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Chapter 1

Introduction

Point processes are stochastic processes defining a natural and convenient formal
tool to describe the process of discrete events that occur in a continuous space, time
or a space-time domain. Examples, spanning many scientific branches, are found
with forest fires, crimes, earthquakes, diseases, tree locations, animal locations or
communication network failures, to name just a few. Depending on the domain
where the events occur, we can talk about spatial, temporal or spatio-temporal
point processes. When time is present, the process has an evolution in time, and the
events can be sorted according to their chronological order, sharing some common
features with time series. When a property or a characteristic can also be attached
to each event, such as the magnitude of an earthquake or the burned area of a
wildfire, the point process is then called a marked point process.

Modelling real problems through space-time point processes is crucial in many
scientific and engineering fields, such as environmental sciences, meteorology, image
analysis, seismology, astronomy, epidemiology and criminology. Indeed, specifying a
statistical model is a very effective way compared to analyzing data by calculating
summary statistics. Formulating and fitting a statistical model to the data allows
for taking into account effects that otherwise could introduce distortion in the anal-
ysis. In parallel, the growing data availability leads scientific research to look for
more detailed information through statistical methodologies suitable for describing
complex phenomena.

This thesis aims at providing new local methods and models for such complex
spatio-temporal point processes. Going “local” aims to obtain greater detail in
the study of space-time phenomena, identifying outlying points or sub-areas that
require greater attention and could be the subject of further studies. Methods such
as dependence models or second-order characteristics, useful for describing point
processes, are typical tools used in the global context, which can serve as the basis
for building new local tools.

Therefore, the contribution of this thesis includes several aspects of local charac-
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2 1. Introduction

teristics of spatial and spatio-temporal point processes, and the main aims addressed
are (1) to individuate sub-regions where point patterns cluster, (2) to take into ac-
count individual contributions of points into different statistical procedures such as
hypothesis testing, point estimation, and diagnostics, and (3) to include accessory
available information, such as the area and points.

It is important to highlight that the context of application is very broad, as
local methods are of interest in describing any phenomenon with a complex spatio-
temporal dependence. Some examples addressed in this thesis include seismic events,
GPS data, traffic accidents, and crimes. Nevertheless, the motivating problems
arising from the several contexts of applications serve as starting point to develop
different methods ascribable to specific research goals. The methods and models that
are developed in this thesis can hopefully be applied to different scientific fields and
could be suitable for all those phenomena for which it makes sense to hypothesize
an interdependence in space and time. Furthermore, this thesis covers a wide range
of topics, including modelling, statistical inference, and simulation issues on spatial
and spatio-temporal point processes, point processes on linear networks, and non-
Euclidean spaces.

Indeed, in the last decade, spatial statistics has undergone an extraordinary
methodological and computational advancement focused on generalizing and ex-
tending the foundations of the theories to more complex geometric spaces that allow
fairer statistical analysis of new kinds of spatial data. In particular, spatial and
spatio-temporal point process methodologies have been addressed to consider non-
classical geometric supports for analyzing events on linear networks, such as traffic
accidents in a city.

1.1 Complex point process models

Specifying a statistical model is a very effective way compared to analyzing data by
calculating summary statistics. Formulating and adapting a statistical model to the
data allows taking into account effects that otherwise could introduce distortion in
the analysis (Baddeley et al., 2015).

In the context of spatial point processes, for example, it may be suitable to as-
sume a log-linear Poisson model depending on a set of explanatory variables. An
extension of these global models to the local case has been proposed by Baddeley
(2017), introducing models based on local likelihood, known in this context as “ge-
ographically weighted regression models”. Indeed, it might be unrealistic to assume
that the model parameters are constant across the analyzed region, and it might be
useful to specify a model where parameter estimates vary in space. For example,
regarding the study of seismic events, a log-linear relationship could be assumed be-
tween the intensity of earthquakes and the distance from the nearest seismic source.
In this example, we could assume that the model’s coefficients vary as a function of
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space due to the different genesis of events. The use of local approaches is benefi-
cial for describing areas with inhomogeneous characteristics induced by underlying
complex spatial processes.

It is essential to specify that the description of real point processes often re-
quires more complex models than a Poisson model since the latter is based on the
assumption of the absence of interdependence between events. Two large classes of
alternative models for the analysis of spatial point processes are the Gibbs and Cox
processes (Van Lieshout, 2000; Moller and Waagepetersen, 2003; Illian et al., 2008).
Gibbs processes typically exhibit negative association, while Cox processes always
exhibit positive association. Moreover, for these large classes of models Baddeley
(2017) has proposed a local version, thus allowing to obtain estimates of the param-
eters that vary in space, not only representing the effect of the explanatory variables
included in the model but also the interdependence structure between the points.

Models used for studying and predicting space-time phenomena, when these have
a clustered structure, are the log-Gaussian Cox processes (Møller et al., 1998) mod-
els. These models can be referred to as empirical models, and they are based on
relatively simple approximations, on observation rather than theory. Alternatively,
mechanistic models are based on mathematical descriptions of mechanical, chemi-
cal, biological (etc.) phenomena or processes. The former describes the pattern in a
dataset without referring to any particular underlying mechanism (e.g. by a Gaus-
sian Random Field), while in the latter, the interaction between events is expressed
considering the physical knowledge on the process, typically through a conditional
intensity. A typical example of mechanistic models is the Self-Exciting models, like
the ETAS models (Ogata and Katsura, 1988). The general Self-Exciting models are
applied for the description of space-time phenomena and are often used to model
events that appear to be clustered over time. They were introduced for point-of-time
processes by Hawkes and Adamopoulos (1973) and then extended to the space-time
context.

A point process is called Self-Exciting if the occurrence of an event increases the
probability of observing other points, while it is called Self-Correcting if the points
take on an inhibitory effect (Schoenberg, 1999). The Self-Exciting process can be
defined in terms of the conditional intensity function (Daley and Vere-Jones, 2007) as
the sum of the spatial density of the background component and the density function
of the induced component. Methods for describing such processes are typically based
on the arrangement of points in space and time without additional information. Only
recently, some models that allow the inclusion of explanatory variables have been
implemented (Meyer et al., 2012; Adelfio and Chiodi, 2020).

Log-Gaussian Cox process models, on the other hand, are modifications of Pois-
son processes that allow the incorporation of random influences in the models. In-
deed, a Cox process model is often chosen when it is believed that the arrangement
of points is influenced by unobserved or unobservable explanatory variables. Specif-
ically, a log-Gaussian Cox process model is a Cox process whose intensity is taken
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as the exponential of a Gaussian random field. Log-Gaussian Cox process models
are therefore made up of a deterministic and a stochastic part. In the deterministic
component, it is possible to consider the effect of the explanatory variables, exactly
as in the linear predictor of the log-linear Poisson models. Thanks to the stochas-
tic component, on the other hand, it is possible to describe the interdependence
structure among the points through parameters of scale and variance.

Both Self-Exciting and log-Gaussian Cox processes are mainly used for the study
of space-time phenomena, and they are particularly appropriate for the purposes of
this thesis, as they allow us to consider explanatory variables suitable for describing
the phenomenon studied. Therefore, the inclusion of explanatory variables in the
model can be linked to the possibility of accounting for the local effects of some
covariates in a space or space-time domain.

1.2 Outline of the thesis

Chapter 2 aims at introducing the preliminaries for point processes and their local
characteristics. As most spatio-temporal models and methods have been developed
as a series of extensions of spatial methods, we present the methodology starting from
purely spatial point processes definitions, moving then to space and time. Moreover,
we outline the main differences when dealing with global and local characteristics
of point processes. Finally, we turn to some definitions of the global framework of
point processes occurring on the non-Euclidean space of linear networks.

Chapter 3 presents novel fitting procedures for local complex spatio-temporal
point processes, applied to seismic data. The motivation comes from seismic data
analysis, and the aim is to take into account individual contributions of points
into the statistical inference of different models. This allows for obtaining varying
parameters and identifying sub-regions of the analysed areas reflecting different first-
and second-order characteristics. The methods in this chapter are developed and
applied to real seismic datasets.

In detail, section 3.1 provides the motivating problem through an application
of the local (purely) spatial models. We propose the use of advanced and flexible
statistical models to describe the spatial displacement of earthquake data. The
section aims to account for the external geological information in the description
of complex seismic point processes, through the estimation of models with space-
varying parameters. A local version of the log-Gaussian Cox processes (LGCPs)
is introduced and applied for the first time, exploiting the local Palm likelihood
inferential tool. We provide methods and approaches accounting for the interaction
among points, typically described by LGCP models through the estimation of the
covariance parameters of the Gaussian Random Field (GRF) that, in this local
version, are allowed to vary in space, providing a more realistic description of the
clustering feature of seismic events. Furthermore, we contribute to the framework
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of diagnostics, outlining suitable methods for the local context and proposing a new
step-wise approach addressing the particular case of multiple covariates. Overall, we
show that local models provide good inferential results and could serve as the basis
for future spatio-temporal local model developments, peculiar for the description of
the complex seismic phenomenon.

After that, in section 3.2, the local method of minimum contrast, for estimating
the second-order parameters of a general Cox process, is extended to space and time,
and is used for fitting local spatio-temporal LGCPs. We propose a local version
of spatio-temporal LGCPs using Local Indicators of Spatio-Temporal Association
(LISTA) functions into the minimum contrast procedure to obtain space as well as
time-varying parameters. We resort to the joint minimum contrast fitting method
to estimate the set of second-order parameters. This approach has the advantage of
being suitable in both separable and non-separable parametric specifications of the
correlation function of the underlying GRF.

In chapter 4, two new modelling approaches on linear networks are proposed. The
main aim is to include accessory available information on the area, i.e. constrained
supports and/or spatial covariates, and/or points, through marks.

In section 4.1 the Gibbs models with random effects are adapted to the network
structure and to the peculiar problem of describing cruise passengers’ data. We
analyse the spatio-temporal distribution of visitors’ stops by touristic attractions
in Palermo (Italy) using the theory of stochastic point processes living on linear
networks. We first propose an inhomogeneous Poisson point process model, with
a separable parametric spatio-temporal first-order intensity. We account for the
spatial interaction among points on the given network, fitting a Gibbs point process
model with mixed effects for the purely spatial component. This allows us to study
first-order and second-order properties of the point pattern, accounting both for the
spatio-temporal clustering and interaction and for the spatio-temporal scale at which
they operate. Due to the strong degree of clustering in the data, we then formulate
a more complex model, fitting a spatio-temporal LGCP to the point process on the
linear network, and addressing the problem of the choice of the most appropriate
distance metric.

In section 4.2, we formalize a Self-Exciting network model for the analysis of
crime data. Motivated by the analysis of crime data in Bucaramanga (Colombia),
we propose a spatio-temporal Hawkes point process model adapted to events living
on linear networks. We first consider a non-parametric modelling strategy, for which
we follow a non-parametric estimation of both the background and the triggering
components. Then we consider a semi-parametric version, including a parametric
estimation of the background based on covariates, and a non-parametric one of
the triggering effects. Our model can be easily adapted to multi-type processes.
Our network model outperforms a planar version, improving the fitting of the Self-
Exciting point process model.

In chapter 5, we combine the two frameworks, i.e. local and network, by propos-
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ing the use of Local Indicators of Spatio-Temporal Association functions onto the
networks. The aim is to take into account individual contributions of points in some
statistical procedures, such as diagnostics, and hypothesis testing, in order to indi-
viduate sub-regions where point patterns behave differently in terms of clustering.

Specifically, in section 5.1, the proposed LISTA functions are used to build a
statistical test for assessing local differences between the spatio-temporal second-
order structure of two point patterns occurring on the same linear network. This
allows to identify differences in the spatio-temporal clustering behaviour of two point
patterns, a point pattern of interest and a background one, both occurring on the
same linear network. We assess the performance of the testing procedure for local
second-order structure through simulation studies under a variety of scenarios that
also account for different generating point processes. We show that the proposed
local test is able to correctly identify the spatio-temporal difference in the local
second-order structure of two point patterns occurring on the same linear network,
finding that the power of the test increases as the number of points and the clustered
structure of the point pattern of interest increase as well.

Moreover, in section 5.2 we put particular emphasis on the local K-functions,
deriving some theoretical results showing that LISTA functions are useful for the
diagnostics of models specified on networks and showing that they can be used to
assess the goodness-of-fit of different spatio-temporal models fitted to point patterns
occurring on linear networks. Our methods do not rely on any particular model
assumption on the data, and thus they can be applied to whatever the underlying
model of the process.

Details on the simulation schemes implemented and used in this chapter come
in Appendix A. We finally use the proposed methodologies for the analysis of two
traffic-related problems.

Chapter 6 focuses on local characteristics of functional marked point processes.
Examples of point patterns with associated functional data include forest patterns
where for each tree, we have a growth function, curves representing the incidence of
an epidemic over a period of time, and the evolution of distinct economic parameters
such as unemployment and price rates, all for distinct spatial locations.

In section 6.1, we introduce a family of local inhomogeneous mark-weighted
summary statistics, of order two and higher, for general marked point processes.
Depending on how the involved weight function is specified, these summary statis-
tics capture different kinds of local dependence structures. We first derive some
basic properties and show how these new statistical tools can be used to construct
most existing summary statistics for (marked) point processes. We then propose a
local test of random labelling. This procedure allows us to identify points, and con-
sequently, regions, where the random labelling assumption does not hold, e.g. when
the (functional) marks are spatially dependent. Through a simulation study, we
show that the test is able to detect local deviations from random labelling. We also
provide an application to an earthquake point pattern with functional marks given
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by seismic waveforms.
In section 6.2 we only focus on the functional aspect of seismic data. In partic-

ular, we propose a novel picking algorithm for the automatic P- and S- waves onset
time determination. Our algorithm is based on the variance piecewise constant mod-
els of the earthquake waveforms. The effectiveness and robustness of our picking
algorithm are tested both on synthetic seismograms and real data. We simulate
seismic events with different magnitudes (between 2 and 5) recorded at different
epicentral distances (between 10 and 250 km). For the application to real data,
we analysed waveforms from the seismic sequence of L’Aquila (Italy) in 2009. The
obtained results are compared with those obtained by the application of the classic
STA/LTA picking algorithm. Although the two algorithms lead to similar results
in the simulated scenarios, the proposed algorithm results in greater flexibility and
automation capacity, as shown in the real data analysis. Indeed, our proposed al-
gorithm does not require testing and optimization phases, resulting potentially very
useful in earthquakes routine analysis for novel seismic networks or in regions whose
earthquakes characteristics are unknown.

In section 7, we exploit some theoretical results, from which we know the ex-
pected value of the local spatio-temporal K-function weighted by the true first-order
intensity function. This theoretical result can serve as an estimation method for ob-
taining the parameters’ estimates of a specific model assumed for the data. The
motivation is to generally avoid dealing with the complex likelihoods of some point
process models (like the ETAS process) and their maximization. By further consider-
ing the local second-order characteristics, we can obtain the whole set of parameters
assumed for the fitted model, one for each point of the analysed point pattern.

Finally, in chapter 8, general conclusions are drawn, and some paths for future
work are outlined.

Codes for the analyses were written using the software R Core Team (2022),
whose description is provided in Appendix B.

Each section broadly corresponds to a scientific paper, referred in Appendix C
together with authors’ contributions.



Chapter 2

Preliminaries on point processes
and their local characteristics

Following Cressie (2015), we introduce point processes by a mathematical approach
that uses the definition of a counting measure on a set X ⊆ Rd, d ≥ 1, with positive
values in Z: for each Borel set B this Z+-valued random measure gives the number
of events falling in B.

Definition 2.1. Point process
Let (Ω,A, P ) be a probability space and Φ a collection of locally finite counting mea-
sures on X ⊂ Rd. Define X as the Borel σ-algebra of X and let N be the smallest
σ-algebra on Φ, generated by sets of the form {φ ∈ Φ : φ(B) = n} for all B ∈ X . A
point process N on X is a measurable mapping of (Ω,X ) into (Φ,N ). A point process
defined on (Ω,A, P ) induces a probability measure ΠN (Y ) = P (N ∈ Y ), ∀Y ∈ N .

Then, for any set B ∈ X , N(B) represents the number of points falling in B,
such that if B is the union of disjoint sets B̃1, B̃2, . . ., then N(B) =

∑
N(B̃i).

Given a point process N defined on the space (X,X ) and a Borel set B, the
number of points N(B) in B is a random variable with first moment defined by:

µN (B) = E[N(B)] =

∫
Φ
φ(B)ΠN (dφ)

that is a measure on (X,X ). The measure µN is called the mean measure or first
moment measure of N (Cressie, 2015).

Higher-order moments can be defined: the k-th moment measure of N is given
by

µ
(k)
N (B1 × . . .×Bk) = E[N(B1) . . . N(Bk)] =

∫
Φ
φ(B1) . . . φ(Bk)ΠN (dφ)

where B1, B2, . . . , Bk ∈ X .

8
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Note that µ
(k)
N is a measure on (Xk,X (k)) and that X (k) is the smallest σ-algebra

found by the product sets B1 × . . .×Bk where Bi ∈ X .

The process is second-order if µ
(2)
N (B1 ×B2) is finite in X 2.

As the covariance of random variables the covariance measure of a point process
is:

CN (B1 ×B2) = µ
(2)
N (B1 ×B2)− µN (B1)µN (B2)

where B1, B2 ∈ X : CN is a signed measure on (X2,X 2).
The k-th factorial moment measure of N is defined by:

α
(k)
N (B1 × . . .×Bk) =

∫
Φ

6=∑
s1,...,sk∈Φ

1(s1 ∈ B1) . . .1(sk ∈ Bk)ΠN (dφ)

Note that α
(k)
N (Bk) = E[(N(B)(N(B) − 1) . . . N(B) − k + 1)] is the k-th factorial

moment of the random variable N(B).

For k = 2, α
(2)
N (B1 × B2) = µ

(2)
N (B1 × B2) − µN (B1 ∩ B2) is the second-order

factorial moment measure. Factorial moments are often used since ordinary moment
measures of point process may be unsatisfactory. Indeed, the Bi’s in B1 × · · · ×Bk
are not necessary disjoint. This means that the events could occur in more of the
Bi’s causing redundancy of information and singularity of the moment measures.

Definition 2.2. Simple or orderly point process.
Let N be a point process defined on X ⊆ Rd, d ≥ 1, and s a point of X. N is said
simple if

P{N(s) = 0 or 1 for all s} = 1

that is if φ({s}) ∈ {0, 1} for all s and almost all φ ∈ Φ.

The homogeneous Poisson process is the basis of the theory of point processes.
Given the space X ⊆ Rd, the homogeneous Poisson process on X is defined by the
following postulates:

1. for some λ > 0 and any bounded Borel subset B of X , N(B) follows a Poisson
distribution with mean λv(B), where v(·) indicates the Lebesgue measure;

2. given N(B) = n, the n events in B form an independent random sample from
the uniform distribution on B;

3. the random variables N(Bi) and N(Bj), representing the number of events
occurring in disjoint Borel sets Bi and Bj , are independent (independent in-
crements).

The homogeneous Poisson process is used to describe events with a completely
random occurrence on the considered space and, usually, it represents the basis for
a qualitative comparison.
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If phenomena under study show a variable intensity function over the state space,
the hypothesis of stationarity has to be relaxed and the constant intensity of the
Poisson process is replaced by a varying intensity function η(s).

Given the space X ⊆ Rd and for any Borel set B of X , the inhomogeneous
Poisson process can be introduced providing the following conditions:

1. N(B) has a Poisson distribution with mean
∫
B η(s)ds.

2. Given N(B) = n, the n events in B form an independent random sample from
a distribution on B with density function proportional to η(s), with s ∈ X.

3. The process has independent increments.

An important point process often used in the theory of seismic process analysis is
the marked point process. It consists of the locations of events xi in a studied region
X ⊆ Rd and associated random measurements or marks mi in a set M, simply
assumed to be R or a subset of R. For any point x ∈ X marked by a quantity
m ∈M, then (x,m) is a point in X ×M and, therefore, a marked point process on
X can be represented as a point process on the product space X ×M.

The process of locations {xi} is named ground process, denoted by Ng.

Definition 2.3. Simple and Stationary marked point process
Let N = {(xi,mi)} be a marked point process on X ×M, with ground process Ng.

(a) The marked point process N is simple if the ground process Ng is simple.

(b) It is stationary on X if the probability structure of the process is invariant
under shifts in X.

If the ground process is not simple, it can be considered as a cluster process, in
which clusters centres are the single locations xi and clusters members are all pairs
(xi,mij) where mij are the marks of points with common location xi.
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2.1 Spatial point processes

A spatial point pattern N is an unordered set x = {x1, . . . ,xn} of points xi where
n(x) = n denotes the number of points, not fixed in advance. If x is a point pattern
and D ⊂ R2 is a bounded region, we write x ∩ D for the subset of x consisting of
points that fall in D and n(x ∩D) for denoting the number of points of x falling in
D. A point process model assumes that x is a realization of a finite point process
N in D without multiple points. A point location in the plane is denoted by a
lowercase letter like u. Any location u can be specified by its Cartesian coordinates
u = (u1, u2) in such a way that we do not need to mention the coordinates explicitly.
The first-order property of N is described by the intensity function, defined as

λ(u) = lim
|du|→0

E[N(du)]

|du|

where du is an infinitesimal region that contains the point u ∈ D, |du| is its area and
E[N(du)] denotes the expected number of events in du. When the intensity is con-
stant, the process is called homogeneous. In the inhomogeneous case, the intensity
is not constant in the study area but may depend, for instance, on the coordinates
of points. A point process model, assuming independence, is completely described
by its intensity function λ(u) (Daley and Vere-Jones, 2007). The inter-point in-
teraction between events is measured by the second-order moment characteristics,
studied through the second-order intensity function, defined as

λ2(u,v) = lim
|du||dv|→0

E[N(du)N(dv)]

|du||dv|

where u 6= v. Refer to Daley and Vere-Jones (2007), Preposition 3.3.I, for existence
and convergence property of the point processes intensity.

Several functional summary statistics are used to study the second-order char-
acteristics of a point pattern and to measure dependence.

2.1.1 Second-order characteristics of spatial point processes

A widely used summary statistic for descriptive analysis and diagnostics is Ripley’s
K-function (Ripley, 1976, 1988), which is defined as

K(r) = 2πλ−2

∫ r

0
λ2(x)xdx,

for a stationary and isotropic process for which λ2(r) = λ2 (Schabenberger and
Gotway, 2017). It is also known as the reduced second-moment measure (Cressie,
2015), as the second reduced moment function (Chiu et al., 2013), and as the second
order reduced moment measure (Moller and Waagepetersen, 2003).
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Given that in a stationary process the distribution of N is the same as the
distribution of the shifted process N +v, for any vector v, the K-function is defined
as

K(r) =
1

λ
E [number of r-neighbours of u|N has a point at location u]

for any distance r ≥ 0 and any location u. Being a measure of the distribution of
the inter-point distances, K(r) captures the spatial dependence between different
regions of a point process. Under the homogeneous Poisson assumption, the follow-
ing theoretical relation holds Kpois(r) = πr2. When the process is stationary, the
most commonly used estimator is introduced in Ripley (1976):

K̂(r) =
|D|

n(n− 1)

n∑
i=1

∑
i 6=j

I{dij ≤ r}e(xi,xj , r) (2.1)

where I{·} is the indicator function, n is the number of points in the pattern, |D| is
the area of the window, e(xi,xj , r) is the Ripley’s edge correction and dij = ||xi−xj ||
is the pairwise distances between all distinct pairs of points xi and xj in the pattern.
When a process has K̂(r) < πr2, it means that the points tend to cluster, and when
K̂(r) > πr2, it means that the points tend to inhibit each other.

Let λ(xi) be the intensity function characterizing the generating process N , then
each point xi can be weighted by the inverse of the intensity function, i.e. 1\λ(xi),
the reciprocal of the intensity at xi, and each pair of points xi,xj will be weighted
by 1/(λ(xi)λ(xj)). The inhomogeneous K-function is defined as:

Kinhom(r) = E

[∑
xj∈X

1

λ(xj)
I{0 < ‖xi − xj‖ ≤ r}

∣∣∣∣xi ∈ X

]

assuming that this does not depend on the location xi (Baddeley et al., 2000). The
standard estimator of the K-function in Equation (2.1) can be extended to the
inhomogeneous K-function as follows:

K̂inhom(r) =
1

D

∑
i

∑
j 6=i

I{‖xi − xj‖ ≤ r }
λ̂(xi)λ̂(xj)

e(xi,xj ; r) (2.2)

where e(xi,xj , r) is an edge correction weight as before, and λ̂(u) is an estimate of

the intensity function λ(u). If λ̂(u) is the intensity estimated through a fitted model,
then the inhomogeneous version of the K-function can be used as a diagnostic tool.

The inhomogeneous K-function is useful for interpreting the local features of
data since if the estimated intensity λ̂(u) is close to the generating one λ(u), the
estimated K̂inhom(r) should behave like the corresponding function under a Pois-
son model. Moreover, K̂inhom(r) values greater than the expected value under the
Poisson model Kinhom,pois(r) = πr2 (exactly as for the homogeneous case) indicate
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that the fitted model is not appropriate, since the distances computed among points
exceed the Poisson theoretical ones, suggesting those locations where departures are
more evident. In practice, given the fitted competitive models, the model with the
estimated inhomogeneous K-function which most resembles the theoretical Poisson
one has to be preferred.

2.1.2 Spatial Poisson models

A general spatial log-linear Poisson model (Cox, 1972), generalizes both homoge-
neous and inhomogeneous models, such that:

λ(u) = λ(u,θ) = exp(B(u) + θ>Z(u)), (2.3)

where u ∈ D, B(u) and Z(u) = (Z1(u), . . . , Zp(u)) are known functions (covariates),
θ> = (θ1, . . . , θp) are unknown parameters, and therefore θ>Z(u) = (θ1Z1(u) +
. . .+ θpZp(u)). These models have an especially convenient structure, since the log
intensity is a linear function of the parameters, and covariates can be quite general
functions, making them a very wide class of models. The estimation of the point
process parameters is carried out through the maximization of the log-likelihood,
defined by:

logL(θ) =
∑
i

logλ(xi;θ)−
∫
D
λ(u;θ)du (2.4)

where the sum is over all point xi in the point process x (Daley and Vere-Jones,
2007).

2.1.2.1 Spatial log-Gaussian Cox processes

The main feature of the Poisson point process is independence and stationarity, that
is, a theoretical assumption often inappropriate for describing real data. However,
considering more general point process models may be a complex issue in terms of
inference and diagnostics (Adelfio and Schoenberg, 2009; Adelfio and Chiodi, 2015a),
but necessary if dealing with real contexts where dependence structure among data
is of main interest (Siino et al., 2017, 2018a). Two large classes of alternative models
for spatial point processes are the Gibbs and Cox processes (Van Lieshout, 2000;
Moller and Waagepetersen, 2003; Illian et al., 2008). For clustered point patterns,
the most commonly-used models are Cox and cluster processes (Baddeley et al.,
2015, Chapter 12).

The Cox processes are a generalisation of the inhomogeneous Poisson processes,
where the intensity is a realisation of a random field. For this reason, they are also
called doubly stochastic Poisson processes. The point process N is said to be a Cox
process driven by Λ, if the conditional distribution of the point process N given
a realisation Λ(u) = λ(u) is a Poisson process on D with intensity function λ(u).
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The most used Cox point processes are the shot-noise Cox processes (Moller and
Waagepetersen, 2003) and the log-Gaussian Cox processes (Møller et al., 1998). In
a shot-noise Cox process, offspring are observed around unseen parents representing
the random unobservable variability.

Following the inhomogeneous specification in Diggle et al. (2013), the log-Gaussian
Cox process for a generic point in space has the following intensity

Λ(u) = λ(u) exp(S(u)) (2.5)

where S is a Gaussian Random Field (GRF) with mean function µ = E(S(u)) = −σ2

2
so that E[exp(S(u))] = 1. The covariance function is C(S(u), S(v)) = C(||u−v||) =
σ2ρ(r) under the stationary assumption, i.e. only depends on the variance parameter
σ2, and distance r = ‖u− v‖ between locations u and v.

