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SUMMARY

An increasingly large number of HPC systems rely on heterogeneous architectures combining traditional
multi-core CPUs with power efficient accelerators. Designing efficient applications for these systems has
been troublesome in the past as accelerators could usually be programmed using specific programming
languages threatening maintainability, portability and correctness. Several new programming environments
try to tackle this problem. Among them, OpenACC offers a high-level approach based on compiler directives
to mark regions of existing C, C++ or Fortran codes to run on accelerators. This approach directly addresses
code portability, leaving to compilers the support of each different accelerator, but one has to carefully assess
the relative costs of portable approaches versus computing efficiency. In this paper we address precisely this
issue, using as a test-bench a massively parallel Lattice Boltzmann algorithm. We first describe our multi-
node implementation and optimization of the algorithm, using OpenACC and MPI. We then benchmark the
code on a variety of processors, including traditional CPUs and GPUs, and make accurate performance
comparisons with other GPU implementations of the same algorithm using CUDA and OpenCL. We
also asses the performance impact associated to portable programming, and the actual portability and
performance-portability of OpenACC-based applications across several state-of-the-art architectures.
This is the pre-peer reviewed version of the following article: Performance and Portability of
Accelerated Lattice Boltzmann Applications with OpenACC. (2016) Concurrency Computat.: Pract.
Exper., 28: 3485-3502, which has been published in final form at 10.1002/cpe.3862. This article may be
used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION, RELATED WORKS AND BACKGROUND

Lattice Boltzmann (LB) methods are widely used in computational fluid dynamics, to simulate flows
in two and three dimensions. From the computational point of view, LB methods have a large degree
of available parallelism so they are suitable for massively parallel systems.

Over the years, LB codes have been written and optimized for large clusters of commodity
CPUs [1], for application-specific machines [2, 3, 4] and even for FPGAs [5]. More recently work
has focused on exploiting the parallelism of powerful traditional many-core processors [6], and of
power-efficient accelerators such as GPUs [7, 8] or Xeon-Phi processors [9].

As diversified HPC architectures emerge, it is becoming more and more important to have robust
methodologies to port and maintain codes for several architectures. This need has sparked the
development of frameworks, such as the Open Computing Language (OpenCL), allowing to write
portable codes, that can be compiled (with varying degrees of efficiency) for several accelerator
architectures. OpenCL is a low level approach: it usually obtains high performances at the price of
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2 E. CALORE AT AL.

substantial adjustments in the code implying large human efforts and seriously posing a threat to
code correctness and maintainability.

Other approaches start to emerge, mainly based on directives: compilers generate offload-
functions for accelerators, following “hints” provided by programmers as annotations to the
original – C, C++ or Fortran – codes [10]. Examples along this direction are OpenACC [11]
and OpenMP4 [12]. Other proposals, such as the Hybrid Multi-core Parallel Programming model
(HMPP) proposed by CAPS, hiCUDA [13], OpenMPC [14] and StarSs [15] follow the same line.

OpenACC today is considered among the most promising approaches to develop high-
performance scientific applications [16]. In many ways its structure is similar to OpenMP
(Open Multi-Processing) [17]: both frameworks are directive based, but while OpenMP is more
prescriptive OpenACC is more descriptive. Indeed, with OpenACC the programmer only specifies
that a certain loop should run in parallel on the accelerator and leaves the exact mapping to the
compiler. This approach gives more freedom to the compiler and the associated runtime support,
offering – at least in principle – larger scope for performance portability.

So far very few OpenACC implementations of LB codes have been described in literature: [18]
focuses on accelerating via OpenACC a part of a large CFD application optimized for CPU; several
other works describe CUDA [19] or OpenCL [20] implementations; also the scalability of OpenACC
codes on GPU clusters has been rarely addressed [21]. This work describes the implementation of a
state-of-the-art LB code fully written in OpenACC, including accurate performance measurements
and an assessment of the actual portability improvements made possible by this programming style.
This is an extended version of [22], that we have presented at the EuroPar 2015 conference. In
the original paper, we focused on the design and optimization of a multi-GPU LB code, discussing
performance trade-offs between a portable approach based on OpenACC and processor-specific
languages such as CUDA. The present work includes additional material, discussing and analyzing
issues related to the portability as well as the performance portability of our OpenACC codes. Our
analysis is based on tests performed on several computing architectures, including multi-core CPUs
and several different GPUs. In other words, the original paper provided an answer to the question
of the performance price that one has to pay if one uses OpenACC instead of a processor-specific
programming language, while this extended version also answers the question of how portable and
performance-portable is just one architecture-oblivious OpenACC code across a fairly large set of
different architectures.

Very recently Blair et al. have described an implementation of a MPI Lattice Boltzmann code
with OpenACC [23]; however portability of code and performances across different architectures
have not been analyzed; to the best of our knowledge, this paper is the first work discussing these
issues for OpenACC.

This paper is structured as follows: Sect. 2 gives a short overview of LB methods and Sect. 3
a quick overview of the OpenACC programming framework; Sect. 4 describes in details our
OpenACC implementation, and Sect. 5 analyzes performance results on GPUs in comparison with
a CUDA implementation of the same code. Section 6 (added in the extended version) analyzes the
portability of the same OpenACC code on different architectures: Intel E5-2630 v3 multicore CPUs,
NVIDIA K80 and AMD S9150 GPUs. Finally, Sect. 7 highlights our conclusions.

2. LATTICE BOLTZMANN MODELS

Lattice Boltzmann methods (LB) are widely used in computational fluid dynamics, to describe flows
in two and three dimensions. LB methods [24] are discrete in position and momentum spaces; they
are based on the synthetic dynamics of populations sitting at the sites of a discrete lattice. At each
time step, populations hop from lattice-site to lattice-site and then incoming populations collide
among one another, that is, they mix and their values change accordingly.

