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Abstract 

This study aims to develop different control strategies for application to nonlinear 

model of a thermal unit and compare their performances as an advanced thermal 

control methods for HVAC applications of sustainable buildings. The mathematical 

description of thermal unit was obtained exploiting a data-driven and physically 

meaningful nonlinear continuous-time model, which represents a test-bed used in 

passive air conditioning for sustainable housing applications. The presented 

controller strategies use both inside temperature and air flow control in the thermal 

unit. The proposed control schemes were assessed with extensive simulations and 

Monte-Carlo analysis in the presence of modelling and measurement errors. The 

contribution of this work consists of providing an application example of the design 

and testing through simulations, of a data-driven thermal unit control. Furthermore, 

this study provides an insight into different control strategies in air conditioning 

systems and helps the practitioners and HVAC learners to design proper controller 

solutions. 

Keywords - thermal unit; modelling and simulation for control; advanced control 

design; artificial intelligence; nonlinear control design 
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1. Introduction 

The distribution of energy consumption in Europe households was as 
follows in 2015: 50% for air conditioning, 13% for water heating and 12% 
for lighting and electric appliances [1].  Air conditioning systems provide 
buildings with heating/cooling functions and thermal comfort parameters 
including relative humidity and temperature. Thermal Units (TUs) play an 
essential role for supplying treated air with specified temperature to the 
conditioned space in the buildings. Hence, it is fundamental to understand 
the system behaviour of TUs in order to decrease energy consumption and 
achieve thermal comfort in buildings [2]. 

The TU system is a typical nonlinear time-variable multivariable 
system with disturbances  in the view of control [3]. Many control methods 
use traditional controllers like on-off controllers, Proportional,Integral and 
Differential (PID) or Proportional and Integral (PI) regulators [4]. These 
controllers are simple and low-cost, however, sometimes are not able to 
produce accurate results.  Moreover, the TU system has bilinear terms like 
temperature and mass flow rate, hence, advanced controllers must be 
replaced for an improved thermal comfort and a lower energy consumption.  
To overcome the problems stated above, Artificial Intelligent (AI) based 
controllers,  namely,  Artificial Neural Network (ANN), Fuzzy Logic (FL), 
Adaptive Neuro-Fuzzy Inference System (ANFIS) and Model Predictive 
Controllers (MPC) have been applied for trying to achieve more 
comfortable environments in buildings [5]. FL controllers are based on 
human knowledge of the system behaviour and require no mathematical 
modelling. In addition to FL controllers, some authors studied ANN 
controllers to maintain a better thermal comfort for heating purposes [3]. 
Although  ANN controllers presents interesting features such as learning, 
adaptation, fault-tolerance and generalization, some researchers studied 
more efficient control techniques based on ANFIS tool [5] and MPC for 
temperature control of buildings [1]. Note finally that many studies proved 
thermal comfort and energy efficiency using AI control techniques, 
however the performance of the AI based-methods were not compared with 
extensive simulations in most of them. This paper aims to design different 
control techniques with application to a nonlinear TU model developed by 
Ref. [6]. Another objective of the paper is to highlight the potential 
application of the proposed control strategies to real air conditioning 
systems and help the practitioners and HVAC learners to design better 
controllers in their work. To this aim, the simulations and comparisons have 
been implemented in the Matlab and Simulink environments. 

2. Thermal Unit Model 

The TU is part of a larger test-bed system for testing and numerical 
modelling of phase change materials (PCM) used in the passive air 



conditioning for sustainable housing applications. The speed and 
temperature of air passing around the tested PCM can be freely regulated to 
meet the demanded test environmental conditions, as shown in Fig. 1. The 
air is conditioned by means of the considered heating element which is in a 
down stream series connection with a cooling unit.  

 

Fig. 1.  The TU test-bed and schematic description of the TU 

For the system identification purposes the following system inputs are 

considered: the measured inlet air temperature, denoted Ti [K], and the air 

velocity, denoted v [m/s]. The outlet air temperature, denoted To [K], is the 

system output. The data acquisition experimental set-up has been designed 

such that the supplied power, denoted q [W], to the heating element is 

constant with the average reading of q= 830 [W]. The measurements of v, Ti 

and To are taken from the centre of the cross sectional area of the supply 

duct. 