ρ(·) is the correlation function of the GRF, completely specified by its first and
second moments. Following the notation used in Baddeley et al. (2015), the random
intensity Λ(u) = exp(S(u)) is a log-Gaussian or log-normal distribution. If Z ∼
N(µ, σ2) and Λ = exp(Z) then Λ has mean exp(µ+σ2/2). In this thesis, we assume
the exponential structure for the covariance function as in Brix and Diggle (2001),

C(r) = σ2 exp
(
− r
α

)
(2.6)

depending only on α and σ2 that represent the scale parameter for the spatial dis-
tance and the variance, respectively. The effect of increasing σ2 is to generate higher
peaks in the surface intensity which leads to clusters of points. Increasing the spa-
tial scale parameter α, the underlying GRF presents a stronger spatial correlation,
and it corresponds to a diffuse aggregation of points of the LGCP. Other basic sta-
tionary and isotropic family models commonly used for the spatial component are
the Matérn, Cauchy, Gaussian and Spherical covariance functions (Gelfand et al.,
2010). In a spatial log-Gaussian Cox process, the intensity model can be expressed
as a function of further covariates, according to a log-linear model as in Equation
(2.3). We know that λ(u) = E(Λ(u)) = E(exp(S(u))) = exp((µ(u) + σ2/2)), where

µ(u) = −σ
2

2
+B(u) + θTZ(u) (2.7)

is the mean function of the random intensity function. This peculiarity, together
with the possibility of detecting the clustered structure of the point process, makes
the LGCP model attractive for modelling seismic data.

2.1.3 Gibbs point processes

It has become widely accepted in spatial statistics that Gibbs models are suitable
primarily for modelling regularity or inhibition between points, and are not able
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to model strong clustering (Illian et al., 2008; Moller and Waagepetersen, 2003)
although moderate clustering can be achieved. However, this conclusion is based on
experience with the simple Gibbs models that have predominated in the literature,
in particular with pairwise interaction processes (Baddeley et al., 2013).

Definition 2.4. A finite point process whose probability density f is hereditary is
called a (finite) Gibbs point process. For a Gibbs process, the (Papangelou) condi-
tional intensity at a location u ∈ W given a configuration x ∈ X may be defined
as

λ(u,x) =
f(x ∪ {u})
f(x\{u})

,

provided the numerator and denominator are nonzero, and λ(u,x) = 0 otherwise.

The most common models considered in the literature are pairwise interaction
processes of the general form

h(x) =

[
n∏
i=1

b(xi)

][∏
i<j

c(xi, xj)

]
, (2.8)

where b : W → [0,∞) and c : W ×W → [0,∞) are given functions. The second
bracketed term is a product over all unordered pairs of points in x. If b is constant
and c is translation equivariant, i.e., if c(u, v) = c(u−v), then we shall call the point
process stationary. A simple special case of (2.8) is the Strauss process (Strauss,
1975). Many other models of the class of (finite) Gibbs point processes can be fitted
rapidly to real data sets containing large numbers of points. We refer to Baddeley
et al. (2000, 2006b); Diggle (2013); Geyer (1999); Moller and Waagepetersen (2003)
for model-fitting, prediction and simulation details.

2.1.4 Local spatial Poisson models

In this section, we report some basic definitions and results about the local composite
likelihood applied to Poisson point processes, following the notation used in Baddeley
(2017). In the local context, given a spatial point pattern x, a realization of a finite
point process N1 in D, the template model is defined as a point process N2, governed
by a parameter θ ∈ Θ ⊆ Rp. N2 is defined as the “template” model rather than the
“homogeneous” one, because the potential dependence of the distribution of N2 on
some spatial covariates would makeN2 a spatially inhomogeneous point process. The
template model is assumed to provide good local approximations to N1, in the sense
that, in any small region B ⊂ D, the distribution of N1 ∩ B is well-approximated
by the distribution of N2 ∩B of parameter θ which may depend on B.

When spatial log-linear models are used, the model parameters are usually as-
sumed to be constant across the entire study region. This assumption may be too
simplistic in contexts that are characterised by multi-scale and fractal features, like
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the seismic one, where the relationship between the intensity of earthquakes and
other possible characteristics of the area where events occur. In this context, the
features can be described by a Poisson process with intensity

λ(u) = λ(u;θ(u)) = exp(B(u) + θ>(u)Z(u)) (2.9)

with local coefficients, where θ(·) is a function of the spatial location. This is the
“inhomogeneous” alternative to the template log-linear intensity (2.3). For estimat-
ing local models as in Equation (2.9), the likelihood at u is used, being a weighted
version of the original likelihood in Equation (2.4), with the greatest weight on
locations close to u.

Therefore, in the local context, the local log-likelihood associated with location
s (Loader et al., 1999) is:

log L(s;θ) =

n∑
i=1

wh(xi − s) log λ(xi;θ)−
∫
D
λ(u;θ)wh(u− s)du (2.10)

where wh(u) = h−dw(u/h) is a weight non-parametric function, and h > 0 is a
smoothing bandwidth. It is not necessary to assume that wh is a probability density.
Throughout the thesis, we will consider a kernel of fixed bandwidth h. In the local
likelihood in Equation (2.10) this is usually chosen by the cross-validation criterion
(Loader et al., 1999). The optimal bandwidth hopt maximises

LCV(h) =
∑
i

log λ(xi; θ̂i(xi))−
∫
D
λ(u; θ̂(u))du (2.11)

where θ̂(u) = θ̂(u, h) is the local estimate of θ at location u using bandwidth h > 0,
and θ̂i(xi) = θ̂i(xi;h) is the corresponding “leave-one-out” estimate at the location
xi computed from the data omitting xi.

Maximizing the local likelihood for each fixed u gives local parameter estimates
θ̂(u) of the original model, confidence intervals, hypothesis tests and other standard
tools (Baddeley, 2017). These fitted coefficients can be plotted as a function of
spatial location u. The fitted intensity can be obtained as a function of u too, as
λ̂(u) = λ(u; θ̂(u)). It is worth recalling that the local likelihood approach assumes
that the template model is a good local approximation to the data. On the one
hand, this allows using existing statistical techniques and theory for the template
model to be easily modified in local estimation and inference. On the other hand,
there is no explicit description of the “true” model, but only of the template model,
which is the local approximation of the true one.

The key assumption is that, for each spatial location u ∈ D, there is an unob-
served spatial subdomain D(u) containing u where the template model is exactly
true and parameter θ(u). If the support of the kernel centred at u falls entirely
inside D(u), then the statistical properties of θ̂(u) are the same as they would be
if the entire process followed the template model with constant parameter value
θ = θ(u) (Baddeley, 2017).
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2.1.4.1 Local spatial log-Gaussian Cox processes

In this thesis, we formalize the characteristics of the local version of the LGCP
model, also allowing the additional parameters σ and α to vary in space (denoted
by σ(u) and α(u) throughout the rest of the thesis), as well as the effects of the
considered covariates, according to a log-linear model as in Equation (2.9). Re-
calling the specification of the global LGCP, we know that now, as the interaction
parameters can vary in space, the GRF and its moments will also depend on the
locations u. In other words, for each location u, we obtain a local GRF. Basically,
while the global LGCP implies a unique generating process, the local LGCP implies
that events are generated from multiple processes, i.e. with different correlation
patterns, that can yet be estimated through a unique model. Therefore, the local
LGCP represents an interesting model to analyse and describe those observed re-
gions for which it is reasonable to assume different generating GRFs, characterized
by different covariances. Furthermore, this implies that a local version of an LGCP
model can be useful to spot regions with different correlation structures, and the
mean of the local process in Equation (2.7), also depends on the space varying pa-
rameters θT (u) and σ2(u). Therefore, if in the global model the mean of the process
is influenced just by the linear predictor and by the constant σ2, in the local LGCP,
the mean varies also because of the local variation of θT (u) and σ2(u) parameters.
Then, the covariance function, assumed in Equation (2.6), now depends on the local
variance parameter σ(u) and spatial scale parameter α(u). A visual display of the
space-varying estimates of the interaction parameters may suggest the presence of
a space-varying clustered structure.

2.1.4.1.1 Local spatial LGCP model estimation through local Palm like-
lihood In this Section, the model estimation procedure based on the local version
of the Palm likelihood of Ogata and Katsura (1991), and developed by Baddeley
(2017), is reported. The Cox models are usually estimated by a two-step procedure
involving both the intensity and the cluster or correlation parameters. In the first
step, a Poisson model is fitted to the point pattern data, providing the estimates
of the coefficients of all the terms in the model formula characterizing the intensity,
as the one in the most general log-linear model in Equation (2.3). This intensity is
then considered as the true one in the second step, and the cluster or correlation pa-
rameters are estimated by either the method of minimum contrast (Pfanzagl, 1969;
Eguchi, 1983; Diggle, 1979; Diggle and Gratton, 1984; Siino et al., 2018a), Palm
likelihood (Ogata and Katsura, 1991; Tanaka et al., 2008) or composite likelihood
(Guan, 2006). Hereafter we will denote by θ the vector of (first-order) intensity
parameters and by ψ the cluster parameters, also denoted as correlation or interac-
tion parameters by some authors. In the case of a spatial Log-Gaussian Cox process
with exponential covariance as the one in (2.6), the cluster parameters correspond
to ψ = (α, σ).
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In order to estimate the local version of the LGCP models, we refer to the adap-
tation of the Palm likelihood to a general nonstationary point process, considered
by Baddeley (2017) because of its formal similarity to the Poisson likelihood. Ogata
and Katsura (1991) developed a surrogate likelihood function called Palm likelihood
for the analysis of stationary point processes.

The Palm distribution formalises the concept of conditioning on a point of the
process. Assume that the process has the intensity function λ(u;φ) for u ∈ D and
second moment intensity λ2(u,v;φ) for u,v ∈ D, depending on parameters φ ∈ Φ.
Define the intensity of the Palm distribution at u as

λp(u|v;φ) = λ2(u,v;φ)/λ(u;φ). (2.12)

The Palm log-likelihood can be written as

log PAL(φ) =
∑
i

[∑
j 6=i

Q(xi,xj) log λp(xj |xi;φ)−
∫
D
Q(xi,u)λp(u|xi;φ)du

]
(2.13)

where Q(u,v) is a 0/1 valued constraint function designed to simplify computation
and optimise statistical properties, typically taken to be Q(u,v) = I{‖u− v‖} ≤ R
where I{·} is the indicator function, such that I{x} = 1 if x is true, and R > 0 is
an upper bound to the correlation distance of the model. The quantity in square
braces is recognisable as the log-likelihood of a Poisson point process with intensity
λp(·|xi;φ) restricted to the set where Q(xi, ·) = 1.

Dealing with the Cox processes, it is usual to work with models in which the
intensity and interaction parameters are “separable”

λ2(u,v;φ) = λ(u;θ)λ(v;θ)ρ(u,v;ψ) (2.14)

where φ = (θ,ψ), with θ representing the intensity parameters and ψ the interac-
tion parameters, and ρ is the correlation function. As stated by Baddeley (2017),
examples include log-Gaussian Cox processes and certain inhomogeneous Neyman-
Scott processes (Waagepetersen, 2007; Waagepetersen and Guan, 2009). Recalling
what was previously introduced, specifying a local Log-Gaussian Cox process, θ is
the vector of parameters representing the effects of the covariates included in the
intensity, while ψ is the vector of the interaction parameters σ and α, representing
the spatial scale parameter and the variance of the underlying GRF.

The Palm log-likelihood (2.13) involves summation and integration over pairs of
spatial points. To define a local version of the Palm likelihood, it is possible to apply
local weights to the second element of each pair. That is, the weights are applied
just to the points for which “predictions” are made. Summing over the first element
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xi, we get:

log PAL(s;φ) =
∑
i

∑
j 6=i

wh(xj − s)Q(xi,xj) log λp(xj |xi;φ)

−
∑
i

∫
D
wh(u− s)Q(xi,u)λp(u|xi;φ)du

that is basically the same Equation (2.13) obtained replacing Q(u,v) by wh(v −
s)Q(u,v). This must be maximised numerically. We assume a separable isotropic
model as in Equation (2.14). Recalling Equation (2.12), then we have

λp(v|u;φ) = λ(v;θ)ρ(||u− v||;ψ)

so that the local Palm log-likelihood to be maximised is

log PAL(s;φ) =
∑
i

∑
j 6=i

wh(s− xi)Q(xi,xj){log λ(xj : ψ) + log ρ(||xi − xj ||;θ)}

−
∑
i

∫
D
wh(s− u)Q(xi,u)λ(u;ψ)ρ(||xi − xj ||;θ)du.

(2.15)

A two-step estimation procedure is used as follows:

• The intensity parameters θ are estimated by maximising the Palm likelihood
of the Poisson process with intensity λ(·;θ), that is equivalent to a weighted
Poisson likelihood.

• The interaction parameters ψ are estimated separately at each location u by
maximising the local Palm likelihood (2.15) using the simplex algorithm.

If the Palm likelihood is taken in the form (2.13), the natural analogue of the
Poisson likelihood cross-validation criterion (2.11) for Palm likelihood is

LCV(h) =
∑
i

∑
j 6=i

Q(xi,xj) log λp(xj |xi; φ̂−j(xj))−
∑
i

∫
D
Q(xi,u)λp(u|xi; φ̂(u))du

(2.16)
for bandwidth h, where φ̂−j(xj) is the “leave-one-out” estimate, that is, the local
parameter estimate at s = xj based on the data x \ xj .

Alternative approaches for fitting local Cox and cluster processes include the
methods of minimum contrast (Pfanzagl, 1969; Diggle and Gratton, 1984) and
model-based clustering (Banfield and Raftery, 1993; Dasgupta and Raftery, 1998;
Walsh and Raftery, 2002, 2005). In particular, a local version of the minimum con-
trast approach is developed using the local K-functions or the local pair correlation
functions by Baddeley (2017), bearing a very close resemblance to the local Palm
likelihood approach.
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2.1.4.2 Diagnostics for local models

This section outlines relevant methods for carrying out diagnostics for local mod-
els. A particular focus is given to the model selection, dealing with multiple co-
variates. Some well-known methods for diagnostics are reviewed and proposed as
model selection approaches in the context of local models. Basically, these concern
intensity-based methods. After that, we focus on local tests, which are specific di-
agnostic tools for models with space-varying parameters, testing the significance of
parameters and the properness of a local model.

2.1.4.2.1 Global diagnostics methods for local model selection This sec-
tion reviews some methods widely used for diagnostics of global spatial point pro-
cesses models, here proposed as diagnostic methods for spatial models in the local
framework. As stated in some previous papers (Adelfio et al., 2020; Adelfio and
Schoenberg, 2009), the main problem when dealing with residual analysis for point
processes is to find a correct definition of residuals since the one used in depen-
dence models cannot be used for point processes. Two of the most used methods
for diagnostics of spatial point processes are the inhomogeneous K-function and the
smoothed raw residuals, here reported.

For an inhomogeneous Poisson process model, with fitted intensity λ̂(u), the
predicted number of points falling in any region D is

∫
D λ̂(u)du. Hence, the residual

in each region D ⊂ R2 is the “observed minus predicted” number of points falling
in D (Alm, 1998), that is R(D) = n(x ∩D) −

∫
D λ̂(u)du, where x is the observed

point pattern, n(x ∩D) the number of points of x in the region D, and λ̂(u) is the
intensity of the fitted model. A simple residual visualization can be obtained by
smoothing them. The “smoothed residual fields” are defined as

s(u) = λ̃(u)− λ†(u) (2.17)

where λ̃(u) = e(u)
∑n(x)

i=1 κ(u−xi) is the non-parametric, kernel estimate of the fitted

intensity λ̂(u), while λ†(u) is a correspondingly-smoothed version of the (typically
parametric) estimate of the intensity of the fitted model, λ†(u) = e(u)

∫
W κ(u −

v)λ̂(v)dv. Here, κ is the smoothing kernel and e(u) is the edge correction. The
smoothing bandwidth for the kernel estimation of the raw residuals is selected by
cross-validation as the value that minimises the Mean Squared Error criterion defined
by Diggle (1985), by the method of Berman and Diggle (1989). See Diggle (2013)
for further details. The difference in Equation (2.17) should be approximately zero
when the fitted model is close to the real one. Therefore, the best model is the one
with the lowest values of the smoothed raw residuals.

Throughout the thesis, these residuals are used for diagnostics, both for their
flexibility and their simplicity of implementation, and the complexity of model esti-
mation when the parameters vary in the space domain.
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2.1.4.2.2 Local diagnostics methods: testing the local departure from
“homogeneity” In this section, we introduce local methods for local model diag-
nostics, namely the tests of local departure from the “homogeneity” assumption, as
proposed in Baddeley (2017). For further confuting this hypothesis, still retaining
local features, and for assessing the contribution of each covariate to the rejection of
the null hypothesis, dealing with multiple linear predictors, we propose a bootstrap
and step-wise procedure in Sections 3.1.1 and 3.1.1.1, respectively.

Let us introduce the following system:{
H0 : θ ∈ Θ0

H1 : θ ∈ Θ

where Θ0 ⊂ Θ, a “local test” can be introduced assessing for parameters dependence
on the spatial location u ∈ D. In the simplest case, suppose θ = (θ1, ..., θp) and
assume that we want to verify {

H0 : θj = 0

H1 : θj 6= 0

The local version of the Wald test can be computed to assess the significance of
the effects of the spatial covariates as a function of u. This test is based on the
standardised local coefficient estimate or “t-statistic”

tj(u) = θ̂j(u)/se(θ̂j(u)), (2.18)

whose asymptotic null distribution is the standard Normal. For asymptotic proper-
ties of local tests, refer to Baddeley (2017).

Local tests can also be used for cluster detection, defining a formal hypothesis
test of local departure from “homogeneity”. In this context, the pattern is considered
“homogeneous” if it is generated by the template model, called the “global model”,
with a constant parameter vector θ. Therefore, let us consider the null hypothesis
H0 of a Poisson process with the template log-linear global model as in Equation
(2.3). The “inhomogeneous” alternative H1 is a Poisson process with the intensity
function as in Equation (2.9), called “local model”, with θ(·) function of the spatial
location. So the test of local departure from “homogeneity” refers to the following
hypotheses system:{

H0 : λ(u) = λ(u,θ) = exp(B(u) + θ>Z(u))

H1 : λ(u) = λ(u;θ(u)) = exp(B(u) + θ>(u)Z(u))

To assess this hypothesis, a Monte Carlo test can be carried out for a locally-fitted
Poisson point process model, using either the local likelihood ratio test statistic or,
as in this thesis, the local score test statistic:

T 2(u) = U(u; θ̇(u))I(u; θ̇(u))−1U(u; θ̇(u))
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where θ̇(u) is the maximizer of logL(u;θ) subject to θ ∈ Θ0. These statistics
require a separate computation at each spatial location u, and their asymptotic null
distribution is χ2

d. By visual inspection of the maps of the resulting local p-values
(one value for each spatial location u), we individuate those regions of the analysed
area where the hypothesis is confuted. Therefore, it can be possible to identify the
regions where the local model is more appropriate than the global one, gathering
information on the areas with the most inhomogeneous behaviour, that is, where
the effect of the considered covariates varies. Of course, if the hypothesis is rejected
in the majority of the area under study, the local model should be preferred to the
global one.
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2.2 Spatio-temporal point processes

We consider a spatio-temporal point process with no multiple points as a random
countable subset X of R2 × R, where a point (u, t) ∈ X corresponds to an event at
u ∈ R2 occurring at time t ∈ R. A typical realisation of a spatio-temporal point
process X on R2 ×R is a finite set {(ui, ti)}ni=1 of distinct points within a bounded
spatio-temporal region W × T ⊂ R2 × R, with area |W | > 0 and length |T | > 0,
where n ≥ 0 is not fixed in advance. In this context, N(A×B) denotes the number
of points of a set (A × B) ∩ X, where A ⊆ W and B ⊆ T . As usual (Daley and
Vere-Jones, 2007), when N(W × T ) < ∞ with probability 1, which holds e.g. if X
is defined on a bounded set, we call X a finite spatio-temporal point process.

For a given event (u, t), the events that are close to (u, t) in both space and time,
for each spatial distance r and time lag h, are given by the corresponding spatio-
temporal cylindrical neighbourhood of the event (u, t), which can be expressed by
the Cartesian product as

b((u, t), r, h) = {(v, s) : ||u− v|| ≤ r, |t− s| ≤ h}, (u, t), (v, s) ∈W × T,

where || ·|| denotes the Euclidean distance in R2. Note that b((u, t), r, h) is a cylinder
with centre (u, t), radius r, and height 2h.

Product densities λ(k), k ∈ N and k ≥ 1, arguably the main tools in the statistical
analysis of point processes, may be defined through the so-called Campbell Theorem
(see Daley and Vere-Jones (2007)), which states that given a spatio-temporal point
process X, and for any non-negative function f on (R2 × R)k, we have

E

[ 6=∑
ζ1,...,ζk∈X

f(ζ1, . . . , ζk)

]
=

∫
R2×R

· · ·
∫
R2×R

f(ζ1, . . . , ζk)λ
(k)(ζ1, . . . , ζk)

k∏
i=1

dζi,

that constitutes an essential result in spatio-temporal point process theory. In par-
ticular, for k = 1 and k = 2, these functions are respectively called the (first-order)
intensity function λ and the (second-order) product density λ(2). Broadly speak-
ing, the intensity function describes the rate at which the events occur in the given
spatio-temporal region, while the second-order product densities are used when the
interest is in describing spatio-temporal variability and correlations between pairs
of points of a pattern. They represent the point process analogues of the mean
function and the covariance function of a real-valued process, respectively. Then,
the intensity function is defined as

λ(u, t) = lim
|du×dt|→0

E[N(du× dt)]

|du× dt|
,

where du × dt defines a small region around the point (u, t) and |du × dt| is its
volume. The second-order intensity function is

λ(2)((u, t), (v, s)) = lim
|du×dt|,|dv×ds|→0

E[N(du× dt)N(dv× ds)]

|du× dt||dv× ds|
.



24 Chapter 2. Preliminaries on point processes and their local characteristics

Finally, the pair correlation function

g((u, t), (v, s)) =
λ(2)((u, t), (v, s))

λ(u, t)λ(v, s)

can be interpreted formally as the standardised probability density that an event
occurs in each of two small volumes, du × dt and dv × ds, in the sense that for a
Poisson process, g((u, t), (v, s)) = 1.

2.2.1 Second-order characteristics of spatio-temporal point processes

In this thesis, the focus is on second-order characteristics of spatio-temporal point
patterns, with an emphasis on the K-function (Ripley, 1976). This is a measure of
the distribution of the inter-point distances and captures the spatio-temporal de-
pendence of a point process. Gabriel and Diggle (2009) extend the second-order
methods provided by Baddeley et al. (2000) to the spatio-temporal setting, defin-
ing the spatio-temporal inhomogeneous K-function and proposing a non-parametric
estimator.

Definition 2.5. (Gabriel and Diggle, 2009) A spatio-temporal point process is second-
order intensity reweighted stationary and isotropic if its intensity function is bounded
away from zero and its pair correlation function depends only on the spatio-temporal
difference vector (r, h), where r = ||u− v|| and h = |t− s|.

Definition 2.6. (Gabriel and Diggle, 2009) For a second-order intensity reweighted
stationary, isotropic spatio-temporal point process, the space-time inhomogeneous
K-function takes the form

K(r, h) = 2π

∫ r

0

∫ h

0
g(r′, h′)r′dr′dh′ (2.19)

where g(r, h) = λ(2)(r, h)/(λ(u, t)λ(v, s)), r = ||u− v||, h = |t− s|.

The simplest expression of an estimator of the spatio-temporal K-function is
given as

K̂(r, h) =
1

|W ||T |

n∑
i=1

∑
j>i

1(||ui − uj || ≤ r, |ti − tj | ≤ h). (2.20)

For a homogeneous Poisson process E[K̂(r, h)] = πr2h, regardless of the intensity λ.
Both the K-function and the pair correlation function can be used as a measure

of spatio-temporal clustering and interaction (Gabriel and Diggle, 2009; Møller and
Ghorbani, 2012). Usually, K̂(r, h) is compared with the theoretical E[K̂(r, h)] =
πr2h. Values K̂(r, h) > πr2h suggest clustering, while K̂(r, h) < πr2h points to a
regular pattern.
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Inhomogeneous second-order statistics can be constructed and used for assessing
the goodness-of-fit of fitted first-order intensities. Nevertheless, it is a widespread
practice in the statistical analysis of spatial and spatio-temporal point pattern data
to focus primarily on comparing the data with a homogeneous Poisson process, which
is generally the null model in applications rather than the fitted model. Indeed,
when dealing with diagnostics in point processes, often two steps are needed: the
transformation of data into residuals (thinning or rescaling (Schoenberg, 2003)) and
the use of tests to assess the consistency of the residuals with the homogeneous
Poisson process (Adelfio and Schoenberg, 2009). Usually, second-order statistics
estimated for the residual process (i.e. the result of a thinning or rescaling procedure)
are analysed. Essentially, to each observed point, a weight inversely proportional
to the conditional intensity at that point is given. This method was adopted by
Veen and Schoenberg (2006) in constructing a weighted version of the K-function
of Ripley and Kelly (1977). The resulting weighted statistic is in many cases more
powerful than residual methods (Veen and Schoenberg, 2006).

The spatio-temporal inhomogeneous version of the K-function in (2.20) is given
by Gabriel and Diggle (2009) as

K̂I(r, h) =
|W ||T |
n(n− 1)

n∑
i=1

∑
j>i

1(||ui − uj || ≤ r, |ti − tj | ≤ h)

λ̂(ui, ti)λ̂(uj , tj)
, (2.21)

where λ(·, ·) is the first-order intensity at an arbitrary point.
We know that E[K̂I(r, h)] = πr2h, which is the same as the expectation of K̂(r, h) in
(2.20), when the intensity used for the weighting is the true generator model. This is
a crucial result that allows using the weighted estimator K̂I(r, h) as a diagnostic tool
for assessing the goodness-of-fit of spatio-temporal point processes with generic first-
order intensity functions. Indeed, if the weighting intensity function is close to the
true one λ(u, t), the expectation of K̂I(r, h) should be close to E[K̂(r, h)] = πr2h
for the Poisson process. For instance, values K̂I(r, h) greater than πr2h indicate
that the fitted model is not appropriate since the distances computed among points
exceed the Poisson theoretical ones.

2.2.2 Local second-order characteristics of spatio-temporal point
processes

In the Euclidean context, both spatial and spatio-temporal second-order measures,
such as the K-function and the pair correlation function (Ripley, 1977; Illian et al.,
2008; Gabriel and Diggle, 2009), have been proposed to detect deviations from the
Poisson assumption. While the use of global spatio-temporal second-order summary
statistics is a well-established practice to describe global interaction structures be-
tween points in a point pattern, the use of local tools was first advocated by Siino
et al. (2018b). They introduce Local Indicators of Spatio-temporal Association
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functions as an extension of the purely spatial Local Indicators, whose definition
was introduced by Anselin (1995).

Definition 2.7. Local Indicators of Spatio-Temporal Association
The Local Indicators of Spatio-Temporal Association (LISTA) functions are a set of
functions that are individually associated with each of the points of the point pattern
and can provide information about the local behaviour of the pattern.

We note that several second-order characteristics of point processes are consid-
ered for building LISTA functions, such as the K-function, the pair correlation func-
tion, and the product density function Baddeley et al. (2017). Getis and Franklin
(1987) use a local version of the Ripley K-function estimator, i.e., an estimator of the
individual K-function at each point of ΨG, to show that points may exhibit different
behaviours when examined at different scales of analysis. Cressie and Collins (2001)
develop second-order product density LISA functions to examine the behaviour of
the individual points in a point pattern in terms of their relation to the neighbouring
points at several scales simultaneously. In Siino et al. (2018b), the authors extend
local indicators of spatial association to the spatio-temporal context (LISTA func-
tions) based on the product density. These local functions have been used to define a
proper statistical test for clustering detection. Then, Adelfio et al. (2020) introduce
local versions of the homogeneous and inhomogeneous spatio-temporal K-functions
and use them as diagnostic tools while retaining local information.