Over the years, many different LB models have been developed, handling flows in 2 and 3
dimensions with different degrees of accuracy [25]. LB models in n dimensions with y populations
are labeled as DnQy; in this paper, we consider a state-of-the-art D2Q37 model that correctly
reproduces the thermo-hydrodynamical equations of motion of a fluid in two dimensions and
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PERFORMANCES AND PORTABILITY OF ACCELERATED LB APPLICATIONS WITH OPENACC 3

Figure 1. Left: LB populations in the D2Q37 model, hopping to nearby sites during the propagate phase.
Right: populations fl are identified by an arbitrary label; for each l population data is stored contiguously in

memory.

automatically enforces the equation of state of a perfect gas (p = ρT ) [26, 27]; this model has
been extensively used for large scale simulations of convective turbulence (see e.g., [28, 29, 30]).

In our model, populations (fl(x, t) l = 1 · · · 37) are defined at the sites of a discrete and regular 2-
D lattice; each fl(x, t) has a given lattice velocity cl; populations evolve in (discrete) time according
to the following equation (the BGK operator [31]):

fl(x, t+ ∆t) = fl(x− cl∆t, t)−
∆t

τ

(
fl(x− cl∆t, t)− f (eq)l

)
(1)

Macroscopic quantities, density ρ, velocity u and temperature T are defined in terms of the
fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑
l

fl, ρu =
∑
l

clfl, DρT =
∑
l

|cl − u|2 fl; (2)

the equilibrium distributions (f (eq)l ) are known functions of these macroscopic quantities [24], and
τ is a suitably chosen relaxation time. In words, (1) stipulates that populations drift from lattice
site to lattice site according to the value of their velocities (propagation) and, on arrival at point
x, they interact among one another and their values change accordingly (collision). One can show
that, in suitable limiting cases and after appropriate renormalizations are applied, the evolution of
the macroscopic variables defined in (2) obeys the thermo-hydrodynamical equations of motion of
the fluid.

From a computational point of view the physically very accurate LB scheme that we adopt is more
complex than many simpler LB models. One specific optimization step of the algorithm applies
a systematic projection onto a basis of Hermite polynomials to improve numerical stability; this
translates into severe requirements in terms of required storage, memory bandwidth and floating-
point throughput (at each time step,≈ 7600 double-precision floating point operations are performed
per lattice point).

An LB code takes an initial assignment of the populations, in accordance with a given initial
condition at t = 0 on some spatial domain, and iterates (1) for all points in the domain and for as
many time-steps as needed; boundary-conditions at the edges of the integration domain are enforced
at each time-step by appropriately modifying population values at and close to the boundaries.

The LB approach offers a huge degree of easily identified parallelism. Indeed, (1) shows that
the propagation step amounts to gathering the values of the fields fl from neighboring sites,
corresponding to populations drifting towards x with velocity cl; the following step (collision) then
performs all mathematical processing needed to compute the quantities in the r.h.s. of (1), for each
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4 E. CALORE AT AL.

1#pragma acc copyin (x ) , copyout (y )
2 {
3 // asynchronous kernel execution
4 #pragma acc kernels present (x ) present (y ) async ( 1 )
5 {
6 #pragma acc loop
7 for (int i = 0 ; i < N ; ++i )
8 y [i ] = 0 . 0 ;
9 #pragma acc loop device_type (NVIDIA ) gang vector ( 2 5 6 )

10 for (int i = 0 ; i < N ; ++i )
11 y [i ] = a∗x [i ] + y [i ] ;
12 }
13
14 //... process independent data on the host
15
16 // wait for completion of kernel execution
17 #pragma acc wait ( 1 )
18
19 // ... other processing on the host
20 }

Figure 2. Sample OpenACC code computing a saxpy function on vectors x and y. Directives mark the code
region to run on the accelerator and instruct the compiler on how to generate code for the target device.

point in the grid. One sees immediately from (1), that both steps above are fully uncorrelated for
different points of the grid, so they can be executed in parallel according to any schedule, as long as
step 1 precedes step 2 for all lattice points.

In practice, an LB code executes a loop over time steps, and at each iterations applies three
kernels: propagate, bc and collide.

• propagate moves populations across lattice sites according to the pattern of Figure 1,
collecting at each site all populations that will interact at the next phase (collide). In our
model populations move up to three lattice sites per time step. Computer-wise, propagate
moves blocks of memory locations allocated at sparse addresses, corresponding to populations
of neighbor cells.

• bc executes after propagation and adjusts populations at the edges of the lattice, enforcing
appropriate boundary conditions (e.g., constant temperature and zero velocity at the top and
bottom edges of the lattice). For the left and right edges, we usually apply periodic boundary
conditions. This is conveniently done by adding halo columns at the edges of the lattice, where
we copy the rightmost and leftmost columns (3 in our case) of the lattice before starting the
propagate step. After this is done, points close to the boundaries are processed as those in
the bulk.

• collide performs all mathematical steps needed to compute the population values at each
lattice site at the new time step, as per (1). Input data for this phase are the populations
gathered by the previous propagate phase. This step is the most floating point intensive
part of the code.

These three routines use essentially all the wall-clock time of a typical LB production run,
as additional measurement routines, typically computing averages or correlations of physical
observables, are invoked once every several hundreds or even thousands of time steps.

3. OPENACC

OpenACC is a programming standard for parallel computing aimed to facilitate code development
on heterogeneous computing systems, simplifying the porting of existing codes and trying to achieve
a significant level of performance portability.
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PERFORMANCES AND PORTABILITY OF ACCELERATED LB APPLICATIONS WITH OPENACC 5

// processing of lattice-bulk
propagateBulk ( f2 , f1 ) ; // async execution on queue (1)
bcBulk ( f2 , f1 ) ; // async execution on queue (1)
collideInBulk ( f2 , f1 ) ; // async execution on queue (1)

// execution of pbc step
#pragma acc host_data use_device (f2 ) {

for ( pp = 0 ; pp < 3 7 ; pp++ ) {
MPI_Sendrecv ( &(f2 [ . . . ] ) , 3∗NY , . . . ) ;
MPI_Sendrecv ( &(f2 [ . . . ] ) , 3∗NY , . . . ) ;

}
}

// processing of the three leftmost columns
propagateL ( f2 , f1 ) ; // async execution on queue (2)
bcL ( f2 , f1 ) ; // async execution on queue (2)
collideL ( f1 , f2 ) ; // async execution on queue (2)

// processing of the three rightmost columns
propagateR ( f2 , f1 ) ; // async execution on queue (3)
bcR ( f2 , f1 ) ; // async execution on queue (3)
collideR ( f1 , f2 ) ; // async execution on queue (3)

Figure 3. Scheduling of operations started by the host at each time step of the main program. Kernels
processing the lattice bulk run asynchronously on the accelerator, and overlap with MPI communications

executed by the host.

