left to right.
We can pick a composite choice that differs from the first selection in the first
atomic choice (if pf2,H, kq is the first atomic choice of the first selection, pick
pf2,H, 1 ´ kq), from the second selection in the second atomic choice (similar
to the case of the first atomic choice) and so on. In this way we have obtained
a selection that is not present in the list because it differs from each selection in
the list for at least an atomic choice. So it is not possible to list the selections
in order.

Example 2. Consider the game of dice proposed in [5]: the player repeatedly
throws a six-sided die. When the outcome is six, the game stops. A version of
this game where the die has three sides is:

F1 “ 1{3 :: onepXq.
F2 “ 1{2 :: twopXq.
onp0, 1q Ð onep0q.
onp0, 2q Ð  onep0q, twop0q.
onp0, 3q Ð  onep0q, twop0q.
onpspXq, 1q Ð onpX, q, onpX, 3q, onepspXqq.
onpspXq, 2q Ð onpX, q, onpX, 3q, onepspXqq, twopspXqq.
onpspXq, 3q Ð onpX, q, onpX, 3q, onepspXqq, twopspXqq.
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If we add the clauses

at least once 1 Ð onp , 1q.
never 1 Ð  at least once 1.

we can ask for the probability that at least once the die landed on face 1 and that
the die never landed on face 1. As in Example 1, this program has an infinite
and uncountable set of worlds.

We now present the definition of the distribution semantics for programs
with function symbols following [4]. The semantics for a probabilistic logic
program P with function symbols is given by defining a probability measure µ
over the set of worlds WP . Informally, µ assigns a probability to a set of subsets
of WP , rather than to every element of (the infinite set) WP . The approach
dates back to [20] who defined a probability measure µ as a real-valued function
whose domain is a σ-algebra Ω on a set W called the sample space. Together
xW,Ω, µy is called a probability space.

Definition 3. [21, Section 3.1] The set Ω of subsets of W is a σ-algebra on
the set W iff (σ-1) W P Ω; (σ-2) Ω is closed under complementation, i.e.,
ω P Ω Ñ pWzωq P Ω; and (σ-3) Ω is closed under countable union, i.e., if ωi P Ω
for i “ 1, 2, . . . then

Ť

i ωi P Ω.

The elements of Ω are called measurable sets and pW,Ωq is called a measurable
space.

Importantly, for defining the distribution semantics for programs with func-
tion symbols, not every subset of W need be present in Ω.

Definition 4. [20] Given a sample spaceW and a σ-algebra Ω of subsets ofW,
a probability measure is a function µ : Ω Ñ R that satisfies the following axioms:
(µ-1) µpωq ě 0 for all ω P Ω; (µ-2) µpWq “ 1; (µ-3) µ is countably additive, i.e.,
if O “ tω1, ω2, . . .u Ď Ω is a countable collection of pairwise disjoint sets, then
µp

Ť

ωPOq “
ř

i µpωiq.

We first consider the finite additivity version of probability spaces. In this
stronger version, the σ-algebra is replaced by an algebra.

Definition 5. [21, Section 3.1] The set Ω of subsets of W is an algebra on the
set W iff it respects conditions (σ-1), (σ-2) and condition (a-3): Ω is closed
under finite union, i.e., ω1 P Ω, ω2 P Ω Ñ pω1 Y ω2q P Ω

The probability measure is replaced by a finitely additive probability measure.

Definition 6. Given a sample space W and an algebra Ω of subsets of W,
a finitely additive probability measure is a function µ : Ω Ñ R that satisfies
axioms (µ-1) and (µ-2) of Definition 4 and axiom (m-3): µ is finitely additive,
i.e., ω1 X ω2 “ HÑ µpω1 Y ω2q “ µpω1q ` µpω2q for all ω1, ω2 P Ω.

7



Towards defining a suitable algebra given a probabilistic logic program P, we
define the set of worlds ωκ compatible with a composite choice κ as ωκ “ twσ P
WP |κ Ď σu. Thus a composite choice identifies a set of worlds. For programs
without function symbols P pκq “

ř

wPωκ
P pwq.

Given a set of composite choices K, the set of worlds ωK compatible with K
is ωK “

Ť

κPK ωκ. Two composite choices κ1 and κ2 are incompatible if their
union is not consistent. A set K of composite choices is pairwise incompatible
if for all κ1 P K,κ2 P K, κ1 ‰ κ2 implies that κ1 and κ2 are incompatible.

Regardless of whether a probabilistic logic program has a finite number of
worlds or not, obtaining pairwise incompatible sets of composite choices is an
important problem. This is because the probability of a pairwise incompatible
set K of composite choices is defined as P pKq “

ř

κPK P pκq which is easily
computed. Two sets K1 and K2 of finite composite choices are equivalent if
they correspond to the same set of worlds: ωK1

“ ωK2
.

One way to assign probabilities to a set K of composite choices is to construct
an equivalent set that is pairwise incompatible; such a set can be constructed
through the technique of splitting. More specifically, if fθ is an instantiated
fact and κ is a composite choice that does not contain an atomic choice pf, θ, kq
for any k, the split of κ on fθ is the set of composite choices Sκ,fθ “ tκ Y
tpf, θ, 0qu, κYtpf, θ, 1quu. It is easy to see that κ and Sκ,fθ identify the same set
of possible worlds, i.e., that ωκ “ ωSκ,fθ , and that Sκ,fθ is pairwise incompatible.
The technique of splitting composite choices on formulas is used for the following
result [22].

Theorem 1 (Existence of a pairwise incompatible set of composite choices [22]).
Given a finite set K of composite choices, there exists a finite set K 1 of pairwise
incompatible composite choices such that K and K 1 are equivalent.

Proof. Given a finite set of composite choices K, there are two possibilities to
form a new set K 1 of composite choices so that K and K 1 are equivalent:

1. removing dominated elements: if κ1, κ2 P K and κ1 Ă κ2, let K 1 “
Kztκ2u.

2. splitting elements: if κ1, κ2 P K are compatible (and neither is a super-
set of the other), there is a pf, θ, kq P κ1zκ2. We replace κ2 by the split of
κ2 on fθ. Let K 1 “ Kztκ2u Y Sκ2,fθ.

In both cases ωK “ ωK1 . If we repeat this two operations until neither is
applicable we obtain a splitting algorithm that terminates because K is a finite
set of composite choices. The resulting set K 1 is pairwise incompatible and is
equivalent to the original set.

Theorem 2 (Equivalence of the probability of two equivalent pairwise incom-
patible finite set of finite composite choices [23]). If K1 and K2 are both pairwise
incompatible finite sets of finite composite choices such that they are equivalent
then P pK1q “ P pK2q.

Proof. Consider the set D of all instantiated facts fθ that appear in an atomic
choice in either K1 or K2. This set is finite. Each composite choice in K1 and
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K2 has atomic choices for a subset of D. For both K1 and K2, we repeatedly
replace each composite choice κ of K1 and K2 with its split Sκ,fiθj on an fiθj
from D that does not appear in κ. This procedure does not change the total
probability as the probabilities of pfi, θj , 0q and pfi, θj , 1q sum to 1.

