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‘Quasi-mosaicity’ is an effect of anisotropy in crystals that permits one to obtain

a curvature of internal crystallographic planes that would be flat otherwise. The

term ‘quasi-mosaicity’ was introduced by O. Sumbaev in 1957. The concept of

‘quasi-mosaicity’ was then retrieved about ten years ago and was applied to

steering of charged-particle beams at the Super Proton Synchrotron at CERN.

Beams were deviated by exploiting channeling and volume reflection

phenomena in curved crystals that show the ‘quasi-mosaic’ effect. More

recently, a crystal of this kind was installed in the Large Hadron Collider at

CERN for beam collimation by the UA9 collaboration. Since 2011, another

important application involving the ‘quasi-mosaic’ effect has been the

focalization of hard X-rays and soft �-rays. In particular, the possibility of

obtaining both high diffraction efficiency and the focalization of a diffracted

beam has been proved, which cannot be obtained using traditional diffracting

crystals. A comprehensive survey of the physical properties of ‘quasi-mosaicity’

is reported here. Finally, experimental demonstrations for adjustable values of

the ‘quasi-mosaic’ curvature are provided.

1. Introduction

Bent crystals can be advantageously employed for several

applications. Curved crystals are used in synchrotrons as high-

efficiency monochromators for high-energy X-ray beamlines

(Schulze et al., 1998; Suortti et al., 1997) and to control neutron

diffraction with wide angular acceptance (Rekveldt, 1983;

Rekveldt & Westerhuuijs, 1987; Mikula et al., 1990; Popovici et

al., 1999). Owing to the strong electric field generated by the

ordered atoms in a crystal, it is possible to manipulate

charged-particle trajectories via coherent effects such as

channeling and volume reflection (Tsyganov, 1976b; Taratin &

Vorobiev, 1987). Bent crystals have already been proposed to

be used in collimation systems (Maslov et al., 1991) and

demonstrated to work as a primary collimator for beams at the

Tevatron (Shiltsev et al., 2010), SPS (Scandale et al., 2010) and

U-70 (Afonin et al., 2011) accelerators. In addition, bent

crystals have been adopted for beam steering (Elishev et al.,

1979) and extraction (Bellazzini et al., 1991; Akbari et al., 1993;

Afonin et al., 2001; Carrigan et al., 2002; Fliller et al., 2005) in

circular accelerators, as well as for splitting and focusing of

external beams (Denisov et al., 1992). Moreover, crystal-

assisted collimation and extraction of TeV-energy ion beams

have been proposed as upgrades of the Large Hadron Collider

(LHC) (Scandale et al., 2011; Brodsky et al., 2013). Radiation

emission due to curved trajectories of charged particles in bent

crystals was studied in order to yield photon production

through bremsstrahlung, channeling radiation, parametric

X-ray radiation and undulator use (Korol et al., 2004). Bent

crystals were tested as optical elements for focusing hard X-
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and �-rays with high efficiency and resolution (Barrière et al.,

2010; Guidi, Barrière et al., 2011). Such bent crystals may

represent the solution that the astrophysics community has

sought for realizing experiments based on X-ray concentrators

(Von Ballmoos, 2013). An X-ray concentrator can also be used

for high-quality imaging in nuclear medicine (Roa et al., 2005;

Paternò et al., 2015). In particular, such an imager would

improve �-ray detection in single-photon emission computed

tomography and in positron emission tomography by

providing better scan resolution. This, in turn, would lead to a

lower radioactive dose being administered to the patient

(Smither et al., 2005).

The possibility of controlling the complete deformation

field within a crystal has to be realized for further improve-

ment of the aforementioned and other applications. When a

specific moment is applied to a crystalline material, some

secondary curvatures may arise within the solid. A well known

secondary deformation is the anticlastic curvature that occurs

in a medium subjected to two moments as a consequence of

the differential lateral contraction caused by the Poisson

effect. In particular, it occurs in the perpendicular direction

with respect to the principal curvature. When the two curva-

tures are combined, the deformed crystal takes the shape of a

saddle (see Fig. 1a).

Owing to their periodic structure, the physical properties of

crystals may be anisotropic. A secondary deformation caused

by anisotropic effects is the ‘quasi-mosaic’ (QM) curvature,

which was first explained quantitatively by O. Sumbaev in 1957

in terms of crystal anisotropy (Sumbaev, 1957). QM crystals1

belong to a class of bent crystals featuring two curvatures of

two orthogonal crystallographic planes (see Fig. 1b). As a

crystal is bent to a primary curvature by external forces, a

secondary curvature can be generated within the crystal, i.e.

the QM curvature (Ivanov et al., 2005). This curvature is

always absent in an isotropic material. The planes bent by the

QM effect are orthogonal to the main surface of the plate.

‘Quasi-mosaicity’ is a mechanical property driven by aniso-

tropy and is fully explained by the theory of linear elasticity in

an anisotropic medium (Lekhnitskii et al., 1956).

The choice of the name ‘quasi-mosaicity’ dates back to its

discovery. Though the term ‘quasi-mosaic crystal’ may sound

like the term ‘mosaic crystal’ (Zachariasen, 1945), the two

types of crystals are significantly different. A mosaic crystal is

a polycrystalline material, consisting of an ensemble of small

perfect crystals – the crystallites – with their crystallographic

orientations spread around a nominal direction like the small

tiles in ancient artistic mosaics. The crystallites of a mosaic

crystal are slightly misaligned with each other, with a Gaussian

function as angular distribution. As a consequence, the Bragg

condition can be met for different photon energies. Thus,

mosaic crystals have been used to enlarge the energy passband

and increase the efficiency in diffraction experiments. In

contrast, a QM crystal is a monocrystalline material char-

acterized by bent crystallographic planes along particular

directions. However, as is clarified here below, its response

under X-ray diffraction may resemble that of a mosaic crystal.

Indeed, in 1950, a study on X-ray diffraction in single-

crystal quartz plates elastically bent to a cylindrical form

revealed an anomalous increase in the integrated diffraction

efficiency and in the energy passband (Lind et al., 1950). This

phenomenon was interpreted as an increase in the misalign-

ment of the crystallites. However, this effect vanished as the

bending was removed. Actually, the increase in integrated

diffraction efficiency and the enlargement of the energy

passband were due to the bending of the diffracting planes

owing to the QM effect. Because of this first misunder-

standing, the term ‘quasi-mosaicity’ was coined, because the

crystal, once bent, behaved as a mosaic crystal (Sumbaev,

1968).