Successively, Adelfio et al. (2020) introduced local versions of both the homoge-
neous and inhomogeneous spatio-temporal K-functions on the Euclidean space and
used them as diagnostic tools while also retaining local information.

Defining an estimator of the overall intensity by λ̂ = n/(|W ||T |), they propose
the local version of (2.20) for the i-th event (ui, ti) as

K̂i(r, h) =
1

λ̂2|W ||T |

∑
(ui,ti)6=(v,s)

1(||ui − v|| ≤ r, |ti − s| ≤ h) (2.22)

and the local version of (2.21) as

K̂i
I(r, h) =

1

|W ||T |
∑

(ui,ti)6=(v,s)

1(||ui − v|| ≤ r, |ti − s| ≤ h)

λ̂(ui, ti)λ̂(v, s)
, (2.23)

with (v, s) being the spatial and temporal coordinates of any other point. The
authors extended the spatial weighting approach of Veen and Schoenberg (2006)
to spatio-temporal local second-order statistics, proving that the inhomogeneous
second-order statistics behave as the corresponding homogeneous ones, basically
proving that the expectation of both (2.22) and (2.23) is equal to πr2h.
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2.2.3 Spatio-temporal point process models

As introduced in section 1.1, point process models may be broadly categorized as
mechanistic or empirical. Here we only review the most relevant spatio-temporal
point process models for the purposes of this thesis work, i.e. the log-Gaussian Cox
processes and the Self-Exciting point processes, which include both the Hawkes and
the ETAS models. For a complete review of statistical models for the analysis of
spatio-temporal point processes, we refer to González et al. (2016).

2.2.3.1 Spatio-temporal log-Gaussian Cox processes

In the Euclidean context, LGCPs are one of the most prominent clustering models.
By specifying the intensity of the process and the moments of the underlying GRF, it
is possible to estimate both the first and second-order characteristics of the process.
Following the inhomogeneous specification in Diggle et al. (2013), an LGCP for a
generic point in space and time has the intensity

Λ(u, t) = λ(u, t) exp(S(u, t))

where S is a Gaussian process with E(S(u, t)) = µ = −0.5σ2 and so E(expS(u, t)) =
1 and with variance and covariance matrix C(S(ui, ti), S(uj , tj)) = σ2γ(r, h) under
the stationary assumption, with γ(·) the correlation function of the GRF, and r
and h some spatial and temporal distances. Following Møller et al. (1998), the first-
order product density and the pair correlation function of an LGCP are E(Λ(u, t)) =
λ(u, t) and g(r, h) = exp(σ2γ(r, h)), respectively. In this thesis, we first consider a
separable structure for the covariance function of the GRF (Brix and Diggle, 2001)
that has exponential form for both the spatial and the temporal components,

C(r, h) = σ2 exp

(
−r
α

)
exp

(
−h
β

)
, (2.24)

where σ2 is the variance, α is the scale parameter for the spatial distance and β
is the scale parameter for the temporal one. The exponential form is widely used
in this context and nicely reflects the decaying correlation structure with distance
or time. Moreover, we may consider a non-separable covariance of the GRF useful
to describe more general situations. Gneiting et al. (2006) review parametric non-
separable space-time covariance functions for geostatistical models. Following the
parametrisation in Schlather et al. (2015), the Gneiting covariance function can be
written as

C(r, h) = (ψ(h) + 1)−d/2ϕ

(
r√

ψ(h) + 1

)
r ≥ 0, h ≥ 0,

where ϕ(·) is a complete monotone function associated to the spatial structure,
and ψ(·) is a positive function with a completely monotone derivative associated
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with the temporal structure of the data. For example, the choice d = 2, ϕ(r) =
σ2 exp(−( rα)γs) and ψ(h) = ((hβ )γt + 1)δ/γt yields to the parametric family

C(r, h) =
σ2

((hβ )γt + 1)δ/γt
exp

(
−

( rα)γs

((hβ )γt + 1)δ/(2γt)

)
, (2.25)

where α > 0 and β > 0 are scale parameters of space and time, δ takes values in
(0, 2], and σ2 is the variance. Another parametric covariance belongs to the Iaco-
Cesare family (De Cesare et al., 2002; De Iaco et al., 2002), and there is a wealth of
covariance families that could well be used for our purposes.

As stated by Gabriel and Diggle (2009), a single realisation of a stationary Cox
process with stochastic intensity Λ(u, t) is indistinguishable from a realisation of an
inhomogeneous Poisson process whose first-order intensity function coincides with
the unobserved realisation of Λ(u, t). To resolve this ambiguity, one can make the
working assumption that first-order effects are separable, meaning that λ(u, t) can
be factorised as λ(u, t) = λ(u)λ(t). Under this assumption, any non-separable effects
are interpreted as second-order rather than first-order. Suitable estimates of λ(u)
and λ(t) depend on the characteristics of the specific application.

This formulation further allows interpreting separately the temporal and spatial
components peculiar to the description of our data. Indeed, as stated throughout
the thesis, we are able to identify cycles in the occurrences in time, marginally with
respect to the space component. Moreover, we can identify the main determinants
of the spatial displacement of points, as well as assess the significance of both fixed
and random effects, regardless of the temporal component.

2.2.3.1.1 Spatio-temporal LGCP model estimation through minimum
contrast Driven by a GRF, controlled in turn by a specified covariance structure,
the implementation of the LGCP framework in practice requires a proper estimate
of the intensity function. In general, the Cox model is estimated by a two-step pro-
cedure, involving first the intensity and then the cluster or correlation parameters.
First, a Poisson process with a particular model for the log intensity is fitted to the
point pattern data, providing the estimates of the coefficients of all the terms that
characterise the intensity. Then, the estimated intensity is taken as the true one,
and the cluster or correlation parameters are estimated using either the method of
minimum contrast (Pfanzagl, 1969; Eguchi, 1983; Diggle, 1979; Diggle and Grat-
ton, 1984; Møller et al., 1998; Davies and Hazelton, 2013; Siino et al., 2018a), Palm
likelihood (Ogata and Katsura, 1991; Tanaka et al., 2008), or composite likelihood
(Guan, 2006). The most common technique is the minimum contrast, and it is the
method which we shall refer to here.

Let the function J represent either the pair correlation function g or the K-
function, and Ĵ stands for the corresponding non-parametric estimate. The mini-
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mum contrast estimates σ̂2 and α̂ are found minimising

MJ{σ2, α} =

∫ rmax

r0

φ(r){ν[Ĵ(r)]− ν[J(r;σ2, α)]}2dr (2.26)

where r0 and rmax are the lower and upper lag limits of the contrast criterion,
φ denotes some scalar weight associated with each spatial lag r, ν represents some
transformation of its argument and the approximation ofMJ is obtained by summing
over a fine sequence of lags R = {r0, r1, . . . , rmax} equally spaced, so that Rdiff =
rb − ra, b > a

MJ{σ2, α} ≈ R−1
diff

∑
r∈R

φ(r){ν[Ĵ(r)]− ν[J(r;σ2, α)]}2. (2.27)

Estimation of β is performed minimising the squared discrepancy between the co-
variance function between the expected frequency of observations at two points in
time C(t, t− h;β) and its natural estimator, the empirical autocovariance function
Ĉ(t, t − h), for a finite sequence of temporal lags. The contrast criterion for the
temporal part is

MC{β} =

hmax∑
h=1

T∑
t=h+1

[Ĉ(t, t− h)− C(t, t− h;β)]2, (2.28)

for some user-specified value of hmax < T , that it is the temporal counterpart of
rmax. The theoretical version of the temporal covariance depends upon the spatial
parameters. Thus the spatial parameters must be estimated first and then plugged
into the temporal minimum contrast procedure.

Universally preferable options for r0, rmax, w(·) and v[·] do not exist. In this
thesis, r0 is chosen as the smallest interpoint distance in the observed data, rmax is
set to min(xW , yW )/4, as a good rule of thumb supported by Diggle (2013), where
xW and yW represent the maximum width and height of the observation region W,
respectively. We choose to consider W instead of L because, as already stated, we
are referring to the most classical LGCPs defined in the Euclidean context. Indeed,
the choice of the upper limit rmax can be considered less important given that
we are generally not interested in the second-order properties at large distances.
Furthermore, Diggle (2013) advocates setting v[·] = 4

√
· and w(·) = 1 when using

the K-function and v[·] = log[·] for the inhomogeneous pair correlation function.
The arbitrariness of the minimum contrast procedure can be criticised, however,
the relative computational simplicity with respect to other estimation procedures
(such as likelihood or Bayesian estimation procedures) makes this method suitable
for estimating Cox process parameters (Siino et al., 2018a). In this thesis, we have
chosen J(r) as the pair correlation function (Baddeley et al., 2015).

Alternatively, Siino et al. (2018a) proposed a new fitting method to estimate
the set of second-order parameters for the class of LGCPs with constant first-order
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intensity function. Hereafter we will denote by θ the vector of (first-order) intensity
parameters and by ψ the cluster parameters, also denoted as correlation or inter-
action parameters by some authors. For instance, in the case of a spatio-temporal
LGCP with exponential covariance, as the one in Equation (2.24), the cluster pa-
rameters correspond to ψ = (σ, α, β). The second-order parameters ψ are found by
minimising

MJ{ψ} =

∫ hmax

h0

∫ rmax

r0

φ(r, h){ν[Ĵ(r, h)]− ν[J(r, h;ψ)]}2drdh, (2.29)

where φ(r, h) is a weight that depends on the space-time distance and ν is a transfor-
mation function. With simulations, Siino et al. (2018a) show that the joint minimum
contrast procedure, based on the spatio-temporal pair correlation function, provides
reliable estimates. Its main advantage is that it can be used in the case of both
separable and non-separable parametric specifications of the correlation function of
the underlying GRF. Therefore, it represents a more flexible method with respect
to other currently available methods, and it is the method that we chose to extend
into the local context.

2.2.3.1.2 Diagnostics for the spatio-temporal LGCPs For diagnostics of
the proposed LGCP models and the corresponding estimation procedure, a test for
spatio-temporal clustering can be employed as in Tamayo-Uria et al. (2014); Siino
et al. (2018a) and section 4.1 of this thesis. Q realisations from spatio-temporal
LGCPs are computed as follows:

1. Generate a realisation from a GRF S(u, t), with covariance function
C((u, t), (v, s)) and mean function µ(u, t);

2. Define the generating intensity function λ0(u, t) = λ̂(u, t) exp(S(u, t));

3. Set an upper bound λmax for λ0(u, t);

4. Simulate a homogeneous Poisson process x with intensity λmax and denote by
N the number of generated points, with coordinates (u′, t′);

5. Compute p(u′, t′) = λ(u′,t′)
λmax

for each point (u′, t′) of a homogeneous Poisson
process;

6. Generate a sample p of size N from the uniform distribution on (0, 1);

7. Thin the simulated homogeneous Poisson process x retaining the n ≤ N loca-
tions for which p ≤ p(u′, t′).
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The GRF is generated using the function RFsim of the R package CompRandFld

(Padoan and Bevilacqua, 2015). Having simulated Q > 1 realisations of spatio-
temporal point patterns x1, . . . ,xQ, these simulated processes can be used for com-
puting Q inhomogeneous spatio-temporal K-functions as given by Equation (2.21).
Given the Q inhomogeneous K-functions, their corresponding mean and variance,
denoted by EK and VK , respectively, are computed. The overall test statistic is

Tq =

∫ rmax

r0

∫ hmax

h0

K̂q(r, h)− EK(r, h)√
VK(r, h)

dhdr,

one for each K̂q(r, h), obtaining T1, . . . , TQ. rmax and hmax are the maximum spatial
and temporal distances considered for the inhomogeneous K-functions. Then, the
same test statistic is also computed for the empirical point pattern and denoted by
T ∗. The p-value is then defined as

1 +
∑Q

q=1 1(Tq > T ∗)

Q+ 1
, (2.30)

basically counting how many times the K -functions computed over the simulated
processes are higher than the one computed on the original point process. Then, if
the obtained p-value is smaller than a significance level α there is evidence against
the null hypothesis. That is, the analysed spatio-temporal point process still presents
globally some clustering behaviour.

The resulting inhomogeneous K-functions can also be used to obtain upper and
lower envelopes at a chosen significance level α, and so to visually assess the pos-
sible residual clustered structure of the analysed point pattern, unexplained by the
proposed model. In particular, if the estimated K-function lies above the obtained
envelopes, then there is still a clustering behaviour of points that is not completely
described by the proposed model. Furthermore, by a visual assessment of the re-
sults, we can also get indications of possible ranges needing more complex models,
able to explain and take into account the residual spatio-temporal dependence of
the data.

2.2.3.2 Self-Exiting spatio-temporal point processes

Point processes can be formally specified in several ways, for instance, by consider-
ing the joint distribution of the counts of points in arbitrary sets or by defining a
conditional intensity function. Let N be a point process {(ti, xi, yi) : i = 1, . . . , n}
on a spatio-temporal domain X = W ×T ⊆ R2×R+, with area |W | > 0 and length
|T | > 0, and with t representing the time, and x and y the two spatial coordinates.
Its conditional intensity function is defined by

λ(t, x, y|Ht) = lim
∆t,∆x,∆y→0+

E[N((t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)|Ht)]
|∆t∆x∆y|

(2.31)
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where Ht is the space-time occurrence history of the process up to time t, i.e. the
σ-algebra of events occurring at times up to but not including t. ∆t,∆x,∆y are time
and space increments, respectively, and E[N((t, t+∆t)×(x, x+∆x)×(y, y+∆y)|Ht)]
is the history-dependent expected value of occurrence in the volume {(t, t + ∆t) ×
(x, x + ∆x) × (y, y + ∆y)}. Assuming such a limit exists for each point (t, x, y)
in the space-time domain and that the point process N is simple, the conditional
intensity process uniquely characterises the finite-dimensional distributions of the
point process (Daley and Vere-Jones, 2007).

To model events that are clustered, the Self-Exciting point processes are often
used. These models are largely used to describe earthquakes characteristics, as-
suming that the occurrence of an event increases the probability of occurrence of
others events in time and space. Examples of Self-Exciting point processes include
Hawkes models (Hawkes, 1971a,b; Hawkes and Adamopoulos, 1973) and ETAS mod-
els (Ogata and Katsura, 1988; Adelfio and Chiodi, 2015b). The conditional intensity
function of a linear Self-Exciting process is defined by

λ(t, x, y|Ht) = µ(t, x, y) +

∫ t

−∞

∫
W
g(t− t′ , x− x′ , y− y′)N(dx

′ × dy
′ × dt

′
), (2.32)

being the sum of two non-negative functions: µ(t, x, y) > 0, that describes the large-
scale variation of λ(t, x, y|Ht), and g(), such that

∫∫
g(v)dv < 1, which describes its

small-scale variation due to the interaction with the events in the past. This process
can be interpreted as a generalised Poisson cluster process associating to centres,
of rate µ, a branching process of descendants. The spatio-temporal Hawkes process
has a conditional intensity of the form (Hawkes, 1971a,b)

λ(t, x, y) = µ(t, x, y) +
∑
i:ti<t

g(t− ti, x− xi, y − yi), (2.33)

where µ(t, x, y) is the background rate, and g(t, x, y) is the rate of occurrence trig-
gered by an event at time 0 and location at the origin. The triggering density governs
the spatial-temporal distance of triggered events from their antecedent events and is
usually modelled to decay with distance from the origin over time and space (Park
et al., 2021). In Mohler et al. (2011), the background rate µ(t, x, y) was assumed
to be a function of space and time and they used kernel functions to smooth the
estimates of both µ and g, introducing the idea of the stochastic reconstruction
algorithm (Zhuang et al., 2004; Zhuang, 2006; Marsan and Lengline, 2008) for the
analysis of crime data, by means of relaxing parameters and periodic components in
the background rates.

2.2.3.2.1 Spatio-temporal Hawkes model estimation through the Esti-
mation-Maximization algorithm We consider the Self-Exciting model in Equa-
tion (2.32), following the semi-parametric specification proposed by Zhuang and Ma-
teu (2019) for a spatio-temporal Hawkes process. Therefore, the full model that we
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consider here is specified as follows

λ(t, x, y) = µ0µt(t)µw(t)µb(x, y) +A

∫ t−

−∞

∫
W
g(t− s)h(x−u, y− v)N(du×dv×ds),

(2.34)
where µt(t) and µw(t) represent the trend term and the weekly periodicity in the
temporal components of the background rate, µb(x, y) represents the spatial back-
ground rate, and g(t − s)h(x − u, y − v) represents the sub-process triggered by
an event previously occurring at time s and location (u, v). Note that this model
enables the background rate to include a spatial background pattern that can be
separated from the periodicity effects and the long-term temporal trend. We esti-
mate the two relaxation coefficients A and µ0, normalise to 1 the average values of
µt(t), µw(t) and µb(x, y), and define the probability density functions g and h such
that

∫∞
0 g(s)ds = 1, and

∫ ∫
X h(u, v)dudv = 1.

In the following, we outline the modified Estimation-Maximization (E-M) algo-
rithm employed by Zhuang and Mateu (2019), as we do not take into account the
daily temporal resolution, not available for the data presented in section 4.2.1 and
further analysed in section 4.2.3.

The E-M estimation algorithm is as follows:

Step 1. Set initial values for {µ0, µt, µw, µb, A, g, h}

Step 2. Compute background and excitation components by reconstructing for each
i-th event (i = 1, . . . , n)

w
(t)
i =µt(ti)µb(xi, yi)/λ(ti, xi, yi),

w
(w)
i =µw(ti)µb(xi, yi)/λ(ti, xi, yi),

ϕi =µ0µt(t)µw(t)µb(x, y)/λ(ti, xi, yi),

ρi,j =g(tj − ti)h(xj − xi, yj − yi)/λ(ti, xi, yi),

and by estimating the background terms

µ̂t(t) ∝
∑
i

w
(t)
i K(t− ti;ωt)/

∫ T

0
K(u− ti;ωt)du,

µ̂w(t) ∝
∑
i

w
(w)
i

bT/7c∑
k=0

K(t− ti + 7bti/7c − 7k;ωw)/

∫ T

0
K(u− ti;ωt)du,

µ̂b(x, y) ∝
∑
i

ϕi
K(x− xj + xi;ωx)K(y − yj + yi;ωy)∫ ∫

X K(x− xj + xi;ωx)K(y − yj + yi;ωy)dudv
,

where K(x;ω) = 1√
(2π)ω

exp

(
− x2

2ω2

)
is the Gaussian Kernel, and bxc is the

largest integer not bigger than x.
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The triggering terms are estimated as follows

ĝ(t) ∝
∑

i,j ρi,j ×K(t− tj + ti;ωg)/
∫ T−ti

0 K(u− tj ;ωg)du∑
i 1(ti + t ≤ T )

,

ĥ(x, y) ∝

∑
i,j ρi,j×K(x−xj+xi;ωhx )K(y−yj+yi;ωhy )∫ ∫
S K(u−xj+xi;ωhx )K(v−yj+yi;ωhy )dudv∑

i I{(xi + x, yi + y) ∈ S}
,

Step 3. Estimate the relaxation parameters

A(k+1) =
n−

∑n
i=1 ϕ

(k)
i

G
,

µ
(k+1)
0 =

n−
∑n

i=1A
(k)G

U
,

where

ϕ
(k)
i =

µ
(k)
0 µt(ti)µw(ti)µb(xi, yi)

µ
(k)
0 µt(ti)µw(ti)µb(xi, yi) +A(k)

∑
j:tj<ti

g(tj − ti)h(xj − xi, yj − yi)
.

and G and U are the arguments that maximise the likelihood function with
respect to µ0 and A, respectively.

Indeed, since the likelihood function takes the form

logL =

n∑
i=1

log λ(ti, xi, yi)−
∫ T

0

∫∫
X
λ(t, x, y) dxdy dt

where
λ(t, x, y) = µ0µ(t, x, y) +A

∑
i: ti<t

g(ti − t, xi − x, yi − y),

and denoting U =
∫ T

0

∫∫
X µ(t, x, y) dxdy dt andG =

∫ T
0

∫∫
X

∑
i: ti<t

g(t−ti, x−
xi, y − yi) dxdy dt, then the equations ∂

∂µ0
logL = 0 and ∂

∂A logL = 0 can be
written as

n∑
i=1

µ(ti, xi, yi)

λ(ti, xi, yi)
− U = 0

n∑
i=1

∑
j:tj<ti

g(tj − ti, xj − xi, yj − yi)
λ(ti, xi, yi)

−G = 0.

Step 4. If convergence is reached, we obtain the estimates of µ0 and A. Otherwise, we
go back to Step 2.
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2.2.3.2.2 Spatio-temporal Epidemic Type Aftershock Sequence point
process According to a branching structure, the conditional intensity function
of the Self-Exciting model is defined as the sum of a term describing the large-time
scale variation (spontaneous activity or background, generally assumed homoge-
neous in time but not in space) and one relative to the small-time scale variation
due to the interaction with the events in the past (induced or triggered activity).
Following Adelfio and Chiodi (2020), the ETAS model can be written as

λθ(t,u|Ht) = µf(u) +
∑
tj<t

κ0 exp(ηj)

(t− tj + c)p
{(u− uj)

2 + d}−q, (2.35)

where Ht is the past history of the process up to time t, µ is the large-scale general
intensity, and f(u) is the spatial density. Concerning the triggered component, ηj =
β′Zj is a linear predictor, with Zj the external known covariate vector, including
the magnitude, and θ = (µ, κ0, c, p, d, q,β) are the parameters to be estimated. In
particular: κ0 is a normalising constant, c and p are characteristic parameters of the
seismic activity of the given region, and d and q are two parameters related to the
spatial influence of the mainshock. In the usual ETAS model, with the only external
covariate representing the magnitude, β = α, as ηj = β′Zj = α(mj−m0), where mj

is the magnitude of the jth event and m0 the threshold magnitude, that is, the lower
bound for which earthquakes with higher values of magnitude are surely recorded
in the catalogue.
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2.3 Point processes on linear networks

Point processes on linear networks are recently considered to analyse events occur-
ring on particular network structures, such as traffic accidents on a road network
that we analyse in this thesis (see Figure 5.20). They were firstly introduced in
the spatial context and then extended to the spatio-temporal case, focusing on the
analysis of first- and second-order summary statistics (Ang et al., 2012; McSwiggan
et al., 2017; Rakshit et al., 2017; Moradi et al., 2019; Rakshit et al., 2019a; Moradi
and Mateu, 2020). For a general treatment of spatial and spatio-temporal point
processes on the Euclidean space, the reader is referred to Diggle (2013).

A linear network L = ∪ni=1li ⊂ R2 is commonly taken as a finite union of line
segments li ⊂ R2 of positive length. A line segment is defined as li = [ui,vi] =
{kui + (1 − k)vi : 0 ≤ k ≤ 1}, where ui,vi ∈ R2 are the endpoints of li. For any
i 6= j, the intersection of li and lj is either empty or an endpoint of both segments.

Following (Ang et al., 2012; Baddeley et al., 2020), we consider a linear network
as the union of a finite number of line segments on the plane, namely L =

⋃n
i=1 li,

such that each li = [ui, vi] = {w : w = tui + (1 − t)vi, 0 ≤ t ≤ 1}, and ui, vi are
the endpoints of the segment li. The total length of the network L is denoted by
|L|. Additionally, a path between two points u and v in a linear network L is a
sequence x0, x1, . . . , xm of points in L so what x0 = u, xm = v and [xi, xi+1] ⊂ L
for each i = 0, . . . ,m− 1. The total length of the path is the sum of the segments’
lengths that make it up. The shortest path distance dL(u, v) between u and v in L
is the minimum of the lengths of all paths from u to v. If there are no paths from
u to v (implying that the network is not connected), then the distance is defined by
dL(u, v) =∞.

We also assume that the disc of radius r > 0 and centre point u ∈ L is the set
of all points v in the network that lies no more than a distance r from the location
u, that is bL(u, r) = {v ∈ L : dL(u, v) ≤ r}. The relative boundary of the disc is the
set of points lying exactly r units away from u, ∂bL(u, r) = {v ∈ L : dL(u, v) = r}.
The circumference m(u, r) is the number of points of L there is in ∂bL(u, r). The
circumference is finite for all r < ∞, and we set m(u,∞) = ∞ by convention. The
circumradius of the network is the radius of the smallest disc that contains the entire
network, R = R(L) = inf{r : m(u, r) = 0, for some u ∈ L} = min

u∈L
max
v∈L

dL(u, v). If

L is not path-connected, then R is the minimum of the circumradius of the connected
components of L. For more details, see (Ang et al., 2012; Baddeley et al., 2020).

In the same way as in Rakshit et al. (2021), we use the definition of a finite,
simple) point pattern X on L as a finite set X = {x1, x2, . . . , xn} of distinct points
xi ∈ L, where n ≥ 0. Further, for any set B ⊂ L, NX(B) = N(X ∩ B) is the
number of points on X lying in B. Thus for a finite and simple point possess with
intensity function λ(u), u ∈ L, is satisfied that E[NX(B)] = Λ(B) =

∫
B λ(u)d1u,

for all measurable B in L, where d1u denotes integration with respect to arc length
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(Federer, 2014). If λ is constant, then X is said to be homogeneous. Otherwise,
X is said to be inhomogeneous. For a homogeneous point process, λ is the mean
number of points per unit length. A Poisson point process on L with intensity λ > 0
is characterized by the properties that, for any line segment B ⊂ L, the number of
points falling in B has a Poisson distribution with mean λ|B|, while events occurring
in disjoint line segments B1, . . . , Bm ⊂ L are independent (Ang et al., 2012).

2.3.1 Spatio-temporal linear network point processes

A spatio-temporal linear network point process is a point process on the product
space L × T , where L is a linear network and T is a subset (interval) of R+. We
hereafter focus on a spatio-temporal point process X on a linear network L with no
overlapping points (u, t) where u ∈ L is the location of an event and t ∈ T (T ⊆ R+)
is the corresponding time occurrence of u. Note that the temporal state space T
might be either a continuous or a discrete set. A realisation of X with n points is
represented by x = (ui, ti), i = 1, . . . , n where (ui, ti) ∈ L × T . A spatio-temporal
disc with centre (u, t) ∈ L× T , network radius r > 0 and temporal radius h > 0 is
defined as

b((u, t), r, h) = {(v, s) ∈ L× T : dL(u,v) ≤ r and |t− s| ≤ h},

where | · | is a numerical distance, and dL(·, ·) stands for the appropriate distance in
the network. The cardinality of any subset A ⊆ L × T,N(X ∩ A) ∈ 0, 1, . . ., is the
number of points of X restricted to A, whose expected number is denoted by

ν(A) = E[N(X ∩A)], A ⊆ L× T,

where ν, the intensity measure of X, is a locally finite product measure on L × T
(Baddeley et al., 2006a).

We now recall Campbell’s theorem for point processes on linear networks (Cronie
et al., 2020). Assuming that the product densities/intensity functions λ(k) exist, for
any non-negative measurable function f(·) on the product space Lk, we have

E

[ 6=∑
ζ1,...,ζk∈X

f(ζ1, . . . , ζk)

]
=

∫
Lk
f(ζ1, . . . , ζk)λ

(k)(ζ1, . . . , ζk)
k∏
i=1

dζi, (2.36)

where 6= indicates that the sum is over distinct values. Assume that X has an
intensity function λ(·, ·), hence Equation (2.36) reduces to

E[N(X ∩A)] =

∫
A
ν(d(u, t)) =

∫
A
λ(u, t)d2(u, t), A ⊆ L× T,

where d2(u, t) corresponds to integration over L× T .
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2.3.2 Spatio-temporal Poisson processes on linear networks

The Poisson point process model is crucial for defining other more complicated
models and represents a benchmark model in exploratory data analysis. For a spatio-
temporal Poisson point process X, the points (u, t) on L × T have to satisfy the
following conditions:

• In any bounded set A ⊆ L× T,N(X ∩ A) follows a Poisson distribution with
expected number

∫
A λ(u, tu)d2(u, tu). For instance, if we assume A = AL ×

AT ⊆ L× T , then the expected value is the expected number of points in the
sub-network AL ⊆ L and within the time interval AT ⊆ T .