Its support for different architectures relies on compilers, and thanks to its generality the same
code can be compiled and parallelized for different target architectures if the corresponding back-
end and run-time support are available. Recent versions of OpenACC implementations, such as the
PGI release, version 15.10, can address as target architectures NVIDIA and AMD accelerators as
well as commodity multicore x86 CPUs [32].

OpenACC, like OpenCL, provides a widely applicable abstraction of parallel hardware, making
it possible to run the same code across different architectures. Contrary to OpenCL, where specific
functions (called kernels) have to be explicitly programmed to run in a parallel fashion (e.g. as GPU
threads), OpenACC relies on developer-provided directives that help the compiler identify those
parts of the source code that can be implemented as parallel functions. Following these directives
the compiler generates one or more kernel functions – in the OpenCL sense – to be executed in
parallel by many threads.

OpenACC is similar to the OpenMP (Open Multi-Processing) language in several ways [17];
both environments are directive based, but OpenACC targets accelerators in general, while so far
OpenMP has been used to target mainly multi-core CPUs. The latest version of OpenMP [12] has
recently introduced support for accelerators using a model very close to that of OpenACC. From a
programmers perspective, OpenMP is more prescriptive in the sense that explicit mapping of work-
loads to compute-units, e.g. using distribute constructs, is required. In contrast to this OpenACC,
being more descriptive, only requires the programmer to expose parallelism and let the compiler
do the actual mapping to the compute-units. Since different hardware architectures require different
mappings to perform efficiently, this approach makes OpenACC in principle more performance
portable.

Existing C/C++ or Fortran code, developed and tested on traditional CPU architectures, can be
annotated with OpenACC directives (e.g. parallel or kernels directives) to instruct the compiler
to transform loop iterations into distinct threads, belonging to one or more functions to run on an
accelerator. Figure 2 shows a simple example based on the saxpy operation from the Basic Linear
Algebra Subprogram (BLAS) set.

Line 4 contains the pragma acc kernels directive which identifies the code to run on the
accelerator; in this case the iterations of the two for-loops are parallelized and the execution of
the function is offloaded at run-time from the host CPU to an attached accelerator device (e.g. a
GPU). More directives are available, allowing a finer tuning of the application. As an example, the
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6 E. CALORE AT AL.

inline void propagate (
const data_t∗ restrict prv , data_t∗ restrict nxt ) {
int ix , iy , site_i ;

#pragma acc kernels present (prv ) present (nxt )
#pragma acc loop gang independent
for ( ix=HX ; ix < (HX+SIZEX ) ; ix++) {
#pragma acc loop vector independent
for ( iy=HY ; iy<(HY+SIZEY ) ; iy++) {

site_i = (ix∗NY ) + iy ;
nxt [ site_i ] = prv [ site_i−3∗NY+ 1 ] ;
nxt [NX∗NY+site_i ] = prv [NX∗NY+site_i−3∗NY ] ;
. . . .

}
}

}

Figure 4. OpenACC pragmas in the body of the propagate() function; pragmas before the loops instruct
the compiler to generate corresponding accelerator kernels and to configure the grid of threads and blocks.

number of threads launched by each device function and their grouping can be fine tuned by the
vector, worker and gang directives, in a similar fashion as setting the number of work-items and
work-groups in OpenCL: in the example of Figure 2, line 9 sets vector length to 256. Since the
gang and vector clauses encode a hardware specific tuning they follow a device type clause, e.g.,
they only apply to the target specified as an argument of the device type clause and allow hardware
specific tuning without harming performance portability.

Data transfers between host and device memories are automatically generated, when needed.
These automatically generated data movements are often overly cautious and thus can be optimized
by the programmer with data directives. For example, in the code shown in Figure 2 the clause
copyin(x) (at line 1) copies the array of the host CPU pointed by x onto the accelerator memory
before entering the following code region; while copyout(y) allocates an empty buffer before
entering the region and copies it back to the host memory after leaving. Introducing this so called
data region avoids multiple unnecessary copies:

1. a copy of y from host memory to the accelerator memory before the loop in line 7 and the
reverse copy after the loop.

2. a copy of y from host memory to the accelerator memory before the loop in line 10.

3. a copy of x from the accelerator memory to host memory after the loop in line 10.

The last OpenACC feature used in the example is the asynchronous clause async (at line 4)
which instructs the compiler to generate asynchronous data transfers or kernel executions and allows
overlapping of independent data transfers, kernels and CPU work. A directive corresponding to the
async clause is provided by the OpenACC API (#pragma acc wait at line 17) which allows to wait
for completion. For more details on OpenACC features and functions see [11].

4. OPENACC IMPLEMENTATION AND OPTIMIZATION OF THE D2Q37 MODEL

This section describes in details the strategies that we have adopted to write an OpenACC version
of our LB code suitable for compilation and execution on NVIDIA GPUs. In a later section, we will
then focus on portability issues, as we experiment with this code on different HPC architectures and
measure the corresponding performances.

One of our initial goals was to have a massively parallel program, able to run on a large number of
GPUs. From the point of view of data organization, we adopt a very simple domain decomposition,
splitting our 2-D physical lattice of size Ltot

x × Ly on N accelerators along the X dimension; GPUs
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PERFORMANCES AND PORTABILITY OF ACCELERATED LB APPLICATIONS WITH OPENACC 7

Figure 5. Profiling of one time step. In this example, pbc (yellow line marked as “MPI”) and the kernels
processing the bulk of the lattice (blue line marked as “Bulk”) fully overlap.

are connected in a ring-scheme, each hosting a sub-lattice of Ltot
x /N × Ly = Lx × Ly points. We

use MPI for the overall control of node-parallelism, starting one MPI rank for each GPU, so GPU-
to-GPU transfers are transparently handled by the MPI library; once this is done, we use OpenACC
to annotate the code executed by each MPI rank.