At the end of this procedure the two sets of composite choices will be iden-
tical. In fact, any difference can be extended into a possible world belonging to
ωK1 but not to ωK2 or vice versa.

For a probabilistic logic program P, we can thus define a unique probability
measure µ : ΩP Ñ r0, 1s where ΩP is defined as the set of sets of worlds identified
by finite sets of finite composite choices: ΩP “ tωK |K is a finite set of finite
composite choices u.

Theorem 3. ΩP is an algebra over WP .

Proof. WP “ ωK with K “ tHu. The complement ωcK of ωK where K is
a finite set of finite composite choice is ωK where K is a finite set of finite
composite choices. In fact, K can obtained with the function dualspKq of [22]
that performs Reiter’s hitting set algorithm over K, generating an element κ of
K by picking an atomic choice pf, θ, kq from each element of K and inserting in
κ the atomic choice pf, θ, 1´ kq. After this process is performed in all possible
ways, inconsistent sets of atom choices are removed obtaining K. Since the
possible choices of the atomic choices are finite, so is K. Finally, condition (a-3)
holds since the union of ωK1

with ωK2
is equal to ωK1YK2

for the definition of
ωK .

The corresponding measure µ is defined by µpωKq “ P pK 1q where K 1 is a
pairwise incompatible set of composite choices equivalent to K.

Theorem 4. xWP ,ΩP , µy is a finitely additive probability space according to
Definition 6.

Proof. µpωtHuq is equal to 1. Moreover, µpωKq ě 0 for all K and if ωK1 X

ωK2
“ H and K 11 (K 12) is pairwise incompatible and equivalent to K1 (K2),

then K 11 YK
1
2 is pairwise incompatible and

µpωK1YωK2q “
ÿ

κPK11YK
1
2

P pκq “
ÿ

κ1PK11

P pκ1q`
ÿ

κ2PK12

P pκ2q “ µpωK1q`µpωK2q.

Given a query q, a composite choice κ is an explanation for q if @w P ωκ :
w |ù q. A set K of composite choices is covering with respect to q if every world
in which q is true belongs to ωK

Definition 7. For a probabilistic logic program P, the probability of a ground
atom q is given by P pqq “ µptw|w PWP , w |ù quq.
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If q has a finite set K of finite explanations such that K is covering then tw|w P
WP ^ w |ù qu “ ωK P ΩT and we say that P pqq is finitely well-defined for the
distribution semantics. A program P is finitely well-defined if the probability
of all ground atoms in the grounding of P is finitely well-defined.

Example 3. Consider the program of Example 1. The set K “ tκu with
κ “ tpf1, tX{0u, 1q, pf1, tX{sp0qu, 1qu is a pairwise incompatible finite set of fi-
nite explanations that are covering for the query ppsp0qq. Definition 7 therefore
applies, and P pppsp0qqq “ P pκq “ a2

Example 4. Now consider Example 2. The set K “ tκ1, κ2u with

κ1 “ tpf1, tX{0u, 1q, pf1, tX{sp0qu, 1qu
κ2 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 1qu

is a pairwise incompatible finite set of finite explanations that are covering for
the query onpsp0q, 1q. According to Definition 7 then

P ponpsp0q, 1qq “ P pKq “ 1{3ˆ 1{3` 2{3ˆ 1{2ˆ 1{3 “ 2{9.

5. Infinite Covering Set of Explanations

In this section we go beyond [4] and we remove the requirement of the
finiteness of the covering set of explanations and of each explanation for a query
q.

Example 5. In Example 1, the query s has the pairwise incompatible covering
set of explanations

Ks “ tκs0, κ
s
1, . . .u

with

κsi “ tpf2,H, 1q, pf1, tX{0u, 1q, . . . , pf1, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 0qu

where sip0q is the term where the functor s is applied i times to 0. So Ks is
countable and infinite. A covering set of explanations for t is

Kt “ ttpf2,H, 0qu, κ
tu

where κt is the infinite composite choice

κt “ tpf2,H, 1q, pf1, tX{0u, 1q, pf1, tX{sp0qu, 1q, . . .u

Example 6. In Example 2, the query at least once 1 has the pairwise incom-
patible covering set of explanations

K` “ tκ`0 , κ
`
1 , . . .u
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with

κ`0 “ tpf1, tX{0u, 1qu

κ`1 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 1qu

. . .

κ`i “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, . . . , pf1, tX{s
i´1p0qu, 0q,

pf2, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 1qu

. . .

So K` is countable and infinite. The query never 1 has the pairwise incompat-
ible covering set of explanations

K´ “ tκ´0 , κ
´
1 , . . .u

with

κ´0 “ tpf1, tX{0u, 0q, pf2, tX{0u, 0qu

κ´1 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 0q,

pf2, tX{sp0qu, 0qu

. . .

κ´i “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, . . . , pf1, tX{s
i´1p0qu, 0q,

pf2, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 0q, pf2, tX{s
ip0qu, 0qu

. . .

For a probabilistic logic program P, we can define the probability measure
µ : ΩP Ñ r0, 1s where ΩP is defined as the set of sets of worlds identified by
countable sets of countable composite choices: ΩP “ tωK |K is a countable set
of countable composite choices u.

Before showing that ΩP is a σ-algebra, we need some definitions and results
regarding sequences of sets. For any sequence of sets tAn|n ě 1u define [24,
page 2]

limnÑ8An “

8
ď

n“1

8
č

k“n

An

limnÑ8An “

8
č

n“1

8
ď

k“n

An

Note that [24, page 2]

limnÑ8An “ ta|a P An i.o.u

limnÑ8An “ ta|a P An for all but a finite number of indices nu

where i.o. denotes infinitely often. The two definitions differ because an element
a of limnÑ8An may be absent from An for an infinite number of indices n,

11



provided that there is a disjoint, infinite set of indices n for which a P An. For
each a P limnÑ8An, instead, there is a m ě 1 such that @n ě m, a P An.

Then limnÑ8An Ď limnÑ8An. If limnÑ8An “ limnÑ8An “ A, then A is
called the limit of the sequence and we write A “ limnÑ8An.

A sequence tAn|n ě 1u is increasing if An´1 Ď An for all n “ 2, 3, . . .. If a
sequence tAn|n ě 1u is increasing, the limit limnÑ8An exists and is equal to
Ť8

n“1An [24, page 3].

Lemma 2. ΩP is a σ-algebra over WP .

Proof. (σ-1) is true as in the algebra case. To see that the complement ωcK of
ωK is in ΩP , let us prove that the dual K of K is a countable set of countable
composite choices and then that ωcK “ ωK . Let us consider first the case where
K is finite, i.e., let K be Kn “ tκ1, . . . , κnu. We will prove the thesis by
induction. In the base case, if K1 “ tκ1u, then we can obtain K1 by picking
each atomic choice pf, θ, kq of κ1 and inserting in K1 the composite choice
tpf, θ, 1´ kqu. As there is a finite or countable number of atomic choices in κ1,
K1 is a finite or countable set of composite choices each with one atomic choice.