• For any k arbitrary disjoint subsets of L×T , say A1, . . . , Ak, their cardinality
N(X ∩A1), . . . , N(X ∩Ak) are independent variables.

Moreover, for any time interval S = [s1, s2] ⊂ T , the projection of X onto L
defines a spatial Poisson process on L with intensity function

∫ s2
s1
λ(u, t)dt. Similarly,

for any set of segments A ⊂ L, the projection of X onto T defines a temporal Poisson
process with intensity function

∫
A λ(u, t)d1u (see Illian et al., 2008, Chapter 6;

Diggle, 2013, Chapter 10).

2.3.2.1 Inhomogeneous Poisson processes on linear networks

The description of the observed point pattern intensity is a crucial issue in dealing
with spatio-temporal data. For linear network point patterns, non-parametric es-
timators of the intensity function λ(·, ·) have been proposed (Mateu et al., 2020),
suggesting any variation of the distribution of the process over its state-space L×T .
When dealing with intensity estimation for spatio-temporal point processes, it is
quite common to assume that the intensity function λ(u, t) is separable (Diggle,
2013; Gabriel and Diggle, 2009). Under this assumption, the intensity function is
given by the product λ(u, t) = λ(u)λ(t) where λ(u) and λ(t) are non-negative func-
tions on L and T , respectively (Gabriel and Diggle, 2009). A kernel-based intensity
estimator for spatio-temporal linear network point processes, based on the first-order
separability assumption, considered in Moradi and Mateu (2020), is given by

λ̂(u, t) =
λ̂(u)λ̂(t)

n
, (u, t) ∈ L× T (2.37)

that is an unbiased estimator for the expected number of observed points. The
spatial intensity, given the network, denoted by λ(u), is usually estimated by non-
parametric approaches mostly based on kernel-based estimators. For instance, spa-
tial smoothing can be performed using a kernel based on the path distances in the
network, using the ‘equal-split continuous’ rule described in Okabe and Sugihara
(2012). Computation is rapidly performed by solving the classical heat equation on
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the network, as described in McSwiggan et al. (2017). The smoothing parameter for
the kernel estimator of the temporal intensity function λ(t) can be the usual band-
width suggested by Silverman’s rule of thumb (Silverman, 2018). In Mateu et al.
(2020) a pseudo-separable estimator is proposed, accounting for spatio-temporal
interactions while relaxing the separability assumption and the specification of a
metric on L × T . In this thesis, we introduce, for the first time in the context of
spatio-temporal point processes, parametric estimates of the spatial and temporal
components following a dependence model with a mixed effects approach (see sec-
tion 4.1). We estimate the spatial intensity through a Gibbs point process model
with mixed effects, and the temporal intensity by a Poisson harmonic model. The
latter can be defined as follows

log λ(t) = δ +
∑
k∈Kκ

{αk cos(kωt) + βk sin(kωt)}

where ω = 2πκ, with κ depending on the unit of analysis, e.g. it is 4 for quarterly
data, 12 for monthly data, 52.25 for weekly data, and 365.25 for daily data, if
considering a 1-year period. Moreover, Kκ is the subset of time instants we use to
split our observation period. In our application, we chose κ = 24, corresponding to
the hours in a day, and Kκ = {1, 2, 4, 8}, determining temporal cycles up to 3 hours.
Finally, δ, αk and βk (∀k ∈ Kκ) are parameters to be estimated.

While the temporal component can be fitted without any alteration arising for
the accounting of the network, the spatial component is the one needing careful
attention and should be changed in order to take into account the structure of the
network. In the next section, we address this problem.

2.3.2.2 Intensity estimation on linear networks

A natural first step in analysing spatial patterns is to form a kernel density esti-
mate (Silverman, 2018) of the spatially-varying events rate. However, this is not
straightforward on a linear network.

Concerning intensity estimation, several kernel-based methods (Borruso, 2005,
2008; Xie and Yan, 2008; Okabe et al., 2009; Okabe and Sugihara, 2012; McSwiggan
et al., 2017; Moradi et al., 2018; Rakshit et al., 2019a) and a resample-smoothing
technique applied to Voronoi intensity estimators (Moradi et al., 2019; Mateu et al.,
2020) have been proposed.

Obtaining good estimates for intensity functions of point processes on linear
networks has been a challenging task due to geometrical complexities and unique
methodological problems (Cronie et al., 2020). Nevertheless, there have been a few
particularly interesting proposals. Baddeley et al. (2020) reviews the most recent
approaches for spatial kernel density estimation on linear networks. We summarise
here the main contributions.
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Approaches based on sums of kernels (Xie and Yan, 2008) basically assume that
the statistical basis for kernel estimation can be transferred from the real line to
the linear network. However, several authors (Okabe et al., 2009; Okabe and Sug-
ihara, 2012; McSwiggan et al., 2017) have highlighted that translating the kernel
density estimate on the one-dimensional real line directly to the linear network is
a fallacious estimate because it does not conserve mass. This basically means that
the kernel K(·, xi) = k(dL(·, xi)) is not a probability density on the linear network,
and therefore the corresponding density estimate is not a probability density. The
true probability density would be roughly overestimated in the denser parts of the
network.

Then, Borruso (2005, 2008) and Okabe et al. (2009) proposed several modifica-
tions of the kernel sums estimator. Moradi et al. (2018) and McSwiggan et al. (2020)
pointed out that the bias can be removed by adapting classical edge-corrections from
spatial statistics, thus proposing some edge-corrected classical kernel-based intensity
estimators.

As per path enumeration methods, (Okabe et al., 2009; Sugihara et al., 2010;
Okabe and Sugihara, 2012) considered computational algorithms which start with
a kernel k on the real line and progressively redistribute the mass of this kernel
over the network. These authors proposed two kernel estimators satisfying many
desired properties: (a) the “equal-split continuous” rule, which has excellent prop-
erties (symmetric, conserves mass, and is unbiased when the true intensity is uni-
form) but it is extremely slow to compute; (b) the “equal-split discontinuous” rule,
which is faster but has less desirable properties (see Okabe and Sugihara (2012) and
McSwiggan et al. (2017) for the algorithms).

Another proposal is represented by the heat kernel : it is the network counterpart
of the Gaussian kernel. It was developed by McSwiggan et al. (2017) by exploit-
ing the connection between kernel smoothing and diffusion. Since the heat kernel
estimator is mathematically equivalent to the “equal-split continuous” estimator
extended to the Gaussian kernel, it has the same properties.

Finally, a fast kernel smoothing using two-dimensional convolutions has been
recently proposed by Rakshit et al. (2019b). It is a computationally efficient and
statistically principled method for kernel smoothing of point pattern data on a linear
network. The point locations, and the network itself, are convolved with a two-
dimensional kernel and then combined into an intensity function on the network.
This can be computed rapidly using the Fast Fourier Transform (FFT), even on
large networks and for large bandwidths, and is robust against errors in network
geometry. The estimator is consistent, and its statistical efficiency is only slightly
suboptimal.

A crucial problem with kernel estimation is that if there are wide variations in
intensity across the spatial domain, it may be impossible to find a single fixed band-
width value which is satisfactory for smoothing every part of the spatial domain.
Consequently, the bandwidth can be spatially-varying, giving rise to a spatially
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“adaptive” kernel estimator at the cost of increased complexity. Recently, there has
been an increasing interest in point patterns on linear networks. Here the matter of
kernel estimation is even more delicate due to the geometry of the underlying net-
work. For example, street crimes and traffic accidents tend to happen particularly in
busy streets, which may be surrounded by quiet neighbourhoods. In such cases, the
classical kernel estimation approach is often unsuitable for such types of data, and
alternatives based on resample-smoothing of adaptive Voronoi intensity estimators
have been proposed (Moradi et al., 2019).

2.3.3 Second-order characteristics of point processes on linear net-
works

The second-order Campbell’s theorem is obtained from (2.36) with k = 2

E

[ 6=∑
(u,t),(v,s)∈X

f
(
(u, t), (v, s)

)]
=

=

∫
L×T

∫
L×T

f
(
(u, t), (v, s)

)
λ(2)

(
(u, t), (v, s)

)
d2(u, t)d2(v, s).

(2.38)

Assuming that X has a second-order product density function λ(2)(·, ·), we then
obtain

E[N(X ∩A)N(X ∩B)] =

∫
A

∫
B
λ(2)((u, t), (v, s))d2(u, t)d2(v, s), A,B ⊆ L× T.

Finally, an important result concerns the conversion of the integration over L×T to
that over R×R (Rakshit et al., 2017). For any measurable function f : L×T → R∫

L×T
f(u, t)d2(u, t) =

∫ ∞
0

∫ ∞
0

∑
(u,t)∈L×T :
dL(u,v)=r,
|t−s|=h

f(u, t)drdh. (2.39)

Letting f(u, t) = η(dL(u,v), |t− s|) then∫
L×T

η(dL(u,v), |t− s|)d2(u, t) =

∫ ∞
0

∫ ∞
0

η(r, h)M((u, t), r, h)drdh

where M((u, t), r, h) is the number of points lying exactly at the shortest-path dis-
tance r ≥ 0 and the time distance h ≥ 0 away from (u, t).

Following the work of Moradi and Mateu (2020), we first recall the concept of
second-order pseudostationary point processes, and then we turn to the inhomoge-
neous case.



42 Chapter 2. Preliminaries on point processes and their local characteristics

Definition 2.8. (Moradi and Mateu, 2020) Assume X is a spatio-temporal point
process on L × T with constant intensity function λ ≥ 0. Let the homogeneous
K-function be given by

KL((u, t), r, h) =
1

λ
E

[ ∑
(u,t)∈X

1(dL(u, v) ≤ r, |t− s| ≤ h)

M((u, t), dL(u, v), |t− s|)

∣∣∣∣∣(u, t ∈ X)

]
.

Then, X is called second-order pseudostationary and isotropic if KL((u, t), r, h) does
not depend on the point (u, t), and we then write KL((u, t), r, h) = KL(r, h).

Definition 2.9. (Moradi and Mateu, 2020) For a homogeneous Poisson point pro-
cess on L× T with constant intensity function λ, KL(r, h) = rh.

The authors proposed a non-parametric estimator of both the homogeneous K-
function

K̂L(r, h) =
|L||T |
n(n− 1)

n∑
i=1

∑
i 6=j

I{dL(ui,uj) < r, |ti − tj | < h}
M((ui, ti), dL(ui,uj), |ti − tj |)

,

and pair correlation function

ĝL(r, h) =
|L||T |
n(n− 1)

n∑
i=1

∑
i 6=j

κ(dL(ui,uj)− r)κ(|ti − tj | − h)

M((ui, ti), dL(ui,uj), |ti − tj |)
,

where |L| > 0 and |T | > 0 are the total length of the network L and of the time
interval T , respectively, and κ is a one-dimensional kernel function.

As in the Euclidean case, for a Poisson process on the linear network L, these
second-order statistics can be used to indicate clustering and inhibition, if compared
to their Poisson process values rh. Both the global homogeneousK-function and pair
correlation functions are used in Moradi and Mateu (2020) for detecting departure
from the homogeneity of spatio-temporal point patterns occurring on different linear
networks.

Motivated by practical situations where homogeneity is not a realistic assump-
tion, Moradi and Mateu (2020) further proposed the corresponding inhomogeneous
second-order characteristics, namely the inhomogeneous K-function

K̂L,I(r, h) =
1

|L||T |

n∑
i=1

∑
i 6=j

I{dL(ui,uj) < r, |ti − tj | < h}
λ̂(u, t)λ̂(v, s)M((u, t), dL(u,v), |t− s|)

, (2.40)

and the inhomogeneous pair correlation function

ĝL,I(r, h) =
1

|L||T |

n∑
i=1

∑
i 6=j

κ(dL(ui,uj)− r)κ(|ti − tj | − h)

λ̂(ui, ti)λ̂(uj , tj)M((ui, ti), dL(ui,uj), |ti − tj |)
, (2.41)
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where λ̂(·, ·) is an estimate of the intensity function, and M((u, t), r, h) is the number
of points lying exactly at the shortest-path distance r ≥ 0 and the time distance
h ≥ 0 away from the point (u, t).

Moradi and Mateu (2020) recommend using some normalisation factor of the
form D(X) = 1

(|L||T |)2
∑n

i=1

∑
i 6=j

1
λ̂(ui,ti)λ̂(uj ,tj)

in such a way that the updated es-

timates of the inhomogeneous K- and pair correlation functions 1
D(x)K̂(r, h) and

1
D(x) ĝ(r, h) provide estimators with low bias and variance. They also prove that

for Poisson processes, and for any r, h > 0, it holds that K̂L,I(r, h) = rh and
ĝL,I(r, h) = 1, which is useful in model selection and hypothesis testing.

Therefore, a relevant result is that the expectation of K̂L,I(r, h), when the inten-
sity used for the weighting is the true generator model, is the same as the expectation
of K̂L(r, h) for the Poisson process, that is E[K̂L(r, h)] = rh. Therefore, as in the
Euclidean case, the weighted estimator K̂L,I(r, h) can be used as a diagnostic tool for
assessing the goodness-of-fit of spatio-temporal point processes occurring on a linear
network with generic first-order intensity functions. Consequently, if the weighting
intensity function is close to the true one λ(u, t), the estimated value K̂L,I(r, h)

should be close to E[K̂L(r, h)] = rh.



Chapter 3

Local space and space-time
point processes for seismic data

Interest in methods for analysing spatial point processes is increasing across many
fields of science, notably in ecology, epidemiology, geoscience, astronomy, economet-
rics, and crime research (Baddeley et al., 2015; Diggle, 2013). When the structure
of a given point pattern is observed, it is assumed as a realization of an underlying
generating process, whose properties are estimated and then used to describe the
structure of the observed pattern. In analysing a spatial point process, the first
step is to learn about its first-order characteristics, studying the relationship of the
points with the underlying environmental variables that describe the observed het-
erogeneity. When the purpose of the analysis is to describe the possible interaction
among points, that is, if the given data exhibit spatial inhibition or aggregation,
the second-order properties of the process are analysed. However, in the analysis
of spatial point process data, it can be difficult to disentangle the two previous
aspects, i.e. the heterogeneity corresponding to spatial variation of the intensity
and the dependence structure amongst the points (Illian et al., 2008; Diggle, 2013).
For this reason, it is attractive and motivating to define and estimate models that
account simultaneously for dependence structure among events, including also the
effect of the observed covariates. The spatial seismic process belongs to the class
of point pattern data where the locations of events in space are the observations of
interest. The aim is typically to learn about the mechanism that generates these
events (Møller et al., 1998; Diggle, 2013; Illian et al., 2008).

The generator process of earthquakes is quite complex since it is characterized
by multidimensional and multiscale dynamics, dependence features of points both
in space and time, spatial anisotropy and spatial variation of the intensity accord-
ing to the seismogenic sources. Several spatial and spatio-temporal models have
been proposed in the literature for describing the evolution of the earthquake pro-
cess in space, in time and in both dimensions. The temporal clustered structure
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of earthquake data has been described by Self-Exciting point processes, i.e. the
Hawkes model (Hawkes and Adamopoulos, 1973) or the Epidemic Type Aftershock
Sequence (ETAS) model (Ogata, 1988; Adelfio and Chiodi, 2015b). On the other
hand, when an inhibitive pattern is observed for earthquake data, self-correcting
processes based on the strain-release models (Vere-Jones, 1978) are used, assuming
the fault fracture generating earthquakes reduces the amount of strain present at
the breakpoint along the fault. In the context of spatial point patterns, an impor-
tant example of self-correcting processes is the Strauss point process model (Strauss,
1975) with a negative association, which is also the simplest inhibitive Gibbs point
process (Baddeley and Møller, 1989). Gibbs point processes are generally applied
in the analysis of spatial interaction and inhomogeneity depending on covariate
information. For instance, a multitype Strauss process and geological spatial covari-
ates are combined to describe sequences of events in Anwar et al. (2012); Ye et al.
(2015). In Siino et al. (2017), Hybrid of Gibbs models (Baddeley et al., 2013) are
used to describe the Hellenic seismicity that shows interactions at different spatial
scales (multiscale structure), characterising the spatial inhomogeneity of the pro-
cesses as a function of the geological information available in the study area (the
presence of volcanoes, plate boundaries and faults). As for the Cox processes, they
are models used to describe environmentally driven processes (Cox, 1955; Møller
et al., 1998; Moller and Waagepetersen, 2003). Møller and Toftaker (2014) propose
a spatial model framework to estimate geometric anisotropy in spatial point pro-
cess. In particular, they characterise the anisotropy of the main seismicity around
Los Angeles (California), estimating an inhomogeneous log-Gaussian Cox process.
Furthermore, in the spatio-temporal context, Siino et al. (2018a) describe earth-
quake sequences comparing several Cox model specifications (with separable and
non-separable spatio-temporal covariance functions) estimating parameters through
the minimum contrast method.

All the aforementioned models can be referred to as “global” models, as they are
globally defined, and the process properties and estimated parameters are assumed
to be constant in the whole study area. However, a model with constant parameters
may not represent detailed local variations in the data adequately, since the pattern
may present spatial variation in the influence of covariates, in the scale or spacing
between points and in the abundance of points. Indeed, a different way of analysing
a point pattern can be based on local techniques identifying specific and undiscov-
ered local structures, for instance, sub-regions characterised by different interactions
among points, intensity and influence of covariates.

Throughout the chapter, we shall distinguish between “global” models, in which
the parameters are assumed constant as in regular regression models, and “local”
models, in which the parameters are allowed to vary with location.

For earthquake data, Ogata and Katsura (1988), Ogata (1989) used a space-
adaptive space-time point process model. In Ogata and Katsura (1988) a method
is developed for estimating both the spatial intensity of the point locations and the
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spatial variation of a characteristic parameter of the distributions for the attached
marks, analysing seismological and ecological data. In Ogata (1989) the occurrence
rate of earthquakes is extended to include multiple aftershock sequences.

For spatial point process, Baddeley (2017) presents a general framework based on
the local composite likelihood to detect and model gradual spatial variation in any
parameter of a spatial stochastic model (such as Poisson, Gibbs and Cox processes).
In particular, the parameters in the model that govern the intensity, the depen-
dence of the intensity on the covariates and the spatial interaction between points
are estimated locally. Moreover, this approach has the advantage of detecting and
modelling spatial variation in any property of a point process within a formal likeli-
hood framework providing space-varying parameter estimates, confidence intervals
and hypothesis tests.

Section 3.1 aims at using these recent results for the local composite likelihood
for spatial point processes to describe the spatial displacement of earthquake data,
accounting for external geological information. We show that models with param-
eters that vary in space can be suitable for describing both seismic catalogues and
sequences.

Then, in section 3.2, we introduce the local method of minimum contrast for
estimating the second-order parameters of a general Cox process, extended to space
and time, and used for fitting local spatio-temporal log-Gaussian Cox processes for
analysing the same real dataset of Greek seismic data.
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3.1 Analysis of seismic catalogues and sequences by lo-
cal spatial log-Gaussian Cox processes

D’Angelo, N., Siino, M., D’Alessandro, A., and Adelfio, G. (2022g). Local spatial
log-gaussian cox processes for seismic data. Advances in Statistical Analysis.
https: // doi. org/ 10. 1007/ s10182-022-00444-w

Seismicity catalogues are datasets with statistical units describing earthquakes, and
variables consisting in their location, origin time, and magnitude, together with ad-
ditional metadata such as associated uncertainties and focal mechanism information
(Woessner et al., 2010). Earthquakes typically occur in sequences that may include
foreshocks, the mainshock (the largest event or events), and aftershocks. Aftershocks
are smaller earthquakes following the mainshock. They typically occur on or near
the rupture plane of the mainshock, resulting from changes in stress and frictional
properties of the fault zone caused by the mainshock. The duration of aftershock
sequences is typically a few years for earthquakes at plate boundaries, but can last
much longer within stable continental interiors (Liu and Stein, 2019).

In this Section, we consider two case studies, analysing datasets concerning seis-
mic activity in Greece and Italy.

The Central Mediterranean area is one of the most geodynamically complex
areas and active regions of the world. In this framework are embedded the Italian
peninsula and the Greek region and its Hellenic arc, which are considered the most
tectonically complex and seismically active regions of Mediterranean, object of study
in this work. The tectonic evolution of Greek region, is strongly related to the active
subduction along the Hellenic arc which is the boundary between the African and
the Anatolian-Aegean microplates (Le Pichon and Angelier, 1979; Hall et al., 2005).
The overall tectonism of the region can be attributed to several events, such as the
collision of African and Eurasian plates, convergence between Arabian and Eurasian
plates and displacement of the Anatolian-Aegean microplate (Ryan et al., 1982;
Taymaz et al., 1991). The stress regime in Hellenic arc region is a multi-component
one (Oya, 2016). There are subduction zones governing the seismicity in the region,
back arc events, and tension areas induced by the interference of continental and
oceanic basins (Spakman et al., 1988; Taymaz et al., 1991; Papazachos et al., 1995).
The shape and seismicity distribution of the Italian peninsula and Sicily island are
consequence of the convergence between the African and Eurasian plates, active since
at least 65 Ma and especially on the Quaternary evolution of Central Mediterranean
(Amato et al., 1997; Di Stefano et al., 1999; Sgroi et al., 2012). In the Italian
peninsula and Sicily, at least 5 tectonic districts can be identified: i) the Alpine
arc, with evidence of past subduction; ii) the North Apennines, where subduction
of the oceanic lithosphere was followed by continental collision; iii) the Calabrian

https://doi.org/10.1007/s10182-022-00444-w
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arc, with clear evidence of subducting slab of oceanic lithosphere; iv) the Southern
Appenines, where a detached slab is revealed by seismicity and seismic tomography;
v) the Sicilian region that represents a portion of the Apennine-Maghrebide fold-
and-thrust belt (Amato et al., 1997; Di Stefano et al., 1999; Sgroi et al., 2012).

Hence, when analysing seismic catalogues, the analysis of the dependence of the
first-order intensity function on external covariates is a crucial issue. This is ac-
counted for properly by the local Poisson model, describing large-scale variation by
including external covariates and letting their effects vary along the studied area.
This is shown with a case study for the description of the seismic events that oc-
curred in Greece between 2005 and 2014, an area of high seismic hazard that has
been characterised by many destructive earthquakes in the last century. Further-
more, the local version of the Poisson model, fitted with a spatial varying effect of
covariates, is compared to a global inhomogeneous Poisson model in terms of fitting
and interpretability of results.

Describing seismic sequences, the analysis of the small-scale variation is of in-
terest, focusing on the second-order characteristics of the process. Therefore, we
introduce and fit the local log-Gaussian Cox process to study a seismic sequence.
To the best of our knowledge, our proposal is a novelty for this field of application
and represents a first step for suggesting the use of local complex models for de-
scribing the fractal seismic phenomena. The interaction among points is typically
taken into account by the log-Gaussian Cox processes models through the estima-
tion of the covariance parameters of the Gaussian Random Field. In their local
version, these parameters vary in space, allowing the description and characteriza-
tion of the study area through multiple underlying processes, meaning that it would
make sense to assume a generating process of the observed point pattern that is not
unique. The peculiarity of the new local spatial log-Gaussian Cox processes lies in
the inhomogeneity of the point process being simultaneously addressed via spatial
covariates, a latent error process, and their estimated local coefficients. Therefore,
after providing an application of the local Poisson models to the Greek seismic cat-
alogue and identifying the regions that display the most inhomogeneous behaviour,
a local log-Gaussian Cox process model is fitted to describe a selected Greek seismic
sequence, with space varying effects of both intensity and interaction parameters.
Indeed, one crucial issue in the local analysis of spatial as well as spatio-temporal
point patterns is the identification of subregions where points behave differently in
terms of clustering. In addition, based on the assumptions on the underlying pro-
cesses, local estimates provide further insight into the relationship of the intensity
of the process on external covariates, as well as on the correlation structure, that in
this setting is allowed to vary with location. Local models are also applied to the
Italian data, since as Greece, Italy is an area of high seismic risk, and in particular,
Central Italy, where our analysis focuses, has been characterised by a strong series
of earthquakes between 2009 and 2017. The results are reported in section 3.1.3 for
the sake of brevity. The key assumption stating that for each spatial location, there
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is an unobserved spatial subdomain inside which the template model is exactly true
allows us to exploit the statistical properties of the spatially varying parameters, as
they were the ones of a model with constant parameters in that specific subregion.
This feature is particularly appealing as it allows us to build diagnostic tools and
interpret parameters as we are used in classical log-linear models. Besides this, we
also test on the two case studies that local models provide good inferential results
if compared to the semi-parametric competitors.

Moreover, this work represents a contribution to the framework of diagnostics
for local models.

Indeed, when a model is fitted to a set of random points, diagnostic measures are
necessary to assess the goodness-of-fit and to evaluate the ability of that model to
describe the random point pattern behaviour (Adelfio et al., 2020). However, tools
for checking or criticizing the fitted model are quite limited. There is currently no
analogue for spatial point patterns of the comprehensive strategy for model criticism
in the linear model, which uses tools such as residual plots and influence diagnostics
to identify unusual or influential observations, for assessing the model assumptions
sequentially and to individuate any departures from the model (Baddeley et al.,
2005).

It is a widespread practice in the statistical analysis of spatial point pattern
data to focus primarily on comparing the data with a homogeneous Poisson process
(“complete spatial randomness”), which is generally the null model in applications
rather than the fitted model. This approach considers a stationary Poisson residual
process by randomly rescaling (Meyer, 1971; Schoenberg, 1999) or thinning (Schoen-
berg, 2003) and investigates whether the second-order properties of the observed
residuals are consistent with those of the stationary Poisson process.

An alternative approach is to define a weighted second-order statistic, where
essentially, to each observed point, a weight inversely proportional to the conditional
intensity at that point is given. This method was adopted by Veen and Schoenberg
(2006) in constructing a weighted version of the spatial K-function of Ripley (1977),
and Veen (2006), although the spatially weighted analogue of Ripley’s K-function
which was first introduced by Baddeley and Turner (2000).

Therefore, establishing a coherent strategy for model criticism in spatial point
process models, resembling the existing methods for the linear model, depends cru-
cially on finding the right definition of residuals for a spatial point process model
fitted to point pattern data.

In this Section, we propose the use of some diagnostics tools generally considered
for global point processes, e.g. the smoothed raw residuals and the inhomogeneous
K-function (Baddeley et al., 2005), to the local context, and properly review local
tests and the test of departure from “homogeneity” (Baddeley, 2017), meaning that
the observed pattern is generated by a template model with constant parameters.
Our contribution concerns a bootstrap procedure carried out to support the model
selection process and also retain local information. Furthermore, a stepwise proce-
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dure is also developed, assessing the single local effects of the considered covariates
on the rejection of the given “homogeneity” hypothesis. The method provides a
ranking of the covariates that most contribute to the local features, together with
p-values maps, useful for progressively identifying the variables’ effects within the
study area.

Therefore, this section contributes to the framework of the local spatial processes
in two main directions: providing a formalization and characterization of local LGCP
for earthquake data and contributing to diagnostic methods for this class of models.

A review of spatial point processes and log-linear Poisson models, in terms of
both global and local methodology, was already reported in section 2.1.4. The spa-
tial local log-Gaussian Cox processes are introduced, and their estimation procedure
is discussed, together with diagnostics methods for local models. In particular, it
contains global diagnostics tools, well-established in spatial point pattern analysis,
and suitable for local models. Then, section 3.1 is structured as follows. In Sec-
tion 3.1.1, we propose two local diagnostics procedures based on the test of local
departure from “homogeneity” testing. In section 3.1.2, local models are applied to
describe seismic activity in Greece, describing both the entire Greek seismic cata-
logue and a particular seismic sequence. In section 3.1.3, an Italian seismic sequence
is analysed by means of local models, including different covariates coming from a
seismic catalogue. Section 3.1.4 is devoted to conclusions and final remarks.