QM crystals have been employed for steering charged-

particle beams. A crystal of this kind was installed in the LHC

at CERN for beam collimation by the UA9 collaboration

(Scandale et al., 2011). Moreover, QM crystals are particularly

suitable for the manipulation of negatively charged particles

and low-energy positively charged particles, where thin crys-

tals are needed. Indeed, as explained in x5, QM crystals can be

very thin in the direction of the particle beam, because the

curved planes used to steer the charged particles are ortho-

gonal to the major surface of the crystal.

QM crystals have also been proposed to be used for the

focalization of hard X-rays as part of ASI’s Laue project

(Camattari, Battelli et al., 2013; Camattari, Paternò, Battelli et

al., 2014); this project consists of the implementation of a Laue

lens prototype for hard X-ray and soft �-ray astronomy

(Virgilli et al., 2013; Liccardo et al., 2014). A Laue lens with

QM crystals is an arrangement of curved plates whose primary

curvature lies on a spherical calotte of radius R, while the QM

curvature allows high-efficiency diffraction from curved

diffracting planes (Authier, 2001). Owing to Bragg diffraction,

focusing of each QM sample converges on a focal spot at a

distance f = R/2 on the symmetry axis of the calotte. Most

importantly, ‘quasi-mosaicity’ allows focusing of a photon flux
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Figure 1
(a) Schematic representation of a plate with anticlastic deformation. (b)
Deformed plate with ‘quasi-mosaic’ curvature.

1 Hereinafter, by ‘quasi-mosaic’ crystals, we mean crystals that present
crystallographic planes bent because of the ‘quasi-mosaic’ effect.



in a spot smaller than the size of the diffracting crystal through

bent diffracting planes, i.e. with high integrated diffraction

efficiency.

This is in contrast to diffraction by a traditional mosaic or

bent crystal, the spot of which is no smaller than the crystal

size exposed to the photons. For a QM crystal, the primary

curvature is responsible for focusing the photon flux, while the

QM curvature increases the integrated diffraction efficiency

(Guidi, Bellucci et al., 2011). As a result, the sensitivity of a

Laue lens could be increased (Bellucci et al., 2013; Camattari,

Paternò, Bellucci & Guidi, 2014). The concept of QM crystals

in a Laue lens is explained in x6.

In this paper, we provide a comprehensive review of the

QM effect in crystals. The calculations of the QM curvature

for the cases of Si and Ge crystals are shown in x3. In x4, some

techniques to fabricate QM crystals are reported. In xx5 and 6,

a review of the applications involving QM crystals is

presented. In addition, practical examples of the steering of

charged-particle beams and focusing of hard X-rays are

reported. Finally, experimental demonstrations of large and

adjustable QM curvature are given in x7.

2. Bent crystalline plates in the theory of linear
elasticity

As a consequence of external forces, a crystal can be

deformed. The curvature of the crystallographic planes in a

bent crystal can be calculated through the displacement field

as a function of u(r), v(r) and w(r), which are deformations

along the x, y and z axes, respectively. The normal (�) and

tangential (�) components of the stress tensor are bound up

with the mechanical moments M1 and M2 applied to the

crystal as

�x ¼
M1

Ix

z; �y ¼
M2

Iy

z; �z ¼ 0;

�yz ¼ 0; �xz ¼ 0; �xy ¼ 0;

ð1Þ

where Ix and Iy are the moments of inertia. Fig. 2(a) shows a

plate on which two couples of moments are applied.

From the theory of homogeneous anisotropic thin plates

subjected to bending with the following boundary conditions,

dw

dx

����
0

¼
dw

dy

����
0

¼ 0;
dv

dx
�

du

dy
¼ 0;

uð0Þ ¼ vð0Þ ¼ wð0Þ ¼ 0;

ð2Þ

it is known that the displacement field arising from the crystal

plate deformation is

u ¼
1

2

"
M1

Ix

ðS51z2
þ S61yzþ 2S11xzÞ

þ
M2

Iy

ðS52z2 þ S62yzþ 2S12xzÞ

#
;

v ¼
1

2

"
M1

Ix

ðS41z2
þ 2S21yzþ S61xzÞ

þ
M2

Iy

ðS42z2 þ 2S22yzþ S62xzÞ

#
;

w ¼
1

2

"
M1

Ix

ðS31z2
� S11x2

� S12y2
� S16xy

þ
M2

Iy

ðS32z2 � S12x2 � S22y2 � S26xyÞ

#
;

ð3Þ

where Sij are the components of the compliance tensor for an

anisotropic material referred to the ðx; y; zÞ Cartesian system

(Lekhnitskii et al., 1956; Lekhnitskii, 1981). The relationship

between the curvature of the middle plane of the plate and

bending moments M1 and M2 (per unit length), uniformly

distributed along its sides, is
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Figure 2
Schematic representation of a crystal plate with the coordinate system
used for the modeling. In (a), the bent arrows symbolize applied moments
M1 and M2. In (b), two moments are applied, while in (c) and (d), a single
moment is applied. The crystallographic orientation and QM curvature
for the three cases are highlighted.



1

Rx

¼
@2w

@x2
¼ �

6

h3
s

ð2M1S11 þ 2M2S12Þ;

1

Ry

¼
@2w

@y2
¼ �

6

h3
s

ð2M1S12 þ 2M2S22Þ;

ð4Þ

where hs is the plate thickness, and Rx and Ry are the radius of

the primary curvature along the x and y axis, respectively.