In the inductive case, assume that Kn´1 “ tκ1, . . . , κn´1u and that Kn´1

is a finite or countable set of composite choices. Let Kn “ Kn´1 Y tκnu and
Kn´1 “ tκ11, κ

1
2, . . .u. We can obtain Kn by picking each κ1i and each atomic

choice pf, θ, kq of κn. If pf, θ, kq P κ1i, we discard κ1i, else if pf, θ, k1q P κ1i with
k1 ‰ k, we insert κ1i in Kn. Otherwise we generate the composite choice κ2i
where κ2i “ κ1i Y tpf, θ, 1 ´ kqu and insert it in Kn. Doing this for all atomic
choices pf, θ, kq in κn generates a finite set of finite composite choices if κn is
finite and a countable number of finite composite choices if κn is countable.
Doing this for all κ1i we obtain that Kn is a countable union of countable sets
which is a countable set [25, page 3]. ωcK “ ωK because all composite choices of
K are incompatible with each world of ωK , as they are incompatible with each
composite choice of K. So ωcK P ΩP .

If K is not finite, then let K “ tκ1, κ2, . . .u. Consider the subsets Kn of
the form Kn “ tκ1, . . . , κnu. Using the construction above build Kn for all n
and consider the set limnÑ8Kn and limnÑ8Kn. A κ1 belongs to limnÑ8Kn

if there exists an integer m ě 1 such that κ1 P Kn for all n ě m. Consider a
κ1 that belongs to limnÑ8Kn. Suppose κ1 P Kj and κ1 R Kj`1. This means
that κ1 was removed because κ1 Ď κj`1. Then κ1 will never be re-added to a
Kn with n ą j ` 1 because otherwise ωKn and ωKn would have a non-empty
intersection. So for a composite choice to appear infinitely often there must
exist an integer m ě 1 such that κ1 P Kn for all n ě m. In other words, κ1

must belong to limnÑ8Kn for all but a finite number of indices n. Therefore
limnÑ8Kn “ limnÑ8Kn “ limnÑ8Kn. Let us call K this limit.

K is countable as it is a countable union of countable sets. Moreover, each
composite choice of K is incompatible with each composite choice of K. So
ωcK “ ωK and ωcK P ΩP .

(σ-3) is true as in the algebra case.

Consider the sequence tKn|n ě 1u where Kn “ tκ1, . . . , κnu. Since Kn is an

12



increasing sequence, the limit limnÑ8Kn exists and is equal to K. Each Kn is a
finite set of composite choices and we can compute an equivalent finite pairwise
incompatible set of composite choices K 1n. For each K 1n we can compute the
probability P pK 1nq, noting that the probability of infinite composite choices is
0.

According to [24, Corollay 2, page 23],

P pKq “ P p lim
nÑ8

K 1nq “ lim
nÑ8

P pK 1nq

because the limit limnÑ8K
1
n exists. So we can define measure µ as

µpωKq “ lim
nÑ8

P pK 1nq

.

Theorem 5. xWP ,ΩP , µy is a probability space according to Definition 4.

Proof. (µ-1) and (µ-2) hold as for the finite case and for (µ-3) let

O “ tωL1
, ωL2

, . . .u

be a countable set of subsets of ΩP such that the ωLis are pairwise disjoint.
Let L1i be the pairwise incompatible set equivalent to Li and let L be

Ť8

i“1 L
1
i.

Since the ωLis are pairwise disjoint, then L is pairwise incompatible. ΩP is a
σ-algebra, so L is countable. Let L be tκ1, κ2, . . .u and let K 1n be tκ1, . . . , κnu.
Then µpOq “ limnÑ8 P pK

1
nq “ limnÑ8

ř

κPK1n
P pκq “

ř

κPL P pκq. Since L “
Ť8

i“1 L
1
i, by rearranging the terms in the last summation we get

µpOq “
ÿ

κPL
P pκq “

8
ÿ

n“1

P pL1nq “
8
ÿ

n“1

µpωLnq.

For a probabilistic logic program P, the probability of a ground atom q is
again given by P pqq “ µptw|w P WP , w |ù quq. If q has a countable set K of
explanations such that K is covering then tw|w P WP ^ w |ù qu “ ωK P ΩP
and we say that P pqq is well-defined for the distribution semantics. A program
P is well-defined if the probability of all ground atoms in the grounding of P is
well-defined.

Example 7. Consider Example 5. Since the explanations in Ks are pairwise
incompatible the probability of s can be computed as

P psq “ bp1´ aq ` bap1´ aq ` ba2p1´ aq ` . . . “
bp1´ aq

1´ a
“ b.

since the sum is a geometric series. Kt is also pairwise incompatible and
P pκtq “ 0 so P ptq “ 1´ b` 0 “ 1´ b which is what we intuitively expect.

13



Example 8. In Example 6, the explanations in K` are pairwise incompatible
so the probability of at least once 1 is given by

P pat least once 1q “ 1{3` 2{3ˆ 1{2ˆ 1{3` p2{3ˆ 1{2q2 ˆ 1{3` . . .

“ 1{3` 1{9` 1{27 . . .

“
1{3

1´ 1{3
“

1{3

2{3
“ 1{2.

since the sum is a geometric series.
For the query never 1, the explanations in K´ are pairwise incompatible so

the probability of never 1 can be computed as

P pnever 1q “ 2{3{2` 2{3ˆ 1{2ˆ 2{3ˆ 1{2` p2{3ˆ 1{2q2 ˆ 2{3ˆ 1{2` . . .

“ 1{3` 1{9` 1{27 . . . “ 1{2.

This expected as never 1 “  at least once 1.

We now want to show that every program has a countable set of countable
explanations that is covering for each query. In the following, we consider only
ground programs that however may be countably infinite, thus they can be the
result of grounding a program with function symbols.

Given two sets of composite choices K1 and K2, define the conjunction K1b

K2 of K1 and K2 as K1bK2 “ tκ1Yκ2|κ1 P K1, κ2 P K2, consistentpκ1Yκ2qu
Similarly to [11, 12], we define parameterized interpretations and a IFPPP

operator. Differently from [11, 12], here parameterized interpretations associate
to each atom a set of composite choices instead of a Boolean formula.

Definition 8. A parameterized positive two-valued interpretation Tr of a ground
probabilistic logic program P with Herbrand base BP is a set of pairs pa,Kaq

with a P atoms and Ka a set of composite choices. A parameterized negative
two-valued interpretation Fa of a ground probabilistic logic program P with
Herbrand base BP is a set of pairs pa,K aq with a P BP and K a a set of
composite choices.