3.1.1 A bootstrap procedure for “homogeneity” testing

Recall the local models and diagnostic methods introduced in section 2.1.4. When
the rejection of the null hypothesis, based on the tests reviewed in section 2.1.4.2.2,
is particularly due to some specific areas, it becomes interesting to individuate those
regions with inhomogeneous behaviour, that is, splitting the study area into sub-
regions requiring further study or different models. Therefore, to confute the hy-
pothesis of “homogeneity” while retaining information about the local features, a
bootstrap procedure is proposed and carried out in this chapter. Indeed, the boot-
strap procedure (Efron, 1982) is often used as an alternative to the statistical in-
ference based on the assumption of a parametric model when that assumption is in
doubt. The procedure used in this chapter can be outlined as follows:

1. Set M as the number of bootstrap samples to be considered.

2. Bootstrap M times from the analysed point process, that is, random sample
with replacement the points of the process, obtaining M new point processes.

3. The candidate local model is fitted to each of the M bootstrapped samples.

4. For each of the M resulting local models, the test of “homogeneity” is carried
out, obtaining M sets of local p-values for the given confidence level a.
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5. The local p-values are averaged over the M samples.

The resulting averaged local p-values can be plotted as a function of the spatial
location u, together with their standard deviations. This map visually identifies
the regions with inhomogeneous behaviour, i.e. where there is evidence against
the hypothesis of “homogeneity”. Contrary to the global p-value, computed as the
average of the local p-values of one “homogeneity” test, this bootstrap procedure
contributes to the model selection process, also retaining local information. Fixing
a confidence level a, e.g. 0.05, the areas where the local p-values are less than
a confute the hypothesis of “homogeneity”, while values greater than a provide
evidence in favour of the null hypothesis, that is, where the global model could
be more preferable than the local one. An average of the resulting local p-values
can also be computed, contributing to the model selection procedure, empirically
comparing this value with the fixed level a (Diggle and Gratton, 1984).

3.1.1.1 Assessing the effect of covariates on the local departure from
“homogeneity”

When the previously discussed local tests provide evidence against the null hypoth-
esis of “homogeneity”, we can describe the available point pattern by a local model.
At this point, we wonder which covariates most contribute to the rejection of this
hypothesis, that is to say, what covariates’ effects really vary in space. Indeed, the
“homogeneity” test compares the linear predictor of the local model to the one of
the corresponding global model, and therefore it does not provide information on
each covariate individually.

In this section, we contribute to the framework of diagnostic tools for local models
by proposing a stepwise procedure that highlights the effect of each covariate on the
rejection of the hypothesis of “homogeneity”. The procedure that we describe in
this section can be used for local Poisson models with multiple linear predictors,
that is, dealing with multiple covariates.

Suppose that the chosen model is a local Poisson model with spatial varying
intercept θ0(u) and parameters θ(u) = (θ1(u), ..., θp(u)) corresponding to the spa-
tially varying effects of the p covariates Z(u) = (Z1(u), ..., Zp(u)). Several local
Poisson models are fitted, starting from the one in which only the space-varying
intercept is added into the linear predictor, and adding one spatial covariate at a
time. The covariates are added starting from the most significant in explaining the
intensity marginally, based, for instance, on the information obtained from results
of Berman’s tests (Berman, 1986). This test is used to assess the dependence of a
point process on a spatial continuous covariate Z(u). It can be carried out before
formulating and fitting a model, to get a first indication of the variables influencing
the intensity of the process, marginally. Then, the test of “homogeneity” is carried
out in sequence to each of the local Poisson models, basically comparing each time
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the local Poisson model to its global counterpart. This procedure can be outlined
as follows:

1. The Berman tests are computed on each available covariate, marginally. The
covariates Z(u) = (Z1(u), ..., Zp(u)) are then ranked from the most significant
in explaining the intensity of the analysed process (therefore the one with the
lowest p-value) to the least significant, obtaining the ordered vector Z∗(u) =
(Z∗1 (u), ..., Z∗p(u)). The corresponding parameters are also ranked accordingly.

2. The model λ(u) = exp(θ0(u)) is fitted and the first test of local departure
from “homogeneity” is carried out for comparing{

H0 : λ(u) = exp(θ0)

H1 : λ(u) = exp(θ0(u))

obtaining the first map of p-values, where values smaller than 0.05 indicate
the regions where the local model should be preferred to the global one.

3. The second local model is fitted, adding the covariate that resulted in the most
significant in explaining the intensity of the process marginally, to the linear
predictor λ(u) = exp(θ0(u) + θ∗1(u)Z∗1 (u)). Therefore, the second test of local
departure from “homogeneity” is carried out to compare{

H0 : λ(u) = exp(θ0 + θ∗1Z
∗
1 (u))

H1 : λ(u) = exp(θ0(u) + θ∗1(u)Z∗1 (u)).

4. Repeat the last step for each Z(u) following the ranking given in step 2 until
the test of local departure from “homogeneity” is carried out on the chosen
model {

H0 : λ(u) = exp(θ0 + θ∗1Z
∗
1 (u) + · · ·+ θ∗kZ

∗
k(u))

H1 : λ(u) = exp(θ0(u) + θ∗1(u)Z∗1 (u) + · · ·+ θ∗k(u)Z∗k(u)).

The result is a set of maps, as many as the performed tests, that is, the number of
covariates in the chosen model, plus the intercept. Each map will display the p-values
associated with the test of “homogeneity” that compares the local model considered
at that step with its global counterpart. Looking at each map individually, we obtain
information about the regions in which the “homogeneity” hypothesis is rejected. Of
course, the wider the area leading to rejection, the stronger the evidence against the
global model. By comparing the rejection areas obtained through the subsequent
tests, carried out by adding one variable at a time, we are able to identify the most
contributing variables to the overall rejection of the “homogeneity” hypothesis in the
final chosen model. In particular, if adding one variable to the model, say Zj(u), the
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rejection area of the corresponding map gets wider than the one relative to the model
without Zj(u), then Zj(u) strongly contributes to the overall rejection, that is, the
effect of Zj(u) varies in space. Otherwise, if no significant differences are evident
between subsequent maps, then, the variable Zj(u) does not contribute significantly
to the overall rejection, suggesting that the effect of Zj(u), though considered as
local in the model, could actually be considered as constant. This procedure is
validated on the basis of the chosen local Poisson model fitted to the Greek seismic
catalogue data in section 3.1.2.1.

3.1.2 Analysis of the Greek seismicity

In this section, local models are applied to study the recent seismicity in Greece,
assessing their goodness of fit by the diagnostics tools previously introduced.

Global models, the global diagnostic tools reviewed in section 2.1.4.2.1 and
Berman’s tests are computed with functions implemented in the spatstat pack-
age (Baddeley and Turner, 2005). As for the local tests, and the fitting of the local
models we refer to the spatstat.local package (Baddeley, 2019).

The analysed data (1105 events) concern earthquakes that occurred in Greece
between 2005 and 2014. Only seismic events with a magnitude larger than 4 are
considered in this study, and the analyses in this section are marginal with respect
to time, focusing on the spatial dependence of events. In Figure 3.1 (a) earthquakes
are reported together with the location of the five active volcanoes of the area (in
green), the plate boundary (in red), and the faults (in blue). Data about the seismic
events come from the Hellenic Unified Seismic Network (H.U.S.N.), while covariate
information comes from the Greek Database of Seismogenic Sources (GreDaSS).

In Figure 3.1 (b) the observed K-function, is represented. The dotted red line
represents the values of the K-function for a homogeneous Poisson process, while
the black one represents the K-function of the observed point process. The K
statistic of the observed point pattern, with larger values than the theoretical one of
a Poisson process, suggests that distances in the observed pattern are shorter than
the Poisson ones. In other words, events are more clustered than a homogeneous
Poisson pattern, as is also evident in Figure 3.1 (a).

Starting from the information of the area under study, we are interested in
assessing if the presence of seismic sources affects the intensity of the process, that is
if the effect of the available covariates can improve the fitting of the model, by fitting
a global inhomogeneous Poisson process. Therefore, the considered explanatory
variables are Distance from the faults (Df (u)), Distance from the plate boundary
(Dpb(u)) and Distance from volcanoes (Dv(u)), computed as the Euclidean distances
from the spatial location u of events and the map of geological information (Baddeley
et al., 2015). In particular, only the information about the top segment of the fault
is used to compute the distances. The covariate surfaces are displayed in Figure 3.2.

The Berman’s tests are computed for assessing the dependence of the intensity
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Figure 3.1: Earthquakes occurred in Greece between 2005 and 2014. Volcanoes, in
green, faults, in blue, and plate boundary, in red (a); K-function of the observed
point process of the Greek data (b). The dotted red line represents the values of the
K-function for a homogeneous Poisson process, while the black one represents the
K-function of the observed point process.
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Figure 3.2: The available covariates for the Greek data: Distance from the faults
(Df (u)), Distance from the plate boundary (Dpb(u)) and Distance from volcanoes
(Dv(u)), computed as the Euclidean distances from the spatial location u of events
and the map of geological information.

of the process from the continuous spatial covariates. The corresponding p-values
are displayed in Table 3.1.
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Table 3.1: Berman’s Tests carried out for the available covariates for the Greek data

Variable p-value

Distance from the faults 0.0000
Distance from the plate boundary 0.0000
Distance from the volcanoes 0.6862

Therefore, the marginal effects of Dpb(u) and Df (u) seem significant. Otherwise,
Dv(u) does not significantly affect the earthquakes’ intensity (p-value 0.68). To
assess the variables’ influence on the intensity of the process, we plot the marginal
smoothed intensity function for each covariate. Let λ(u) be the intensity of the
process under study, and Z(u) the considered covariate. Then, assuming λ(u) =
f(Z(u)) where f is a non-parametric estimate of the intensity of the analysed point
process, we wonder if the observed intensity depends on each spatial covariate, at
least marginally. Smooth estimators of f(Z(u)) were proposed by Baddeley et al.
(2012), and the smoothing procedure we consider is based on fixed-bandwidth kernel
density estimation. The Poisson confidence bands are also computed.
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Figure 3.3: Non-parametric estimate of the intensity of the analysed point process,
as a function of the available variables for the Greek data: Distance from the plate
boundary (a), Distance from the volcanoes (b) and Distance from the faults (c). The
considered smoothing procedure is based on fixed-bandwidth kernel density estimation.

The analysis of the smoothed functions confirms the results of the Berman’s
tests. Indeed, Dv(u) does not seem to affect the intensity, and Figure 3.3 (b) shows
a quite constant relationship with the intensity. Looking at the smoothed functions
of Dpb(u) and Df (u), it is evident that the effect of both covariates varies as a
function of the scale. In detail, the intensity exponentially decreases moving away
from the plate boundary, while it has a piece-wise trend with respect to Df (u).

In section 3.1.2.1, a local Poisson model is fitted to the Greek catalogue data
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and results are compared to those referred to a global model fitting, assuming an
inhomogeneous Poisson model. In section 3.1.2.2, a local LGCP model is fitted to a
seismic sequence selected from this catalogue of events.

3.1.2.1 Local Poisson model for the Greek catalogue

On the basis of the previous results and for the given data, we want to assess if
the local features cannot be ignored, fitting an inhomogeneous Poisson model as in
Equation (3.1). Starting from the available variables, the choice of the final model is
based on diagnostic approaches, as reported in Sections 2.1.4.2.1 and 2.1.4.2.2. The
chosen model is the one including the Distance from the faults (Df ), the Distance
from the plate boundary (Dpb) and the Distance from the volcanoes (Dv), that is

λ(u) = exp(θ0(u) + θ1(u)Df (u) + θ2(u)Dpb(u) + θ3(u)Dv(u)) (3.1)

where the smoothing parameter h, obtained maximizing the LCV in Equation (2.11)
used in the local likelihood in Equation (2.10), is 0.73. The maps of the varying
coefficients θ̂1(u), θ̂2(u) and θ̂3(u) are shown on the top three panels in Figure 3.4.

The summary statistics of the local coefficients are reported in Table 3.2. As ex-
pected, the estimated coefficients are negative quite in the whole area, since usually,
as the distance from the seismic source increases the intensity decreases, but it is
important to notice that the coefficients take quite different values along the whole
area, reaching the lowest values of -10.39 for θ̂1(u). The lowest values correspond to
the earthquakes that occurred along the seismic sources.

Table 3.2: Summary of the space varying coefficients of the local Poisson model (3.1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

Intercept -0.8465 3.7821 4.6536 4.7818 5.4126 13.7942
Df -10.3862 -4.0474 -2.3888 -2.4529 -0.6133 4.6906
Dpb -4.735 -1.925 -1.413 -1.448 -1.04 2.17
Dv -5.3552 -0.6595 -0.2799 -0.2987 0.2351 2.9546

To study the effect of each covariate separately and to assess if the estimated
values of the spatial varying coefficients are significant, T-tests of the parameters
of the model are computed, as in Equation (2.18). The T-test output is shown in
the bottom panels of Figure 3.4, where the level curves correspond to the ±1.96
threshold, associated with a 0.05 confidence level. Therefore, in the darkest (and
lighter) regions the null hypothesis is rejected, that is, the coefficients corresponding
to these locations are significantly different from zero. It is interesting to notice that
the coefficients of Df (u) take negative values along the whole study area but for a
wide area on the bottom-left of the window in which coefficients are positive and
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Figure 3.4: On panels (a), (b), and (c): Spatial varying coefficients θ̂1(u), θ̂2(u) and
θ̂3(u) of the local Poisson Model in Equation (3.1), the coefficients of the variables
Df (u), Dpb(u), and Dv(u), respectively. On panels (d), (e), and (f): the corre-
sponding T-tests. T-level curves correspond to the ±1.96 threshold, associated with
a 0.05 confidence level. The darkest (and lighter) regions identify where the null
hypothesis is rejected, that is where the local coefficients are significantly different
from zero.

not significant. The coefficients of Dpb(u) are significant and negative basically in
the whole study area, but for the two areas at the boundary of the window. Finally,
the coefficients of Dv(u) are significant only in three bounded areas of the window,
taking both positive and negative values.

These results suggest that a local model might be suitable for describing the
features of the study area. To get more evidence supporting this hypothesis, the test
of the “homogeneity” is carried out, bootstrapping 100 datasets from the original
one, and computing the average of the resulting p-values obtained for each location,
as discussed in section 3.1.1. These values are shown in Figure 3.5, together with
their standard deviations, suggesting the inadequacy of the null hypothesis for the
whole study area: indeed, few local p-values slightly greater than the fixed level
0.05 are observed, but less than 0.1, in the southern region, corresponding also to
the sub-area with the largest standard errors. Besides, the mean of all the previous
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p-values is 0.01, with a standard deviation equal to 0.05, further corroborating the
hypothesis of the absence of “homogeneity” in these data.

0 0.01 0.02 0.03 0.04 0.05

 1
e−

04
 

 1e−04 

 0.001 

 0.01 

0 0.01 0.02 0.03 0.04 0.05

 1e−04 

 0.001 

 0.01 

 0.05 

Figure 3.5: Averaged local p-values (left panel) and their standard deviations (right
panel) for the test of “homogeneity”, computed over 100 bootstrapped datasets

This result suggests that the proposed local model in Equation (3.1) should be
preferred to its global counterpart

λ(u) = exp(θ0 + θ1Df (u) + θ2Dpb(u) + θ3Dv(u)).

To understand the effect of each variable in rejecting this hypothesis, we propose
the stepwise comparison between the different ‘homogeneity’ settings, introduced
in section 3.1.1.1. Therefore, four local Poisson models are fitted, starting from
the one in which only the local intercept is considered, and adding one spatial
covariate at a time. The covariates are ranked from the most significant in explaining
the intensity marginally, based on the results of Berman’s tests in Table 3.1, such
that Z∗(u) = (Df (u), Dpb(u), Dv(u)). These are subsequently added to the linear
predictor and the test of “homogeneity” is carried out each time comparing the
template global Poisson model to its local counterpart. Values smaller than 0.05
in Figure 3.6 are plotted in lighter colours, and they are found in those regions
where the hypothesis of “homogeneity” is rejected. Of course, we may notice that
the more covariates with local effects, the more areas ‘needing’ a local model. In
particular, as the greater differences between subsequent maps are in correspondence
with the addition of Df (u) and Dpl(u), this means that these are the covariates with
spatially varying effects. On the contrary, Dv(u) slightly contributes to the rejection
of the hypothesis and this may suggest that its effect could be considered constant.
Overall, we may notice that the best fitting for the whole area would require an
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even more complex model, but introducing local coefficients makes the model more
flexible and more useful for a deeper interpretation.

A feasible trade-off between the flexibility of a local model and the parsimony of a
global one could be the model with a linear predictor that includes a non-parametric
term for spatial coordinates and parametric expression for the spatial covariates, as

λ(u) = exp(f(u) + θ1Df (u) + θ2Dpb(u) + θ3Dv(u)) (3.2)

where f(·) is a non-parametric function for u ∈ D, estimated here through thin
plate regression splines (Wood, 2003) with 30 knots. Thin plate splines are a type of
smoothing spline used for the visualization of complex relationships between contin-
uous predictors and response variables. Thin plate splines are ideal for examining
the combined effect of two continuous predictors on a single outcome, because of
their multi-dimensional appearance. Therefore, they are suitable for accounting for
the spatial coordinates effect on the first-order intensity function of a point pattern.
The choice of the number of knots is performed by comparing models by means of
the AIC (Hastie and Tibshirani, 1990). Comparisons between the models (3.1) and
(3.2) are first carried out by the inspection of the smoothed raw residuals, as defined
in Equation (2.17). The smoothing bandwidth used for the kernel estimation of the
raw residuals is 0.025. The smoothed raw fields of the two models are shown in
Figure 3.7 and their ranges are reported in Table 3.3.

Table 3.3: Range of the smoothed raw fields of the local Poisson Model (3.1) and the
global Poisson Model (3.2)

Min. range Max. range

GlobalPoisson -1.27 1.41
LocalPoisson -3.51 3.42

From these results, we see that both models achieve a good fitting to the data,
even if the global model slightly presents smaller residuals than the local one.

Secondly, a comparison is carried out in terms of the inhomogeneous K-function
introduced in Equation (2.2). In Figure 3.8 (a) we report the inhomogeneous K-
function for the local model (3.1), while in Figure 3.8 (b), the one of the global
inhomogeneous semi-parametric model (3.2) is displayed. In both Figures, the solid
black line represents the inhomogeneous K-function K̂inhom(r) estimated with the
intensity of the fitted model, while the dotted red line represents the theoretical
one Kinhom,pois(r). The corresponding envelopes, that are obtained considering the
inhomogeneous K-function for a given number of simulated patterns, assuming the
same intensity of the observed patterns, are displayed in grey. For their computa-
tion, we simulated 100 realizations from the fitted model in Equation (3.1). The
inhomogeneous K-function of both models lay very close to the theoretical Poisson
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Figure 3.6: Test of “homogeneity” change: p-values of the test of “homogeneity” are
plotted, in reference to the four local Poisson models fitted for describing Greek data.
Starting from the one which includes only θ̂0(u) in panel (a), the covariates are added
in the models gradually. The p-values are computed for the tests of “homogeneity”
carried out on the models including, step-by-step, the Distance from the faults (b),
the Distance from the plate boundary (c) and the Distance from the volcanoes (d)
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Figure 3.7: Smoothed raw residuals of the local inhomogeneous Poisson Model (3.1)
and the global inhomogeneous semi-parametric Poisson Model (3.2)

curves, even if the one of the global model is a bit closer to its theoretical one,
even for larger distances. Based on these results, the global model in Equation (3.2)
should be preferred to the local one in Equation (3.1).
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Figure 3.8: Inhomogeneous K-functions of the local inhomogeneous Poisson Model
(3.1) (a) and the global Inhomogeneous semi-parametric Poisson Model (3.2) (b).
In both panels, the inhomogeneous K-function estimated on the observed pattern
K̂inhom(r) is the solid black line and the theoretical Poisson one K̂inhom,pois(r) is the
dotted red line, together with the corresponding envelopes, in grey.
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Overall, we might now conclude that both the global model (3.2), in which the
spatial component is modelled non-parametrically, and the local model (3.1) achieve
good fitting to the analysed data. Nevertheless, with both models, it is not possible
to get a concise comment about the effect of the spatial covariates, earning in terms
of fitting but losing interpretation. On the one hand, the great advantage of local
models is that one can get a whole map of parameters, one for each covariate added
in the linear predictor, and this allows us to detect those regions in which covariates
have a different effect of the phenomenon under study. Therefore, if we wish to
get a general overview of the effect of covariates a global model is to be preferred.
On the other hand, if we are interested in spotting those areas in which covariates
may have a different effect, and therefore, highlighting the multi-scale nature of the
observed generating process, local models could be more appropriate. Moreover, as
we add more covariates into the linear predictor, complexity increases, as each one of
them carries a whole map of parameters. Finally, local models are useful also when
covariates are not available. Indeed, since the test of “homogeneity” can be carried
out to any kind of linear predictor, this may spot those regions that really need
a local varying intercept, that is those areas that need more attention and further
analysis.

3.1.2.2 Local log-Gaussian Cox process model for a Greek seismic se-
quence

When analysing seismic sequences, the analysis of the small-scale variation is of
crucial interest (Giunta et al., 2009). For this purpose, a log-Gaussian Cox process is
a candidate model, accounting for the interaction among points through a Gaussian
Random Field. In their local version, parameters of the Gaussian Random Field vary
in space, allowing to describe the complex dependence structure of the generating
process. Starting from the Greek catalogue, we selected a smaller area in order to
emphasize the dependence features at short distances. The chosen area is situated
in the Ionian Sea, and it consists of three of ‘the Seven Islands’, namely Ithaki,
Kefalonia and Zakynthos, from North to South. In this area, earthquakes appear to
be clustered in the Western area of Kefalonia island and South to Zakynthos island.
For this analysis, only Df (u) and the Dpb(u) are considered, since the volcanoes
are very far from this analysed area. In Figure 3.9 earthquakes, together with plate
boundary (in red) and faults (in blue), are displayed. Given that previous analyses
have highlighted the high inhomogeneity of the chosen subregion, and therefore
the need for more complex models than the inhomogeneous Poisson, we fit the log-
Gaussian Cox process, as our objective here is to find the model that better describes
the clustered structure of the point pattern.

After choosing the following multiplicative local Poisson model for the determin-
istic component, then, it is used to fit the local LGCP model:

λ(u) = exp(θ0(u) + θ1(u)Df (u) + θ2(u)Dpb(u) + θ3(u)Df (u)Dpb(u)) (3.3)
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Figure 3.9: Earthquakes occurred in Ithaki, Kefalonia and Zakynthos between 2005
and 2014. The plate boundary is displayed in red while the faults are displayed in
blue

where the local weight function w in the local Palm likelihood is an isotropic Gaus-
sian density, with a smoothing parameter equal to 0.135, chosen by the cross-
validation criterion (2.16). The summary statistics of the estimated parameters
of the deterministic component of the local LGCP model are reported in Table 3.4.

Table 3.4: Summary statistics of the local coefficients of the deterministic component
of the local LGCP model for the Greek data

Min. 1st Qu. Median Mean 3rd Qu. Max.

Intercept -11.264 2.372 5.797 2.943 6.396 10.052
Df -28.259 1.318 8.095 8.303 14.777 51.888
Dpb -23.820 -8.782 -0.575 6.843 25.126 55.091

DfDpb -306.57 -84.03 -45.48 -47.90 -12.10 63.96

The estimates of the local interaction parameters σ̂2(u) and α̂(u) are displayed
in Figure 3.10 and their summary statistics are reported in Table 3.5.

The results in Table 3.5 are quite reasonable, since the estimates of the coeffi-
cients σ̂2 and α̂ of the global counterpart of the LGCP model, estimated maximizing
the (global) Palm Likelihood, are respectively equal to 1.92 and 0.2.

We know that the effect of increasing σ2 is to generate higher peaks in the
surface intensity, inducing a clustering effect. Increasing the spatial scale parameter
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Figure 3.10: Local coefficients σ̂(u) and α̂(u) of the global LGCP model, respectively
(a) and (b) and the mean of the process µ̂(u) (c)

Table 3.5: Summary statistics of the local coefficients of the covariance function of
the local LGCP model for the Greek data

Min. 1st Qu. Median Mean 3rd Qu. Max.

σ2 0.000105 0.802612 2.451644 2.192861 3.627219 4.157830
α 0.00001 0.00009 0.00012 0.01988 0.03764 0.11281

α, the underlying GRF presents a strong spatial correlation, and it corresponds to
a diffuse aggregation of points of the LGCP. Therefore, from the visual inspection
of the maps of the interaction parameters in Figure 3.10, we are able to identify
regions with different underlying Gaussian processes, driven by different covariance
structures. Figure 3.10 (a) shows the map of the estimates σ̂(u). We may notice that,
unexpectedly, the highest values are found where events are not clustered. Looking
at Figure 3.10 (b), the highest values of α̂(u) correspond to those regions exhibiting
clustered points. From the exponential expression of the covariance chosen for the
GRF in Equation (2.6) we know that the values of σ2 contribute to the covariance
in a multiplicative way, while the values of α affect the covariance exponentially.
Then, a unit increase of α has a greater effect on the computation of the covariance,
if compared to a unit increase of σ2. Therefore, inspecting Figure 3.10, we know
that the difference in the correlation among points is evident, and this is higher in
those areas in which clusters are observed, i.e. on the top and on the bottom-right
of the region.

A further application of the proposed local models is provided in section 3.1.3,
focusing on the study of an important seismic sequence of Abruzzo, a region of
central Italy, characterized by different geological features with respect to the Greek
ones.
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3.1.3 Analysis of the Italian seismicity

In this section, the local LGCP model is used to describe an important Italian
seismic sequence. The aim of specifying an LGCP model is to take into account the
existing interactions among events, that are not accounted for by a Poisson model,
even local. The analysis of the Greek seismic events has been carried out assuming
that the intensity of earthquakes could depend only on spatial covariates, such as
the distance to the seismic sources. This has been useful in order to test local
models and make different comparisons, but these variables only, all representing
distances from some source of seismic activity, may not be enough in order to explain
the phenomenon. Indeed, one could assume that other relevant variables could be
useful to explain the intensity of the observed earthquakes, such as variables related
to network dislocation and measurement errors.

The Italian catalogue considered in this section is downloaded from the Istituto
Nazionale di Geofisica e Vulcanologia (INGV) archive1, and it describes the space-
time Italian seismicity, from May 5th 2012 to May 7th 2016 with 2.5 as the threshold
magnitude, and reports 2226 events and several variables, including hypocentral
coordinates (longitude, latitude, depth, time), magnitude, hypocentral uncertainty,
distance from the nearest station, rms, which is a measure of the quality of the
location and the number of stations that recorded the event. As the location of
faults along the study area is also available, the distance from the nearest fault is
computed, in the same way as for the Greek data, and it is denoted by Df (u).

The Italian data is quite different with respect to the Greek one. While the Greek
covariates have been obtained from information external to the analysed point pat-
tern, the Italian catalogue carries more complete information about seismic events.
Indeed, Greek covariates are defined for the whole region under study, while Italian
covariates refer only to those seismic events already occurred. While the structure
of the Italian catalogue may lead to thinking of the available variables as marks of
the point process, some of these variables can be actually thought of as spatial co-
variates, if interpolated along the whole study area. Indeed, it makes sense to think
that variables such as the Hypocentral uncertainty, the RMS and the Distance to
the nearest station (Err, Rms and Dns) could depend on the location, and therefore
it makes sense to get an interpolation of these variables along all the study area.
On the other hand, variables such as Magnitude, Depth and Time, are character-
istics of the points, known as ‘marks’ in spatial point process theory. The spatial
covariates obtained from the interpolation, through the application of Cubic spline
interpolation, are treated as potential covariates in the fitted models and denoted
by Err(u), Rms(u) and Dns(u).