Starting from equation (3), if we apply two moments M1 and

M2 on a sample, the curvatures of the largest face along the x

and y axis, i.e. the principal curvatures in the two perpendi-

cular directions x and y, turn out to be

1

Rx

¼
d2w

dx2
¼ �

�
M1

Ix

S11 þ
M2

Iy

S12

�
ð5Þ

and

1

Ry

¼
d2w

dy2
¼ �

�
M1

Ix

S12 þ
M2

Iy

S22

�
: ð6Þ

Through equations (5) and (6), all deformations of the

largest surface are calculable. As an example, if we apply only

M1 or only M2 on plate, the anticlastic ratio (Rx=Ry) can be

calculated as

Rx

Ry

¼
S12

S11

if M2 ¼ 0; ð7Þ

Ry

Rx

¼
S12

S22

if M1 ¼ 0: ð8Þ

3. QM curvature calculation

A crystalline material may present nondiagonal components

in the compliance tensor. Thus, nontrivial deformation can

arise as a consequence of external forces. A crystal plate,

subjected to two mechanical moments M1 and M2 applied

around the y and x axis (see Fig. 2a), undergoes a primary

deformation. The secondary curvatures depend on crystal

anisotropy. Thus, their radii of curvature are strictly linked to

the crystal orientation. All crystal deformations can be

calculated through the displacement field by using equation

(3). In particular, the ratio of the primary and secondary

curvatures can be calculated. The QM curvature in the xz

plane is

1

RQM

¼
d2u

dz2
¼

M1

Ix

S51 þ
M2

Iy

S52; ð9Þ

while that in the yz plane is

1

RQM

¼
d2v

dz2
¼

M1

Ix

S41 þ
M2

Iy

S42: ð10Þ

The results shown in equations (9) and (10) hold true for

any kind of crystals. In order to have the QM curvature, at

least one term among S41, S42, S51 or S52 must not be zero. In

particular, to obtain QM curvature in the yz plane, S41 or S42

must not be zero. In the same way, the QM effect in the xz

plane occurs only if one of S51 or S52 is not zero. Actually, such

terms of the compliance tensor are always zero for the crys-

tallographic orientation normally used in applications.

Here, we report three examples for Si and Ge crystals,

which are the most used crystals for a wide range of applica-

tions and experiments. In the examples, the crystal plates are

deformed by one applied moment (M1 6¼ 0, M2 ¼ 0 or

M1 ¼ 0, M2 6¼ 0) or by two identical applied moments

(M1 ¼ M2 6¼ 0). These are the most common cases of defor-

mation. As explained in x6, a curvature due to one moment

can be obtained, for example, by using an external holder

(Carassiti et al., 2010) or by applying the grooving method

(Bellucci, Camattari, Guidi & Mazzolari, 2011; Camattari,

Guidi, Lanzoni & Neri, 2013). This latter method can also be

used to apply two identical moments to a plate, which can

alternatively be done by depositing a tensile or compressive

film (Guidi Lanzoni & Mazzolari, 2011; Camattari, Dolcini et

al., 2014; Mazzolari et al., 2015) or through surface damage

(Ferrari et al., 2013). In x7 of this paper, a more general case is

treated in which the two applied moments are not equal to

each other (M1 6¼ 0, M2 6¼ 0, M1 6¼ M2).

We consider the three configurations described in

Figs. 2(b)–2(d).

3.1. QM curvature in Si and Ge crystals: case (a)

For the first case (Fig. 2b), the compliance tensors for Si and

Ge at room temperature are given by

SSi ¼

0:592 �0:096 �0:155 0:167 0 0

�0:096 0:533 �0:096 0 0 0

�0:155 �0:096 0:592 �0:167 0 0

0:167 0 �0:167 1:730 0 0

0 0 0 0 1:494 0:334

0 0 0 0 0:334 1:730

0
BBBBBB@

1
CCCCCCA

10�11Pa�1;

ð11Þ

SGe ¼

0:726 �0:101 �0:181 0:228 0 0

�0:101 0:646 �0:101 0 0 0

�0:181 �0:101 0:726 �0:228 0 0

0:228 0 �0:228 2:138 0 0

0 0 0 0 1:815 0:456

0 0 0 0 0:456 2:138

0
BBBBBB@

1
CCCCCCA

10�11Pa�1:

ð12Þ

In this case, S51 and S52 are both equal to zero. Thus, the QM

curvature can be obtained only in the yz plane, i.e. it concerns

the (111) planes. Considering a curvature under the condition

M1=Ix ¼ M2=Iy (uniform distribution of stress), the ratio of

the primary and QM curvature is

RQM

Rx

¼ �
S11 þ S12

S41 þ S42

;
RQM

Ry

¼ �
S12 þ S22

S41 þ S42

: ð13Þ

In the case of a single moment applied, the ratio is
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RQM

Rx

¼ �
S11

S41

if M2 ¼ 0;

RQM

Ry

¼ �
S22

S42

if M1 ¼ 0:
ð14Þ

From equations (11) and (12), it can be noticed that S42 ¼ 0.

Thereby, if M1 ¼ 0, no QM deformation occurs. In contrast, if

at least M1 6¼ 0, QM curvature appears in the yz plane, i.e. the

(111) planes are bent owing to ‘quasi-mosaicity’. X-ray

diffraction by (111) planes bent through the QM effect was

observed experimentally for Si and Ge crystals by Camattari,

Guidi, Bellucci et al. (2013) and Camattari, Paternò, Battelli et

al. (2014), respectively. An example of the use of (111) planes

bent by the QM effect for particle steering is given by Scan-

dale, Vomiero, Bagli et al. (2009).

3.2. QM curvature in Si and Ge crystals: case (b)

For the second case (Fig. 2c), the compliance tensors for Si

and Ge at room temperature are

SSi ¼

0:592 �0:155 �0:096 0:167 0 0

�0:155 0:592 �0:096 �0:167 0 0

�0:096 �0:096 0:533 0 0 0

0:167 �0:167 0 1:73 0 0

0 0 0 0 1:73 0:334

0 0 0 0 0:334 1:494

0
BBBBBB@

1
CCCCCCA

10�11Pa�1;

ð15Þ

SGe ¼

0:726 �0:181 �0:101 0:228 0 0

�0:181 0:726 �0:101 �0:228 0 0

�0:101 �0:101 0:646 0 0 0

0:228 �0:228 0 2:138 0 0

0 0 0 0 2:138 0:456

0 0 0 0 0:456 1:815

0
BBBBBB@

1
CCCCCCA

10�11Pa�1:

ð16Þ

Also in this case, S51 and S52 are both zero; thus, the QM

curvature can be obtained only in the yz plane, i.e. it involves

the (112) planes. Considering a curvature given by

M1=Ix ¼ M2=Iy, the ratio of the primary and QM curvature is

RQM

Rx

¼ �
S11 þ S12

S41 þ S42

;
RQM

Ry

¼ �
S12 þ S22

S41 þ S42

: ð17Þ

However, in this case, S41 þ S42 ¼ 0. Thus, a deformation due

to two identical moments would cause the disappearance of

the QM curvature. Conversely, a single moment can be

applied on the plate for obtaining the primary curvature,

giving rise to QM curvature in the (112) planes. If M1 6¼ 0 and

M2 ¼ 0, the primary curvature along the x axis is

1

Rx

¼ �
M1

Ix

S11; ð18Þ

while the secondary curvature in the yz plane is

1

RQM

¼
M1

Ix

S42: ð19Þ

The ratio of the QM and primary curvature can be obtained as

RQM

Rx

¼ �
S11

S42

: ð20Þ

If M1 ¼ 0 and M2 6¼ 0, the primary curvature along the y

axis is

1

Ry

¼ �
M2

Iy

S22: ð21Þ

The ratio of the QM and primary curvature in this case is

RQM

Ry

¼ �
S22

S42

: ð22Þ

Experimental evidence of X-ray diffraction by an Si sample

obtained by exploiting (112) planes bent by the QM effect is

given by Bellucci et al. (2013).