The energy balance equations of the TU, the control volume of air 

surrounding the TU and the adjacent duct walls can be expressed as: 

 

                            Ch (dTh(t)/dt)=  q(t) – (UA)h [Th(t) – To (t)]                   (1) 

                      0 =  (UA)h [Th(t) – To (t)] - v(t) ρa Aa ca [To(t)-  Ti(t)]-  

                                              (UA)int[To(t)-Tw(t)]                                        (2) 

                                Cw (dTw(t)/dt)=  (UA)int [To(t)-  Tw(t)] – 

                                              (UA)ext[Tw(t)-Ta(t)]                                        (3) 

Here, Ch [J/K] is the thermal capacity of the heating element, Cw [J/K] 

thermal wall capacity (insulated plywood), ca [J/kgK] is the air specific heat 

capacity, Aa [m
2
] denotes the cross sectional area of the duct, ρa [kg/m

3
] is 

the air density. The heat transfer coefficient is denoted by U [J/m
2
K] while 

the product of the heat transfer coefficient and the efficient surface area, A 

[m
2
], through which the heat is transmitted is denoted by (UA)h [J/K] (when 

referred to the TU) (UA)int [J/K] (inner duct wall) and (UA)ext [J/K] (outer 

duct wall). The mean temperature of the heating element and wall 

temperature are denoted, respectively, by Th(t) [K] and Tw(t) [K].  In (2), it 

is assumed that the passing air has negligible thermal capacity, hence the 



left hand side of the equation equals to zero.  A standard thermocouple type 

K has been used to measure the air temperatures. The accuracy is around 1 

°C for the whole measurement range. The airflow has been measured using 

a Hot Wire Thermo-anemometer with declared accuracy of 5%. For further 

detail of the TU model, please see Ref.[6]. 

3. Development of Control Logics for Thermal Unit 

TU process, which is basically a MISO system, has several nonlinear 
components like temperature and air flow.  The general description of the 
dynamic model of TU can be expressed by the nonlinear dynamic function 
P: 

                                              y= P (u,t)                                                      (4) 

Here, y is the process output, u are the inputs and t is the time. The control 

strategy applied to the TU should determine the control input such that the 

controlled process is able to track a given reference r(t) [6]. 

The control input is represented by  the air flow input temperature 

u(t)= Ti, and the measured output is y(t) = To. In building HVAC control 

systems, bilinear terms are the most dominant ones. (Temperature)X(mass 

flow rate ) can be given as an example in HVAC systems. Therefore, mass 

flow rate is considered as a measured disturbance, d. The data contain the 

inlet temperature, the air flow and the outlet temperature were obtained 

from the experimental work. The measurement errors were added to the the 

temperature and air flow signals. 

The PID controller has been commonly used in many HVAC system 

applications [4,5]. The PID controller produces promising results based on 

the computation of the error e(t) between the desired and the measured 

values of the output, ie. e(t) =r(t)- y(t).  

The continous-time control law of the PID regulator is described by (5): 

                                 u(t)= Kp e(t) + Ki ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
 + Kd 

𝑑𝑒(𝑡)

𝑑𝑡                         (5) 

where Kp, Ki, Kd are the PID proportional, integral and derivative 

gains, respectively. The control of the TU is therefore carried out by a PI 

regulator (5) as shown in Fig. 2. 

 

 

 



 

Fig.2. Block diagram of the TU system controlled by the PI regulator 

In FL controller, controller actions are implemented in the form of if-then-

else statements [7]. The controller design approach relies on the 

identification of transparent rule-based Takagi-Sugeno (TS) fuzzy models 

using an ANFIS tool implemented in the Simulink toolbox [8]. 

 

Fig.3. Block diagram of the TU system controlled by the ANFIS fuzzy regulator 

The TS fuzzy model consists of  a set of rules Ri, where the consequents are 

deterministic functions fi: 

                                   Ri= IF x is Ai THEN yi= fi(x)                                    (6) 

where i= 1, 2, ……, K. Here, K is the number of clusters. The term x 

describes the antecedent variables, whilst yi represents the consequent 

output. The fuzzy set Ai of  the i
th

 rule is represented with a multivariable 

membership function in (7): 

                                                µ Ai (x)→ [0,1]                                   (7) 

Note finally that the final output  y of the TS fuzzy model is represented as: 

                                              y = 
∑ µ𝐴𝑖(𝑥)𝑦𝑖 (𝑥)𝐾

𝑖=1

∑ µ𝐴𝑖(𝑥)𝐾
𝑖=1

                                         (8) 



This paper also considers an effective approach called Fuzzy Modelling and 

Identification (FMID) toolbox developed in the Matlab environment. Fuzzy 

models are automatically generated from the measurements by a 

comprehensive methodology  described e.g. in Ref. [9]. The system relies 

on the identification of rule-based fuzzy models and using the input-output 

data acquired from the controlled process. The method employs Gustafson-

Kessel clustering method to divide the data into subsets with a common 

local linear behaviour. The identified fuzzy controller requires a proper 

model structure n and a number of clusters K. The developed method 

provides the parameters ai, bi and the estimation of the membership 

functions µAi of the optimal controller minimising the tracking error e(t) 

which is the difference between the reference signal r(t) and the measured 

output y(t). 