On each MPI-rank the physical lattice is surrounded by halo columns and rows: for a physical
sub-lattice of size Lx × Ly, we allocate NX ×NY points, with NX = Hx + Lx +Hx and NY =
Hy + Ly +Hy. With this splitting, halo-columns are allocated at successive memory locations, so
we do not need to gather halo data on contiguous buffers before communication.

Data is stored in memory in the Structure-of-Array (SoA) scheme, where arrays of all populations
are stored one after the other. This helps exploit data-parallelism and enables data-coalescing when
accessing data needed by work-items executing in parallel.

The lattice is copied on the accelerator memory at the beginning of the loop over time-steps, and
then all three kernels of the algorithm – propagate, bc and collide – run in sequence on the
accelerator for as many time-steps as needed. Merging in one step execution of propagate and
collide is a common optimization in LBM codes. However, in our case this would require a more
complex organization of the code to process separately lattice-sites that have no dependencies with
bc kernel that runs before collide but after propagate. For this reason our implementation
runs the two kernels in two separate steps; this is also useful for benchmark purposes since these
kernels have different computing requirements being – in our LB model – the first memory-bound
and the latter strongly compute-bound

The execution of these kernels starts after an update of the left- and right-halos is performed: we
copy population data coming from the three adjoining physical columns of the neighbor nodes in
the ring to the left and right halos. This is done by an MPI node-to-node communication step that
we call periodic boundary condition (pbc). Once this is done, all remaining steps are local to each
MPI-rank so they run in parallel.

As lattice data is stored in the SoA format, pbc exchanges 37 buffers, each of 3 columns, with its
left and right neighbors. It executes a loop over the 37 populations and each iteration performs two
MPI send-receive operations, respectively for the left and the right halo (see Figure 3). On GPUs,
we exploit CUDA-aware MPI features, available in the OpenMPI library, and use data pointers
referencing GPU-memory buffers as source and destination, making the code more compact and
readable. In OpenACC this is controlled by the #pragma acc host data use device(p)
clause, that maps a GPU memory pointer p into host space, so it can be used as an argument of
the MPI send and receive functions. Also, communications between GPUs are optimized in the
library and implemented according to physical location of buffers and the capabilities of the devices
involved, also enabling GPUDirect peer-to-peer and RDMA features.

Coming now to the main kernels of the algorithm, Figure 4 shows the code of the propagate
function. For each lattice site we update the values of the populations, copying from the prv array
onto the nxt array. The body of propagate is annotated with several OpenACC directives
telling the compiler how to organize the kernel on the accelerator. #pragma acc kernels
present(prv) present(nxt) tells the compiler to run the following instructions on the
accelerator; it also carries the information that the prv and nxt arrays are already available on the
accelerator memory, so no host-accelerator data transfer is needed; #pragma acc loop gang
independent states that each iteration of the following loop (over the X-dimension) can be run
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8 E. CALORE AT AL.

by different gangs or block of threads; #pragma acc loop vector independent tells
the compiler that iterations of the loop over Y-dimension can likewise be run as independent vectors
of threads. Using these directives the compiler structures the thread-blocks and block-grids of the
accelerator computation in such a way that: one thread is associated to and processes one lattice-site;
each thread-block processes a group of lattice sites lying along the Y-direction, and several blocks
process sites along the X-direction. This allows to expose all available parallelism.

We split bc() in two kernels, processing the upper and lower boundaries. They run in parallel
since there is no data dependencies among them. We have not further optimized this step because
its computational cost is small compared to the other phases of the code.

The collide() kernel sweeps all lattice sites and computes the collisional function. The code
has two outer loops over the two dimensions of the lattice, and several inner loops to compute
temporary values. We have annotated the outer loops as we did for propagate(), making each
thread to process one lattice site. Inner loops are computed serially by the thread associated to each
site.

Performance wise, pbc() is the most critical step of the multi-GPU code, since it involves
node-to-node communications that can badly affect performance and scaling. We organize the code
so node-to-node communications are (fully or partially) overlapped with the execution of other
segments of the code. Generally speaking, propagate, bc and collide must execute one
after the other, and they cannot start before pbc has completed. One easily sees however that this
dependency does not apply to all sites of the lattice outside the three leftmost and rightmost border
columns (we call this region the bulk of the lattice). The obvious conclusion is that processing of
the bulk can proceed in parallel with the execution of pbc, while the sites on the three leftmost and
rightmost columns are processed only after pbc has completed.

OpenACC abstracts concurrent execution using queues: function definitions flagged by the
#pragma acc async(n) directive enqueue the corresponding kernels asynchronously on
queue n, leaving the host free to perform other tasks concurrently. In our case, this happens for
propagateBulk, bcBulk and collideBulk, which start on queue 1 (see Figure 3), while
the host concurrently executes the MPI transfers of pbc. After communications complete, the host
starts three more kernels on two different queues (2 and 3) to process the right and left borders, so
they execute in parallel if sufficient resources on the accelerator are available. This structure allows
to overlap pbc with all other steps of the code, most importantly with collideBulk, which is
the most time consuming kernel, giving more opportunities to hide communication overheads when
running on a large number of nodes.

Figure 5 shows the profiling of one time step on one GPU on a lattice of 1080× 2048 points
split across 24 GPUs. MPI communications started by pbc are internal (MemCopy DtoD), moving
data between GPUs on the same host, or external (MemCopy DtoH and HtoD) moving data
between GPUs on different hosts. The actual scheduling is as expected: both types of GPU-to-GPU
communications fully overlap with propagate, bc and collide on the bulk.