3.3. QM curvature in Si and Ge crystals: case (c)

The compliance tensors for Si and Ge at room temperature

for the case depicted in Fig. 2(d) are

SSi ¼

0:631 �0:178 �0:112 �0:103 0:117 �0:11

�0:178 0:658 �0:139 0:190 0:026 0:057

�0:112 �0:139 0:592 �0:087 �0:142 0:053

�0:103 0:19 �0:087 1:558 0:105 0:052

0:117 0:026 �0:142 0:105 1:666 �0:206

�0:110 0:057 0:053 0:052 �0:206 1:402

0
BBBBBB@

1
CCCCCCA

10�11Pa�1;

ð23Þ

SGe ¼

0:780 �0:213 �0:123 �0:141 0:159 �0:150

�0:213 0:816 �0:159 0:260 0:035 0:078

�0:123 �0:159 0:726 �0:119 �0:194 0:072

�0:141 0:26 �0:119 1:903 0:144 0:071

0:159 0:035 �0:194 0:144 2:05 �0:281

�0:150 0:078 0:072 0:071 �0:281 1:69

0
BBBBBB@

1
CCCCCCA

10�11Pa�1:

ð24Þ

In this case, it is possible to obtain the QM effect for both the

planes perpendicular to the x and y axes because S41, S42, S51

and S52 are not zero. Following the same procedure reported

above, considering a curvature given by M1=Ix ¼ M2=Iy, the

ratios of the primary and QM curvature of the (174) planes are

RQM

Rx

¼ �
S11 þ S12

S51 þ S52

;
RQM

Ry

¼ �
S12 þ S22

S51 þ S52

; ð25Þ

while the QM curvature along the (311) planes is

RQM

Rx

¼ �
S11 þ S12

S41 þ S42

;
RQM

Ry

¼ �
S12 þ S22

S41 þ S42

: ð26Þ

In the case of a single moment, the QM curvature of the

(174) planes is related to the primary curvature as

RQM

Rx

¼ �
S11

S51

;
RQM

Ry

¼ �
S12

S51

if M2 ¼ 0; ð27Þ

RQM

Rx

¼ �
S12

S52

;
RQM

Ry

¼ �
S22

S52

if M1 ¼ 0: ð28Þ
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In the case of a single moment, the QM curvature of the

(311) planes is related to the primary curvature as

RQM

Rx

¼ �
S11

S41

;
RQM

Ry

¼ �
S12

S41

if M2 ¼ 0; ð29Þ

RQM

Rx

¼ �
S12

S42

;
RQM

Ry

¼ �
S22

S42

if M1 ¼ 0: ð30Þ

In spite of the relatively high Miller indices, the diffraction

efficiency of such planes is not negligible. Experimental

evidence for this observation in the case of an Si crystal is

given by Camattari, Paternò, Bellucci & Guidi (2014).

The ratios for the cases described above are reported in

Tables 1 and 2.

4. Techniques to fabricate QM crystals

Since the QM effect is a consequence of crystal anisotropy, it

does not depend on the method used for manufacturing the

sample. However, the best technique to fabricate a QM crystal

with the desired curvature depends on the application.

The simplest technique to fabricate a QM crystal consists of

using an external holder capable of imparting a single

mechanical moment to a crystal plate, or in some particular

cases, two perpendicular moments. The holder is typically

made of duralumin or titanium; the latter is preferable if the

holder has to be baked for ultra-high vacuum. The holder

performs two tasks: it holds the sample and applies the

mechanical moments on the sample for bending.

Holders were used in all experiments on charged-particle

steering through channeling and volume reflection reported in

this paper. As an example, we show in Fig. 3 the holder used

for bending a QM Si crystal in an experiment performed at the

Mainzer Mikrotron (MAMI) (Mazzolari et al., 2014).

An external holder cannot be used to bend a crystal for the

applications of X- and �-ray focusing. Observations of the sky

in this energy range must necessarily be performed in satellite-

borne experiments to avoid absorption by the atmosphere. For

any space mission, the payload is a crucial parameter dictating

that the curved crystal must be self-standing. In nuclear

medicine, there are no weight constraints; however, the need

for the miniaturization of optical components requires that no

assistance be given by mechanical devices. Fabrication of self-

standing crystals should be compatible with mass production

techniques, especially when hundreds or thousands of

elements have to be manufactured, for example for astro-

physical applications. A technique that satisfies the require-

ments of low cost and reproducibility is the grooving method,

which was proposed by Bellucci et al. (2003) and extensively

developed later by Camattari, Guidi, Lanzoni & Neri (2013).

The grooving method consists of creating a series of scrat-

ches on one of the major surfaces of a plate. It was shown that

a series of superficial grooves may permanently and repro-

ducibly bend the whole crystal owing to the generation of a

plasticized layer in the neighborhood of the grooves. If a set of

parallel grooves is made on a crystal, a single moment is

imparted to the plate. If a grid of grooves is created, two

identical moments are transferred to the crystal. We show in

Fig. 4, as an example, some grooved samples produced within

the Laue project for the realization of a Laue lens prototype

(Camattari, Battelli et al., 2013). The samples are 10 � 30 �

2 mm Ge crystals, oriented as in Fig. 2(b).

However, with the grooving method, it is not possible to

bend plates thicker than 2 mm to the desired curvature for an

application. Thicker self-standing bent crystals were recently

obtained by the deposition of a thick film composed of carbon

fiber. Crystals of up to 5 mm thickness were bent with the

radius of primary curvature down to 30 m (Camattari, Dolcini

et al., 2014; Mazzolari et al., 2015). Moreover, this technique

offers the advantage of not damaging the substrate. A
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Table 1
Ratios of the QM and principal curvature in a deformed crystal with
M1=Ix ¼ M2=Iy.