It is worth noticing that, for computational reasons, it was not possible to de-
scribe the other Italian areas, such as the one corresponding to the Emilia sequence.
Indeed, analysing the given point process would lead to both unsatisfactory inter-

1 https://istituto.ingv.it/it/risorse-e-servizi/archivi-e-banche-dati.html
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polation and computational problems when fitting local models, due to the strong
irregularity of data. Moreover, as already stated by Baddeley (2017), the local
composite likelihood works well if kernel smoothing performs well. Dealing with
earthquake data, this point can not be guaranteed, since their well-known features
of inhomogeneity and clustering in space.

Consequently, we focus on a seismic sequence. The selected region is Abruzzo,
sadly well-known for its seismic history. In April 2009, in the mountainous Abruzzo
region, a 6.3-magnitude quake killed nearly 300 people and destroyed or seriously
damaged thousands of buildings. During a period of three months in 2016, Central
Italy was hit by three large earthquakes and numerous aftershocks. The first one,
with a magnitude of 6.0, occurred in Amatrice on August 24 and killed 298 people.
On October 26 evening, a series of shocks with the strongest one having a magnitude
of about 6, took place in approximately the same region (Lutikov et al., 2018). Those
sequences are actually missing from the data analysed in this section.

The earthquakes that occurred between May 2012 and May 2016 in Abruzzo
are displayed in Figure 3.11 (a), consisting of 85 events with 2.5 as the threshold
magnitude. As we may notice, a concentration of events is observed on the top-left
of the region, in correspondence with the city of L’Aquila. So, even if the events
occurred in 2009 are not analysed in this section, their consequences on the following
sequences can be observed.

Longitude

La
tit

ud
e

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+ +

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+
+

++ +

+

++

13.0 13.5 14.0 14.5

41
.6

41
.8

42
.0

42
.2

42
.4

42
.6

42
.8

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

K
(r

)

Figure 3.11: Earthquakes occurred in Abruzzo between May 2012 and May 2016
(a), consisting of 85 events with 2.5 as the threshold magnitude; K-function of the
observed (b) Italian seismic sequence. The dotted red line represents the values of
the K-function for a homogeneous Poisson process, while the black one represents
the K-function of the observed point process.
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The K-function of the analysed point process is shown in Figure 3.11 (b), high-
lighting a clear clustered pattern of the events. The Berman’s tests are carried out
in order to check if these variables influence the intensity of earthquakes. As we
may notice from Table 3.6, the variables that seem to influence the spatial intensity
are Df (u), Dns(u), Err(u), while Rms(u) doesn’t influence the intensity values
significantly.

Table 3.6: Berman’s Tests for the available spatial variables in the Italian catalogue

Variable p value

Distance from the faults 0.002958
Distance from the nearest station 0.0002208
Hypocentral error 0.001353
RMS 0.1441

3.1.3.1 Model proposal

Starting from the Italian data, a local Poisson model is estimated to describe the local
features of data, including the available covariates, assuming that they may influence
the intensity as a function of the spatial location. After having compared different
models through the inhomogeneous K-function and the smoothed raw residuals, the
chosen local Poisson model is the following

λ(u) = exp(θ0(u) + θ1(u)Df (u) + θ2(u)Dns(u)) (3.4)

where only the Distance from the faults and the Distance from the nearest station
are involved. The local coefficients of the model are shown in Figure 3.12 and their
summary statistics are reported in Table 3.7. Negative values of the coefficients
of both variables are reasonable. Indeed, usually, as the distance from the faults
increases, the intensity decreases. Moreover, as the distance from the nearest station
recording the event increases, the intensity decreases, as detection of earthquakes is
usually more accurate if they occur not far from the network station. Looking at
the left panels of Figure 3.12 both variables take different values of their coefficients
along the whole study area, though looking at their T-test, they are not significant
along the whole area. Indeed, it seems that the area could be divided into two sub-
regions (right panels of Figure 3.12): one, on the top-right, in which the variable
affecting the intensity is Dns(u), and one, that is all the remaining area, in which
only Df (u) affects the intensity.

For testing local departure from “homogeneity”, the stepwise approach already
used for the Greek data is here considered. In order to assess the influence of each
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Table 3.7: Summary statistics of the coefficients of the local Poisson model (3.4) for
the Italian data

Min. 1st Qu. Median Mean 3rd Qu. Max.

Intercept 3.17 4.04 4.51 4.52 4.99 5.82
Dns -0.10 -0.08 -0.06 -0.06 -0.05 -0.03
Df -7.78 -5.91 -2.67 -2.90 0.10 3.03

variable on the lack of “homogeneity”, the space-varying p-values of the “homogene-
ity” tests are visually inspected. In Figure 3.13 (a) the p-values for the “homogene-
ity” test in the Null Model are less than 0.05 in two separate areas, namely the one
on the top-left and the one on the right of the window, corresponding to those areas
where events appear to be clustered or are missing. Looking at Figure 3.13 (b) we
see that including the variable Dns(u) in the model, the “homogeneity” hypothesis
is rejected in the middle of the window. Finally, in Figure 3.13 (c), including also
Df (u), the necessity of a local model is more evident. Therefore, as for the Greek
data, adding covariates into the model makes the local model more adequate for
describing observed data, with respect to a global model with constant regression
coefficients.

Table 3.8: Summary statistics of the spatial varying coefficients of the local LGCP
model for the Italian data

Min. 1st Qu. Median Mean 3rd Qu. Max.

σ2 0.000026 2.666119 3.455831 3.055668 3.889292 4.343586
α 0.0005174 0.0094810 0.0113980 0.0194697 0.0157996 0.0770704

As already stated in the analysis of the Greek data, we fit a local LGCP model,
with the same linear predictor selected from the above local Poisson model.

In Figure 3.14 the estimates of the two additional parameters σ̂(u) and α̂(u)
are shown, and their summary statistics are reported in Table 3.8. The results are
coherent with the estimates of the coefficients σ̂2 and α̂ of the global LGCP model
which are respectively equal to 1.47 and 0.21.

The results indicate that these two parameters have different behaviour on the
top-left of the selected window, with respect to the remaining region. This area cor-
responds to the region where events are more clustered, suggesting, as obvious, that
in this area the correlation among points is higher and therefore the corresponding
regions should be treated differently from the rest.
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Figure 3.12: Coefficients of the local Poisson model (3.4) and their T-tests for the
Italian data. The coefficients of the Distance from the nearest station are displayed
on the top-left panel while the coefficients of the Distance from the faults are displayed
on the bottom-left panel

3.1.4 Conclusions and discussion

In this section, we have introduced models with space-varying parameters, estimated
by the composite likelihood for spatial point processes (Baddeley, 2017), for the
description of complex earthquake data characterized by multiple and multifractal
dependence structures. Analyzing the recent seismicity of a highly seismic active
area, local models seem to be suitable for accounting for the complexity of the
seismic process since they describe its local features fitting a unique model to the
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Figure 3.13: Test of “homogeneity” change for the model (3.4) fitted for describing
Italian data: p-values of the test of “homogeneity” are plotted, for the Null Model
(a) that involves only θ̂0(u) into the linear predictor, the model in which also the
Distance from the nearest station is added (b) and the model in which both the
Distance from the nearest station and the Distance from the faults are added into
the linear predictor (c)
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Figure 3.14: Spatial varying additional parameters σ̂(u) and α̂(u) of the local LGCP
model fitted for describing the Italian seismic sequence

whole area under study.

First, a log-linear relationship between the earthquakes’ intensity and the dis-
tances from the nearest seismic sources has been modelled, fitting a local inhomoge-
neous Poisson process model. From the related obtained results, it seems reasonable
to assume local coefficients, that is, location-depending effects of the considered co-
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variates, reflecting the complex seismic activity of the given areas. Furthermore,
we have found that although the local models are useful in finding spatially varying
covariate effects, they may not be optimal for summarizing these different effects.
However, this information could be used in order to split the study region into differ-
ent areas and separately interpret the estimated local coefficients, following multiple
global approaches. Secondly, interaction among points, crucial in the context of
the analysis of seismic events, has been taken into account by fitting a local LGCP
model.

This represents the first main contribution of the section, as the local log-
Gaussian Cox process is comprehensively addressed and applied here for the first
time. We use the LGCP for describing a seismic sequence rather than an entire
catalogue since there is the possibility to account for the interaction among points
by the estimation of the parameters of the underlying Gaussian Random Field. This
makes the LGCP particularly suitable for the description of highly inhomogeneous
areas, such as the one chosen in the application provided in this section. In addition,
by fitting a local version of the LGCP, it becomes possible to account both for the
effect of covariates and for the interaction among points as a function of the spatial
location. Results of the reported application confirm the crucial role of the proposed
approach for describing and characterising the study area through multiple under-
lying processes, with both the first- and second-order characteristics varying with
location.

Furthermore, the second main innovation of this section refers to our contri-
bution to the framework of diagnostics for local models, outlining all the relevant
methods for diagnostics and model selection, also proposing a bootstrap procedure
for driving the model selection process, and a stepwise procedure, that is able to
assess single local effects of covariates on the rejection of the hypothesis of “homo-
geneity”. These procedures have been validated by the application of the proposed
methods to real seismic data, showing that, as the number of covariates in the linear
predictor increases, the number of areas actually needing a local model increases
too. The use of existing diagnostic tools for global models in the context of local
fitting and the proposed stepwise approach provide valid results and useful hints for
assessing the estimated models and selecting the best one, testing the need for a
local model in the analysed area.

Overall, starting from the results of the proposed application, local models pro-
vide good inferential results in the seismic point processes context. The complex
earthquake phenomenon is characterized by multiple and multifractal dependence
structures, and its description demands local tools and models to address its pe-
culiar features. It seems that fitting a model with locally varying parameters is
reasonable when analysing both seismic catalogues and sequences. In particular,
the local LGCP models succeed more in identifying regions where the events are
clustered than the global LGCP models that, through the estimation of constant in-
teraction parameters, can just identify the presence of a global clustered structure.
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Moreover, local models provide a good alternative in terms of fitting global models,
even non-parametric ones. A further advantage of the application of local models
to the seismic context proposed in this section is the possibility of fitting a unique
fully parametric model, considering in a proper way the interaction between covari-
ates, peculiar in describing the complex seismic phenomenon, compared to the most
classical semi-parametric model proposed in the literature, and reviewed in the in-
troduction of this section. Furthermore, as already pointed out by Baddeley (2017),
some methodological problems still remain, such as the need for a theory of misspec-
ified models and for variance estimators for Cox and cluster processes. Earthquake
data typically show extremely high concentrated points in small zones of high seis-
micity. Alternative approaches include the division of the study area into Dirichlet
cells, fitting a proper model to the union of such cells (e.g the spatially-adaptive
space-time point process models for earthquakes (Ogata and Katsura, 1988; Ogata,
1989)), with the drawback of providing high dimensional models. Spatial clustering
techniques may work differently in different tectonic environments. In this section,
we have applied the proposed technique to seismicity typical of compressive tecton-
ics and in particular in an area such as the Greek one where, as is well known, a
lithospheric subduction process is underway. It is certainly desirable in the future
to test the spatial clustering procedure here proposed also to seismicity recorded in
areas characterized by extensional or strike-slip tectonics, as well as in areas char-
acterized by seismicity linked to volcanic processes. This would make it possible to
verify the performance of the proposed technique in different tectonic regimes and
it is possible fine-tuning aimed at optimizing the spatial clustering.

Finally, a relevant drawback of this work is that we have not accounted for the
temporal dimension of the seismic events, whose realization depends on their past
history, as proved by the existence of aftershocks. Given the results of this section
on the application of spatial local models to the seismic context, we believe that
these models could be the basis for future development for introducing local models
and methods both for spatial and temporal dimensions, referring to the theory of
the space-time point processes. Indeed, few classical models widely used in the
spatio-temporal seismic context account for external information such as spatial or
temporal covariates (a recent proposal for the Epidemic Type Aftershock sequence
model is provided by Adelfio and Chiodi (2020)). Therefore, it is interesting to
develop spatio-temporal extensions of the spatial local models used in this section,
for instance, exploiting the alternative estimation procedure for the local LGCP
models with minimum contrast based on local second-order summary statistics, as
done in the next section.
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3.2 Locally weighted minimum contrast estimation for
space-time log-Gaussian Cox processes

D’Angelo, N., Adelfio, G., and Mateu, J. (2022c). Locally weighted minimum
contrast estimation for spatio-temporal log-gaussian cox processes.
https: // arxiv. org/ abs/ 2209. 07153 Computational Statistics & Data
Analysis. Major revisions

Section 3.1 showed that Baddeley’s purely local models provide good inferential re-
sults by applying them to earthquake data. However, that work did not account for
the temporal dimension of the seismic events, whose realisations depend on their past
history, as proved by the existence of aftershocks. This leaves a gap in the literature
about the availability of local spatio-temporal point process models. The challenge
of extending Baddeley’s work would be to enrich the literature on this topic. Addi-
tionally, it is well documented in recent literature that many spatial point patterns
are just snapshots of real spatio-temporal ones, and thus they should be treated as
such. Our paper enlarges the statistical tools available for spatio-temporal patterns.
Motivated by these reasons, we propose a local version of spatio-temporal LGCPs
employing LISTA functions plugged into the minimum contrast procedure to obtain
space as well as time-varying parameters. For the parameters of the deterministic
part, we follow Baddeley and Turner (2000), using a quadrature scheme for the lo-
cally weighted log-linear Poisson regression. For the parameters of the covariance
structure, we resort to the joint minimum contrast fitting method proposed by Siino
et al. (2018a) to estimate the set of second-order parameters of the spatio-temporal
LGCPs. This approach has the advantage of being suitable in both separable and
non-separable parametric specifications of the correlation function of the underly-
ing GRF. The advantage of the minimum contrast procedure stands in providing
parameters’ estimates, avoiding the computational demand needed for maximum
likelihood and Bayesian inferential methods. For this reason, it is useful for the
rapid exploration of a range of possible models and provides graphical methods for
assessing model fit. Moreover, it is quite a flexible approach since it only depends
on the knowledge of the involved summary statistics and not on the separability
structure of the covariance function.
Davies and Hazelton (2013) firstly evaluated minimum contrast parameter estima-
tion for both the spatial and spatio-temporal LGCPs. However, their estimation
setting does not fit to all the contexts and types of observed data (such as when
recorded in a continuous time resolution or when presenting a high cluster structure
such that counts by units of time have several zeros), but most importantly, it can-
not be used if a non-separable correlation structure of the GRF is assumed. This
limitation was overcome by the proposal of Siino et al. (2018a). The possibility of

https://arxiv.org/abs/2209.07153
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fitting models based on non-separable covariances is crucial when separability can-
not be assumed.
We point out that our proposal represents the first attempt to fit a localised ver-
sion of a log-Gaussian Cox process. Therefore, the main contribution of this paper
stands in the novel availability of methods for fitting spatio-temporal point process
models involving the estimation of local covariance parameters. Indeed, the inter-
action among points is typically taken into account by the LGCPs models through
the estimation of the covariance parameters of the GRF. In their local version, these
parameters vary in space and time, allowing the description and characterisation
of the study area through multiple underlying processes, meaning that it would
make sense to assume a generating process of the observed point pattern that is not
unique. The peculiarity of the new local LGCPs, already exploited in their purely
spatial version for the description of both seismic catalogues and sequences, lies in
the inhomogeneity of the point process being simultaneously addressed via spatial
covariates, a latent error process, and their estimated local coefficients.

We, therefore, introduce the local estimation, obtaining a whole set of parameters
for each point of the analysed dataset, and we refer to this new procedure as locally
weighted spatio-temporal minimum contrast. We show some simulations, finding
promising results as the estimates tend to be quite precise on average if compared
to the ’global’ counterpart while also reflecting the assumed variability in space and
time. Moreover, our proposal presents further advantages than global alternatives,
since it allows to obtain and interpret local parameters. To enforce these results, we
apply the proposed methodology to a real dataset in seismicity, considering the quite
convenient separable covariance function of the LGCP, proving that local LGCPs
can provide a better fit to the data than their global counterparts. Overall, our
proposal poses the basis for many further investigations and applications.

The structure of the section is as follows. In section 3.2.1, the proposed local
minimum contrast estimation based on the LISTA functions is presented. Section
3.2.2 reports the diagnostic procedure used to assess the goodness-of-fit of a global
LGCP and a proposed modification to deal with local LGCPs. Then, the perfor-
mance of the proposed local estimation method is assessed in section 3.2.3 through a
simulation study. An application to real seismic data comes in Section 3.2.4. Finally,
the overall section ends with some conclusions in section 3.2.5.

3.2.1 Model estimation proposal for the local spatio-temporal LGCPs

We first review and extend the statistical theory and computational strategies for
local estimation and inference for spatio-temporal Poisson point processes, in section
3.2.1.1. Then, in section 3.2.1.2, we extend the joint minimum contrast procedure
reviewed in section 2.2.3.1.1, to the local context.
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3.2.1.1 Estimating the first-order intensity function through local like-
lihood

We assume that the template model is a Poisson process, with a parametric intensity
or rate function

λ(u, t; θ), X ∈W, t ∈ T, θ ∈ Θ.

The log-likelihood is

logL(θ) =
∑
i

λ(ui, ti; θ)−
∫
W

∫
T
λ(u, t; θ)dtdu (3.5)

up to an additive constant, where the sum is over all points ui in X. We often
consider intensity models of log-linear form

λ(u, t; θ) = exp(θZ(u, t) +B(u, t)), u ∈W, t ∈ T (3.6)

where Z(u, t) is a vector-valued covariate function, and B(u, t) is a scalar offset.

3.2.1.1.1 Quadrature scheme Following Berman and Turner (1992), we use
a finite quadrature approximation to the log-likelihood, as implemented in the
spatstat package (Baddeley and Turner, 2005). Renaming the data points as
x1, . . . ,xn with (ui, ti) = xi for i = 1, . . . , n, then generate m additional “dummy
points” (un+1, tn+1) . . . , (um+n, tm+n) to form a set of n + m quadrature points
(where m > n). Then we determine quadrature weights a1, . . . , am so that integrals
in (3.5) can be approximated by a Riemann sum∫

W

∫
T
λ(u, t; θ)dtdu ≈

n+m∑
k=1

akλ(uk, tk; θ) (3.7)

where ak are the quadrature weights such that
∑n+m

k=1 ak = l(W × T ) where l is the
Lebesgue measure.

Then the log-likelihood (3.5) of the template model can be approximated by

logL(θ) ≈
∑
i

log λ(xi; θ) +
∑
j

(1− λ(uj , tj ; θ))aj =

=
∑
j

ej log λ(uj , tj ; θ) + (1− λ(uj , tj ; θ))aj

where ej = 1{j ≤ n} is the indicator that equals 1 if uj is a data point. Writing
yj = ej/aj this becomes

logL(θ) ≈
∑
j

aj(yj log λ(uj , tj ; θ)− λ(uj , tj ; θ)) +
∑
j

aj . (3.8)
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Apart from the constant
∑

j aj , this expression is formally equivalent to the
weighted log-likelihood of a Poisson regression model with responses yj and means
λ(uj , tj ; θ) = exp(θZ(uj , tj) + B(uj , tj)). This can be maximised using standard
GLM software. For more details see Berman and Turner (1992); Baddeley et al.
(2000, 2005) section 9.8.

We define the spatio-temporal quadrature scheme by defying a spatio-temporal
partition of W ×T into cubes Ck of equal volume ν, assigning the weight ak = ν/nk
to each quadrature point (dummy or data) where nk is the number of points that
lie in the same cube as the point uk (Raeisi et al., 2021).

The number of dummy points should be sufficient for an accurate estimate of
the likelihood. Following Baddeley et al. (2000) and Raeisi et al. (2021), we start
with a number of dummy points m ≈ 4n, increasing it until

∑
k ak = l(W × T ).

3.2.1.1.2 Local Poisson models’ estimation in space and time The local
log-likelihood associated with the spatio-temporal location (v, s) is given by

logL((v, s); θ) =
∑
i

wσs(ui − v)wσt(ti − s)λ(ui, ti; θ)+

−
∫
W

∫
T
λ(u, t; θ)wσs(ui − v)wσt(ti − s)dtdu

(3.9)

where wσs and wσt are weight functions, and σs, σt > 0 are the smoothing band-
widths. It is not necessary to assume that wσs and wσt are probability densities. For
simplicity, we shall consider only kernels of fixed bandwidth, even though spatially
adaptive kernels could also be used. Note that if the template model is the homo-
geneous Poisson process with intensity λ, then the local likelihood estimate λ̂(v, s)
reduces to the kernel estimator of the point process intensity (Diggle, 2013) with
kernel proportional to wσswσt .

We now use in (3.9) a similar approximation as in (3.8) for the local log-likelihood
associated with each desired location (v, s) ∈W × T

logL((v, s); θ) ≈
∑
j

wj(v, s)aj(yj log λ(uj , tj ; θ)− λ(uj , tj ; θ)) +
∑
j

wj(v, s)aj ,

(3.10)
where wj(v, s) = wσs(v− uj)wσt(s− tj).

Basically, for each desired location (v, s), we replace the vector of quadrature
weights aj by aj(v, s) = wj(v, s)aj where wj(v, s) = wσs(v − uj)wσt(s − tj), and
use the GLM software to fit the Poisson regression. The local likelihood is defined
at any location (v, s) in continuous space. In practice, it will be enough to consider
a grid of points (v, s). The choice of the grid depends on the computing resources,
the computations required at each location, and the spatial resolution required.

Bandwidth selection is always an unavoidable topic with kernel estimation. In
principle, the bandwidth should be selected according to data resolution, which



3.2. Locally weighted minimum contrast estimation for space-time LGCPs 77

is at the order of 1-10 times the nearest neighbouring distance (Zhuang, 2020).
This general consideration holds for both the spatial and temporal components. A
natural first step in analysing spatial patterns is to form a kernel density estimate
(Silverman, 2018) of the spatially-varying events rate. The smoothing parameter
for the kernel estimator of the temporal intensity function is usually selected by the
bandwidth of Silverman’s rule of thumb. However, the simple kernel estimate with
a fixed bandwidth has a serious disadvantage, especially for spatial data. Indeed,
for a (spatially) clustered point dataset, a small bandwidth gives a noisy estimate
for the sparsely populated area, whereas a large bandwidth mixes up the boundaries
between the densely populated and sparsely populated areas. Therefore, instead of
the kernel estimates w with fixed bandwidth σ, other proposals in the literature
include variable bandwidth by σj = max{ε, inf(r : N [B(uj ; r)] > np)}, where ε is
a small number, B(uj ; r) is the disk centered at uj with a radius of r, and np is a
positive integer, i.e. σj is the distance to np-th closest event. In other words, once
a suitable integer between 10 and 100 for the parameter np is chosen, we calculate
a bandwidth value σj , of each event j, as the radius of the smallest circle centred at
the location of the jth event that includes at least np other events. See Silverman
(2018) for similar locally dependent estimates, Zhuang et al. (2002) for their use in
a seismic context, and Musmeci and Vere-Jones (1986); Choi and Hall (1999) for
similar ideas.

3.2.1.2 Proposal: Locally weighted spatio-temporal minimum contrast

In the purely spatial context, a localised version of minimum contrast is devel-
oped using the local K-functions or local pair correlation functions by Baddeley
(2017), bearing a very close resemblance to the local Palm likelihood approach,
whose implementation is provided by the function locmincon() of the R package
spatstat.local (Baddeley, 2019).

Combining the joint minimum contrast (Siino et al., 2018a) and the local min-
imum contrast (Baddeley, 2017) procedures, we can obtain a vector of parameters
ψi for each point i, by minimising

MJ,i{ψi} =

∫ hmax

h0

∫ rmax

r0

φ(r, h){ν[J̄i(r, h)]− ν[J(r, h;ψ)]}2drdh, (3.11)

where J̄i(r, h) is the average of the local functions Ĵi(r, h), weighted by some point-
wise kernel estimates. This procedure not only provides individual estimates, but it
does also account for the vicinity of the observed points, and therefore the contribu-
tion of their displacement on the estimation procedure. This conceptually resembles
the methodology used for the local log-likelihood in section (3.2.1.1.2). Following
Siino et al. (2018a), we suggest using φ(r, h) = 1 and ν as the identity function.
Then, rmax and hmax are selected as 1/4 of the maximum observable spatial and
temporal distances.
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Thus, consider again the weights wi(vi, si) = wσs(vj − ui)wσt(sj − ti) given by
some kernel estimates. The same considerations hold for the choice of the bandwidth
in the local log-likelihood. Then, the averaged weighted local statistics J̄i(r, h) in
(3.11), for each point i, is

J̄i(r, h) =

∑n
j=1 Ĵj(r, h)wij∑n

j=1wij
i, j = 1, . . . , n.

In particular, we consider Ĵi(·) as the local spatio-temporal pair correlation func-
tion (Gabriel et al., 2021), evaluated for each ith event (ui, ti),

Ĵi(r, h) = ĝi(r, h) =
1

4πr|W × T |λ̂2

∑
j 6=i

κs,t(||ui − uj || − r, |ti − tj | − h)

ω(ui,uj)ω(ti, tj)
(3.12)

where ω is the edge correction factor.
The kernel function κ has a multiplicative form κs,t(||ui−uj ||− r, |ti− tj |−h) =

κs(||ui−uj ||−r)κt(|ti−tj |−h) where κs and κt are kernel functions with bandwidths
εs and εt, respectively. Both of them are computed using the Epanechnikov kernel
(Illian et al., 2008) and the bandwidths are estimated with a direct plug-in method
(Sheather and Jones, 1991) using the dpik function of the package Kernsmooth

(Wand, 2020).

3.2.2 Diagnostics of the local spatio-temporal LGCPs

To deal with local LGCPs, we provide a slightly modified diagnostics method. In-
deed, given the local covariance parameters, diagnostics can be carried out following
the same procedure outlined above, but simulating a local GRF from the estimates
of the fitted model. This will reflect the variability of the estimated covariance pa-
rameters. From the local GRF, we can then generate a local spatio-temporal LGCP.
The algorithm is basically the same as the one in section 2.2.3.1.2, except that we
substitute step 1 with the following additional steps. The rest remains the same.

1.a Generate a realisation from a GRF S(u, t), with covariance function
C((u, t), (v, s)) and mean function µ(u, t);

1.b Define a spatio-temporal grid, whose breaks are evenly spaced (the definition
of the grid depends on the level of detail to be given), for the simulation of the
local GRF, and for each point (ui, ti), obtain a GRF S(ui, ti) simulated from
the individual set of estimates ψi;

1.c Compute the average of the GRF values obtained in 1.a within the sub-grids
defined in 1.b;

1.d Fill the empty sub-grids with the global GRF values;

The procedure 1.a - 1.d ends obtaining a local GRF S′(u, t), for which the informa-
tion of the local estimates is exploited.
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3.2.3 Simulation study

A simulation study with a number of scenarios is carried out to assess and compare
the performances of the global estimation method Siino et al. (2018a) and the local
one proposed in section 3.2.1.2.

In the first set of scenarios, we assume a stationary and isotropic LGCP with a
separable structure of the covariance of the underlying GRF, with an exponential
model both in space and time as in Equation (2.24), the vector of parameters given
by ψ = {σ2, α, β}. For each scenario, 200 point patterns are generated with n = 1000
expected number of points in the spatio-temporal window W × T = [0, 1]2 × [0, 50],
with a constant first-order intensity equal to b = log(n/|W × T |). We consider
several degrees of clustering in the process with variance σ2 = {5, 8} and scale
parameters in space and time, α = {0.005, 0.10, 0.25} and β = {2, 5, 10} . The mean
of the GRF is fixed µ = −0.5σ2. These sets of parameters are the same used in the
simulation study in Siino et al. (2018a). Table 3.9 contains mean and quartiles of
the distributions of the estimated local parameters ψ̂i = {σ̂2

i , α̂i, β̂i}, averaged over
the 200 simulated point patterns.