5. GPU RESULTS

We start our performance analysis on NVIDIA GPUs, comparing our OpenACC code with an
implementation of the same algorithm written in CUDA [33, 19] and optimized for Fermi and
Kepler architectures. In other words, we compare with a low-level programming approach which
gives programmers more freedom in mapping codes and data on GPU architectures, and then more
optimization options.

Table I summarizes performance figures of codes on a reference lattice of 1920× 2048 sites
run on two NVIDIA systems, the K40 and K80 boards. These accelerator cards are powered by
respectively the GK110B and GK210 processors based on the latest Kepler GPU family. The
K40 has a peak memory bandwidth of 288 GB/s, and a peak floating-point performance of 1430
GFLOPs; this can increase up to 1660 GFLOPs boosting the GPU clock frequency to 875 MHz. The
NVIDIA K80 is a dual-GPU system. Each GPU features a peak memory bandwidth of 240 GB/s,
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PERFORMANCES AND PORTABILITY OF ACCELERATED LB APPLICATIONS WITH OPENACC 9

Table I. Performance comparison of OpenACC code with CUDA version running on NVIDIA Tesla K40
and K80 GPU accelerator cards; all codes run on a lattice size of 1920× 2048 points. All quantities are
defined in the text. The last two rows show the “wall-clock” execution time and the corresponding MLUPS

(Millions Lattice UPdate per Second) for the full code.

Tesla K40 Tesla K80

Code Version CUDA OACC CUDA OACC

TProp [msec] 13.78 13.91 7.60 7.51
GB/s 169 167 306 310
Ep 59% 58% 64% 65%

TBc [msec] 4.42 2.76 1.11 0.71

TCollide [msec] 39.86 78.65 16.80 36.39
MLUPS 99 50 234 108
Ec 45% 23% 52% 24%

TWC/iter [msec] 58.07 96.57 26.84 44.61
MLUPS 68 41 147 88

Figure 6. Ta and Tb for the time model defined in the text on a lattice of 1080× 5736 points as a function
of the number of GPUs. The black points are the execution times of the code with all asynchronous steps

enabled.

and a peak double-precision floating-point performance of 935 GFLOPs; this can be increased up
to 1455 GFLOPs, again boosting the GPU clock to 875 MHz.

We have used the PGI compiler version 14.10 for our test on the K40 and version 15.10 for
running on the K80; while for CUDA we have used the NVIDIA compiler version 6.5 for the K40
and version 7.5 for the K80. Using more recent version of the compilers for the K40 does not
changes the results. The codes executed on the K80 system runs two MPI ranks, each using one
GPU of the same accelerator card.

The first line of Table I refers to the execution of propagate kernel. We show the execution
time, the effective bandwidth, and the efficiency Ep computed w.r.t. the peak memory bandwidth
of each system; the table then lists execution times of the bc function, showing that this routine
has limited (albeit non negligible) impact on performance. For the collide kernel, we show the
execution time and the efficiency Ec as a fraction of peak performance. Efficiency is computed
using as number of double-precision operations for each lattice-site either the number measured by
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10 E. CALORE AT AL.

DFMA R84 , R78 , c [0x3 ] [ 0x250 ] , RZ ;
LDG .E . 6 4 R36 , [R4 ] ;
TEXDEPBAR 0x1e ;
DADD R4 , R6 , R12 ;
DFMA R6 , R16 , c [0x3 ] [ 0x130 ] , R82 ;
DFMA R80 , R16 , c [0x3 ] [ 0x258 ] , R84 ;
TEXDEPBAR 0x1d ;

Figure 7. Part of SASS assembly of the CUDA collide kernel showing the use of constant cache values
(operands c[...][...]) addressed directly by instructions.

the profiler through the hardware counters available on the processor or the number of floating-point
instructions of the corresponding assembly code. Finally, the last two lines at bottom show the wall-
clock execution time (WcT) and the corresponding Millions Lattice UPdate per Second (MLUPS)
– counting the number of sites handled per second – of the full production-ready code.

For propagate, which is strongly memory bound, the CUDA and OpenACC versions run at
≈ 60% of peak. For the collide kernel, which is the most computationally intensive part of
the application, the OpenACC code has an efficiency of ≈ 25% on each system, while the CUDA
version doubles this figure, running at 45% of peak on the K40 and 52% on the K80 thanks to the
higher number of available registers.

Our analysis of the performance gap between OpenACC and CUDA codes for the collide
kernel shows that a crucial role is played by the different way in which the coefficients of the Hermite
polynomial expansion are stored. Our code uses 18 double-precision Hermite coefficients for each
population, and the associated memory footprint to store them is 2368 (= 18× 37× 8) Bytes.
Coefficients are initialized at run-time by the host and used as constant values by the kernels
running on the GPU. CUDA allows explicit control on the allocation of data onto the various
memory structures inside the GPU; in our case, the 64 KB low-latency constant cache of each GPU
processor-core (SMX) is large enough to fit all coefficients, so they are copied there once before
starting execution of the main loop. Data items stored in constant cache can be directly addressed
by assembly instructions and do not require load operations onto registers (see figure 7). As a
consequence, a larger number of general registers is then available to the compiler to fully unroll
all inner loops of the collide routine. This allows to cache the accesses to the populations of a
site onto registers improving performance significantly. Note also that data stored on the constant-
memory is available to all threads, so no data replication on general registers is needed, and the
performance impact is relevant in spite of the relatively small number of coefficients.

At a variance with the CUDA case, the OpenACC compiler can not identify the Hermite
coefficients as constant values as they are initialized at run-time. The consequences of this are
that: (a) they are loaded on the global memory, and accesses to them are handled as less efficient
regular memory accesses; (b) registers are required to stage these coefficients, and for this reason
inner loops can not be unrolled and code runs approximately 2X slower w.r.t. the CUDA version.
Unrolling the inner-loops of collide by hand causes significant register-spilling (5432 bytes spill
stores, 13368 bytes spill loads) harming the performance by approximately a factor 10X w.r.t the
CUDA version. As a check of this analysis, we have verified that a CUDA version that does not use
the constant-memory and does not unroll inner loops matches the performance of the OpenACC
code version.