 

Fig.4. Block diagram of the TU system controlled by the FMID fuzzy regulator 

The adaptive control method is based on the on-line identification of a 

second order discrete-time transfer function of an ARX time-varying model 

described in (9): 

                                       G (z) = 
𝑏1 𝑧−1 +𝑏2 𝑧−2 

1+ 𝑎1 𝑧−1 +𝑎2 𝑧−2                                        (9) 

where z represents the unit advance operator and parameters are recursively 

estimated at each sampling time tk= kT where k is the number of samples 

and T is the sampling interval. The on-line identification employs Recursive 

Least Squares Method (RLSM) with adaptive directional forgetting. 

 

 

 



 
 

Fig.5. Block diagram of the TU system controlled by the adaptive regulator 

Model Predictive Controller (MPC) predicts the future nonlinear system 

behaviours and generates  a control vector over the prediction horizon. The 

controller implements current sampling time but optimises a finite time-

horizon. The main advantage of MPC over PID controllers is predictive 

ability. 

The MPC obtains control signals by minimizing objective function  (J) as: 

                      J = ∑ 𝑤 [𝑦𝑘]
𝑘+𝑁𝑝
𝑘  ( rk – yk )

2
  + ∑ 𝑤 [𝑢𝑘] 𝑘+𝑁𝑐

𝑘 Δ 𝑢𝑘
2            (10) 

where w[yk]  is the weighting coefficient reflecting the relative importance 

of the monitored output, w[uk] is the weighting coefficient penalising 

relative big changes in uk and Δ uk = uk - uk-1 , Np represents the prediction 

horizon and Nc is the control horizon. 

 

 

Fig.6. Block diagram of the TU system controlled by the MPC 

 

The study  recalls different control strategies including standard PI 

controller as well as AI techniques, such as FL, adaptive, model predictive 

controllers, which are used for the regulation of the outlet temperature of 

the TU system. The results of each regulator are compared in terms of Mean 

Sum of Squared Errors (MSSE %), as shown in (11): 



 

                                   MSSE % = 100 √
∑ (𝒓𝒌−𝒚𝒌)𝟐𝑵

𝒌=𝟏

∑ (𝒓𝒌)𝟐𝑵
𝒌=𝟏

                                (11) 

4. Simulation Results and Discussion 

Most of the HVAC systems use classical PID regulators , the control of 
the TU is therefore carried out by a PI regulator as shown in Fig. 2. 
The optimal proportional and integral gains are determined using the 
automatic PID tuning procedure and settled to Kp=2 and Ki=3, respectively. 
The PI controller has a settling time (Ts) of 2.17, with an overshoot (S%) of 
36.14.  These values are computed by applying a step change in the 
reference output temperature from 39 

o
C to 40 

o
C. The tracking error 

,achieved by using (5), is MSSE%= 1.65 (Fig.7). 
 

 

Fig.7. Outlet temperature controlled by the PI regulator 

Classical controllers, such the PI controller used for the TU system, are 
robust and allow accurate tuning, hence have the benefit of quite straight- 
forward implementation. Nevertheless, the control laws are not efficient and 
can lead possible high maintenance costs. Therefore, the authors of this 
paper appraise advanced controllers in order to reduce energy consumption 
while maintaining  the thermal comfort. To this aim, the PI regulator of TU 
system represents the reference controller for the generation of the data used 
by the advanced controller set-up.  Fuzzy identification method is used to 
derive the models of the controllers by exploiting the so-called model 
reference control approach as described in Ref. [10].   The TS fuzzy 
controller , as described in previous section, is derived with the ANFIS tool, 
a sampling interval (T) of 0.1 s is exploited . Fig. 3 depicts the fuzzy 
regulator, which  has a number of K=3 of Gaussian membership functions, 
with a number of  delayed inputs and output  n=1. The antecedent vector of 
the ANFIS controller is x= [ek, ek-1,uk-1].  Table 1 highlights the achieved  
performance of the regulator obtained with the ANFIS tool. In this case, the 
settling time is Ts = 2.21, with an overshoot of S%=38.22 and a MSSE%= 
1.07(Fig.8).
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Fig.8. Outlet temperature controlled by the ANFIS regulator 

 
In this work,  a second fuzzy regulator was implemented by using the 

same data from the standard PI controller of the TU system. The regulator 
uses the FMID tool which predicts the optimal shapes of the membership 
functions of µA . Fig. 4 shows the implementation of the fuzzy regulator 
with a number of clusters K=3, number of delays n=2 and the antecedent 
vector of  x= [ uk-1,uk-2,rk,rk-1,yk,yk-1] . The reference signal is tracked with a 
MSSE% of 1.14. In this case, the settling time is Ts= 3.98 s with a maximum 
overshoot S% of 41.65 (Fig.9). 

