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Boolean and Pseudo-Boolean test generation
for feedback bridging faults

Michele Favalli, Marcello Dalpasso

Abstract—Feedback bridging faults may give rise to oscillations within integrated circuits. This work mainly investigates the
propagation of oscillations, a behavior that may have a relevant impact on the fault detection. We propose both a logic-level model of
the faulty circuit and two techniques aiming to the generation of high-quality test sequences.
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1 INTRODUCTION

Bridging and open faults are the most likely kind of de-
fects in CMOS ICs and this holds true in nano-CMOS ICs
[1], too. Fault-simulation and test-generation tools targeting
such defects require accurate fault models to describe the
complex behavior of faulty circuits.

Both kind of such defects may give rise to significant
sequential and analog effects in combinational logic and
the uprising of oscillations [2], [3] is one of such complex
behaviors. In particular, a feedback bridging fault (FBF) con-
necting the output line of gate g to the output line of a gate
belonging to the transitive fan-out of g may give rise either
to oscillations (if an inverting path is sensitized between
the two bridged lines [4], [5]) or to latching effects (when
a non-inverting path is sensitized [2], [3]). Oscillations and
sequential behavior may also arise when the input line of a
gate is open and capacitively coupled with the output line
of a gate located in its transitive fan-out [2]. Moreover, FBFs
have been shown [6] to be a relevant fraction of the total
number of bridging faults.

As known [7], [8], a FBF may be tested by disabling its
feedback loop. However [3], different values of the faulty
bridging resistance may result in: i) an undetectable fault;
ii) a detected fault without oscillations; iii) a fault giving
rise to oscillations. Therefore, disregarding oscillations may
result in test escapes. Moreover, controllability and observ-
ability constraints may prevent from actually disabling the
feedback loop.

Furthermore, even if the FBF loop is sensitized to pro-
duce oscillations that propagate to the output(s) of a module
under test, the fault may remain undetected, if the oscillat-
ing output signal(s) are sampled while having their fault-
free value (see [9] for FPGAs). Conversely, such an escaped
fault may still provoke the sampling of wrong values during
circuit operations because, with respect to the test phase,
different paths are sensitized.
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Finally, if the oscillations propagate through multiple
reconverging paths, they might disappear and generate
right/wrong steady-state values depending on the timing
of the oscillating signals that reconverge on the same gate.

As regards FBF detection, previous works [2], [3], [4], [5]
accurately model the feedback loop, but pay less attention
to the propagation of oscillations. Specific test vectors for
oscillating faults may be required, but, at our knowledge,
existing automatic test-pattern generators (ATPGs) for FBFs
mainly provide tests that disable the feedback loop [8].
Conversely, accurate fault-simulation techniques have been
presented to analyze FBF detectability [3].

In the case of opens, the faulty behavior depends on
the effect of the transitions of lines (aggressors) capacitively
coupled with the floating one (victim line). If some aggressor
is influenced by the value of the victim line, oscillations
may arise [2]. In this regards, the test generation method
proposed in [10] makes use of a satisfiability modulo the-
ory (SMT) solver engine to accurately model the effects
of charge partition between the victim and the aggressor
lines. This ATPG, may generate test vectors resulting in
oscillations, but it does not consider the specific problems
related to the propagation of such values.

These reasons motivated the development of ATPG
strategies targeting the detection of oscillating FBFs and
easily extendable to other faults that shows an oscillating
behavior. To this purpose, we exploit Boolean satisfiability-
based (SAT) test-generation techniques [11] that have been
shown to be capable of handling large circuits [12] for a wide
variety of fault models including: 1) stuck-at faults [11], [12],
[13]; 2) bridging faults [8], [14]; 3) open faults [10]; 4) delay
faults [15], [16].

In addition, we also explore the use of a Pseudo-Boolean
(PB) solver/optimizer [17] in the generation of high-quality
test sets. The PB optimization problem is more complex than
the Boolean satisfiability one, but so far, the feasibility of PB
techniques has been shown in [18] where they are used to
optimize the detection of small delay defects by sensitizing
the longest paths in a circuit.

To account for the excitation and propagation of oscilla-
tions in combinational circuits we developed a new algebra
that qualitatively characterizes the changes affecting the
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oscillating signals when they reconverge and is exploited to
deal with the uncertainties related to the sampled values. In
fact, differently from stuck-at like faults and non-feedback
bridging faults, the POs to which fault effects propagate
do not hold a steady erroneous value. Therefore, at clock
edges, the flip-flops may sample an erroneous value or not
depending on the characteristics of the oscillating signal.
In this regards, our test generator avoids the generation of
tests that sensitize multiple reconverging paths resulting in
oscillating or steady-state values at module outputs which
have a very low probability to be detected.

The proposed ATPG may use two different strategies to
increase the fault detection probability. At first, we present a
Pseudo-Boolean [19] approach that maximizes the number
of module outputs to which fault effects propagate. As an
alternative, a two-step approach has been implemented: a
SAT-based ATPG attempts to generate a test to propagate
the faulty value to a given number of module outputs; on
failure, it then tries to generate a test vector propagating
the fault effects to at least one output. Results are provided
on the performance and effectiveness of the proposed test
generation approaches, that is also validated by means of
Monte-Carlo event-driven fault simulation.