Drawing a temporary conclusion looking at the overall MLUPS delivered of the full code on each
system, we have that performances of OpenACC code are ≈ 40% lower with respect to the CUDA
code.

We now discuss in details the scaling behavior of our parallel implementation as we run it
on an increasing number of GPUs. We model the execution time of the whole program as T ≈
max{Ta, Tb}, with Ta and Tb defined as:

Ta = Tbulk + TborderL + TborderR , Tb = TMPI + TborderL + TborderR
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Figure 8. Strong scaling behavior of the OpenACC code as a function of the number of GPUs (n) for several
lattice sizes. Points are experimental data and dashed lines are the predictions of our timing model.

Figure 9. Parallel efficiency of the OpenACC code as a function of the number of GPUs (n) for several
lattice sizes.

and Tbulk, TborderL, TborderR are respectively the sums of the execution times of propagate, bc and
collide on the bulk, and on the left and right halos, while TMPI refers to MPI communications; we
first profile the execution time of each kernel and MPI communication running them in sequence,
i.e. without any overlap, and then we measure the execution time of the whole program with all
asynchronous steps enabled.

This model is in good agreement with data measured on an Infiniband-interconnected cluster with
36 GPUs (6 GPUs on each node): Figure 6 shows our measured data for Ta and Tb on a lattice of
1080× 5736 points. The histograms show the times taken by each section of the code when running
serially while the black dots show the time taken by the asynchronous code. For this choice of
the lattice size, we see that T ≈ Ta up to 24 GPUs as communications are fully hidden behind the
execution of the program on the bulk; as long as this condition holds, the code enjoys full scalability.
As we increase the number of GPUs (≥ 30) T ≈ Tb, communications become the bottleneck and
the scaling behavior necessarily degrades.
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Table II. Selected hardware features of the computing systems considered in this paper to assess portability
of OpenACC codes. Clock freq. for Intel Xeon E5-2680 v3 are for AVX code.

Intel Xeon NVIDIA K80 AMD S9150

processor codename E5-2630 v3 GK210 Hawaii XT
#physical-cores 8 13 x 2 44
#logical-cores 16 2496 x 2 2816
nominal clock Freq. (GHz) 2.1 0.562 0.900
Nominal GFLOPS (DP) 268.625 935 x 2 2530
Max Boosted clock Freq. (GHz) 2.6 0.875 –
Boosted GFLOPS (DP) 331.56 1455 x 2 –
Max Memory (GB) 768 12 x 2 16
Mem Bandwidth (GB/s) 59 240 x 2 320
ECC YES YES YES

We further characterize the execution time assuming, to first approximation, that bulk processing
is proportional to (Lx × Ly), boundary conditions scale as Lx, and communication and border
processing scales as Ly; so, on n GPUs

T (Lx, Ly, n) = max

{
α
Lx

n
Ly + β

Lx

n
, γLy

}
+ δLy

We extract the parameters (α, β, γ and δ) from the profiling data of Figure 6, and define the function

Sr(Lx, Ly, n) =
T (Lx, Ly, 1)

T (Lx, Ly, n)

to predict the relative speedup for any number of GPUs and any lattice size. Figure 8 shows the
(strong) scaling behavior of our code for several lattice sizes relevant for physics simulations; dots
are measured values and dashed lines are plots of Sr() for different values of Lx and Ly. Values of
Sr() are in good agreement with experimental data, and predict the number of GPUs at which scaling
violations start to become important. For large lattices (5040× 10752) the code has an excellent
scaling behavior up to 48 GPUs, slightly underestimated by our model as constants are calibrated
on smaller lattices so they are more sensitive to overheads. Figure 9 shows the corresponding parallel
efficiency of our code. For large lattices it remains close to one, while for smaller lattice using the
largest number of GPUs is in the range 40-60%.

6. OPENACC PORTABILITY

In this section we analyze the portability of the OpenACC version described in the previous sections
across several architecture taking into account also portability of performances.

In this work, we consider three different target computing systems supported by the PGI
OpenACC compiler: an x86 commodity multi-core processor, and two accelerators, an NVIDIA
K80 and an AMD FirePro S9150 GPU. Together with the Intel Xeon-Phi this set of architectures
is currently the most used in HPC systems. The PGI compiler so far does not support Xeon-Phi so
we cannot include this accelerator in our comparison; for performance details of our LB code on
Xeon-Phi using other frameworks see [9, 37].

The Intel Xeon processor is an 8-core E5-2630 v3 CPU based on the recent Haswell micro-
architecture. For this processors the base clock frequency is 2.1 GHz for applications using the AVX
vector-unit, like the LB code analyzed here; enabling turbo-mode and using all 8 cores available the
frequency can boosts up to 2.6 GHz for these kind of applications. This CPU has then a peak
memory bandwidth of 59 GB/s, and a a peak double-precision floating-point performance of ≈ 330
GFLOPs; the PGI compiler supports generating multi threaded code from OpenACC for this family
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#pragma acc kernels present (prv ) present (nxt )
#pragma acc loop gang independent
for ( ix=HX ; ix < (HX+SIZEX ) ; ix++) {

site_i = (ix∗NY ) ;

#pragma acc loop seq independent
for ( ipop=0; ipop<37; ipop++ ) {

#pragma acc loop vector independent
for ( iy=HY ; iy < (HY+SIZEY ) ; iy++) {

nxt [ipop∗NX∗NY+site_i+iy ] = prv [ipop∗NX∗NY+site_i+iy+OFFSET [ipop ] ] ;
}

}
}

Figure 10. Code snapshot of the propagate kernel, version v2, that improves performances on x86 CPUs.

of processors since version 15.9. The NVIDIA K80 system (whose details have been introduced in
Sect. 5) is a dual-GPU system, and for our benchmarks we have used only one of the two GK210
GPUs, whose features are very similar to those of the NVIDIA K40 GPU considered in previous
sections, so our results can be directly compared with those shown in Table I. Finally, the AMD
S9150 is a GPU accelerator with a memory bandwidth of 320 GB/s and up to 2620 GFLOPs double-
precision floating point performance. Table II summarizes several hardware parameters useful for
our analysis.