Parameterized two-valued interpretations form a complete lattice where the par-
tial order is defined as I ď J if @pa,Kaq P I, pa, Laq P J : ωKa Ď ωLa . The
least upper bound and greatest lower bound always exist and are lubpXq “
tpa,

Ť

pa,KaqPI,IPX
Kaq|a P BPu and glbpXq “ tpa,

Â

pa,KaqPI,IPX
Kaq|a P BPu.

The top element J is
tpa, tHuq|a P BPu

and the bottom element K is

tpa,Hq|a P BPu.

Definition 9. A parameterized three-valued interpretation I of a ground prob-
abilistic logic program P with Herbrand base BP is a set of triples pa,Ka,K aq
with a P BP and Ka and K a sets of composite choices. A consistent parameter-
ized three-valued interpretation I is such that @pa,Ka,K aq P I, ωKaXωK a “
H.

14



Parameterized three-valued interpretations form a complete lattice where the
partial order is defined as I ď J if @pa,Ka,K aq P I, pa, La, L aq P J : ωKa Ď
ωLa and ωK a Ď ωL a . The least upper bound and greatest lower bound always
exist and are lubpXq “ tpa,

Ť

pa,Ka,K aqPI,IPX
Ka,

Ť

pa,Ka,K aqPI,IPX
K aq|a P

BPu and glbpXq “ tpa,
Â

pa,Ka,K aqPI,IPX
Ka,

Â

pa,Ka,K aqPI,IPX
K aq|a P BPu.

The top element J is
tpa, tHu, tHuq|a P BPu

and the bottom element K is

tpa,H,Hq|a P BPu.

Definition 10. For a ground program P, a two-valued parameterized positive
interpretation Tr with pairs pa, Laq, a two-valued parameterized negative inter-
pretation Fa with pairs pa,M aq and a three-valued parameterized interpreta-
tion I with triples pa,Ka,K aq, we define OpTruePP

I pTrq “ tpa, L1aq|a P BPu
where

L1a “

$

&

%

ttpa,H, 1quu if a P F
Ť

aÐb1,...,bn, c1,...,cmPRppLb1 YKb1q b . . .

bpLbn YKbnq bK c1 b . . .bK cmq
if a P BPzF

OpFalsePP
I pFaq “ tpa,M 1

aq|a P BPu where

M 1
 a “

$

&

%

ttpa,H, 0quu if a P F
Â

aÐb1,...,bn, c1,...,cmPRppM b1 bK b1q Y . . .

YpM bn bK bnq YKc1 Y . . .YKcmq
if a P BPzF

Proposition 2. OpTruePP
I and OpFalsePP

I are monotonic.

Proof. Let us consider OpTruePP
I . We have to prove that if Tr1 ď Tr2 then

OpTruePP
I pTr1q ď OpTruePP

I pTr2q. Tr1 ď Tr2 means that

@pa, Laq P Tr1, pa,Maq P Tr2 : La ĎMa.

Let pa, L1aq be the elements of OpTruePP
I pTr1q and pa,M 1

aq the elements of
OpTruePP

I pTr2q. We have to prove that L1a ĎM 1
a

If a P F then L1a “ M 1
a “ ttpa, θ, 1quu. If a P BPzF , then L1a and M 1

a have
the same structure. Since @b P BP : Lb ĎMb, then L1a ĎM 1

a

We can prove similarly that OpFalsePP
I is monotonic.

Since OpTruePP
I and OpFalsePP

I are monotonic, they have a least fixpoint and
a greatest fixpoint.

Definition 11 (Iterated Fixed Point). For a ground program P, let IFPPP

be defined as IFPPP
pIq “ tpa,Ka,K aq|pa,Kaq P lfppOpTruePP

I q, pa,K aq P
gfppOpFalsePP

I qu.

Proposition 3. IFPPP is monotonic.
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Proof. We have to prove that if I1 ď I2 then IFPPP
pI1q ď IFPPP

pI2q. I1 ď I2
means that @pa, La, L aq P I1, pa,Ma,M aq P I2 : La Ď Ma, L a Ď M a. Let
pa, L1a, L

1
 aq be the elements of IFPPP

pI1q and pa,M 1
a,M

1
 aq the elements of

IFPPP
pI2q. We have to prove that L1a Ď M 1

a and L1 a Ď M 1
 a. This follows

from the monotonicity of OpTruePP
I1

and OpFalsePP
I2

in I1 and I2 respectively,
which can be proved as in Proposition 2.

So IFPPP has a least fixpoint. Let WFMC pPq denote lfppIFPPP
q, and let δ

the smallest ordinal such that IFPPP
Ò δ “ WFMC pPq. We refer to δ as the

depth of P.
Let us now prove that OpTruePP

I and OpFalsePP
I are sound.

Lemma 3. For a ground probabilistic logic program P with probabilistic facts
F , rules R and Herbrand base BP , let Lαa be the formula associated with atom
a in OpTruePP

I Ò α. For every atom a, total choice σ and iteration α, we have:

wσ P ωLαa Ñ WFM pwσ|Iq |ù a

where wσ|I is obtained by adding to wσ the atoms a for which pa,Ka,K aq P I
and wσ P Ka as facts and by removing all the rules with a in the head for which
pa,Ka,K aq P I and wσ P K a.

Proof. Let us prove the lemma by transfinite induction: let us assume the thesis
for all β ă α and let us prove it for α. If α is a successor ordinal, then it is
easily verified for a P F . Otherwise assume wσ P ωLαa where

Lαa “
ď

aÐb1,...,bn, c1,...,cmPR
ppLα´1

b1
YKb1qb. . .bpL

α´1
bn

YKbnqbK c1b. . .bK cmq

This means that there is rule a Ð b1, . . . , bn, c1, . . . , cm P R such that wσ P
ωLα´1

bi
YKbi

for i “ 1, . . . , n and wσ P ωK cj for j “ 1 . . . ,m. By the induc-

tive assumption and because of how wσ|I is built then WFM pwσ|Iq |ù bi and
WFM pwσ|Iq |ù  cj so WFM pwσ|Iq |ù a.

If α is a limit ordinal, then

Lαa “ lubptLβa |β ă αuq “
ď

βăα

Lβa

If wσ P ωLαa then there must exist a β ă α such that wσ P ωLβa . By the inductive
assumption the hypothesis holds.

Lemma 4. For a ground probabilistic logic program P with probabilistic facts
F , rules R and Herbrand base BP , let Mα

 a be the set of composite choices
associated with atom a in OpFalsePP

I Ó α. For every atom a, total choice σ and
iteration α, we have:

wσ P ωMα
 a
Ñ WFM pwσ|Iq |ù  a

where wσ|I is built as in Lemma 3.
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Proof. Similar to the proof of Lemma 3.

The following Lemma shows that IFPPP is sound.