2 DETECTION OF FEEDBACK BRIDGING FAULTS

This section analyzes the detection of FBFs inside a combi-
national module-under-test, whose primary outputs (POs)
are supposed to be sampled by latches or flip-flops in a low-
frequency scan-based test environment.
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Fig. 1. A resistor representing a feedback bridging fault between lines x
and y.

Fig. 1 shows a feedback bridging fault between the lines
x and y, with y belonging to the transitive fan-out of x.
According to [7], x is the back-line and y is the front-line;
furthermore, the so-called back-/front-gate is driving the
back-/front-line. In this example, the two bridged lines may
be connected through two logical paths, namely 〈x, d, e, y〉
and 〈x, g, y〉. If the inverting path 〈x, d, e, y〉 is sensitized,
the FBF may trigger oscillations; conversely, if the non-
inverting path 〈x, g, y〉 is sensitized, a sequential behavior
occurs and gives rise to a latching effect. We do not account
for faults that involve gate internal nodes [20].

Let us note that the circuit can oscillate even if the
inverting path is sensitized only up to the front-gate [2]. The
oscillating signal propagates only to the input of the front-
gate (where it is blocked by a controlling value on another
input), but it makes the output conductance of the front-
gate to vary, thus letting the front-gate to alternatively win
or lose the conductance conflict with the back-gate. We focus
on the oscillations due to FBF closing a logically-sensitized
loop, even though the analysis can be easily extended.

As shown in [2], [3], [21], the oscillating behavior in-
duced by a FBF is rather complex, as it depends on the driv-
ing strength of the conflicting transistor networks, on the
delay of the sensitized path and on the bridging resistance as
well. For instance, to trigger oscillations the fault-free front-
gate driving strength must be larger than the back-gate one.

A full characterization of such behaviors requires circuit-
level simulations to predict the waveforms of the oscillating
paths: an unfeasible requirement for test generation in actual
circuits, claiming for approximate models [3], [21].

Moreover, it is important to point out that signal analysis
within a feedback loop is not enough to decide on the
detectability of the related FBF, since the chance to sample
erroneous values at POs depends on the starting instant of
oscillations, on the timing of paths propagating the oscilla-
tions to POs and on the sampling instant of such signals as
well.

In both fault activation and propagation, even electrical-
level simulation with nominal parameter values would be of
partial help, because of the significant variability of circuit
parameters that affects current technologies [22], [23].

The importance of the propagation of fault effects giving
rise to oscillations has been often neglected in previous
works. While the frequency of the oscillations propagated
to POs matches the feedback loop one, its duty cycle may be
affected by different rise and fall times in gates belonging
to the propagation paths and reconvergent propagation
paths. The former problem does not significantly change
the propagated waveforms (since CMOS gates are typically
designed to have symmetric rise/fall times), while the latter
one may lead to relevant waveform changes depending on
the skew between reconvergent signals that may even make
the oscillation disappear.

Furthermore, the skew between an oscillating signal
at POs and the clock events triggering its sampling adds
uncertainty about the fault detection. Such a skew, in turn,
depends on both the starting instant of the oscillations
and the delay of the path propagating the fault effects.
For instance, when performing low-frequency scan-based
testing, the oscillation frequency can be significantly larger
than the test rate, in such a way that delay variations are
likely to pose a relevant uncertainty on the timing of faulty
signals and, therefore, on the sampled values at POs.

As for non-feedback bridging faults, several front- and
back-gate input configurations may excite the fault. As an
alternative to accurate models [3], conservative approaches
can be used (such as the one described in [14] for non-
feedback bridging faults), trying to compute a set of test
vectors ensuring the detection of a non-feedback bridging
fault independently of circuit parameters variations. Such
approaches can be extended to FBFs.

As an example, consider again the circuit of Fig. 1: to
excite the fault, the value of x in the fault-free circuit should
differ from the value of y. This constraint is satisfied by
the following configurations of the inputs abeg of the gates
driving x and y: t0 = 0011, t1 = 0111, t2 = 1011, t3 = 1100,
t4 = 1101 and t5 = 1110. If we impose the sensitization
of the path 〈x, d, e, y〉, g should be 1, thus eliminating the
configurations t3 and t5. Moreover, in order to produce
oscillations, the back-gate must lose the conductance conflict
and, therefore, the configuration ab = 00 should not be
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used because it turns ON two parallel transistors in the
pull-up of the NAND back-gate, thus maximizing its output
conductance. Therefore the remaining configurations are:
t1 = 0111, t2 = 1011 and t4 = 1101.

If the two p-channel transistors of the NAND back-gate
have the same size, we have two possible cases: a) circuit
variations are (locally) small because of matching, so that
such transistors have almost the same conductance; b) the
variations are large enough to produce different values of
conductance for such devices. In case a) we can consider
configurations t1 and t2 as equivalent and only two tests
can be considered.

In such CMOS gates as And-Or-Inverters, featuring more
complex transistor networks, the number of input configu-
rations giving rise to oscillations may be larger to account
for different conductive paths within the gates.

In the remainder of this work we will focus our attention
on oscillating FBFs. In fact, existing ATPG techniques for
non-FBF can be used when the logic path between the back-
and the front-gate is not sensitized or the values of electrical
parameters do not result in oscillations.