Case Material RQMx
=Rx RQMx

=Ry RQMy
=Rx RQMy

=Ry

a Si 1 1 2.97 2.61
a Ge 1 1 2.74 2.39
b Si 1 1 1 1

b Ge 1 1 1 1

c Si �3.18 �3.37 �5.19 �5.50
c Ge �2.92 �3.10 �4.76 �5.07

Table 2
Ratios of QM and principal curvature in a crystal deformed by a single
moment.

M2 ¼ 0 M2 ¼ 0 M1 ¼ 0 M1 ¼ 0

Case Material RQMx
=Rx RQMy

=Rx RQMx
=Ry RQMy

=Ry

a Si 1 �3.54 1 1

a Ge 1 �3.18 1 1

b Si 1 �3.54 1 3.54
b Ge 1 �3.18 1 3.18
c Si �5.41 6.12 �25.39 �3.46
c Ge �4.90 5.54 �23.08 �3.14

Figure 3
Photograph of the Si QM sample. The holder is made of ergal. The screws
at the bottom are used to adjust the sample curvature. The holder is 36 �
50 mm in area and 17 mm thick, while the Si QM sample is 15� 23 mm in
area and 30.5 mm thick. Here M1 6¼ 0, M2 ¼ 0.



photograph of a QM Si sample bent by the deposition of a

carbon fiber film is shown in Fig. 5.

One important aspect in the manufacturing of a QM crystal

is the reproducibility of the curvature due to ‘quasi-mosaicity’,

i.e. the spread of the QM curvature and the alignment of the

QM planes with respect to the crystal plate. Since the QM

curvature strictly depends on the primary curvature, the first

requirement for a reproducible QM curvature is a repro-

ducible primary curvature. However, even if the QM crystals

are produced using the same technique and have the same

primary curvature, uncertainties in the crystallographic

orientation of the crystal plates may result in different QM

curvatures. This aspect may become critical in experiments

where a large number of identical crystals are required, such

as for fabrication of a Laue lens. Typical errors during the

crystal manufacturing are the misalignment between crystal

surfaces and crystallographic planes. These errors are named

miscut and misflat errors and can be of the order of �0.1�.

Taking into account these uncertainties, the influence on the

QM curvature is very poor, less than 1%. As a practical

example, let us consider an Si or Ge crystal with a spherical

curvature of 40 m, oriented as in Fig. 2(b). An uncertainty of

�0.1� on both miscut and misflat angles produces an uncer-

tainty on the angular spread of the QM planes of 0.9 and 0.6%

for Si and Ge, respectively. These calculations have been

performed through a ready-to-use software, named AniCryDe

(Camattari et al., 2015).

In the following two sections, we provide two recent

applications of ‘quasi-mosaicity’ in modern physics. The first is

charged-particle steering for accelerator technology and high-

energy physics (x5); the second is X- and �-ray diffraction for

astrophysics and nuclear medicine applications (x6).

5. QM crystals for steering charged particles

Charged particles traversing an amorphous material or a

misaligned crystal undergo uncorrelated collisions with the

atoms of the medium. During the interaction, particles are

randomly scattered because of incoherent interactions with

atomic nuclei, and energy loss occurs because of collisions

with atomic electrons. In 1964, Lindhard introduced the

concept of coherent interactions of charged particles with

trajectories nearly parallel to a crystal plane or axis (Lindhard,

1965). In this case, correlated interactions occur between all

atoms in a string or plane. On the basis of the concept of

coherent interactions, Lindhard provided an explanation

about the phenomenology of channeling. Channeling occurs

as a charged-particle beam impinges onto a crystal at an angle

less than the critical angle with respect to a crystal plane (axis).

The motion of channeled particles gets confined between

neighboring planes (axes) that become preferential pathways

for the trajectory of the particles inside the crystal.

Initially, channeling was identified as an unwanted side-

effect in ion implantation doping at the dawn of the semi-

conductor era (Piercy et al., 1963). Indeed, if an ion beam is

aligned with a crystal at an angle less than the critical angle,

ions would penetrate too deeply into the bulk because of

channeling. Later, scientists exploited the channeling of low-

energy particle beams (pþ and Heþþ in the MeV energy

range) to perform material analysis and submicrometre crys-

tallography for the characterization of crystal defects

(Feldman et al., 1982). Another application of channeling was

the study of radiation emission by channeled electrons or

positrons, which oscillate during their motion inside a crystal

(Kumakhov, 1976). This phenomenon was called channeling

radiation and has been exploited for the production of intense

electromagnetic radiation (Lohmann et al., 1994).

Since 1976, owing to a seminal idea by E. N. Tsyganov

(Tsyganov, 1976a; Elishev et al., 1979), channeling in appro-

priately bent crystals has been proposed for steering of

charged-particle beams. Channeled particles follow the crystal

curvature, resulting in a deflection by an angle equal to the

crystal bending angle (see Fig. 6a). In principle, a bent crystal

can be used to perform all operations on channeled particles

that are normally accomplished by magnets in particle accel-

erators, such as deflection, splitting, undulation, extraction and

collimation. It took more than 20 years to sufficiently develop

feature articles

J. Appl. Cryst. (2015). 48, 977–989 Riccardo Camattari et al. � The ‘quasi-mosaic’ effect 983

Figure 5
Photograph of a QM Si sample bent by deposition of a carbon fiber film.
Here M1 ¼ M2 6¼ 0. The sample is 20 � 20 mm in area and 5 mm thick;
the carbon fiber film is �40 � 40 � 0.6 mm in size.

Figure 4
Photograph of a Ge QM sample manufactured as an X-ray optical
element. The sample is 10 � 30 � 2 mm in size. The grid of grooves is
clearly visible. Here M1 ¼ M2 6¼ 0.



the technology to fabricate crystals that could enable charged-

particle beam manipulation with high efficiency (Biryukov et

al., 2002).

The first successful experiment on the high-efficiency

manipulation of a proton beam was carried out by bending a

strip-like Si crystal through anticlastic deformation (Afonin et

al., 2001). Later, the same results were achieved with QM

crystals (Ivanov et al., 2006). In contrast to the scheme based

on anticlastic deformation (Guidi et al., 2010), a QM crystal is

positioned perpendicularly to the particle beam, as shown in

Fig. 6(b).

The UA9 collaboration installed a QM crystal and a crystal

relying on anticlastic deformation as candidates for colli-

mating the 7 TeV proton beam in the LHC (Scandale et al.,

2011). Actually, halo collimation in the LHC is mandatory to

achieve the top luminosity of the machine and to prevent any

damage to superconductor magnets. The problem of collima-

tion is not trivial, because the halo intensity in the LHC is

comparable to the intensity of the full beam in the CERN SPS.