Lemma 5. For a ground probabilistic logic program P with probabilistic facts
F , rules R and Herbrand base BP , let Kα

a and Kα
 a be the formulas associated

with atom a in IFPPP
Ò α. For every atom a, total choice σ and iteration α,

we have:
wσ P ωKα

a
Ñ WFM pwσq |ù a

wσ P ωKα
 a
Ñ WFM pwσq |ù  a

Proof. Let us first prove that for all α, WFM pwσq “ WFM pwσ|IFPPP
Ò αq. We

can prove it by transfinite induction. Consider the case of α a successor ordinal.
Consider an atom b. If wσ R ωKα

b
and wσ R ωKα

 b
then the rules for b in wσ and

wσ|IFPPP
Ò α are the same. If wσ P ωKα

b
then b is a fact in wσ|IFPPP

Ò α

but, according to Lemma 3, WFM pwσ|IFPPP
Ò pα´1qq |ù b. For the inductive

hypothesis WFM pwσq |ù b so b has the same truth value in WFM pwσq and
WFM pwσ|IFPPP

Ò αq. Similarly, if wσ P ωKα
 b

, then WFM pwσq |ù  b and b

has the same truth value in WFM pwσq and WFM pwσ|IFPPP
Ò αq. So overall

WFM pwσq “ WFM pwσ|IFPPP
Ò αq.

If α is a limit ordinal, then Kα
b “

Ť

βăαK
β
b and Kα

 b “
Ť

βăαK
β
b . So if wσ P

ωKα
b

there is a β such wσ P ωKβ
b

and for the inductive hypothesis WFM pwσq |ù

b so b has the same truth value in WFM pwσq and WFM pwσ|IFPPP
Ò αq.

Similarly if wσ P ωKα
 b

.
We can now prove the lemma by transfinite induction. Consider the case of

α a successor ordinal. Since pa,Kα
a q P lfppOpTruePP

IFPPÒpα´1qq, by Lemma 3

wσ P ωKα
a
Ñ WFM pwσ|IFPPP

Ò pα´ 1qq |ù a

Since WFM pwσ|IFPPP
Ò pα´ 1qq “ WFM pwσq, (5) is proved.

Since pa,Kα
 aq P gfppOpFalsePP

IFPPPÒpα´1qq, by Lemma 4

wσ P ωKα
 a
Ñ WFM pwσ|IFPPP

Ò pα´ 1qq |ù  a

Since WFM pwσ|IFPPP
Ò pα´ 1qq “ WFM pwσq, (5) is proved.

If α is a limit ordinal, Kα
a “

Ť

βăαK
β
a and Kα

 a “
Ť

βăαK
β
a . If wσ P ωKα

a

there is a β such that wσ P ωKα
b

and by the inductive hypothesis (5) is proved.
Similarly for (5).

The following Lemma shows that IFPPP is complete.

Lemma 6. For a ground probabilistic logic program P with probabilistic facts
F , rules R and Herbrand base BP , let Kα

a and Kα
 a be the formulas associated

with atom a in IFPPP
Ò α. For every atom a, total choice σ and iteration α,

we have:
a P IFPwσ Ò αÑ wσ P K

α
a

 a P IFPwσ Ò αÑ wσ P K
α
 a
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Proof. Let us prove it by double transfinite induction. If α is a successor ordinal,
assume that

a P IFPwσ Ò pα´ 1q Ñ wσ P K
α´1
a

 a P IFPwσ Ò pα´ 1q Ñ wσ P K
α´1
 a

Let us perform transfinite induction on the iterations of OpTrueP
IFPPPÒpα´1q.

Let us consider a successor ordinal δ: assume that

a P OpTruewσIFPwσÒpα´1q Ò pδ ´ 1q Ñ wσ P L
δ´1
a

 a P OpFalsewσIFPwσÒpα´1q Ó pδ ´ 1q Ñ wσ PM
δ´1
 a

and prove that
a P OpTruewσIFPwσÒpα´1q Ò δ Ñ wσ P L

δ
a

 a P OpFalsewσIFPwσÒpα´1q Ó δ Ñ wσ PM
δ
 a

Consider a. If a P F then it is easily proved.
For other atoms a, a P OpTruewσIFPwσÒpα´1q Ò δ means that there is a rule aÐ

b1, . . . , bn, c1, . . . , cm such that for all i “ 1, . . . , n bi P OpTruewσIFPwσÒpα´1q Ò

pδ ´ 1q and for all j “ 1, . . . ,m  cj P IFPwσ Ò pα ´ 1q. For the inductive
hypothesis @i : wσ P Lδ´1

bi
_ wσ P Kα´1

bi
and @j : wσ P Kα´1

 cj so, for the

definition of OpTruewσIFPwσÒpα´1q, wσ P L
δ
a. Analogously for  a.

If δ is a limit ordinal, then Lδa “
Ť

µăδ L
µ
a and Mδ

 a “
Â

µăδM
µ
 a. For the

inductive hypothesis for all µ ă δ

a P OpTruewσIFPwσÒpα´1q Ò µÑ wσ P L
µ
a

 a P OpFalsewσIFPwσÒpα´1q Ó µÑ wσ PM
µ
 a

If a P OpTruewσIFPwσÒpα´1q Ò δ, then there exists a µ ă δ such that a P

OpTruewσIFPwσÒpα´1q Ò µ. For the inductive hypothesis, wσ P L
δ
a.

If a P OpFalsewσIFPwσÒpα´1q Ó δ, then, for all µ ă δ,  a P OpFalsewσIFPwσÒpα´1q Ó

µ. For the inductive hypothesis, wσ PM
δ
a .

Consider a limit α. Then Kα
a “

Ť

βăαK
β
a and Kα

 a “
Ť

βăαK
β
 a. The

inductive hypothesis is

a P IFPwσ Ò β Ñ wσ P K
β
a

 a P IFPwσ Ò β Ñ wσ P K
β
 a

If a P IFPwσ Ò α, then there exists a β ă α such that a P IFPwσ Ò β. For the
inductive hypothesis wσ P K

β
a so wσ P K

α
a . Similarly for  a.

We can now prove that IFPPP is sound and complete.
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Theorem 6. For a ground probabilistic logic program P with Herbrand base
BP , let Kα

a and Kα
 a be the formulas associated with atom a in IFPPP

Ò α.
For every atom a and total choice σ, there is an iteration α0 such that for all
α ą α0 we have:

wσ P ωKα
a
Ø WFM pwσq |ù a

wσ P ωKα
 a
Ø WFM pwσq |ù  a

Proof. The Ñ direction is Lemma 5. In the other direction, WFM pwσq |ù a
implies Dα0@α ě α0 : IFPwσ Ò α |ù a. For Lemma 6, wσ P ωKα

a
. WFM pwσq |ù

 a implies Dα0@α ě α0 : IFPwσ Ò α |ù  a. For Lemma 6, wσ P ωKα
 a

.

We can also prove that every query for every program has a countable set
of countable explanations that is covering.

Theorem 7. For a ground probabilistic logic program P, let Kα
a and Kα

 a be
the formulas associated with atom a in IFPPP

Ò α. For every atom a and every
iteration α, Kα

a and Kα
 a are countable sets of countable composite choices.