3 TEST GENERATION FOR FEEDBACK BRIDGING
FAULTS

As a first step, SAT-based test-generation techniques [12]
build a Boolean model of the fault-free and faulty circuits
as a single CNF (conjunctive normal form) formula; then,
they use a SAT solver to generate test vectors. As regards
the stuck-at fault model, the D-algebra or its extensions
are used to characterize signals, but the generation of tests
for FBFs requires a more complex model to account for
the propagation of oscillations within the faulty circuit and
their possible recombination, as well as the logic conditions
for fault excitation. The following model refers to a low-
frequency scan-based test environment.

3.1 A Boolean model for oscillating signals
The back-line, the front-line and the gates along the sensi-
tized path between such gates typically oscillate with a 0.5
duty cycle. When such oscillating signals propagate within
the circuit, they may recombine each other, thus resulting
in duty cycle variations. To qualitatively account for this
phenomenon, we use an algebra A = A×A∗, where:

1) A = {0, 1} describes the fault-free value of signals;
2) A∗ = {0∗, 1∗, o, l, h} describes the faulty value of

signals:

• 0∗ is a faulty 0 and 1∗ is a faulty 1;
• o is an oscillating signal with a duty cycle (δ)

near 0.5;
• h (l) is an oscillating signal whose δ remains

mainly larger (smaller) than 0.5.

This algebra could be extended to handle both X (not-
initialized) and Z (high-impedance) states, not considered
here to keep the discussion simple.

The generation of h, l and o values in a circuit affected by
a FBF is instantiated in Fig. 2: as can be seen, h and l values
are generated because of the reconvergency of oscillating
signals at different kind of gates. Fig. 3 shows the voltage
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Fig. 2. An example of oscillation propagation due to a FBF.
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Fig. 3. Different kind of oscillating signals in a circuit affected by a FBF
(h, l and o, from top to bottom).

waveforms of signals represented by h, l and o, as they are
computed by circuit-level fault simulation.

Pairs (1, 0∗) and (0, 1∗) belonging to A × A∗ are equiv-
alent to the widely-used D and D values of the D-algebra,
respectively. Therefore, the proposed approach can handle
faults that do not result in oscillations, too.

As an example of gate operations described byA∗, Tab. 1
shows a NAND gate having a and b as input signals.

To represent the values ofA andA∗ in a Boolean context,
we use a one-hot encoding. Any value α ∈ A is represented
by a Boolean variable isα ∈ {0, 1}, while any value β ∈
A∗ is represented by a variable isβ ∈ {0, 1}. Using + for
the arithmetic sum, the one-hot constraints for signal s are
is0s + is1s = 1 and is0∗s + is1∗s + isos + ishs + isls = 1 in
the PB context. As an alternative, a Boolean formula can be
easily set to describe each constraint.

a
b 0∗ 1∗ o h l

0∗ 1∗ 1∗ 1∗ 1∗ 1∗

1∗ 1∗ 0∗ o l h
o 1∗ o h h h
h 1∗ l h o h
l 1∗ h h h h

TABLE 1
NAND gate function described by the algebra A∗; a and b are the gate

inputs.
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This encoding is not minimal, but it can be easily ex-
tended to handle different values (such as the unknown one,
X) and provides ease of implementation in the PB context,
too. Therefore, Tab. 1 and the fault-free function give the
set of Boolean formula to be satisfied for a NAND gate, as
follows (w is the gate output signal):

is0w ↔ is1a ∧ is1b (1)
is1w ↔ is0a ∨ is0b (2)
is0∗w ↔ is1∗a ∧ is1∗b (3)
is1∗w ↔ is0∗a ∨ is0∗b (4)
isow ↔ (is1∗a ∧ isob) ∨ (is1∗b ∧ isoa) ∨ (isha ∧ ishb) (5)
ishw ↔ (is1∗a ∧ islb) ∨ (isla ∧ is1∗b) ∨ (isla ∧ islb)∨ (6)

(isoa ∧ isob) ∨ (isla ∧ ishb) ∨ (isha ∧ islb)∨
(isoa ∧ islb) ∨ (isla ∧ isob) ∨ (isoa ∧ ishb)∨
(isha ∧ isob)

islw ↔ (is1∗a ∧ ishb) ∨ (isha ∧ is1∗b) (7)

Each formula can be converted to a CNF by means of
algebraic manipulation. For instance, formula (1) becomes
(¬is0w ∨ is1a) ∧ (¬is0w ∨ is1b) ∧ (is0w ∨ is1a ∨ is1b).

The gates that cannot be involved in the propagation of
fault effects are described by A only, whereas the additional
constraints is1 ↔ is1∗ and is0 ↔ is0∗ are needed for the
signals lying on the boundary between the region possibly
affected by fault effects and the fault-free region.

Finally, let Φ be the conjunction of the CNFs of all gates,
i.e. a CNF describing the whole circuit operations.

3.2 The activation of FBF
Given a FBF, we define an additional variable, props, for
each signal s belonging to the intersection between the
transitive fan-out of its back-line x and the transitive fan-
in of its front-line y. Such variables are used to handle the
path sensitization from the back-line of the given FBF to s.