The crystal would act as a primary collimator, steering the

particles in the halo towards a massive absorber. Preliminary

collimation tests were performed on the SPS circular accel-

erator, resulting in a strong reduction in beam losses in the

case of both protons (Scandale et al., 2010) and Pb ions

(Scandale et al., 2008a). On-beam tests of collimation in the

LHC are being planned for 2015.

A QM crystal highlights two interesting features for chan-

neling experiments. First, it allows the interception of a broad

beam because the largest face of the crystal is exposed to the

beam. Second, the thickness of a QM crystal along the beam

direction can be adjusted to a few tens of micrometres, which

is a value not achievable in the case of traditional bent crystals.

To maximize deflection efficiency, it is important to design

crystals with optimized characteristics, e.g. the crystal length

along the beam direction. An important parameter to quantify

the channeling efficiency is the dechanneling length; this is the

average length within which a channeled particle leaves the

channeling condition with a probability of ð1� 1=eÞ (Biryukov

et al., 1997). To efficiently steer a charged-particle beam, the

crystal thickness must not be higher than the dechanneling

length, which depends on beam energy. For instance, the use

of QM crystals allowed the deflection of GeV-energy charged

particles by means of a crystal with a thickness of less than one

millimetre (Ivanov et al., 2006).

QM crystals allowed the first experimental observation of a

phenomenon that had been predicted for many years, namely

volume reflection (VR) (Taratin & Vorobiev, 1987). VR

occurs as an over-barrier particle traveling through the crystal

arrives at the tangential point with the bent crystalline planes.

At this point, elastic reflection of the transverse component of

the momentum takes place, resulting in a net deflection of the

particle trajectory towards the side opposite to that of the

crystal curvature (see Fig. 7). VR occurs with extremely high

efficiency, though its angular deflection is smaller than that for

channeling. VR was experimentally observed at the CERN

SPS H8 external line in the case of a 400 GeV proton beam

with 97% efficiency (Scandale et al., 2008b).

As can be seen in Fig. 7, most of a crystal is traversed by a

particle as if it was an amorphous medium. Coherent inter-

action plays a dominant role in the neighborhood of the

tangency point, where the transverse component of the

particle momentum is reversed. Apart from this region, the

particle interacts incoherently with the atoms in the crystal,

resulting in a smearing out of the beam. Since the deflection

due to VR is small, the effect of incoherent interactions may

hide the effect of VR. In principle, such a portion of the crystal

could be removed, leaving a crystal purely working under the

VR regime. Such a crystal, which is yet to be realized, could

only be used via the QM effect. As an example, a crystal

designed to work with 400 GeV protons would have a thick-

ness of a few tens of micrometres, which is indeed achievable

with current technology involving ‘quasi-mosaicity’.

The property of QM crystals to be thinned to a very low

thickness can be even more important when the channeling of

negatively charged particles is concerned. The dechanneling

length of negative particles is far shorter than that of positive

particles. Indeed, negative particles repeatedly oscillate across

crystallographic planes/axes (Scandale et al., 2013). Thus, the

probability of inelastic scattering of channeled negative

particles by atomic electrons, and especially the probability of

multiple scattering by lattice atoms, is much higher than that in

the case of positive particles. The use of a QM crystal for

steering negative particles was proposed by Guidi et al. (2009).

Then, QM crystals were effectively used for this purpose in
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Figure 7
Schematic representation of volume reflection. A charged-particle beam
can be deflected towards the opposite side with respect to the crystal
curvature.

Figure 6
(a) Schematic representation of channeling. An incident charged-particle
beam entering a crystal at an angle less than the critical angle can be
deflected along the crystal curvature. (b) Schematic representation of a
QM crystal used for steering a charged-particle beam.



two experiments, at CERN (Scandale, Vomiero, Bagli et al.,

2009) and at MAMI (Mazzolari et al., 2014). In these experi-

ments, both channeling and VR were observed.

QM crystals can also be used to produce electromagnetic

radiation as follows. It is known that a charged particle

traversing a medium loses kinetic energy, which is partly

converted into electromagnetic radiation (the bremsstrahlung

effect; Bethe, 1934). Photon emission through coherent

bremsstrahlung is more intense than for the incoherent case

(Baier et al., 1998). Moreover, if the crystal is bent, it is

possible to conveniently exploit VR to produce radiation.

Such radiation is as intense as in the channeling case, but it

exhibits larger angular acceptance of the incident particles and

circumvents the problem of dechanneling (Scandale, Vomiero,

Baricordi et al., 2009; Bandiera et al., 2014). Lighter particles

generate the highest intensity radiation because brems-

strahlung strongly decreases with particle mass. Since there

exist worldwide a number of electron accelerators delivering

GeV or sub-GeV beams, the study of channeling radiation

emitted by light particles at these energies is of particular

interest in view of possible applications such as a crystalline

undulator (Tabrizi et al., 2007; Bagli et al., 2014).

6. QM crystals for focusing hard X-rays

Manipulation and focusing of hard X- and �-rays in the 100–

1000 keV energy range represents an increasingly significant

topic for the scientific community. However, it is not easy to

focalize X-rays with good efficiency, and the modalities of the

implementation of an X-ray concentrator still represent an

open issue.

Nowadays, the study of hard X-ray or soft �-ray astro-

nomical sources in the 100–1000 keV energy range is carried

out by observing the sky without the help of telescopes

because a high-energy photon beam cannot be concentrated.

Indeed, the lack of optical components capable of working

within this energy range implies the impossibility of focusing,

which in turn leads to a poor signal-to-noise ratio recorded by

the detectors. Multilayer optics have been proved to focus up

to 80 keV photons with high efficiency. Very recently, it has

been demonstrated that multilayer reflective optical compo-

nents can operate efficiently up to photon energies of at least

600 keV (Fernández-Perea et al., 2013; Brejnholt et al., 2014).

However, these new reflective optics work at very low grazing

incidence angles (below 0.1�). This means that they have a

very low acceptance area for the incident photons, and beyond

these energy limits, their efficiency critically deteriorates.

If X-ray diffraction occurs in Laue geometry, namely if

photons traverse a crystal, hard X-rays can be focused via a

Laue lens (Lund, 1992). A Laue lens is conceived as an

ensemble of many crystals arranged in such a way that the

maximum possible radiation is diffracted towards the lens

focus over a selected energy band.

In order to effectively detect X-rays by using a Laue lens,

optical elements with high diffraction efficiency are

needed, along with an arrangement of crystals to

permit high-resolution focusing of the diffracted

photons.