Proof. It can be proved by observing that each iteration of OpTruePP
IFPPPÒβ

and OpFalsePP
IFPPPÒβ generates countable sets of countable explanations since

the set of rules is countable.

So the probability measure µptw|w P WP , w |ù auq for a ground atom a is
well defined. Moreover, since the program is sound, for all atoms a, ωKδ

a
“ ωcKδ

 a

where δ is the depth of the program, as in each world a is either true or false
and lfppIFPCPq is a consistent parameterized three-valued interpretation.

6. Comparison with Sato and Kameya’s Definition

Sato and Kameya [8] define the distribution semantics for definite programs,
i.e., programs without negative literals. They build a probability measure on
the set of Herbrand interpretations from a collection of finite distributions. Let
F be tf1, f2, . . .u and let Xi be a random variable associated to fi whose domain
is t0, 1u.

They define VF as a topological space with the product topology such that
each t0, 1u is equipped with the discrete topology.

In order to clarify this definition, let us introduce some topology terminology.
A topology on a set V [26, page 23] is a collection Ψ of subsets of V, called the
open sets, satisfying: (t-1) any union of elements of Ψ belongs to Ψ, (t-2) any
finite intersection of elements of Ψ belongs to Ψ, (t-3) H and V belong to Ψ.
We say that pV,Ψq is a topological space. The discrete topology of a set V [27,
page 41] is the powerset PpVq of V.

The infinite Cartesian product of sets ψi for i “ 1, 2, . . . is

ρ “
8

ą

i“1

ψi “ tps1, s2, . . .q|si P ψi, i “ 1, 2, . . .u
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A product topology [26, page 53] on the infinite Cartesian product
Ś8

i“1 Vi is
obtained by taking all possible unions of open sets of the form

Ś8

i“1 νi where
(p-1) νi is open @i and (p-2) for all but finitely many i, νi “ Vi. Sets satisfying
(p-1) and (p-2) are called cylinder sets. There exists a countable number of
them.

So VF “
Ś8

i“1t0, 1u, i.e., it is an infinite Cartesian product with Vi “ t0, 1u
for all i. Sato and Kameya [8] define a probability measure ηF over the sample

space VF from a collection of finite joint distributions P
pnq
F pX1 “ k1, . . . , Xn “

knq for n ě 1 such that

$

’

&

’

%

0 ď P
pnq
F pX1 “ k1, . . . , Xn “ knq ď 1

ř

k1,...,kn
P
pnq
F pX1 “ k1, . . . , Xn “ knq “ 1

ř

kn`1
P
pn`1q
F pX1 “ k1, . . . , Xn`1 “ kn`1q “ P

pnq
F pX1 “ k1, . . . , Xn “ knq

(2)
The last equation is called the compatibility condition. It can be proved [24]
from the compatibility condition that there exists a probability space pVF ,ΨF , ηF q
where ηF is a unique probability measure on ΨF , the minimal σ-algebra con-
taining open sets of VF such that for any n,

ηF pX1 “ k1, . . . , Xn “ knq “ P
pnq
T pX1 “ k1, . . . , Xn “ knq. (3)

P
pnq
F pX1 “ k1, . . . , Xn “ knq is defined as P

pnq
F pX1 “ k1, . . . , Xn “ knq “

π1 . . . πn where πi “ pi if ki “ 1 and πi “ 1´pi if ki “ 0, with pi the annotation
of fact fi. This definition clearly satisfies the properties in (2).

The distribution P
pnq
F pX1 “ k1, . . . , Xn “ knq is then extended to a proba-

bility measure over the set of Herbrand interpretations of the whole program.
Let BP be ta1, a2, . . .u and let Yi be a random variable associated to ai whose
domain is t0, 1u. Moreover, let ak “ a if k “ 1 and ak “  a if k “ 0. VP is the
infinite Cartesian product VP “

Ś8

i“1t0, 1u.
Measure ηF is extended to ηP by introducing a series of finite joint distri-

butions P
pnq
P pY1 “ k1, . . . , Yn “ knq for n “ 1, 2, . . . by

rak11 ^ . . .^ aknn sF “ tv P VF |lhmPpvq |ù ak11 ^ . . .^ aknn u

where lhmPpvq is the least Herbrand model of RY Fv, with Fv “ tfi|vi “ 1u.
Then let

P
pnq
P pY1 “ k1, . . . , Yn “ knq “ ηF pra

k1
1 ^ . . .^ aknn sF q

Sato and Kameya state that rak11 ^ . . . ^ aknn sF is ηF -measurable and that, by

definition, P
pnq
P satisfy the compatibility condition

ÿ

kn`1

P
pn`1q
P pY1 “ k1, . . . , Yn`1 “ kn`1q “ P

pnq
P pY1 “ k1, . . . , Yn “ knq

Hence there exists a unique probability measure ηP over ΨP which is an exten-
sion of ηF .
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In order to relate this definition with ours, we need to introduce some more
terminology on σ-algebras.

Definition 12 ([24, page 6]). The minimal σ-algebra Σ1 containing a nonempty
set Σ of subsets ofW, is a σ-algebra such that (m-1) Σ1 Ě Σ, and (m-2) Σ2 Ě Σ1

whenever Σ2 Ě Σ and Σ2 is a σ-algebra. Such a minimal σ-algebra Σ1 containing
Σ is also called the σ-algebra generated by Σ and is denoted by σpΣq.

The minimal σ-algebra of a set Σ σpΣq always exists and is unique [24, page 7].

Definition 13 (Product Space). For any measurable spaces pWi,Ωiq, i “
1, 2, . . ., define

G “
8
ď

m“1

t

8
ą

i“1

ωi|ωi P Ωi, 1 ď i ď m and ωi “Wi, i ą mu

8
ą

i“1

Ωi “ σpGq

8
ą

i“1

pWi,Ωiq “ p
8

ą

i“1

Wi,
8

ą

i“1

Ωiq

Then
Ś8

i“1pWi,Ωiq is called the infinite-dimensional product-measurable space
and

Ś8

i“1 Ωi is the product σ-algebra.

It is clear that if Wi “ t0, 1u and Ωi “ Ppt0, 1uq for all i, then G is the set of all
possible unions of cylinder sets so it is the product topology on

Ś8

i“1Wi and

8
ą

i“1

pWi,Ωiq “ pVF ,ΨF q

i.e, the infinite-dimensional product-measurable space and the minimal σ-algebra
containing open sets of VF coincide. Moreover, according to [24, Exercise 1.3.6],
ΨF is the minimal σ-algebra generated by cylinder sets.

An infinite Cartesian product ρ “
Ś8

i“1 νi is consistent if it is different from
the empty set, i.e., if νi ‰ H for all i “ 1, 2, . . .. We can establish a bijective
map between infinite consistent Cartesian products ρ “

Ś8

i“1 νi and composite
choices: γF p

Ś8

i“1 νiq “ tpfi,H, kiq|νi “ tkiuu.