The target architecture for the compilation is specified by appropriate options (e.g.,
-ta=radeon and -ta=nvidia for AMD and NVDIA GPUs respectively and
-ta=multicore for x86 multicore CPUs).

In the x86 case, the parallelization performed by the compiler is similar to that implied by the
omp parallel OpenMP directive. Gangs of OpenACC loops and regions are run on different
physical-cores, or virtual-cores if hyper-threading is enabled. The compiler uses all available
cores on the processor unless a different number is specified by the gang clause or through the
ACC NUM CORES environment variables. The directive acc vector is considered as a hint
indicating that the compiler can vectorize the loop, but the compiler uses its own analysis to
determine if vectorization can be applied, and generate SIMD code. A multicore CPU is treated
as a shared-memory accelerator, so data clauses (like copy, copyin, copyout, create)
are ignored and no data copies are executed.

In all cases, it is useful to keep an eye on the strategies taken by the compiler using compiler
options -Minfo or -Minfo=accel that enable feedback messages, giving some details on the
parallel and/or vectorized code generated.

We have run and benchmarked the propagate and collide kernels on the three systems
described above. From the point of view of code portability results are really good as exactly the
same C-code (the one described in previous sections), annotated with the same OpenACC pragmas,
immediately runs on all three architectures.

Table III. Benchmark results for the propagate and collide kernels on three different processor
architectures. Both kernels are compiled using the PGI compiler, version 15.10.

E5-2630 v3 GK210 Hawaii XT

propagate v1 [GB/s] 10 155 216
propagate v2 [GB/s] 32 145 223

collide v1 [MLUPS] 8 55 53
collide v2 [MLUPS] 12 6 5
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#pragma acc kernels present (prv ) present (nxt ) present (param [ 0 : 1 ] )
#pragma acc loop gang independent
for ( ix = HX ; ix < (HX+SIZEX ) ; ix++) {

#pragma acc loop vector (NVECTOR_C ) independent
for ( iy = HY ; iy < (HY+SIZEY ) ; iy++) {

. . .
#pragma acc loop seq device_type (multicore ) unroll
for ( i = 0 ; i < NPOP ; i++ ) {

. . .
}
. . .

}

}

Figure 11. Example usage of the proposed unroll clause.

However results are not fully satisfying from the point of view of performance portability, see
table III, codes version v1. For instance, performances on the AMD GPU increases for propagate
in line with the higher available memory bandwidth but performance for collide remains roughly
the same for both GPUs, in spite of the significantly higher peak value of the AMD accelerator. On
the x86 CPU, results are even more worrying, with a larger drop in performance for both kernels.

Trying to improve performances, we experimented with a different organization of the
propagate kernel: while in the original code (version v1, see again Figure 4) for each lattice site
we move all 37 populations associated to it, the new version (called v2, see Figure 10) processes
lattice-sites by columns: for each column and for each population index we handle in sequence all
sites of the column.

Performances of the two kernels run on all target architectures are shown on table Table III.
Comparing version v2 with v1 we see that on CPUs it gives better performances increasing the
effective memory bandwidth by a factor 3X. The measured value is 32 GB/s corresponding to 54%
of the raw peak. On NVIDIA and AMD GPUs both versions give approximately (within 10%) the
same result.

We have also experimented with a new version of the collide kernel (version v2) in which
we unroll most internals loops by hand. Also in this case version v2 gives better results on x86
CPUs increasing performance by a factor 1.5X w.r.t. version v1. On GPUs however version v2 is
much slower. Unrolling most internal loops increases the number of registers needed per thread.
This causes register spilling and the resulting local memory overhead causes the slowdown of v2
on GPUs. As shown in Figure 11 a unroll clause for the loop directive combined with the
device type clause would allow to maintain the same code for multicore CPUs and GPUs.

Table IV collects our final comparison results; it summarizes the best results that we have
measured on all target architectures using the OpenACC PGI compiler and the performances of
the same computational kernels coded with other programming approaches, closer to each specific
architecture. In details, for x86 CPUs we show results of two multi-thread codes compiled with
the Intel compiler version 15: one uses intrinsics functions [34, 35] to exploit vectorization, while
the latter [36] uses OpenMP directives; both use OpenMP to handle multicore parallelization. For
NVIDIA GPUs we consider the CUDA code, while for AMD GPUs we have used GCC and
OpenCL [20, 37].

Table IV provides several metrics for a comparative assessment of code portability: for compute-
intensive kernels one may consider the ratio of delivered floating-point performance w.r.t peak
performance on different machines; for data-intensive application a better parameter may be the
ratio of measured memory bandwidth w.r.t peak; finally one may want to compare the performance
of the OpenACC code with the corresponding performance of the same code written in an
architecture-specific programming language.

Having this in mind, several comments are in order:

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



PERFORMANCES AND PORTABILITY OF ACCELERATED LB APPLICATIONS WITH OPENACC 15

Table IV. Performance comparison of various programming frameworks on various processors. MLUPS
stands for Mega-Lattice Updates per Second; the performance in GFLOPs is obtained assuming that each
lattice points uses 6500 floating-point operations; Total performance (Tot perf.) is evaluated on a program

that invokes in sequence propagate and collide.

E5-2630 v3 GK210 Hawaii XT

compiler ICC 15 ICC 15 PGI 15.10 NVCC 7.5 PGI 15.10 GCC PGI 15.10
model Intrinsics OMP OACC CUDA OACC OCL OACC

propagate perf. [GB/s] 38 32 32 154 155 232 216
Ep 65% 54% 54% 64% 65% 73% 70%

collide perf. [MLUPS] 14 11 12 117 55 76 54
collide perf. [GFLOPs] 92 71 78 760 356 494 351
Ec 28% 22% 24% 52% 24% 19% 14%

Tot perf. [MLUPS] 11.5 9.2 9.8 80.7 45.6 63.7 47.0

• on the x86 CPU, the three versions of the code have remarkably the same level of
performances for both kernels. All runs are using all 8 CPU-cores available and have
turbo-mode enabled. Using intrinsics is slightly more efficient, but the more “user-friendly”
programming frameworks are almost as efficient (within ≈ 10%). For the collide kernel the
main bottleneck for performances is the memory latency in accessing Hermite coefficients
and population values needed to compute this kernel for each lattice site.