In order to increase integrated diffraction effi-

ciency, the scientific community has selected mosaic

and curved crystals (Authier & Malgrange, 1998). The

use of bent crystals represents an elegant solution

because they can diffract radiation with very high

efficiency and with a controlled and uniform energy

passband (Bellucci, Camattari, Guidi, Neri &

Barrière, 2011). In the framework of bent crystals,

QM crystals offer further opportunities for building a

Laue lens. Indeed, it is possible to exploit ‘quasi-

mosaicity’ to obtain high-resolution focusing of

diffracted photons (Camattari et al., 2011).

A Laue lens based on QM crystals consists of an

arrangement of curved crystals whose primary

curvature lies on a spherical calotte of radius R, while

the QM curvature allows diffraction by curved

diffracting planes. The use of QM crystals allows

positioning of crystals in a Laue lens in the same way

as for mosaic crystals, i.e. with the diffracting planes

orthogonal to the major faces of the crystal (Fig. 8).

For a Laue lens made of crystals with diffracting

planes orthogonal to the major face of the crystal,

focusing can be fully provided by bending the crystals

to a primary curvature equal to that of the whole lens.

Owing to Bragg diffraction, focusing of each QM

sample converges on a focal spot at a distance f = R/2
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Figure 8
Schematic representation of a Laue lens based on QM crystals. Left side: red arrows
represent an X-ray beam diffracted towards a detector placed on the focal plane of
the lens. The blue plate represents the crystal. The primary curvature leads to a
secondary curvature of the planes affected by ‘quasi-mosaicity’. In this configura-
tion, QM diffracting planes are orthogonal to the main surface of the plate. The
primary curvature allows focusing of the diffracted radiation onto the focal plane,
while the QM curvature increases the integrated diffraction efficiency. Right side:
the particular arrangement of a QM crystal in a Laue lens.



on the symmetry axes of the calotte (see Fig. 8). By using QM

crystals, it is possible to encompass the focusing action due to

the primary curvature with the high reflectivity of bent

diffracting planes provided by ‘quasi-mosaicity’. In fact, if

there were no QM effect, the integrated reflectivity would be

equal to that in the case of a crystal with flat diffracting planes,

which is a relatively poor figure. Since the size of the focal spot

of the photons diffracted by a QM crystal can be controlled by

adjusting the primary curvature, QM crystals allow focusing

with higher resolution than that achievable using mosaic or

traditional curved crystals. In particular, ‘quasi-mosaicity’

allows focusing of a photon flux in a spot smaller than the size

of the diffracting crystal through bent diffracting planes, i.e.

with high integrated diffraction efficiency. This is in contrast to

diffraction by a flat mosaic crystal, the spot of which is no

smaller than the crystal size exposed to the photons. As a

result, the sensitivity of a Laue lens would be significantly

increased.

QM crystals have been employed for realizing a Laue lens

prototype with a focal length of 20 m, as part of the Laue

project which is financed by the Italian Space Agency (ASI)

(Virgilli et al., 2011). The samples were Ge crystals oriented as

shown in Fig. 2(b). The sample size was 10 � 30 � 2 mm

(Camattari, Battelli et al., 2013). The prototype Laue lens

based on QM crystals is under development at the LARIX

facility (Loffredo et al., 2005) (Ferrara, Italy) as part of the

Laue project (Frontera et al., 2012). The focal spot on a

detector placed at the focal distance of a Laue lens based on

such crystals can be very small, of the order of a few milli-

metres (Bellucci et al., 2013; Camattari, Paternò, Bellucci &

Guidi, 2014).

7. Adjustable QM curvature

It has been demonstrated that the curvature of the crystal-

lographic planes due to ‘quasi-mosaicity’ may be very useful

for some applications. In any case, the QM curvature is lower

than the primary curvatures because the ratio of the primary

and QM curvature is always greater than �2.4. However, if it

was possible to increase the QM curvature, some improve-

ments would be achieved. Firstly, for channeling experiments,

a crystal with a larger QM curvature would result in stronger

deflection. Secondly, for VR experiments, a larger QM

curvature would guarantee broader angular acceptance of the

incident beam. Finally, for diffraction experiments, a crystal

with a larger QM curvature would imply higher integrated

diffraction efficiency.

The crystals fabricated to exploit the QM effect have always

been bent by applying either a single moment or two identical

moments (M1 ¼ M2). In this work, we demonstrate that the

QM curvature may be increased, provided that two non-

vanishing moments with different intensities are applied on

the crystal plate, i.e. M1 6¼ M2 6¼ 0.

As an example, let us consider a Laue lens entirely relying

on QM crystals, with the samples oriented as shown in

Fig. 2(b). As explained in x6, a QM crystal focuses the

diffracted photons to a focal spot smaller than the tile size (see

Fig. 8). Consider a crystal arranged as shown on the right side

of Fig. 8, with the y axis of the plate directed along the radial

direction of the Laue lens. For focusing, the relation Ry ¼ 2f

must hold true, where f is the focal length of the lens. Thus, this

radius of curvature is frozen. The radius of curvature in the

direction perpendicular to the radial direction, Rx, is a free

parameter. By decreasing Rx, it would be possible to increase

the QM curvature, and therefore to enhance the lens perfor-

mance, while keeping fixed the geometry of the lens.

More quantitatively, the value of the QM curvature can be

calculated by taking into account different values for M1 and

M2 by applying equations (5)–(10). Fig. 9 shows the QM radius

of curvature, RQM, as a function of the radius of curvature

along the x axis (Rx) and y axis (Ry). As can be seen in the

figure, by increasing the curvature along the x axis, i.e. by

decreasing Rx, RQM decreases too.

Since it is possible to increase the QM curvature keeping Ry

constant, it is possible to optimize Ry, in order to increase the

Laue lens performance. It is also possible to achieve a QM

curvature equal to or larger than the constrained primary

curvature.

To demonstrate that it is possible to control the QM

curvature by setting M1 6¼ M2 6¼ 0, we report here the

outcome of a recent experiment carried out using hard X-rays

at the ID15A line of the European Synchrotron Radiation

Facility (ESRF, Grenoble, France). An Si crystal of size 24 �

62 � 2 mm was deformed using a appropriately manufactured

holder, capable of imparting two independent mechanical

moments to the sample. The sample and holder were manu-

factured at the Sensor and Semiconductor Laboratory (SSL,
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Figure 9
Radius of curvature due to the QM effect in a bent Si sample as a function
of Rx and Ry. The black dashed line represents the QM radius of
curvature obtained with M1 ¼ M2.