Lemma 7. Each element of ΨF can be written as a countable union of consis-
tent possibly infinite Cartesian products:

ψ “
8
ď

j“1

ρj (4)

where ρj “
Ś8

i“1 νi and νi P tt0u, t1u, t0, 1uu for all i “ 1, 2, . . ..
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Proof. We will show that ΨF and Φ, the set of all elements of the form (4),
coincide. Given a ψ for the form (4), each ρj can be written as a countable
union of cylinder sets so it belongs to ΨF . Since ΨF is a σ-algebra and ψ is a
countable union, then ψ P ΨF and Φ Ď ΨF .

We can prove that Φ is a σ-algebra using the same technique of Lemma 2,
where Cartesian products replace composite choices. Φ contains cylinder sets:
even if each ρj must be consistent, inconsistent sets are empty set of worlds, so
they can be removed from union (4). As ΨF is the minimal σ-algebra containing
cylinder sets, then ΨF Ď Φ.

So each element ψ of ΨF can be written as a countable union of consistent
possibly infinite Cartesian products.

Lemma 8. Consider the function ΓF : ΨF Ñ ΩP defined by ΓF pψq “ ωK
where ψ “

Ť8

j“1 ρj and K “
Ť8

j“1tγF pρjqu. Then ΓF is bijective.

Proof. Immediate because γF is bijective.

Theorem 8. Probability measure µ coincides with ηP for definite programs.

Proof. Consider xX1 “ k1, . . . , Xn “ kny and let K be

ttpf1,H, k1q, . . . , pfn,H, knquu.

Then K “ ΓF pxX1 “ k1, . . . , Xn “ knyq and µ assigns probability π1 . . . πn to
K, where πi “ pi if ki “ 1 and πi “ 1´ pi otherwise.

So µ is in accordance with P
pnq
F . But P

pnq
F can be extended in only one way

to a probability measure ηF and there is a bijection between ΨF and ΩP , so µ
is in accordance with ηF on all ΨF .

Now consider C “ ak11 ^ . . . ^ aknn . Since IFPPP
Ò δ is such that Kδ

a and
Kδ
 a are countable sets of countable composite choices for all atoms a, we can

compute a covering set of explanations K for C by taking a finite conjunction
of countable sets of composite choices, so K is a countable set of countable
composite choices.

Clearly P
pnq
P pY1 “ k1, . . . , Yn “ knq coincides with µpωKq. But P

pnq
P can be

extended in only one way to a probability measure ηP , so µ is in accordance
with ηP on all ΨP when P is a definite program.

7. Examples

Let us now see some examples where there are goals that have an infinite
number of explanations from a normal probabilistic logic program. These exam-
ples and those that will be mentioned below in Section 8 show that the extended
semantics allows users to write programs that solve concrete problems.

We first consider the game of dice proposed in [5] and discussed in Example
2: the player repeatedly throws a die. When the outcome is six, the game stops.
This game can be modeled with the following Logic Program with Annotated
Disjunctions (LPAD) [5]:
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on(0,1):1/6;on(0,2):1/6;on(0,3):1/6;

on(0,4):1/6;on(0,5):1/6;on(0,6):1/6.

on(X,1):1/6;on(X,2):1/6;on(X,3):1/6;

on(X,4):1/6;on(X,5):1/6;on(X,6):1/6:-

X1 is X-1,X1>=0,on(X1,_),

\+ on(X1,6).

at_least_once_1:- on(_,1).

never_1:- \+ at_least_once_1.

Note that PLP languages under the distribution semantics are equally expres-
sive, there are linear transformations from one language to another that preserve
the semantics. We use an LPAD here instead of ProbLog as in Example 2 for
its more general syntax that allows a more succinct program and to give an
example of the transformation between ProbLog and LPADs. This programs
has function symbols because it uses integer arithmetics and integers can be
represented with function symbols.

Another example is a prefix parser for probabilistic context free grammars,
from [13, 14]. The program below computes the probability that a string is a
prefix of a string generated by the grammar. Again the program is presented
as an LPAD for succinctness.

% grammar

% 0.4:S->SS

% 0.3:S->a

% 0.3:S->b

pre_pcfg(L):- pre_pcfg([’S’],L,[]).

pre_pcfg([A|R],L0,[]):-

rule(A,L0,RHS), % A is a nonterminal

pre_pcfg(RHS,L0,[]). % pseudo success, R is discarded

pre_pcfg([A|R],L0,L2):-

rule(A,L0,RHS), % rule A->RHS is selected

pre_pcfg(RHS,L0,L1). % recursion

pre_pcfg(R,L1,L2). % recursion

pre_pcfg([A|R],[A|L1],L2):-

\+ rule(A,_,_), % A is a terminal, consume A

pre_pcfg(R,L1,L2).

pre_pcfg([],L,L). % termination

rule(’S’,L,[’S’,’S’]):0.4; rule(’S’,L,[a]):0.3;

rule(’S’,L,[b]):0.3.

Clearly the number of explanations for the query pre_cdg(L) with L a string
may be infinite as there may be an infinite number of strings that start with L.
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Another interesting example involves handling domains with a variable num-
ber of objects. BLOG [28] is a system designed for handling unknown objects
and the paper presents an example where the blips on a radar screen are used to
probabilistically infer the presence of aircrafts, of which there are an unknown
number.

This example has been represented in logic programming in [29] and we
report below an LPAD version

numObj(N, N) :-

\+ more(N).

numObj(N, N2) :-

more(N),

N1 is N + 1,

numObj(N, N2).

more(N):0.3.

aircraft(I):-

numObj(0,N),

between(1, N, I).

blip(X, Y, T):-

aircraft(I),

inGrid(I, T),

xpos(I, T, X),

ypos(I, T, Y).

producesBlip(I, T).

producesBlip(I, T):0.1.

In this example, the number of objects follows a geometric distribution with
parameter 0.3: for each possible number of aircrafts, there is probability 0.3 that
there is one more. A blip on the radar screen may be generated by an aircraft I
where I varies from 1 to the number of aircrafts. Clearly, each possible number
of aircrafts has a non-zero probability so the number of possible explanations
for goal of the form blip(X,Y,T) is infinite.

A model checker for a fragment of Probabilistic Computation Tree Logic
(PCTL) is presented in [15]. PCTL an extension of computation tree logic
which allows for probabilistic quantification. The LPAD version of the model
checker is

% State Formulae

models(S, prop(A)) :-

holds(S,A).

models(S, neg(A)) :-

\+ models(S,A).
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models(S, and(SF1, SF2)):-

models(S, SF1),

models(S, SF2).

models(S, pr(PF, gt, B)) :-

prob(pmodels(S, PF), P),

P > B.

models(S, pr(PF, geq, B)) :-

prob(pmodels(S, PF), P),

P >= B.

trans(s0,I,s0):0.5; trans(s0,I,s1):0.3;

trans(s0,I,s2):0.2.

trans(s1,I,s1):0.4; trans(s1,I,s3):0.1;

trans(s1,I,s4):0.5.

trans(s4,_,s3).