For a NAND gate with inputs a and b and output w, the
propagation conditions are given by:

propw ↔ (is1∗a∧propb)∨(propa∧is1∗b)∨(propa∧propb) (8)

Similar formulae can be written for each gate belonging to
the considered region and can then be translated to CNFs
and added to Φ.

Let us now consider again the circuit of Fig.1, where an
oscillating behavior may be excited only if the bridged lines
x and y have different fault-free values and the SAT solver
succeeds justifying a true value for propy . Such conditions
are translated to the following formulae:

• propy ↔ 1
• isox ↔ isoy
• (¬(is1x ↔ is1y) ∧ propy)↔ isox

In this model, the conductance conflict between the front-
and the back-gate is supposed to always result in oscilla-
tions if such gates are connected by a sensitized inverting
path. Of course, this assumption may not hold, but it is
conservative because of the relevant variations of circuit
parameters in nano-CMOS ICs [24]. These variations, in fact,
make the outcome of conductance conflicts as unpredictable

(see [14] for a discussion in the case of non-FBFs), thus
requiring to account also for oscillations.1

Conversely, if accurate results are required, the electrical-
level details of the gates involved in the feedback loop
should be accounted for. In this paper, however, we do not
address this problem because the careful analysis shown in
[3] could be performed and translated to a set of additional
Boolean constraints.

An input vector that satisfies the excitation conditions
for a FBF may sensitize more than one path between the
back-line and the front-line, thus making the electrical be-
havior even more complex. To avoid this kind of problems,
additional constraints can be used to force the sensitization
of a single path from the back-line to the front-line.

3.3 The detection of oscillating FBF
The variability of circuit parameters makes the detection of
an oscillating FBF a random phenomenon whose accurate
characterization would be computationally unfeasible for
test generation. Therefore, we propose two test-generation
techniques that heuristically increase the probability of fault
detection.

Consistently with our model, three different conditions
are in order for the fault effects of a FBF that propagate to a
PO:

1) the fault-free value is 0 (1) and the faulty value is
l (h): here defined as a weak detection, because the
probability to detect the fault is expected to be much
lower than 0.5;

2) the faulty value is o: a potential detection, whose
probability is about 0.5;

3) the fault-free value is 0 (1) and the faulty value
is h (l): a strong detection, whose probability is
expected to be larger than 0.5.

For a PO, j, we need one more Boolean variable for each
one of the above-mentioned classes of detection probability
(it can be easily shown that only one of these variables can
be true):

1) (weak): wj ↔ (is0j ∧ islj) ∨ (is1j ∧ ishj)
2) (potential): pj ↔ isoj
3) (strong): sj ↔ (is0j ∧ ishj) ∨ (is1j ∧ islj)

The necessary condition for the fault detection is that at least
one PO has an oscillation (let’s say PO is the set of POs):∨

∀j∈PO

(sj ∨ pj ∨ wj) = 1 . (9)

As verified by circuit-level simulation (and shown in the
following), this constraint does not ensure an acceptable test
quality. Therefore, we use Pseudo-Boolean optimization to
increase the probability of fault detection (Prdet), estimated
by means of simplifying hypotheses. At first we suppose
that the probabilities of sampling errors at different POs are
independent each other, so that:

Prdet = 1−
∏
∀j∈PO

(1− Prj) , (10)

1. Of course test vectors should be generated for the opposite hy-
pothesis, but in this case any bridging fault test generator can be used.
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where Prj is the probability that the memory element
fed by the j-th PO samples an erroneous value. Such a
probability can be approximated as:

Prj = πssj + πopj + πwwj ,

where πs, πp and πw are the probabilities to sample an erro-
neous value at a PO conditioned to the presence of a strong,
potential or weak oscillation, respectively (let us remind that
only one of the variables sj , pj and wj may be 1). These
probabilities are both path- and pattern-dependent, but are
here assumed to be the same for all POs.

By applying a first-order approximation to Prdet, we get
the following linear cost function to be maximized by the
Pseudo-Boolean SAT solver:∑

∀j∈PO

(πssj + πppj + πwwj)

As shown in the following, maximizing such a function may
lead to the propagation of fault effects to several POs, thus
possibly resulting in several oscillating signals within the
circuit. During testing, this may lead, in turn, to a large
power consumption in the faulty IC, that does not matter
if the faulty ICs are simply rejected when failing the test.
If, on the contrary, the module under test belongs to a
reconfigurable IC, power constraints may hold also for ICs
containing one or more faulty modules: the maximization
can be performed under an additional constraint over the
maximum number of oscillating signals.

To trade-off test quality for computational efficiency, we
propose a Boolean approach as an alternative to the Pseudo-
Boolean one discussed so far: a two-step procedure that
begins by attempting to generate a test that satisfies some
threshold criterion on the approximate value of Prdet and,
on failure, a second attempt targets the generation of a test
with no constraint (i.e., oscillations should propagate to at
least one PO).

In the first step, the Pseudo-Boolean constraint:∑
∀j∈PO

(πssj + πppj + πwwj) > ψ,

where ψ is a threshold value for Prdet, is translated to a
Boolean one. If the first test-generation attempt fails, we
simply use Eq. 9.

These two approaches have been implemented using
Minisat [25] as SAT solver and Minisat+ as PB SAT
solver/optimizer [17].