 

 

Fig.9. Outlet temperature controlled by the FMID regulator 

On the other hand, an adaptive controller was developed by using the 
online procedure recalled in previous section.  Fig.5 shows the block 
diagram of the adaptive controller used for TU system. Time-varying 
parameters have been settled to δ = ω = 1 which are defined as damping 
factor and natural frequency, respectively. The settling time of the adaptive 
controller is Ts=3 .65 s  with a maximum overshoot S% of 40.18 and  the 
tracking error of  MSSE%= 1.18 (Fig.10). 
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Fig.10. Outlet temperature controlled by the adaptive regulator 

 
With reference to the MPC strategy recalled in previous section, the 

MPC were developed for the TU system (Fig.6). Note that the MPC of the 
TU uses a prediction horizon of Np=10 and a control horizon of  Nc=2. The 
weighting parameters were selected as wyk= 0.1 and wuk=1 in order to 
reduce abrupt changes of the control input that would increase the energy 
consumption. In this case, the settling time is Ts= 1.85s and the overshoot is 
S%=35.51 with a tracking error of MSSE%=0.41 (Fig.11).  

 

 
Fig.11. Outlet temperature controlled by the MPC 

 
Table 1 depicts the comparison of the results achieved from different 

regulators used for the TU system in terms of  settling time (Ts), overshoot 
(S%) and tracking error (MSSE%). 
 

Table 1. Comparison of the proposed controller performance in terms of MMSE, Settling Time 

and Overshoot 

Controller 
Type 

Settling time 
(Ts) 

Overshoot 
(S%) 

MMSE% 
(Nominal value) 

PI 2.17 36.14% 1.65 % 

ANFIS 2.21 38.22% 1.07% 

FMID 3.98 41.65% 1.14% 

Adaptive 3.65 40.18% 1.18% 

MPC 1.85 35.51% 0.41 % 
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The MPC implementation is able to track the reference signal very 
accurately, thus maintaining the thermal comfort for energy-efficient 
buildings. In addition, ANFIS controller has good values of  settling time, 
overshoot and the tracking error compared to the other ones. The  PI 
regulator leads to the second best settling time as it uses auto-tuning in the 
Simulink environment in order to optimise parameters.  

5. Robustness evaluation 

This section presents further simulation results and the robustness 
features of the proposed controllers with respect to parameter variations. 
The robustness evaluation was performed according the approach already 
described in detail in Ref. [11]. The Monte–Carlo (MC) tool is useful as the 
control strategy performances depend on the error magnitude due to the 
model approximation and uncertainty, as well as on input–output 
measurement errors. The MC analysis describes TU model parameters as 
Gaussian variables with standard deviations of  20% corresponding to the 
maximal error values. Therefore, for performance evaluation of the control 
schemes, the best, average, and worst values of the MSSE% performance 
index were computed, and experimentally evaluated with 500 Monte–Carlo 
runs, as shown in Table 2. 

 

Table 2. Comparison of the performances in terms of MSSE% 

Controller 

Type 

MSSE% 

Best case 

MSSE % 

Worst case 

MSSE% 

average value 

PI 1.44% 3.14% 1.65 % 

ANFIS 1.03% 2.33% 1.07% 

FMID 1.10% 2.47% 1.14% 

Adaptive 1.06% 1.78% 1.18% 

MPC 0.38% 0.81% 0.41 % 

 

Note finally that, MC analysis is an effective tool in presence of 
uncertainty and modelling errors and can be used for testing the suggested 
control methods for TU system.  

6. Conclusion 

In this paper, different control schemes varying from PI regulator to 
MPC were implemented to a nonlinear TU model, which represents a part 
of a larger system used for PCM in passive air conditioning for sustainable 
housing applications and the results were compared with the measurements. 
The feasibility and robustness issues of the proposed tools were 
demonstrated experimentally. The proposed control schemes were assessed 
with extensive simulations and Monte-Carlo analysis in the presence of 
modelling and measurement errors. Some final comments can be drawn 



here. The achieved results showed that AI-based controllers can be 
successfully used for the regulation of the temperature of TU systems. 
Compared to the classical control approach, the TU model can be well 
described by advanced control techniques. MPC presented the best values 
of settling time, maximum overshoot and tracking error. However, the MPC 
strategy requires extra effort to find a suitable construction. The fuzzy-
based controllers were based on the learning accumulated from off-line 
simulations but it is time-consuming to train the model properly. MC 
simulation tool was effective to facilitate the validation of the considered 
control schemes for application to real HVAC systems. 
In this paper, the temperature of air and the air flow were taken into 
account; future works will focus on trying to extend  the developed 
controllers to control more thermal comfort parameters, such as relative 
humidity, air flow and temperature. Moreover, the real evaluation of the 
MC analysis will be presented. 
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