• On the NVIDIA GPU, the OpenACC code gives the same performance of CUDA for the
propagate kernel. Results are not the same for the collide kernel where we measure a
drop of 2X compared w.r.t the CUDA version. Reasons for this behaviour have been analyzed
in the Sect. 5.

• On the AMD GPU, we have almost equally efficient propagate versions with the two
available programming environments; but the performance of the collide kernel is lower
for OpenCL and OpenACC. In this case, we have not analyzed the performance bottleneck in
depth; for this reason it is possible that performance could be optimized further.

Trying to provide a global assessment of the performance portability offered by the PGI
OpenACC compiler, we first remark that it is able to produce very efficient code for the
propagate kernel exploiting a large fraction of the memory bandwidth offered by all processors;
this is substantiated by the reported figures for Ep (i.e., by the sustained memory bandwidth w.r.t.
peak memory bandwidth).

For the compute intensive collide kernels, OpenACC comes at the cost of a non negligible
performance gap; considering in this case Ec (measuring the actual floating point performance),
we see a performance drop of 2X.

As a global assessment, the last line of Table IV shows an effective performance metric for the
whole code assuming to execute propagate and collide in sequence; this gives a lower-bound
of performances of the program since the two routines can often (actually depends on routines to
be run between the two) be merged in one single step. Keeping this point in mind, our figures show
that OpenACC is indeed able to support code portability at the price of a performance drop lower
than 50%, and with reasonable expectations of further improvements in the future. As an unexpected
aside, we also show that the PGI compiler is remarkably efficient for multi-core x86 CPUs.

Finally, we have successfully run the same OpenACC code used for the GPU cluster also on a
cluster of Intel Xeon E5-2630 v3 CPUs. Each node of the cluster hosts two eight-core CPUs, and
the nodes are interconnected via Infiniband QDR network. The code runs two MPI ranks per node,
and each MPI process “offloads” execution of the kernels on the 8-cores of the CPU on which it
is running. Figure 12 shows the strong scalability behaviour achieved on 16 nodes of the cluster
corresponding to 32 CPUs and 256 cores, using several lattice sizes with different aspect ratios.
Figure 13 shows the corresponding parallel efficiency. Contrary to the case of a GPU cluster, in this
case we do not have a real overlap between communication and computation. Both are concurrently
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Figure 12. Strong scaling behaviour of our OpenACC code as function of the number of CPU-cores. The
code run on a X86 CPU cluster interconnected via Infiniband QDR network.

managed by the cores of CPUs, and this limits scaling behaviour. For the lattices we have tried,
using the largest number (240-256) of CPU-cores the relative speedup is in the range 120-200, and
the parallel efficiency results in the range 50-80%.

7. CONCLUSIONS

In conclusion, we have successfully ported, tested and benchmarked a complete multi-node Lattice
Boltzmann code using OpenACC, and characterized its performances through an accurate timing
model.

Our experience with OpenACC is very positive from the point of view of code portability and
programmability. The effort to port existing codes to OpenACC is reasonably limited and easy

Figure 13. Parallel efficiency of our OpenACC code as function of the number of CPU-cores. The code run
on a X86 CPU cluster interconnected via Infiniband QDR network.
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to handle; we started from an existing C version and marked through directives regions of code to
offload and run on accelerators, instructing the compiler to identify and exploit available parallelism.
However, we have to underline that some major changes in the global structure of codes and in data
organization cannot be handled automatically by compilers and the overall organization must be (at
least partially) aware of the target architectures. For example, in our case it is crucial to organize
data as Structure of Arrays to allow to coalesce performance-critical memory accesses, and exploit
vectorization.

Concerning code portability across different target architectures, our experience shows that the
PGI compiler easily allows to target different processors widely used today in most HPC systems. As
we have shown in Sect.6 the latest version of the compiler is able to target both x86 multi-core CPUs
and NVIDIA and AMD GPUs. We consider this a major result enabling users to quickly and easily
benchmark a single-code on a wide range of target processors and decide which hardware better
fits the computing requirements of applications. However also in this case we have to say that for
optimal performances some changes in the organization of the codes may be required. In our case,
for example, on x86 multi-core CPUs we improved the performance of the propagate kernel by
a factor 3X changing the order of processing of the lattice sites. On the other hand, applying this
changes on codes written in a high level language annotated by OpenACC is much simpler than
doing the same on codes written in OpenCL or heavily using intrinsic functions. This of course
improves productivity of programmers and encourages experimentation with different codes.

Concerning performance results, one is ready to accept that using a high level programming model
trades better programmability with computing efficiency, and a performance drop ≤ 20% may be
considered a satisfactory result. Our experiments show that actual performances drop can be larger,
approximately around a 2X factor in our case, with overall performances that may be≈ 50% of what
is made possible by using more processor-specific programming methodologies. In many cases, as
explained and discussed in Sect. 5 we understand the reasons behind this gap and have good reasons
to believe that future versions of the compiler may introduce supports to narrow this performance
gap. For example, in our case support for the constant cache available on NVIDIA GPUs would
be useful. As an interim step, one may work around, e.g. exploiting the interoperability between
OpenACC and CUDA for NVIDIA GPUS, to foster the high productivity of OpenACC and still get
full performance by using CUDA for the most performance critical kernels. Similar approaches also
apply to CPUs and AMD GPUs.

We believe that our analysis provides important feedback to help users understand the capabilities
of the OpenACC approach as well as several hints to improve the performance of OpenACC codes.

In the short term future, we plan to test our OpenACC LB codes on yet more processors
architectures, e.g. Intel Xeon-Phi, as soon as OpenACC support becomes available.
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