4 RESULTS

In this section we analyze the test quality achieved by the
proposed methods and their computational complexity. As
discussed in [3], the detection of a FBF depends on circuit-
level details. Therefore, as a first reference in test-quality
evaluation we use circuit-level simulation, along with a
Monte Carlo approach to account for the influence of circuit
parameter variations on the fault detection.

Let us consider a very simple circuit from the mcnc
combinational benchmark set [26]: cm82a, with 5 PIs, 3
POs and 26 cells, mapped on the OSU FreePDK 45 nm cell
library [27], using a normal distribution with 5.0% standard
deviation for any relevant circuit parameter.

The circuit features F = 111 FBFs that may potentially
result in oscillations and we generated a test set (Topt)
for all of them. For each fault f , Topt contains two test
vectors, setting the fault-free value of the back-line to 0
and 1, respectively. This because the circuit is mapped on
NAND and NOR gates and, as shown in Sect. 2, two tests
are sufficient.

As a reference, we generated a second test set (Tunopt)
lacking any optimization regarding the propagation of fault
effects. With the same model for the faulty circuit, we simply
impose that at least one PO may oscillate independently
of its faulty value (Eq. 9) without maximizing the number
of potentially oscillating POs. Again, two test vectors are
generated, featuring a different value for the back-line.

The bridging resistance of faults has been set to 100Ω
and, for each fault f , Monte Carlo circuit-level simulations
of the two generated test sets have been performed. Now, let
detfopt and detfunopt be the fraction of Monte Carlo instances
that lead to the detection of f when Topt and Tunopt are
applied, respectively. Estimates of the expected value of the
achieved fault coverage (Copt and Cunopt, respectively) are
given by:

Copt =
1

F

∑
∀f

detfopt

Cunopt =
1

F

∑
∀f

detfunopt

The values achieved by considering 1000 Monte Carlo sam-
ples are Copt = 0.764 and Cunopt = 0.490. As expected, the
optimized test sequence provides a higher fault coverage
than the unoptimized one.

In addition, only one fault escaped Topt, while a signifi-
cant number of escapes affects Tunopt, because either some
tests propagate the fault effects to a single PO where the
fault is not detected because the oscillation is sampled while
presenting the fault-free value, or faulty oscillations do not
reach the sensitized PO because reconvergencies directly
eliminate them or make pulses small enough to be deleted
by inertial effects. These results show that the propagation
of the effects of FBFs deserves a special attention even in a
very simple circuit.

The computational cost and the test quality of the pro-
posed approach are assessed here for larger combinational
circuits. In particular, we consider circuits from the ITC99
[28] and ISCAS85 [29] benchmark sets. Tab. 2 shows the
features of such circuits and the total number (F ) of po-
tentially oscillating FBFs targeted by test generation. We
do not use layout-extracted faults [30], [31] because we are
mainly interested in analyzing the computational costs of
the proposed approach. For the smallest benchmarks we
consider all the possible pair of lines featuring at least one
inverting path from the back-gate to the front-gate, while for
the largest ones we randomly chose 10,000 faults featuring
such a characteristic. Of course, for a specific implementa-
tion of the benchmarks, more realistic data can be obtained
by using layout extracted bridging faults [31]. Conversely,
the size of the used sample is large enough to allow for the
exploration of different kinds of FBFs where the back and
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front gate are at different levels, thus allowing to compare
the proposed approaches.

Both proposed methods have been applied for the test
generation; in the two-step test generation we used πs =
0.75, πp = 0.5, πw = 0.25, and the threshold ψ = 1.5. The
test generation is repeated for each fault because we have
not implemented fault simulation, even though accurate
approaches exist [3].

Benchmark PIs POs gates F
b01 7 7 51 162
b02 5 5 26 53
b03 35 34 178 1658
b04 77 74 743 10000
b05 35 70 315 10000
b06 11 15 59 198
b07 50 57 564 10000
b08 30 25 193 1830
b09 29 29 172 2123
b10 28 23 236 2103
b11 38 37 743 10000
b12 126 127 1550 10000
b13 63 63 230 1471
b14 277 299 10010 10000
b15 485 519 14983 10000
b17 1451 1511 42511 10000
b20 521 512 15275 10000
b21 521 512 15417 10000
b22 734 725 29872 10000

C432 36 7 152 6719
C499 41 32 320 10000
C880 60 26 311 5586
C1355 41 32 320 10000
C1908 33 25 463 10000
C2670 133 239 761 10000
C3540 50 22 996 10000
C5315 178 123 1605 10000
C6288 32 32 1643 10000
C7552 207 108 3510 10000

TABLE 2
Features and number of FBFs (capped to 10,000 randomly selected)

for each considered benchmark circuit.

Tab. 3 shows the test-generation results for the PB-
based optimization technique and for the Boolean procedure
as well. The fraction of faults for which a test has been
found will be referred to as Cmax because it represents
the maximum possible value of fault coverage under the
hypothesis of an oscillating behavior. This figure catches
only the logic level characteristics of the fault, but it does
not consider timing effects such as: a) unfavorable signal
recombinations; b) inertial effects; c) the sampling instants
of POs. Therefore, the actual values of fault coverage in a
specific circuit instance are typically smaller than Cmax.