% Path Formulae

pmodels(S, PF) :-

pmodels(S, PF, _).

pmodels(S, until(SF1, SF2), H) :-

models(S,SF2).

pmodels(S, until(SF1, SF2), H) :-

models(S, SF1),

trans(S, H, T),

pmodels(T, until(SF1, SF2), next(H)).

pmodels(S, next(SF), H) :-

trans(S, H, T),

pmodels(T, SF).

The logic partitions formulas into state formulas and path formulas. The first
are checked with goals of the form models(S, SF) that return true if state
formula SF is true in state S. Path formulas are checked with goals of the form
pmodels(S,PF) that return true if path formula PF is true in state S. Note that
path formula take into account state transitions, that follow a Markov chain
model where a transition from a state depends only on the current state. The
probability of a path formula at a state requires taking into account all paths
starting from the state in which the formula holds. Since the paths may be
infinite, queries to this program may have an infinite number of explanations.

Note that this program makes also use of nested probability computations,
as the last two clauses for models/2 have the predicate prob/2 in the body
that computes the probability of a query. While we haven’t defined a semantics
for this case, it is not difficult to define one provided the nested calls are well-
founded, i.e., that there are no circular dependencies, please see [19, 30].
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8. Inference

Recently, a number of papers have started to appear that present techniques
for exact inference when the number of explanations is infinite. In [13, 14]
the authors extended PRISM by considering programs under the generative
exclusiveness condition: at any choice point in any execution path of the top-
goal, the choice is done according to a value sampled from a PRISM probabilistic
switch. The generative exclusiveness condition implies that every disjunction is
exclusive and originates from a probabilistic choice made by some switch.

In this case, a cyclic explanation graph can be computed that encodes the de-
pendence of atoms on probabilistic switches. The graph is composed of formulas
of the form

H ô pmswpidH , v1q ^ β1q _ . . ._ pmswpidH , vM q ^ βM q

where H is a ground atom and the βis for i “ 1, . . . ,M are conjunctions of
ground atoms and switch atoms. The authors show that from explanations
graphs a system of equations can be obtained of the form

P pHq “ PDBpmswpidH , v1qqP pβ1q ` . . .` PDBpmswpidH , vM qqP pβM q

where P pHq is a variable, PDBpmswpidH , viq is a constant (the probability of
the switch value from the program) and P pβiq is a product of some switch
probabilities and variables.

The authors of [13, 14] show that by first assigning all atoms probability
0 and repeatedly applying the equations to compute updated values results in
a process that converges to a solution of the system of equations. For some
program, such as those computing the probability of prefixes of strings from
Probabilistic Context Free Grammars, the system is linear, so solving it is even
simpler. In general, this provides an approach for performing inference when
the number of explanations is infinite but under the generative exclusiveness
condition.

In [15] the authors present the algorithm PIP (for Probabilistic Inference
Plus), that is able to peform inference even when explanations are not necessarily
mutually exclusive and the number of explanations is infinite. They require
the programs to be temporally well-formed, i.e., that one of the arguments of
predicates can be interpreted as a time that grows from head to body. In this
case the explanations for an atom can be represented succinctly by Definite
Clause Grammars (DCGs). Such DCGs are called explanation generators and
are used to build Factored Explanation Diagrams (FED) that have a structure
that closely follows that of a Binary Decision Diagram (BDD). While the internal
nodes of a BDD are Boolean variables, a FED contains two kinds of internal
nodes: one representing terminal symbols of explanations (msws), and the other
representing non-terminal symbols of explanations. FEDs can be used to obtain
a system of polynomial equations that is monotonic and thus convergent as in
[13, 14]. So, even when the system is non linear, a least solution can be computed
to within an arbitrary approximation bound by an iterative procedure.
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Turning to approximate inference, we can observe that Monte Carlo sampling
approaches such as ProbLog [31] and MCINTYRE [32], while not developed for
this purpose, can handle as well goals with an infinite number of possibly infi-
nite explanations. In fact, these approaches work by running the query many
times to a program where the probabilistic choices are sampled independently
in each run. The proportion of times that the query succeeded gives an estimate
of the probability of the query. Each run/derivation corresponds naturally to
an explanation and the probability of a run is the same as the probability of
the corresponding explanation. The risk is that of incurring an infinite expla-
nation. But infinite explanations have probability 0 so the probability that the
computation goes down such a path and does not terminate is 0 as well. As
a consequence, Monte Carlo inference can be used on programs with an infi-
nite number of possibly infinite of explanations. As examples of applications of
MCINTRYE to these programs see the web system cplint on SWISH [16] that
allows the user to query LPADs using exact and approximate inference. cplint
on SWISH contains the following examples that have infinite explanations:

• parser for a Probabilistic Context Free Left Recursive Grammar3;

• prefix parser for PCFGs4 [14];

• prefix parser for Probabilistic Left-Corner Grammars5 [14];

• model checker of a Markov chain6 [15];

• model checker of the Synchronous Leader Election Protocol expressed in
PCTL7 [15];

• model checker for fuzzy formulas in generalized probabilistic logic 8 [15];

• model checker for Recursive Markov Chains expressed in generalized prob-
abilistic logic 9 [15];

• random arithmetic functions 10[33];

• program for handling unknown objects11 [28, 29];

• game of dice [5]12.

3http://cplint.lamping.unife.it/example/inference/pcfglr.pl
4http://cplint.lamping.unife.it/example/inference/prefix.pl
5http://cplint.lamping.unife.it/example/inference/pre_plcg.pl
6http://cplint.lamping.unife.it/example/inference/markov_chain.pl
7http://cplint.lamping.unife.it/example/inference/pctl_slep.pl
8http://cplint.lamping.unife.it/example/inference/gpl.pl
9http://cplint.lamping.unife.it/example/inference/rmc.pl

10http://cplint.lamping.unife.it/example/inference/arithm.pl
11http://cplint.lamping.unife.it/example/inference/var_obj.pl
12http://cplint.lamping.unife.it/example/inference/threesideddicemc.pl
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Another form of approximate inference achieves a lower bound on the probability
of the query by imposing a depth bound on the derivations of an exact inference
algorithm computing explanations. In this way, infinite derivations are avoided
at the cost of possibly cutting legitimate long explanations. This has been
implemented in the PITA exact inference algorithm [34, 35] available in cplint on
SWISH. Many of the above examples can be run with this inference approach13.

9. Conclusions

We have presented a definition of the distribution semantics in terms of an
iterated fixpoint operator that allowed us to prove that the semantics is well
defined for all programs. In this way we can give a meaning to programs where
the queries have an infinite number of possibly infinite explanations. We have
shown that there are many interesting problems that benefit from such a feature.
We have also discussed approaches for performing inference on these programs.
The operator we have presented could also be used for developing an exact
forward inference algorithm similarly to [11, 12], complementing recent work on
inference [13, 14, 15].
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