The results obtained are quite promising: indeed, even considering fixed band-
widths for the weights in the proposed locally weighted minimum contrast, the
procedure manages to provide quite precise estimates. This is particularly evident
if compared to the results in Siino et al. (2018a) and, even before, in Davies and
Hazelton (2013), where the authors provide a number of simulations studies to assess
the overall performance of the minimum contrast procedure under different aspects,
concluding that the estimates of the variance σ2 strongly tend to be underestimated.
However, our main goal here is not to provide an alternative to the classical global
minimum contrast procedure, but instead to estimate local parameters. This ob-
jective is clearly achieved as we manage to obtain a whole distribution for each
parameter (of each analysed point pattern). Overall, we do not aim at achieving
the most precise result (i.e. MSE close to zero), but with some degree of variability,
that is to say, with an MSE not largely exceeding the mean value of its estimates’
distribution.

The same results hold for the scenarios simulated from 200 LGCPs with n = 1000
points each and the non-separable covariance function in (2.25), as evident from
Tables 3.9 and 3.10. Note that we have chosen δ = {0.3, 1.8}, and kept γt and γs
equal to 1 in all the scenarios.

3.2.4 Application to the Greek seismic data

We analyse the same seismic data in section 3.1, related to 1111 earthquakes that
occurred in Greece between 2005 and 2014, coming from the Hellenic Unified Seismic
Network (H.U.S.N.). Time has been converted into days, and only seismic events
with a magnitude larger than 4 are considered in this study. The earthquakes are
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Table 3.9: Mean (m) and quartiles of the distributions of the local parameters
ψ̂i = {σ̂2

i , α̂i, β̂i}, averaged over the 200 simulated point patterns generated assuming
an exponential form in both the spatial and temporal dimensions for the GFR with
covariance as in (2.24).

True σ̂2 α̂ β̂

σ2 α β 25% 50% m (mse) 75% 25% 50% m (mse) 75% 25% 50% m (mse) 75%

5 0.05 2 5.27 6.30 6.45(2.38) 7.60 0.05 0.07 0.14(5.26) 0.09 1.77 2.26 2.63(5.19) 2.97
0.10 4.64 5.51 5.67(2.56) 6.47 0.09 0.11 0.13(0.91) 0.15 1.80 2.32 2.61(4.80) 3.08
0.25 3.68 4.39 4.63(3.11) 5.37 0.19 0.24 0.34(4.47) 0.32 1.69 2.22 2.50(5.39) 2.92
0.05 5 4.36 5.43 5.54(2.64) 6.58 0.05 0.07 0.12(4.02) 0.09 3.36 4.43 5.03(4.74) 5.93
0.10 4.13 4.96 5.14(2.95) 5.97 0.09 0.11 0.14(1.93) 0.15 3.40 4.45 5.09(4.61) 6.17
0.25 3.29 4.10 4.27(4.20) 5.02 0.17 0.24 0.40(6.56) 0.34 3.04 4.21 4.89(6.81) 5.90
0.05 10 4.08 5.03 5.20(3.09) 6.12 0.05 0.06 0.10(4.07) 0.08 5.69 7.85 8.61(7.75) 10.54
0.10 3.66 4.44 4.66(4.19) 5.50 0.08 0.11 0.16(4.23) 0.14 5.64 8.00 8.85(8.58) 11.07
0.25 3.05 3.73 3.97(4.63) 4.70 0.16 0.22 0.35(6.07) 0.30 5.15 7.09 8.15(11.02) 9.98

8 0.05 2 7.26 8.23 8.29(3.05) 9.37 0.05 0.06 0.07(1.47) 0.08 2.27 2.85 3.36(4.77) 3.87
0.10 6.32 7.26 7.40(2.80) 8.36 0.08 0.10 0.12(2.39) 0.13 2.25 2.84 3.17(4.53) 3.72
0.25 5.07 5.97 6.16(3.30) 7.13 0.17 0.22 0.32(5.51) 0.29 1.97 2.62 2.83(5.81) 3.43
0.05 5 6.72 7.64 7.76(2.96) 8.83 0.05 0.06 0.08(2.56) 0.08 3.35 4.43 5.05(5.17) 6.11
0.10 5.73 6.74 6.91(3.05) 7.99 0.08 0.10 0.13(3.16) 0.13 3.29 4.29 4.82(5.58) 5.81
0.25 4.79 5.61 5.81(3.39) 6.69 0.15 0.19 0.29(5.84) 0.26 3.01 4.17 4.58(5.88) 5.59
0.05 10 6.11 7.06 7.14(2.96) 8.14 0.05 0.06 0.08(2.32) 0.08 5.37 7.50 8.30(7.99) 10.22
0.10 5.15 6.19 6.33(3.35) 7.24 0.08 0.10 0.12(2.68) 0.12 4.93 7.04 7.88(8.25) 9.84
0.25 4.19 5.05 5.23(3.71) 6.19 0.14 0.19 0.28(5.45) 0.26 4.57 6.51 7.60(9.81) 9.54

Table 3.10: Mean (m) and quartiles of the distributions of the local parameters
ψ̂i = {σ̂2

i , α̂i, β̂i}, averaged over the 200 simulated point patterns generated assuming
an exponential form in both the spatial and temporal dimensions for the GFR with
covariance as in (2.25).

True σ̂2 α̂ β̂ δ̂

σ2 α β δ 25% 50% m (mse) 75% 25% 50% m (mse) 75% 25% 50% m (mse) 75% 25% 50% m (mse) 75%

5 0.05 2 1.80 4.99 7.25 9.60(6.69) 13.94 0.03 0.05 0.12(0.51) 0.07 0.16 0.38 0.71(3.33) 0.96 1.01 1.84 1.49(1.07) 2.00
0.10 5 2.89 3.77 3.79(3.30) 4.62 0.05 0.07 0.09(0.47) 0.10 4.99 5.55 7.22(6.32) 7.78 0.01 0.02 0.23(1.21) 0.11
0.05 2 0.30 4.23 4.87 4.67(2.66) 4.99 0.03 0.04 0.05(0.30) 0.05 1.95 2.01 4.23(5.85) 2.43 0.01 0.02 0.08(1.24) 0.09
0.10 5 3.16 4.03 3.86(3.22) 4.55 0.04 0.06 0.10(0.55) 0.09 4.96 5.05 6.93(6.26) 5.55 0.01 0.02 0.10(1.23) 0.09

8 0.05 2 1.80 5.07 6.89 6.50(2.38) 7.82 0.02 0.03 0.05(0.32) 0.05 1.90 2.89 4.01(4.36) 4.44 0.01 0.01 0.16(1.24) 0.06
0.10 5 3.77 4.48 4.88(2.76) 5.64 0.04 0.06 0.08(0.51) 0.08 3.29 4.94 6.42(6.07) 7.76 0.01 0.01 0.20(1.22) 0.09
0.05 2 0.30 5.31 6.70 6.36(2.12) 7.50 0.02 0.03 0.04(0.16) 0.05 2.17 2.97 4.78(5.00) 5.14 0.01 0.01 0.13(1.23) 0.05
0.10 5 4.94 6.29 5.99(2.23) 7.25 0.03 0.05 0.06(0.18) 0.07 5.00 5.18 6.55(5.30) 6.09 0.01 0.03 0.15(1.20) 0.13

depicted in Figure 3.15(a), while Figure 3.15(b) shows the pair correlation function,
the global version of (3.12) (Gabriel et al., 2021).

The bandwidths εs and εt, used in kernel estimation within the pair correlation
function, are computed using the direct plug-in method of Sheather and Jones (1991)
as 0.15 and 28.49, for space and time, respectively. Recall that the pair correlation
function under complete randomness is a constant equal to one. Figure 3.15(b)
shows that the empirical pair correlation function takes values much larger than
one for short distances indicating a tendency to cluster far from a Poisson process.
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Indeed we can also observe such clustered structures in Figure 3.15(a).
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Figure 3.15: Earthquakes occurred in Greece between 2005 and 2014 (a); Pair cor-
relation function of the observed point pattern (b).

We first consider a global LGCP with exponential covariance as in (2.24) using
a joint estimation method as explained in section 2.2.3.1.1. The employed spatial
and temporal bandwidths εs and εt are the ones used for the global pair correlation
function displayed in Figure 3.15. We assume a constant intensity function estimated
as λ̂(u, t) = λ̂ = n

|W×T | = 0.006. The estimates of the covariance parameters are ψ̂ =

{σ̂2, α̂, β̂} = {6.14, 0.27, 449.55}, which indicate a quite clustered underlying process,
given the high estimated variance, and the relatively small scale parameters. We
have also fitted other global LGCPs with non-separable covariances on the analysed
data, but these provided unsatisfactory parameter estimates. Therefore, we decided
not to show them in the text, discussing the separable case only.

To assess the goodness-of-fit of the proposed (global) model, a residual analysis
is carried out by means of the Monte Carlo test based on the inhomogeneous K-
functions outlined in section 3.2.2. Figure 3.16(a) displays an example of an LGCP
point pattern simulated with the estimated parameters ψ̂, which is used to compute
the envelopes for the test. Then, Figure 3.16(b) shows the empirical K-function
for the earthquake data, following (2.21), as well as the envelopes computed on 39
simulations. An overall p-value of 0 is obtained from (2.30): being equal to zero
indicates that the empirical pattern is not compatible with the simulated ones (that
come from an LGCP with estimated parameters ψ̂). Therefore, the assumed model
is not a good fit and an alternative should be searched, able to take into account
the residual clustered behaviour of the points. Furthermore, Figure 3.16(b) confirms
this result, as the observed K-function does not lie within the envelopes.

We then consider a local spatio-temporal LGCP for the seismic data and follow
the locally weighted minimum contrast proposed in section 3.2.1.2. The bandwidths
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Figure 3.16: (a) An example of LGCP point pattern simulated with the estimated
parameters ψ̂; (b) In black: the estimated weighted K-function for the Greek seismic
data. In light grey: envelopes based on 39 simulations from the global spatio-temporal
LGCP at a significance level of 0.05.

εs and εt, for the kernel in the pair correlation function (3.12), are the same used for
the global fitting, while the bandwidths {σx, σy, σt} for the local weighting are esti-
mated by a Gaussian kernel with Silverman’s bandwidth as 2.58, 1.79 and 1140.31,
for x, y, and t coordinates, respectively. The results of the local fitting are shown
in Table 3.11 and in Figure 3.17.

Table 3.11: Summary statistics of the estimated covariance parameters for the local
LGCPs fitted to the Greek seismic data.

σ̂2 α̂ β̂

Min. 1.28 0.13 42.34
1st Qu. 5.19 0.25 366.43
Median 6.03 0.28 534.86

Mean 5.77 0.39 535.52
3rd Qu. 6.60 0.35 597.59

Max. 12.47 1.94 1411.45

As shown in Table 3.11, the proposed procedure provides a whole distribution
for each parameter. Then, as evident from Figure 3.17, the estimated parameters
allow to clearly distinguish different sub-areas where points behave differently from
each other. Indeed, by inspection of the left panels of Figure 3.17, we can clearly
spot two main spatial regions: the one on the top and on the left with higher σ̂2

i

values but lower estimates for α̂i and β̂i, and the area on the bottom-right which
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displays the opposite situation (low variance but large scale parameters).
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Figure 3.17: Local estimates of the local LGCP fitted to the Greek seismic data. We
show a spatial representation on the left and a spatio-temporal one on the right.

This result is particularly appealing because it gives us more insight into the
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local behaviour of the seismic phenomenon. Indeed, from the global estimates, we
are only able to draw the conclusion that the analysed process is overall clustered.
Conversely, the local application shows that earthquakes that occurred on the top-
left of the analysed area are grouped in smaller clusters, while the ones on the
bottom-left have a way more diffuse clustering behaviour.

Furthermore, by looking at the right panels of Figure 3.17, we can assess also
the time-varying behaviour of the estimates and therefore on the underlying process:
the most relevant result concerns the variability of the covariance parameters σ̂i in
time, indicating that the number of earthquakes tends to increase in time, and in
particular, in the top-left spatial region.

To assess whether the local model is a better fit to the data, also compared to
the global counterpart, we proceed with the residual analysis as outlined in section
3.2.2. For the local LGCP, the procedure is based on the modification of the GRF
to be used to generate the point patterns, allowing the inclusion of information on
the local estimates. To show the difference between the global and local GRFs,
Figure 3.18 displays the spatial GRFs for three temporal instants, global and local,
in the upper and lower panels, respectively. As evident, the local GRFs contain
information about the local estimates, which in turn result in local variations.

Finally, Figure 3.19(a) displays an example of a point pattern simulated with
the estimated local parameters ψ̂i, while Figure 3.19(b) depicts the estimated K-
function and the envelopes computed from 39 local simulations. It is worth noticing
how the point pattern simulated from the local parameters, following our proce-
dure, better mimics the spatio-temporal arrangement of the original points (Figure
3.15(a)), if compared to the globally simulated point patterns (Figure 3.16(a)). An
overall p-value of 0.28 is obtained using the Monte Carlo local test, indicating that
the patterns simulated from the assumed model (with the local estimated parame-
ters) do not present any residual clustering behaviour. Therefore, we can conclude
that the local model is a good fit to the analysed data. This result is further
confirmed by Figure 3.19 (b), as now the observed K-function lies almost entirely
between the envelopes obtained from the local simulation. Moreover, the local model
also represents a better fit than its previously fitted global counterpart.

3.2.5 Conclusions

We have introduced a novel local fitting procedure for obtaining space-time local
parameters for a log-Gaussian Cox process. From a methodological point of view,
we have resorted to the joint minimum contrast procedure (which is appealing for
its flexibility in dealing also with non-separable covariances), extending it to the
local context and therefore allowing to obtain a whole set of covariance parameters
for each point of the analysed process. The motivating problem came from the
seismic application, where of course it is of interest to study the characteristics of
the process in relation to both the spatial and the temporal occurrence of points.
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Figure 3.18: GRFs for three temporal instants: Top panels: global; Bottom panels:
local.

By simulations, we have shown that the local proposal provides good estimates on
average if compared to the global fitting alternatives. Focusing on the application to
real seismic data we have been able to assess that a local LGCP can be a better fit to
the data if compared to its global counterpart. This is an expected result as the local
fitting is based on a weighting given by a non-parametric estimate. However, our
proposal presents further advantages than non-parametric alternatives, as it allows
to obtain and interpret local parameters.

Our proposal poses the basis for many further investigations and applications.
Indeed, in the future, the proposed methodology could be applied to different real
spatio-temporal point patterns, where it is of interest to study the characteristics
of the underlying process, in relation to the spatial displacement and the temporal
occurrence of points. Some examples may include seismology, forestry, criminology,
or epidemiology.

Concerning the local LGCPs, it would be interesting to develop software to
include external covariates into the first-order intensity and to propose diagnostic
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Figure 3.19: (a) A point pattern simulated with the estimated parameters ψ̂i; (b) In
black: the estimated inhomogeneous K-function for the Greek seismic data. In light
grey: envelopes based on 39 simulations from the local spatio-temporal LGCP at a
significance level of 0.05.

methods for the particular case of multiple covariates, as an extension to section 3.1.
Indeed, few spatio-temporal point process models account for external covariates:
see Adelfio and Chiodi (2020) for the ETAS model, and section 4.2 for the spatio-
temporal Hawkes point process model adapted to events living on linear networks.
However, to the best of our knowledge, none of the recent proposals provides local
estimates of the model regression-type parameters.

The inclusion of covariates would further allow to explore and compare their
effects both in global and local models. See for instance Fotheringham and Sachdeva
(2022), which discuss some examples of the spatial variant of Simpson’s paradox,
by local models for areal data. Indeed, there might be some cases where the spatial
variations observed in the local estimates of some covariates could simply be due to
some misspecification of the model form (such as omitting informative covariates),
rather than to spatially inhomogeneous behaviour. The same issue could hold in
some spatio-temporal contexts.

Moreover, future works could also focus on the use of other summary statistics,
such as the K-function, in the local minimum contrast procedure. Suitable simula-
tion studies could be carried out, and the performance of different local second-order
summary statistics could be compared, as discussed in Davies and Hazelton (2013).

A related issue concerns the weights given to the averaged summary statistic,
which strictly speaking could need not be kernel estimates nor Gaussian ones. For
instance, Zhuang (2015) (which applies the weighted likelihood estimator to the
spatio-temporal ETAS model to study the spatial variations of seismicity character-
istics in the Japan region) chooses a two-dimensional step-wise kernel function based



3.2. Locally weighted minimum contrast estimation for space-time LGCPs 87

on concentric disjoint octagon rings. The optimal kernel function and bandwidth,
not discussed in detail in this study, could be investigated in future research.

Furthermore, other Cox models estimation could be carried out by exploiting the
proposed minimum contrast procedure based on local second-order summary statis-
tics. For instance, Neyman-Scott cluster processes are popular models for spatially
clustered patterns of points. Baddeley et al. (2022) proposed a new parametrisation
of the model involving an index of clustering strength in such a way that the Pois-
son process is included in the model by setting the clustering strength to zero. The
parametrisation leads to improved performance of fitting algorithms. In future, we
want to explore the possibility of implementing the same parametrisation in space
and time, but also in the local context. Indeed, once established that the local model
is a better fit compared to the global counterpart, we might wonder if this statement
holds for the whole analysed region or only for a sub-area. For the log-Gaussian Cox
processes, this would be more straightforward as the Poisson process corresponds to
the case where the variance parameter of the Gaussian random field is equal to zero.



Chapter 4

New modelling approaches on
linear networks

In this Chapter, two new modelling approaches on linear networks are proposed, with
the aim of explicitly accounting for the network structure in the fitting procedure,
as well as including external covariates represented by characteristics of the roads
and socio-economic spatial covariates.

In section 4.1 the Gibbs models with random effects (Illian and Hendrichsen,
2010) are adapted to the network structure and to the peculiar problem of de-
scribing cruise passengers data. This purely spatial proposal already introduced
novelties such as the possibility of accounting for the interaction among points, the
road network structure, and external information. Moreover, taking inspiration from
Tamayo-Uria et al. (2014) we consider the spatial intensity obtained as one compo-
nent of a separable spatio-temporal model fitted to the data. At the time of writing,
this represents the first attempt to consider a parametric specification of a model
for point processes occurring on linear networks. Finally, to take into account the
residual clustered behaviour of points, not completely captured by the models fitted
previously, we consider a log-Gaussian Cox process.

In section 4.2, we formalize a Self-Exciting network model for the analysis of
crime data. Motivated by the analysis of crime data in Bucaramanga (Colombia),
we propose a spatio-temporal Hawkes point process model adapted to events living
on linear networks, considering a non-parametric modelling strategy for both the
background and the triggering components. We further perform a parametric esti-
mation of the background based on covariates. We show that our network model
outperforms a planar version, improving the fitting of the Self-Exciting point process
model.

The goodness of fit of both the models proposed in this chapter is assessed
through specifically tailored diagnostic tools.

88
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4.1 Inhomogeneous spatio-temporal point process on lin-
ear networks for visitors’ stops data

D’Angelo, N., Adelfio, G., Abbruzzo, A., and Mateu, J. (2022a). Inhomogeneous
spatio-temporal point processes on linear networks for visitors’ stops data. The
Annals of Applied Statistics, 16(2):791 – 815

Global Positioning System (GPS) devices can record units with their travel times and
spatial coordinates of locations to a high degree of temporal precision. Nowadays,
GPS devices are compact, equipped with significant autonomy, and, of the utmost
importance, they can store the geographical coordinates of a statistical unit at a
given time. The widespread availability of GPS data allows the analysis of social
behaviour across time and geographic scales (Butz and Torrey, 2006). Given the wide
interest in understanding human mobility, applications of GPS tracking technologies
in social science research are widespread (see e.g., Elgethun et al. (2003); Zenk et al.
(2011)).

In this section, we focus on GPS data recording places that tourists are often
visiting while moving in a constrained space (linear network) given by the topo-
logical structure of the study area (i.e. streets, squares, etc.). In particular, data
concerns cruisers’ stops in Palermo (Italy) in a day, whose spatial and temporal
positions along the given network are recorded. Although original data actually
constitutes individual trajectories of visitors, we summarise the behaviour of ag-
gregated units. We note that this crucial assumption could lead to biased analyses.
From a methodological perspective, a variety of approaches have been used to model
intra-destination tourist movements. Identifying stop locations is essential for sum-
marising the information in tracking data since they may indicate touristic areas
of interest for the individuals. Gong et al. (2015) review the main research results
on stop location identification. In tourism, stop identification may reveal popular
places, such as tourist attractions, restaurants, or shopping centres. After identifying
attractions, several studies used graph-based methods to analyse tourist movement
patterns (Kurashima et al., 2010; Yang et al., 2017; Hu et al., 2019), intending to
reconstruct the network of the relationships among the various attractions. Other
authors instead focused their attention on trajectory similarity. Shoval et al. (2015),
for example, used the sequence alignment method to segment tourists according
to their trajectory similarity. Zheng et al. (2019) propose a combination of the
Dynamic Time Warping with Earth Mover Distance to compare the trajectories
of 56 tourists in the Xiamen Campus, and Petry et al. (2019) provide a compara-
tive approach among various similarity measures for comparing trajectories. Due
to the complexity of modelling stop location intensity, most studies undertake de-
scriptive approaches, generally based on visual examination of stop location maps.
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At the same time, a modelling-based approach may help to reveal essential tourist
behaviours.
From an empirical perspective, similar to recent studies (De Cantis et al., 2016;
Ferrante et al., 2018; Domènech et al., 2020a,b; Navarro-Ruiz et al., 2020; Shoval
et al., 2020; Casado-Dı́az et al., 2021), the proposed research is focused on cruise
tourism segments for several reasons. First, the single entry-exit point that char-
acterises cruise visits at the destination makes implementing a GPS-based survey
feasible. Second, the limited duration of the visit allows for a complete picture of
cruise passengers’ experience at the destination. Third, the cruise tourism segment
has been largely debated due to their impact on destinations, determining to over-
crowding of places in the face of a lower expenditure than traditional tourists (Brida
and Zapata, 2010; Larsen et al., 2013). However, none of the previous studies has
explicitly focused on cruise passengers’ stop activities, to the best of our knowledge.
Given the above, we assume that the visitors’ stops may represent a spatio-temporal
point pattern and therefore, we propose a modelling framework for inhomogeneous
spatio-temporal point processes. In particular, we analyse first-order characteris-
tics of the process through the estimation of the spatio-temporal intensity, given
the linear network. Then, we consider log-Gaussian Cox processes to analyse the
spatio-temporal structure inherent in the data. The obtained results may be useful
for identifying both the most visited places and the relationships among the various
points of interest, with interesting implications for policymakers’ management.

We thus aim at describing visitors’ stops proposing new parametric approaches
in the context of spatio-temporal point processes on linear networks, contributing
to this framework with different aspects. We first consider parametric estimation of
the spatio-temporal first-order intensity on the given network. Previous papers have
estimated parametric separable spatio-temporal intensities, such as Tamayo-Uria
et al. (2014), but, to the authors’ knowledge, our approach represents a novelty in the
context of point processes on linear networks, since most of the literature about point
processes on networks is concerned with the non-parametric estimation of the spatio-
temporal intensity (Moradi and Mateu, 2020; Moradi et al., 2019; Mateu et al., 2020).
Of course, even if first-order characteristics allow to describe the spatio-temporal
displacement of point patterns, a dependence modelling approach allows accounting
for effects that might affect the spatio-temporal structure (Baddeley et al., 2015),
both related to the characteristics of individuals, referring to the marked point
processes methodology, and to the characteristics of the linear network, represented
by spatial covariates. Indeed, conversely to the spatial context, spatio-temporal
dependence models on linear networks represent a new research field to investigate.

In the second place, and to take into account the spatial interaction among points,
since visitors stop several times during the day, we consider Gibbs point process
models with mixed effects (Illian and Hendrichsen, 2010; Baddeley et al., 2000) on
the networks. Indeed, since the trajectories of each tourist are available, we can track
all the individual movements, studying the subject-specific behaviour. We consider
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the Berman-Turner device for maximum pseudolikelihood (Baddeley et al., 2000),
using a quadrature scheme generated on the network. Then, we fit a parametric
model incorporating both spatial inhomogeneity and interpoint interactions.

Finally, a first proposal in fitting a log-Gaussian Cox process to spatio-temporal
point processes on linear networks is also provided. Our analyses have been carried
out using the spatio-temporal package stlnpp (Moradi et al., 2020) of the software
R (R Core Team, 2022) for point pattern analysis on linear networks, and also the
packages mgcv, stpp and CompRandFld (Wood, 2003; Gabriel et al., 2021; Padoan
and Bevilacqua, 2015) for intensity estimation and spatio-temporal simulations.

The structure of the section is as follows. Section 4.1.1 presents the data and the
motivating problem. Section 2.2.3.2 provided an overview of spatio-temporal point
processes on linear networks, referring to both first- and second-order characteristics
and the methods used throughout the rest of the section are detailed in section 4.1.2.
Section 4.1.3 presents the data analysis, and section 4.1.4 is devoted to conclusions.

4.1.1 Data and motivating problem: GPS visitors’ stops in Palermo

The available data refer to a survey carried out in Palermo (Italy) in 2014 for
cruiser passengers disembarking in the harbour of Palermo. GPS was used to record
the location of the participant tourists and their arrival and departure times. In
particular, right before the embarkation of visitors, a survey is carried out (Abbruzzo
et al., 2021), collecting information regarding individual characteristics also related
to their stay, such as the visit to any specific touristic site. The purpose of this
survey is to study the behaviour of cruise passengers in urban contexts, defining
profiles of visitors depending on the city and the touristic attractions. Procedures
and other survey characteristics may be found in De Cantis et al. (2016) and Shoval
et al. (2020).

We consider the GPS trajectories at an aggregated level by analysing individual-
level points of interest. Indeed, the analysed data are obtained by using the density-
based spatial clustering with noise (dbscan) algorithm, which is a well-known non-
parametric data clustering algorithm proposed by Ester et al. (1996). Given a set
of points in some space, it clusters points that are closely packed together (points
with many nearby neighbours), marking as outliers those points lying alone in low-
density regions (whose nearest neighbours are too far away). This, applied to a set
of trajectories, produces a set of clusters (whose centroids can be seen as stops)
and a set of noise points (that can be removed from the analysis) (Abbruzzo et al.,
2021). Each cluster is therefore identified by a spatial and a temporal location, and
this information is used to build the point pattern. Since the aim is to study the
spatio-temporal displacement of the visitors’ stops, we here ignore the trajectories
and time is discretised in hours in order to identify the densest hours during a day.
Indeed, we assume that the stops identify the points of interest visited by tourists.
The complete spatio-temporal point pattern is displayed in Figure 4.1. Information
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about the spatial support, that is the road network L, has been obtained from the
OpenStreetMap data.

Due to interpretational and computational reasons, we focus our analysis on a
subset of the original data. As the complete dataset actually includes some noise
clusters and most of the visitors’ stops occur in the historical downtown, the anal-
ysis is restricted to the spatio-temporal point pattern consisting of 159 stops of 44
visitors, stopping 4 times on average during the day, in the downtown of Palermo
city on the 18th April 2014. The linear network has 990 vertices and 1180 lines.
The data consist, for each visitor stop, of the spatial location on the road network
and the occurrence time during the day, with t ∈ T = [8 AM, 6 PM ]. In the left
panel of Figure 4.2, the locations of the events are displayed, as obtained from the
dbscan algorithm. On the right panel, the locations considered in this analysis are
displayed. Indeed, when computing the stlnpp object in R, points that lay outside
the linear support are relocated to the closest location from the original one, but on
the network.

Since we expect that people stop more often near well-known touristic attrac-
tions, we computed Z(u) as the distance from the nearest touristic attraction, where
the metric used was the shortest-path distance on the network from the location of
these known attractions:

• Quattro Canti
• Cathedral
• Teatro Massimo
• Fontana Pretoria
• Teatro Politeama
• Piazza Bellini
• Chiesa Valdese
• Via Principe di Belmonte

Note that Z(u) is defined on a support that is slightly smaller than the originally
considered network, as the latter is not completely connected. The location of the
touristic attractions on the linear network and the values of the resulting distance
variable are displayed in Figure 4.3.