For the Pseudo-Boolean test generation, column 2 shows
the achieved value of Cmax, while columns 3 to 5 re-
port the average number of POs (per fault) featuring
strong/potential/weak detection, respectively (s/p/w in
the table). Finally, column 6 shows the average CPU-time
per fault elapsed on a P8600 Intel Core Duo @ 2.4GHz.
Columns 7 to 10 report the same data for the Boolean
test-generation procedure. Column 11 states the number of
faults whose first-step test generation failed, thus requiring
a second test-generation step featuring the only constraint
regarding the propagation of oscillations to at least one PO.

As expected, the two-step Boolean test generation is
more efficient than the Pseudo-Boolean one, that is affected
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Fig. 4. Example of faulty circuit configuration where inverting and non
inverting paths cannot be separately sensitized.

by poor scaling, thus being not applicable to the largest
benchmark circuits. Conversely, the test quality of the se-
quences generated by the Boolean approach seems rather
high because fault effects can be propagated to several POs
and the second test-generation step is not required. The
computational cost of this latter approach is of the same
order of that of simple test generation with no quality
constraint.

We analyzed a few circuits (C499 and C1355) featuring
a low value of Cmax. These circuits contain several FBFs
which are undetectable because the sensitization of an in-
verting path from the back- to the front-gate necessarily
implies the undesired sensitization of a non-inverting path.
This is the case of the NAND implementation of a XOR gate
in Fig. 4. In order to sensitize the inverting path 〈x, b, c, y〉,
a must be set to logic 1, but also the non-inverting path
〈x, c, y〉 is sensitized. In these cases, we assume that no
oscillation is produced. Note that the fault which cannot
be detected under the hypothesis of oscillations may still be
detected under different hypothesis.

To analyze the relationship of the test quality indicator
Cmax with the expected fault coverage estimated by ac-
counting for circuits’ timing , we implemented a logic-level
event-driven fault simulator that:

1) implements a very simple fault model where a very-
low-resistance feedback bridging is assumed and
the oscillations are generated at the logic level on
the basis of gate delays in the faulty circuit;

2) allows for Monte Carlo simulations with both the
inertial and transport delay models.

Such a simulator is used also to compare the Boolean and
Pseudo-Boolean techniques.

For each logic-level benchmark (in this case, we used the
ISCAS85 benchmark set because of delays availability) and
test set generated by the proposed methods, the detection
of FBFs and the actual fault coverage (for the considered
fault model) are random variables, as functions of the actual
circuit timing and of the sampling instant. We estimate these
quantities by considering:

1) N = 100 circuit samples generated accordingly to a
uniform distribution of propagation delays;

2) a uniform distribution of sampling instant in a large
time interval elapsing from the latest stabilization
time of the POS of the faulty circuit (this is consis-
tent with the hypothesis of low-frequency test).

In particular, for each benchmark, once a test has been
generated for a FBF f , the fault is injected and simulated
in each sample circuit (ξ). Then a detection probability δfξ is
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bench Cmax (%) Pseudo-Boolean Boolean
s p w CPU s p w CPU 2nd step

b01 98.14 0.07 2.28 0.04 0.003 0.02 1.72 0.75 0.003 3
b02 92.45 0.00 1.66 0.00 0.002 0.00 1.49 0.11 0.002 4
b03 71.71 0.00 7.60 0.16 0.022 0.00 3.71 1.43 0.012 469
b04 84.73 0.35 8.68 2.02 0.111 0.00 0.09 5.12 0.046 1526
b05 75.45 1.37 5.55 4.27 0.170 0.38 4.48 1.99 0.054 2499
b06 87.87 0.04 2.43 0.21 0.004 0.030 2.26 0.17 0.004 33
b07 73.95 1.12 6.74 0.66 0.141 0.17 3.81 0.57 0.038 2806
b08 79.72 0.46 2.61 0.26 0.012 0.04 2.07 0.15 0.010 375
b09 79.94 0.01 8.64 0.03 0.018 0.003 7.24 0.20 0.012 428
b10 84.78 0.41 3.20 0.02 0.020 0.07 2.48 0.07 0.017 370
b11 88.17 0.19 6.47 0.29 0.053 0.04 4.18 0.33 0.049 1192
b12 80.42 1.07 7.69 1.28 0.154 0.36 4.67 1.12 0.088 1375
b13 97.30 10.63 4.26 10.63 0.026 0.00 1.08 0.01 0.011 39
b14 90.50 0.60 34.79 1.08 40.16 0.19 14.27 3.51 1.66 950
b15 60.15 0.04 23.94 6.13 0.615 797
b17 99.80 0.12 15.60 5.95 3.203 6
b20 98.27 0.00 8.05 0.00 1.053 266
b21 98.27 0.00 8.01 0.00 1.084 256
b22 97.00 0.18 5.30 0.29 1.44 70

C432 71.10 1.40 2.54 0.30 0.035 0.44 2.00 1.26 0.021 1941
C499 63.72 0.17 0.90 0.45 0.028 0.06 0.48 0.34 0.022 3629
C880 93.16 3.30 3.14 0.38 0.098 0.57 3.11 0.17 0.032 777
C1355 33.15 0.08 0.24 0.24 0.027 0.02 0.25 0.20 0.018 6685
C1908 76.30 0.48 3.00 0.35 0.055 0.26 3.03 0.22 0.040 3177
C2670 88.10 1.37 6.62 0.40 0.096 0.09 2.80 0.20 0.064 1190
C3540 73.50 0.70 3.54 0.15 0.105 0.11 2.82 0.02 0.063 4679
C5315 94.40 2.02 25.88 0.87 0.442 0.23 6.63 0.53 0.111 103
C6288 95.29 0.23 21.92 2.87 10.54 0.086 6.67 1.04 0.17 471
C7552 82.99 0.47 2.44 0.036 2.63 0.06 1.55 0.21 0.063 7005