Ferrara, Italy). Fig. 10(a) shows a photograph of the sample,

with the crystallographic orientations highlighted.

The holder was made of aluminium 7075. It kept the sample

fixed and exploited flexure mechanisms to impart a highly

controllable deformation to the crystal. In particular, two pairs

of screws fixed the curvature of the holder, which transmitted

the moments to the crystal. Fig. 10(b) shows a photograph of

the sample.

A monochromatic and collimated beam was tuned at

150 keV. The monochromator was a fixed-exit double bent

Si(111) Laue monochromator with an energy resolution of

�E/E = 2 � 10�3. The beam was 50 � 50 mm wide. Sample

characterization was carried out by performing rocking curves,

i.e. by recording the diffracted beam intensity while the crystal

was being rotated in the beam around the position where the

Bragg condition was satisfied. The full width at half-maximum

(FWHM) of the rocking curve was a direct measurement of

the angular distribution of the diffracting planes. In this way,

the radii of curvature along the x, y and z axes were measured.

The experimental features are listed in Table 3.

The sample curvature was evaluated for three different

dispositions. First disposition: the beam entered the sample

through the 2 � 62 mm face and diffracted onto the (211)

planes. The traversed length of the sample (24 mm) divided by

the FWHM of the obtained rocking curve was the radius of

curvature along the x axis, namely Rx. Second disposition: the

beam entered the crystal through the 2 � 24 mm face,

traversing it along the longest side and diffracting onto the

(211) planes. From this measurement, the radius of curvature

Ry along the y axis was achieved. Third disposition: the sample

was exposed to X-rays to measure the spread of the planes

bent by the QM effect. The traversed face was the 24 �

62 mm, and the diffracting planes were the (111) planes.

Four different configurations were examined by exposing

the crystal to X-rays, by setting four different curvatures for

the sample. The configurations were obtained by turning the

screws that controlled the sample deformation. At each

configuration, the sample curvatures were measured in the

three dispositions described above, to determine R along the x

and y axes and RQM along the z axis.

Using equations (5)–(10), it is possible to calculate the

expected values for the QM curvature once the two values Rx

and Ry are known. The theoretical values were compared with

the measured ones and are plotted in Fig. 11. In the figure, the

dashed lines show the theoretical QM curvature. The values

are expressed as curvature (C ¼ 1=R m�1) for better clarity of

the data.

The four cases corresponding to experimental data are

shown. The curvature along the y axis is fixed, while that along

the x axis is an independent variable. The QM curvature is a

function of the curvature along the x axis. For each case, an

experimental point was achieved, measuring the principal

curvature along the x and y axes and the QM curvature. The

experimental data are plotted as colored squares in Fig. 11.

A good agreement between the experimental data and the

expected values of the QM curvature was achieved. This

means that an adjustable value for the curvature of the planes

bent by the QM effect can be achieved by controlling the

primary curvature of a crystal. The black point in Fig. 11

corresponds to a radius of curvature of about 55 m; this

represents a very large curvature involving the QM effect in a

2 mm-thick crystal.
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Table 3
Main features of the experiment.

Sample size (mm) 24� 62� 2
Main plane, orthogonal to the z axis (211)
Planes orthogonal to the x axis (111)
Planes orthogonal to the y axis (110)
Beam energy (keV) 150
Beam monochromaticity �E/E = 2 � 10�3

Beam divergency (0 0) �1
Beam size (mm) 50 � 50

Figure 11
QM curvature in a deformed Si crystal. Squares represent experimental
data and crosses represent expected values of the QM curvature. Dashed
lines indicate different values of the curvature along the y axis, while the
values of curvature along the x axis are shown by the abscissa axis.

Figure 10
(a) Photograph of the QM Si sample. (b) Photograph of the holder,
lateral view. Crystallographic orientations are highlighted.



8. Discussion and conclusions
‘Quasi-mosaicity’ is an effect driven by anisotropy that was

introduced 60 years ago. Half a century after its discovery,

‘quasi-mosaicity’ was revisited by the scientific community for

two important applications in modern physics. First, the QM

effect has been used for steering charged-particle beams with

energy equal to or greater than 1 GeV. QM crystals have also

proved to be an indispensable tool in the manipulation of

negatively charged particle beams in the GeV energy range.

Moreover, bent crystals based on the QM effect offer several

opportunities for further research. For instance, steering of up

to 10 GeV electrons is currently underway at SLAC, while the

electromagnetic radiation generated through interaction

between 1 GeV electrons and QM crystals is currently being

studied at MAMI.

Second, ‘quasi-mosaicity’ may be a very promising effect for

the focusing of hard X-rays and soft �-rays. Two Laue lenses

entirely based on QM crystals have been designed and

proposed to the astrophysics community. The sensitivity of

such Laue lenses was found to be very high when compared

with other proposed lenses. Moreover, a Laue lens prototype

relying on QM crystals is under development at the LARIX

facility as part of the Laue project.

‘Quasi-mosaicity’ can be exploited for applications beyond

those described in this paper. As an example, QM crystals are

currently being studied for use as optical components for

X-ray monochromators. This scheme would allow the exploi-

tation of curved diffracting planes, thus increasing the inte-

grated diffraction efficiency of X-ray beams in synchrotron

facilities or in diffractometers.

QM curvature can be exploited also in asymmetric lattice

planes, i.e. in planes not parallel to any morphological surface.

Actually, the theory of linear elasticity envisages that it is not

possible to induce a QM curvature to several symmetric lattice

planes. However, a QM crystal can show a curvature driven by

anisotropy along asymmetric planes too. Indeed, some

families of lattice planes that would be flat in a symmetric

configuration can be bent under an asymmetric configuration.

This condition is important because there are planes, such as

the (220) family, that exhibit high electron density and thereby

strong diffracting power but no QM effect under symmetric

configurations. Indeed, the (220) planes can be bent through

the QM effect if they were in an asymmetric configuration

(Bellucci et al., 2015).

In this paper, we have reviewed the concept of ‘quasi-

mosaicity’ in crystals from several points of view, encom-

passing its theoretical background and the technology behind

the method. Finally, we have described a general case of two

independent mechanical moments applied to a crystal plate to

obtain an adjustable QM curvature. We performed an

experiment at ESRF to demonstrate that the proposed

treatment can predict the QM curvature as a function of the

principal curvatures of the plate.
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