TABLE 3
Results for the test generation when using Pseudo-Boolean optimization (columns 3 to 6) and the two-step procedure based on Boolean

satisfiability (columns 7 to 11). CPU times are shown in seconds.

measured accordingly to 2). At the end of the test generation
process, for each circuit sample ξ, we compute Cξ that
is a random variable representing the fraction of logically
detectable faults (whose number is denoted as D) that are
actually detected:

Cξ =
1

F ′

∑
∀detectable f

δfc

where F ′ represents the number of (logically) detectable
faults.

Finally, let C and σCξ
be the average value and standard

deviation ofCξ over all the samples considered in the Monte
Carlo experiment, respectively.

This experiment has been repeated for the Pseudo-
Boolean method, the Boolean method and unoptimized test
generation (where we simply require that at least one PO
may oscillate). The results (average values and standard
deviations of C) are shown in Tab. 4.

As expected, the values of C with the transport delay
model are higher than those computed with the more
realistic inertial delay model. The difference between the
average values (for all benchmarks) of C obtained by the
Pseudo-Boolean and Boolean approaches is 0.075 in the
inertial case and 0.040 in the transport case showing that the
Pseudo-Boolean test generation is less sensitive to inertial
effects. The average values of C obtained by unoptimized
test generation are much lower, with a difference of 0.196
(inertial delay) and 0.170 (transport delay) from the values
obtained with the PB method.

The results show that a test satisfying the logic condi-
tions for the detection of a FBF does not ensure fault de-

tection. The Monte-Carlo experiment provides an accurate
estimate of fault coverage, but it presents relevant compu-
tational overheads. As an alternative, we tried to use Eq. 10
to provide a simple probabilistic estimate of fault coverage
that does not account neither for inertial effects, nor for POs
correlations using πs = 0.75, πp = 0.5, πw = 0.25. To
analyze the error related to such approximation, Fig. 5a and
Fig. 5b plot the probabilistic coverage results as a function
of the Monte Carlo ones in the inertial and transport case.
The test sequence is the Pseudo-Boolean one, the results are
slightly worse than those achieved in the Boolean case.

As expected, the error is rather large in the inertial
case, while in the transport case the probabilistic estimate
is more accurate (5.6% instead of 11.1% in average). The
development of an ATPG accounting for inertial phenomena
in an efficient way remains for further research.

Finally, we used this fault simulation procedure to an-
alyze the relevance of the used signal algebra. In partic-
ular, we have computed the average detection probability
for each kind of output detection (strong/potential/weak)
produced by our approach. In particular, let εs/p/w be the
average probability to detect a fault at a PO marked as
strong, potential or weak by the test generator. These values
are shown in Tab. 5 in the inertial and transport delay cases
for both Pseudo-Boolean and Boolean test generation. As
can be seen, it is very important to mark weak detections
that give rise to relevant degradations in detection probabil-
ity, while in the case of strong detections the advantages
over a potential detection are small because of multiple
reconvergencies.
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bench inertial transport
Pseudo-Boolean Boolean unoptimized Pseudo-Boolean Boolean unoptimized
C σCξ

C σCξ
C σCξ

C σCξ
C σCξ

C σCξ

C432 0.886 0.035 0.876 0.036 0.665 0.066 0.938 0.026 0.934 0.026 0.729 0.055
C499 0.564 0.053 0.433 0.051 0.416 0.049 0.593 0.050 0.493 0.048 0.468 0.049
C880 0.771 0.037 0.695 0.038 0.446 0.036 0.797 0.033 0.719 0.035 0.468 0.026
C1355 0.532 0.050 0.469 0.049 0.466 0.057 0.542 0.047 0.476 0.047 0.504 0.049
C1908 0.911 0.015 0.883 0.019 0.740 0.018 0.926 0.014 0.897 0.016 0.754 0.014
C2670 0.808 0.050 0.578 0.058 0.548 0.053 0.879 0.037 0.833 0.041 0.596 0.037
C3540 0.777 0.045 0.741 0.046 0.589 0.045 0.846 0.039 0.807 0.043 0.667 0.046
C5315 0.811 0.033 0.685 0.050 0.541 0.037 0.785 0.031 0.772 0.038 0.599 0.025
C6288 1.000 0.041 1.000 0.049 0.906 0.061 1.000 0.037 1.000 0.041 0.973 0.047
C7552 0.941 0.031 0.899 0.038 0.764 0.043 0.991 0.022 0.952 0.028 0.829 0.036

average 0.800 0.038 0.725 0.043 0.604 0.046 0.828 0.033 0.788 0.0364 0.658 0.038

TABLE 4
Average results of MonteCarlo event-driven FBF fault simulation.
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Fig. 5. Probabilistic estimate of C as a function of the values of C estimated by Monte Carlo simulations in the inertial a) and the transport b) cases
for PB test sequences. The line represents the absence of error.

bench inertial transport
Pseudo-Boolean Boolean Pseudo-Boolean Boolean
εs εp εw εs εp εw εs εp εw εs εp εw

C432 0.52 0.43 0.20 0.51 0.43 0.27 0.55 0.46 0.22 0.54 0.46 0.29
C499 0.59 0.49 0.17 0.65 0.48 0.15 0.68 0.49 0.19 0.71 0.48 0.17
C880 0.52 0.47 0.20 0.57 0.47 0.21 0.55 0.49 0.20 0.59 0.49 0.23
C1355 0.64 0.49 0.21 0.65 0.53 0.20 0.68 0.40 0.21 0.68 0.53 0.20
C1908 0.55 0.49 0.27 0.48 0.47 0.30 0.58 0.45 0.30 0.52 0.49 0.31
C2670 0.50 0.46 0.17 0.33 0.46 0.18 0.55 0.50 0.18 0.40 0.50 0.21
C3540 0.53 0.45 0.05 0.46 0.47 0.08 0.56 0.49 0.09 0.50 0.50 0.12
C5315 0.70 0.50 0.055 0.69 0.46 0.02 0.62 0.50 0.12 0.62 0.50 0.10
C6288 0.54 0.49 0.07 0.51 0.49 0.03 0.51 0.48 0.04 0.53 0.49 0.04
C7552 0.57 0.45 0.20 0.57 0.45 0.12 0.62 0.51 0.23 0.62 0.49 0.14

average 0.56 0.47 0.15 0.54 0.47 0.15 0.59 0.47 0.17 0.57 0.49 0.18

TABLE 5
Average probability to sample a logic error at a PO where a strong, normal or weak detction occurs.

4.1 Improving fault coverage
In some benchmarks C is rather low, and this occurs also
in the transport case, due to faults which are observable to
only one POs and, seldom, to correlation at POs that voids
the advantages of the propagation to several POs.

Here we briefly discuss two possible ways to increase
fault coverage: 1) the use of multiple tests for a single fault;
2) the use of multiple sampling instants for the same test.

The first approach was developed to use stuck-at based
test sequences to detect other kind of defects [32]. In our
case, several solutions may exist for the Pseudo-Boolean
and the Boolean problem differing in: a) the path sensitized
between the back and the front line; b) the path(s) from

PIs to the fault location; c) the path(s) propagating the
oscillations to POs. An exhaustive test set for a FBF should
sensitize each possible (single or multiple) path from a PI to
a PO that includes at least one signal in the feedback loop
under the constraints leading to oscillations. Of course, the
number of paths may be very large and heuristic techniques
generating a small fraction of these tests can be used.
This approach, however, may be not able to improve the
detection probabilities provided by our method because
either the optimized ATPGs sensitize a large fraction of the
possible paths, or all the paths related to a FBF have similar
delays.

In case 2), instead, only one test vector per FBF is used,



9

bench Pseudo-Boolean Boolean unoptimized
C(1) C(2) C(1) C(2) C(1) C(2)

C432 0.886 0.970 0.860 0.936 0.665 0.755
C499 0.564 0.747 0.433 0.614 0.416 0.591
C880 0.771 0.908 0.695 0.850 0.446 0.650
C1355 0.532 0.714 0.469 0.657 0.466 0.655
C1908 0.911 0.982 0.883 0.972 0.740 0.867
C2670 0.808 0.901 0.578 0.675 0.548 0.718
C3540 0.777 0.853 0.741 0.837 0.589 0.741
C5315 0.811 0.961 0.685 0.888 0.541 0.805
C6288 1.000 1.000 1.000 1.000 0.906 0.997
C7552 0.941 1.000 0.899 0.978 0.764 0.881

average 0.800 0.901 0.725 0.840 0.604 0.766

TABLE 6
Expected coverage results of MonteCarlo event-driven FBFs simulation
when Pseudo-Boolean, Boolean and unoptimized tests are used with

one (C(1)) or two (C(2)) sampling instants.

but POs are sampled more than once. Here, we consider a
very simple case where the test vector is first applied and
then the POs are sampled twice with the same test rate. The
Monte Carlo simulation results for the Pseudo-Boolean, the
Boolean and the unoptimized cases are reported in Tab. 6
for the inertial delay case as compared to the coverage
value achieved by using a single sampling. As can be seen,
this technique increase fault coverage in a relevant way.
However, by increasing the number of samplings above 2,
the correlation between subsequent samplings decreases the
expected benefits of this approach.

5 CONCLUSIONS

We addressed the problem of the test generation for feed-
back bridging faults resulting in oscillations. The work is
motivated by simulation results showing that test gener-
ation procedures not accounting for the propagation and
sampling of oscillating signals produce low-quality test
sequences. To account for this problem we developed a logic
model of the faulty circuit and two test-generation method-
ologies raising the probability to detect such faults. The
first method exploits a Pseudo-Boolean solver/optimizer to
maximize the fault detection probability but it shows scaling
problems, while the second one uses Boolean satisfiability
and it is able to efficiently deal with larger circuits. Im-
proving the efficiency of PB test generation and developing
a method that allows to set test parameters on the basis
of actual defect probabilities and test quality requirements
remain for further research.
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