4.1.2 Model specification proposal

In this section, the new modelling approaches proposed are introduced. In particular,
section 4.1.2.1 deals with a spatial point process model, that is a Gibbs point process
model with mixed effects, and its estimation on a linear network is introduced. Then,
section 4.1.2.2 develops log-Gaussian Cox processes on a linear network.
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Figure 4.1: The grey segments represent the streets of Palermo city, obtained from
OpenStreetMap. In black, the points represent the visitors’ stops.
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Figure 4.2: Original locations of points and the locations relocated on the network
support.
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Figure 4.3: Left: Location of the points of interest, on the network. Right: Values
of the variable distance from the nearest touristic attraction.
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4.1.2.1 Gibbs point process models with mixed effects on linear net-
works

We here introduce a new modelling approach for describing the spatio-temporal
behaviour of the visitors. The aim is to fit a parametric model to the points (repre-
senting the visitors’ stops) accounting for the individual choices during the day by
introducing a random subject-specific effect.

At this aim we refer to Gibbs point process models with mixed effects (Bell
and Grunwald, 2004), conforming the procedure in Illian and Hendrichsen (2010) to
the context of the linear networks. More specifically, we focus on a pairwise term
interaction process, where the conditional intensity is a log-linear model and the
interaction terms are obtained as the sum of fixed and random effects, modelling the
variation within each individual. The considered model reflects both the inter-group
differences and interaction strength, proposing a flexible interaction function. The
proposed approach refers to the application of the Berman-Turner device (Baddeley
et al., 2000) to a generalised linear mixed model with log link and Poisson outcome
for large datasets. The model is fitted using the functions of the package mgcv of R.

Let M be the number of visitors on a linear network L, each generating the point
patterns x1, . . . ,xM that can be thought of as the individual pattern of stops. This
flexible procedure allows accounting for the individual characteristics information
both by suitable random and fixed factors and by external covariates.

Here we only assume that visitors’ stops interact within each individual’s path
and that the intensity of the pattern varies among the individuals. Then, the ID of
the visitor is introduced as a random effect in the model. This resolves in assuming,
for each xm with m = 1, . . . ,M , a pairwise interaction process (Van Lieshout, 2000),
with conditional intensity (Kallenberg, 1984) given by

λθ,φm(u; xm) = bθ,φm(u)

n(xm)∏
i=1,xmi 6=u

hθ,φm(u,xmi) (4.1)

where n(xm) is the number of points in xm, that is the number of stops per visitor,
and bθ,φm(u) and hθ,φm(u,v) are

bθ,φm(u) = exp(θTB1(u) + φTmB2(u))

and
hθ,φm(u,v) = exp(θTH1(u,v) + φTmH2(u,v))

i.e., two functions that model the intensity and the interaction, respectively.
Each of these functions consists of the sum of a term describing the general in-

tensity (or interaction) and another term describing the intensity (or interaction)
specific to this point, which is assumed to be an independent sample from some
probability distribution. Parameter θ is a vector of fixed effects and the random ef-
fects φm are assumed to come from Φ ∼ N(0, σ2

φI). The vectors Bk(u) and Hk(u,v)
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are defined for each u,v ∈ L and Hk(·, ·) is a symmetric function of u and v. Note
that B(u) is constant, assuming spatial homogeneity. Indeed, it is important to no-
tice that the general form assumed for bθ embraces not only parametric models but
also generalised additive models (Hastie and Tibshirani, 1990) in which B(u) would
be a vector of spline basis functions. However, this apparently does not extend to
GAM-type models for hθ, hence we focus on purely parametric models for interpoint
interaction.

Typically, the function H would be a pairwise interaction function, while B(u) =
(B1(u), B2(u))T would be a vector of convenient scalar functions such as polynomi-
als or orthonormal functions of coordinates. Furthermore, this model can accom-
modate various kinds of interpoint interactions. For example, in many applications,
interaction strength can be assumed to gradually decrease with distance. In sit-
uations where simple models like the Strauss process might be too simplistic and
inappropriate, an interaction function which can be used to model either attraction
or repulsion is preferable (Illian et al., 2008). We consider a more general but still
quite simple smooth interaction function as the one proposed in Illian and Hendrich-
sen (2010), which we assume to only depend on the shortest-path distance between
points, rather than on Euclidean distances. For two points with location u and v,
we define

Hk(u,v) =

{(
1−

(d(u,v)
R

)2)2
if 0 < d(u,v) ≤ R

0 else
(4.2)

where d(u,v) is computed as the shortest-path distance and R ≥ 0 defines the radius
of interaction.

For example, as we later show in our application, we can consider a function
Z(·) defined on each point (or quadrature point) of the network L, as a particular
covariate of interest obtained as the minimum shortest-path distance from location
u to the nearest point of another point pattern Y .

Therefore, Gibbs point processes with mixed effects considered in this section
have an intensity of the form

λθ,φm(u,xm) = exp(θTS1(u,xm) + φTmS2(u,xm))

where

Sk(u,xm) = Bk(u) +

n(xm)∑
i=1,xmi 6=u

Hk(u,xmi), for k = 1, 2

is a vector of spatial covariates defined at each point u in L. It is easy to introduce
spatial trends or dependence on spatial covariates, by simply adding more terms to
the linear predictor S in the associated Poisson log-linear regression model.
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Finally, the conditional intensity for xm in (4.1) becomes

λθ,φm(u,xm) = exp

(
θTB1(u) + φTmB2(u) + θT

n(xm)∑
i=1,xmi 6=u

H1(u, xmi)

+ φTm

n(xm)∑
i=1,xmi 6=u

H2(u,xmi)

)

and the density with respect to the homogeneous Poisson process is then

f(xm; θ, φm) = α(θ, φm)

n(xm)∏
i=1

bθ,φm(xmi)
∏
i<j

hθ,φm(xmi,xmj)

where α(θ, φm) is a normalising constant.

Assuming independence between the patterns observed for each individual m we
can derive a density of a model of the overall pattern as

f(x1, . . . ,xM ; θ, φm) = α̃(θ, φ)

M∏
m=1

n(xm)∏
i=1

bθ,φm(xmi)
∏
i<j

hθ,φm(xmi,xmj)

where φ = (φ1, . . . , φM ) and α̃(θ, φ) is a further normalising constant.

4.1.2.1.1 Model estimation through pseudolikelihood Adapting the pseu-
dolikehood over the subset A ⊆ W into the network, where W is the observation
window, we define the pseudolikelihood over the subset A ⊆ L as

PLA(θ, φ; x1, . . . ,xM ) =
M∏
m=1

( ∏
xmi∈A

λθ,φm exp

(
−
∫
A
λθ,φm(u; xm)du

))

that is,

PLA(θ, φ; x1, . . . ,xM ) =
M∏
m=1

(
n(xm)∏
i=1

bθ,φm(xmi)

n(xm)∏
i 6=j

hθ,φm(xmi,xmj)

)

× exp

{
−
∫
A
bθ,φm(u)

n(xm)∏
i=1

hθ,φm(u,xmi)du

} (4.3)

Following Baddeley et al. (2000), we apply the Berman-Turner device. Based on
some quadrature rule, we approximate the integral in (4.3) for each m by a finite
sum over a set of points umj with j = 1, . . . , lm, containing all the data points. It
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is shown that the log-pseudolikelihood is formally equivalent to the log-likelihood of
independent weighted Poisson variables, i.e.

log PLA(θ, φ; x1, . . . ,xM ) ≈
M∑
m=1

lm∑
j=1

ymj log λθ,φm(umj)− λθ,φm(umj)wmj

where wmj are the quadrature weights, ymj =
zmj
wmj

and

zmj =

{
1 if umj ∈ xm1, . . . ,xmn(xm)

0 if umj /∈ xm1, . . . ,xmn(xm)

(4.4)

In general, the procedure for the Berman-Turner device starts with generating
a set of dummy points and superimposing it with the data points to form the set of
quadrature points. In this section, as we are analysing a point pattern on a linear
network, the generation of the dummy points is restricted to the considered network
segments. Furthermore, as we are dealing with a marked point pattern (the ID of
the visitors being the mark), the procedure is slightly modified. The first task in
fitting the proposed spatial model is to create the quadrature scheme. We then
replicate the dummy points for each possible mark, and generate dummy marked
points at the same locations as the data points but with different marks. Finally,
the two dummy patterns and the data points are superimposed, and we compute
the quadrature weights and form the indicators as in (4.4).

Having generated the quadrature points, we construct the smooth function as in
(4.2) by computing

vmj =

n(xm)∑
i=1

H(umj ,xmi). (4.5)

We finally specify the model as a log-linear Poisson regression to be fitted to the
responses ymj and covariate values vmj with weights wmj . Also any spatial covariate
Z(·), if included in bθ,φm(u), would need to be defined on each umj .

Since the conditional intensity is expressed as the sum of fixed and random fac-
tors, we refer to a generalised linear mixed model with log-link and Poisson outcome.
The numerical methods are designed for datasets containing upwards of several tens
of thousands of data (Wood et al., 2015). The advantage is a much lower memory
footprint, but it can also be much faster, for large datasets. An alternative fitting
approach was provided by Wood et al. (2017); Li and Wood (2020), based on the
discretisation of covariate values and C code level parallelisation.

4.1.2.2 Log-Gaussian Cox processes on linear networks

Since the estimation of the LGCP model for patterns on linear networks is intro-
duced in this thesis for the first time, we face the question of choosing the appropriate
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distance metric. In the context of analysis on networks, Cronie et al. (2020) dis-
cuss the intensity reweighted moment pseudostationary (IRMPS) log-Gaussian Cox
processes.

Let X be a log-Gaussian Cox process with random intensity measure Γ(A) =∫
A Γ(u)d1u =

∫
A exp{S(u)}d1u, A ⊆ L, where S is a Gaussian Random Field

on L with mean function µ(u) ∈ R,u ∈ L, and covariance function C(u,v) =
C(dL(u,v1), dL(u,v2)) ∈ R, v1,v2 ∈ L, for any u ∈ L and some function C. In
Cronie et al. (2020) it is proved that, if dL is an arbitrary regular distance metric,
C(u,v) = C(dL(u,v1), dL(u,v2)) is a proper covariance function on L which does
not depend on the choice of u.

Baddeley et al. (2020) briefly address the issue of the choice of the regular metric
to be used. Baddeley et al. (2017) and Rakshit et al. (2017) investigated the statis-
tical implications of using a distance metric other than the shortest-path distance.
For any given metric δ, a point process is defined to be δ − correlated if its pair
correlation function depends only on δ − distance. Baddeley et al. (2017) showed
there is a rich class of point process models which are δ − correlated with respect
to Euclidean distance.

Nevertheless, since the fitting of the LCGP based on metrics different from the
Euclidean distance is not yet formalized, we refer to the most classical LGCP de-
fined in the Euclidean context. This choice is based on the assumption that the
geometry of the network can be ignored, considering Euclidean distances instead of
the shortest-path distances, and therefore considering the observation window W
rather than the linear network L. This assumption may be relevant depending on
the considered application. In our particular case, the structural differences between
the Euclidean and shortest-path distances are certainly small, reinforcing the choice
of the Euclidean distances when fitting an LGCP.

4.1.3 Data analysis

4.1.3.1 Exploratory analysis

Figure 4.4 shows the spatial and temporal displacements of visitors’ stops. The
point pattern in Figure 4.4 (left) displays some spatial inhomogeneity, reflecting the
spatial distribution of the considered points of interest. Two clusters are evident
in the bottom left and top left areas of the analysed window, corresponding to the
two well-known touristic attractions, Quattro Canti and Cathedral. On the right
panel of Figure 4.4, the cumulative number of visitors stopping at given hours of
the day is shown, noting two peaks in the temporal distributions of visitors’ stops,
corresponding to 10 a.m. and 2 p.m.

For assessing if the spatial intensity λ(u) might depend on a given spatial co-
variate Z(u), Berman’s test is carried out over each covariate. In particular, we
focus on the possible dependence of the spatial intensity on the two spatial coordi-
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Figure 4.4: Analysed spatio-temporal point pattern on the linear network. Left:
Projection of the points onto the network. Right: Cumulative number of points.

nates, latitude and longitude, and on the variable distance from the nearest touristic
attraction. The corresponding p-values are reported in Table 4.1. The effect of ex-
planatory variables on the intensity of the process can also be investigated using
non-parametric curve estimation techniques. Although the techniques were devel-
oped for spatial point patterns in two dimensions, they depend only on the space of
values of Z, so they apply to point patterns in any space (Baddeley et al., 2012), in
particular to networks (Baddeley et al., 2015). So, to get further information on the
type of dependence of the spatial intensity on the given continuous spatial covariates,
the smoothed functions are computed as f(u) = ρ(Z(u)), and displayed in Figure
4.5. As in section 3.1.2, among the estimators of f(Z(u)) proposed by Baddeley
et al. (2012), we consider a smoothing procedure based on fixed-bandwidth kernel
density estimation.

Table 4.1: Berman’s Test for the available continuous spatial covariates

Spatial covariate p-value

Latitude 0.9814
Longitude 0.9757
Distance from the nearest touristic attraction 0.0000

From Table 4.1 we see that only the distance from the nearest touristic attraction
influences the spatial intensity of the process. However, by looking at Figure 4.5,
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we see that the effect of the spatial coordinates varies as a function of the scale
and, therefore, in a regression model for the spatial intensity, this variable could
be included non-parametrically. The distance from the nearest touristic attraction
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Figure 4.5: Smoothed functions linking Latitude (a), Longitude (b) and the distance
from the nearest touristic attraction (c) to the spatial intensity.

seems to have an effect on the intensity of the process only up to a certain distance,
about 150 meters. For these small distances, the effect is negative, that is to say, as
expected, the closer the tourists are to an attraction point, the more likely they are
to stop.
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4.1.3.2 Intensity estimation

Table 4.2: Parametric coefficients model and approximate significance of smooth
terms of the Gibbs model

Estimate Std. Error z value Pr(> |z|)

θ1 (Intercept) -8.023371 0.616119 -13.022 0.000 ***
θ2 (v) 0.092422 0.020467 4.516 0.000 ***
θ3 (d) -0.012348 0.003082 -4.006 0.000 ***

edf Ref.df Chi.sq p-value

H(uim,vim) (id) 23.03 43.00 71.06 0.000 ***
B4(uim) (lat,long) 16.92 21.07 66.00 0.000 ***

4.1.3.2.1 Spatial intensity estimation We now fit the purely spatial model
as introduced in section 4.1.2.1. We set B1(uim) = I, with I the identity function
and B3(uim) = Z(uim). In addition, B2(uim) denotes the ID of the tourist, included
as a random effect. B4(uim) is a non-parametric function for uim ∈ L, estimated
here through thin plate regression splines with 29 knots.

Therefore, we have

bθ,φm(uim) = exp(θ1 + φ1mB2(uim) + θ3B3(uim) +B4(uim))

and
hθ,φm(uim,vim) = exp(θ2H(uim,vim) + φ2mH(uim,vim))

where H(·, ·) is defined as in Equation (4.2). In this application, the interaction
radius is set to R = 100 meters, since it is reasonable to assume that visitors’ stops
interact with each other up to this distance. The inclusion of this smooth function in
the model allows attractive or repulsive interaction indicated by positive or negative
interaction parameters, respectively.

Thus, our model for the spatial intensity is given by

log λθ,φm(uim) = θ1 + φ1mB2(uim) + θ2vim + θ3Z(uim) +B4(uim) + φ2mvim

where

1. θ1 is the common intercept

2. θ2 is the fixed effect of the smooth function in (4.5)

3. θ3 is the fixed effect of the distance from the nearest point of attraction

4. φ1m is the random effect of the ID
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Figure 4.6: Data and dummy points.

5. φ2m represents the random effects for the interaction smooth function

The final quadrature scheme used for model fitting consists of 159 data points
and 2362 dummy points, displayed in Figure 4.6. This leads to a dataset of 110924
observations, which is equal to the number of data points plus the number of dummy
points, all replicated for the number of marks.

Since the random effects φ2m for the interaction smooth function are not sig-
nificant, the interaction among points turns out to be fixed, meaning that visitors’
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stops attract each other in the same way for each visitor. The chosen model is

log λ̂θ,φm(uim) = θ̂1 + φ̂1mB2(uim) + θ̂2vim + θ̂3B3(uim) +B4(uim).

In Table 4.2 we report the estimates of the fixed effects and the summary of the
random effects. When exp(θ̂1) is multiplied by the length of the network, the model
estimates 8.082637 stops for each individual, higher than the original average stops.
The positive interaction parameter exp(θ̂2) = 1.096828 indicates that overall the
visitors’ stops attract each other. Therefore, visitors tend to stop in the same spots.
Furthermore, exp(θ̂3) = 0.9877283 indicates that moving away from any touristic
attraction decreases the probability of visitors stopping. We notice that only the
intensity varies among visitors and not the interaction.

In Figure 4.7 we represent the fitted intensity for both data and generated dummy
points. The model clearly estimates higher intensities in correspondence to the most
visited areas, that is the Quattro Canti and the Cathedral (zoomed in the bottom
panels of Fig. 4.7). Therefore, the fitted purely spatial model adequately describes
the intensity of the densest regions and predicts the expected number of cases.

4.1.3.2.2 Temporal intensity estimation with Poisson harmonic regres-
sion In the left panel of Figure 4.8, the total counts of stops per hour of the day
are displayed. The temporal intensity λ(t) is estimated parametrically as a Poisson
Harmonic regression. This is an appealing formulation when data displays a sea-
sonal or cyclic variation. Thus it seems to make sense to model the mean function
as being periodic with a period of 24 hours or less and the obvious way to do that
is to use trigonometric functions. After computing ω = 2π/24, we fit the following
Poisson model

log λ(t) = δ + α1 cos(ωt) + β1 sin(ωt) + α2 cos(2ωt) + β2 sin(2ωt) + α3 cos(4ωt)

+ β3 sin(4ωt)
)

+ α4 cos(8ωt) + β4 sin(8ωt)

that models the number of visitors’ stops per hour as a function of sinusoidal and
cosinusoidal functions of different periods, namely 24, 12, 6 and 3 hours cycles.

We compare this model with all the nested ones, removing one period at a time,
following an F-tests stepwise procedure. In the right panel of Figure 4.8, we plot the
fitted values of the four nested models, starting from the one with only a 24-hour
cycle, adding each time half cycle. We chose the final model based on the results of
the F-tests. Indeed, the cycles corresponding to 24, 12 and 6 hours are significant in
predicting the total number of visitors who stop during a day. Therefore the chosen
model is

log λ̂(t) = δ̂ + α̂1 cos(ωt) + β̂1 sin(ωt) + α̂2 cos(2ωt) + β̂2 sin(2ωt) + α̂3 cos(4ωt)

+ β̂3 sin(4ωt).
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Figure 4.7: Fitted spatial intensity.

In Figure 4.8 we display, together with the temporal distribution on the left panel,
the fitted intensities on the right panel. The straight line represents the fitted
intensity of the chosen model, able to correctly estimate the number of visitors who
stop during the day, as well as the two peaks in the densest hours.

4.1.3.3 Spatio-temporal intensity and second-order characteristics

The spatio-temporal intensity is obtained as in (2.37) by multiplying the purely
spatial and purely temporal intensities previously fitted. The resulting intensity
had to be normalised, in order to make the estimator unbiased, that is, giving the
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Figure 4.8: Left: Histogram of the total count in each hour of the day for the visitors’
stops data. Right: Predicted values of the four Poisson harmonic models.

expected number of points

E
[ ∫

L×T
λ̂(u, t)d2(u, t)

]
=

∫
L×T

λ(u, t)d2(u, t) = n.

Therefore, the final intensity function is actually obtained as

λ̂(u, t) =
λ̂(u)λ̂(t)∫

L×T λ̂(u, t)d2(u, t)

and it will be used for simulations for model diagnostics.
To test for spatio-temporal clustering, we simulate Q = 99 inhomogeneous

spatio-temporal Poisson processes with intensity λ0(u, t) = λ̂(u, t) (see Appendix
A), and we then compute estimates K̂q(r, h) by means of Equation (2.40). In Figure
4.9, the inhomogeneous K-function estimated from the data is displayed in white,
and the envelopes obtained from Q = 99 simulations and at a significance level of
α = 0.05 are displayed in grey. As we note, the observed K-function does not lay
within the envelopes for each spatial and temporal distance. This result, together
with a borderline p-value of 0.05 of the test of clustering, suggests that the pro-
posed model cannot completely catch the features of the observed point pattern.
In particular, the presence of ranges where the observed K-function lays above the
envelopes suggests that there is additional clustering induced from external causes,
such as unobserved covariates. The findings in Figure 4.10 further show that the
observed pattern of visitors’ stops cannot be described only by an inhomogeneous
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spatio-temporal Poisson point process (see in particular Figure 4.10(d)). Therefore,
an LGCP model is further used for describing the residual clustered structure.

r = distance
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Figure 4.9: In white: the estimated inhomogeneous K-function for visitors’ stops
data. In grey: envelopes based on 99 simulations from inhomogeneous spatio-
temporal Poisson point processes at a significance level of 0.05.

4.1.3.4 LGCP model fitting and diagnostics

Having established that an inhomogeneous process is not enough to accurately de-
scribe the analysed pattern, we turn to the LGCP fitting. Of course, when specifying
a model for point patterns whose spatial locations are restricted to a linear network,
one wishes to take into account the geometry of the network. Therefore, a crucial
issue when LGCP is fitted on the network, as anticipated in section 4.1.2.2, is the
choice of the most appropriate distance metric. To assess if there are differences
between the Euclidean and the shortest-path distances computed for the point pat-
tern under study, we visually compare their distributions, shown in Figure 4.11. As
expected, the shortest-path distances are slightly overall larger than the Euclidean
ones. Anyway, we chose to neglect these differences and consider the Euclidean dis-



108 Chapter 4. New modelling approaches on linear networks

200 400 600 800

0.
5

1.
0

1.
5

2.
0

2.
5

Spatial distance

Te
m

po
ra

l d
is

ta
nc

e

0.0

0.5

1.0

1.5

2.0

200 400 600 800

0.
5

1.
0

1.
5

2.
0

2.
5

Spatial distance

Te
m

po
ra

l d
is

ta
nc

e

0.5

1.0

1.5

200 400 600 800

0.
5

1.
0

1.
5

2.
0

2.
5

Spatial distance

Te
m

po
ra

l d
is

ta
nc

e

−200

0

200

400

100 200 300 400

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Spatial distance

Te
m

po
ra

l d
is

ta
nc

e

Figure 4.10: Top panels: [a] Values of the observed K-function, [b] corresponding
values under Poisson: the brighter the colour the higher the values. Bottom panels:
[c] K̂(r, h) − rh values and [d] a close-up to the comparison between K̂(r, h) − rh
and tolerance envelopes indicating spatio-temporal clustering. The darkest colour
identifies the regions in (r, h) where K̂(r, h) − rh is greater than K̂0.95(r, h). The
bottom right panel [d] represents detail up to half of the spatial and temporal ranges.

tances, to sustain the Gaussian Random Field and the overall fitting of the LGCP
model.

The initial values for the spatial parameters estimated through MJ (2.27) are
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Figure 4.11: Distributions of Euclidean and shortest-path distances of the analysed
point process.

set to αinitial = 8 and σ2
initial = log(n)/2 = 2.53, where n is the number of points in

the point pattern. As far as the temporal interval in MC (2.28), this is set equal to
[0, 10]. The resulting estimates of the parameters are (α̂, σ̂2, τ̂) = (5.70, 5.17, 0.51),
obtained using the pair correlation function as a non-parametric estimate of Ĵ in MJ

(2.27). To evaluate these estimates, in Figure 4.12 we plot the empirical covariances
for the purely spatial and temporal components, together with their exponential
estimates. These represent the best estimates since the minimum contrast estimation
method actually selects the covariance parameters as the ones minimising the area
between the empirical covariance (straight line) and the theoretical one (dashed
line). While the exponential spatial estimate seems to adequately fit the empirical
one, discrepancies in the temporal counterpart are due to the cyclic behaviour of
the temporal intensity, which is reflected in the empirical autocovariance function
estimating also negative values. Furthermore, in Figure 4.13 we represent empirical
and theoretical spatial covariance functions at different time lags. We have chosen
to consider two-time instants, namely 10 a.m and 2 p.m., which are the densest
hours. For each of them, we select three temporal lags, namely 1, 2 and 3, and
compute the spatial covariances. It is evident that the spatial covariance strongly
depends on time. In particular, for the morning hours, the model seems to achieve a
better fit as the temporal lag increases (conversely, for the afternoon hours). From
an interpretational point of view, this is a reasonable result, indicating, as expected,
that the spatial covariance is higher in the afternoon when visitors are less dispersed
and tend to return to their gathering site. From a theoretical point of view, this
confirms our hypothesis, that the phenomenon under study could not be explained
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only by a purely separable first-order intensity function λ(u, t) that does not take
into account the spatio-temporal interactions, as S(u, t) does.
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Figure 4.12: Empirical and theoretical purely spatial and temporal covariances. The
range of the spatial lags is restricted up to 100 meters, and the temporal lags up to
7 days.

As for the inhomogeneous Poisson case, diagnostics of the fitted LGCP is per-
formed, considering the modified algorithm in section 2.2.3.1.2, choosing a small
value λmax = 0.001 for the simulation of the spatio-temporal point patterns. In
Figure 4.14, the inhomogeneous K-function estimated from the data is displayed
in white, and the envelopes, coming from Q = 99 simulations of inhomogeneous
LGCPs and at a significance level of α = 0.05, are displayed in grey. We now see
that the envelopes of the processes simulated from the fitted LGCP model include
the empirical K-function, indicating a much better fit compared to that in Figure
4.9. This, together with a p-value of 0.19, indicates an improved fitting and sup-
ports the LGCP model as a good one to explain the spatio-temporal clustering of
the visitors’ stops.

4.1.4 Conclusions and discussion

In this section, we have described GPS referred to tourists visiting the downtown of
Palermo, one of the most touristic cities in Italy, with its many touristic attractions,
belonging to the UNESCO-World Heritage listing. Assuming that the visitors’ stops
may represent a spatio-temporal point pattern, we have estimated a spatio-temporal
first-order intensity on the network represented by the streets of downtown Palermo.
According to this approach, we describe the phenomenon under study taking into
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Figure 4.13: Empirical and theoretical spatial covariance functions at different time
lags.

account both the support of the location displacements of points and the temporal
component. This section contributes to the framework of spatio-temporal point
processes on linear networks in different aspects.

First, we have described visitors’ stops proposing new parametric approaches in
the context of spatio-temporal point processes on the network, through a paramet-
ric spatio-temporal separable intensity function. For the purely spatial intensity, we
have accounted for the characteristics of each individual considering a Gibbs process
with mixed effects. We have chosen the ID of each visitor as a mark and we have
fitted random effects corresponding to each individual. As the model is a pairwise in-
teraction process, we have included a smooth interaction function depending on the
shortest-path distance between pair of points, to identify the degree of interaction
among points. Furthermore, we have also included in the point process description
the effect of spatial covariates, e.g. the distance from the nearest point of touristic
attraction. The results of the proposed analysis suggest that the random effects for
the individuals have a significant variance, meaning that the probability of stopping
at different spots in the city centre depends on the subject-specific individual char-
acteristics. Fixing the interaction radius to 100 meters, we find that the interaction
among points is positive, meaning that visitors tend to stop in the same locations.
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Figure 4.14: In white: Estimated inhomogeneous K-function for visitors’ stops
data. In grey: envelopes based on 99 simulations from inhomogeneous LGCP spatio-
temporal point processes at a significance level of 0.05.

Finally, the effect of the distance from the nearest touristic attraction is significant
and negative, that is to say, as expected, people tend to stop closer to well-known
touristic attractions. For the temporal component, we have found cyclic behaviour
during the day, with periodic peaks up to 6 hours.

After having estimated the separable spatio-temporal intensity we also assess the
overall goodness-of-fit of the spatio-temporal model finding some residual clustered
structures, not accounted for by the inhomogeneous model. In particular, we have
identified the small spatial and temporal ranges for which the points of the inho-
mogeneous point pattern still show some clustering degree, and this has led us to
consider a more complex model, an LGCP, driven by an underlying log Gaussian
random field (log GRF), allowing the representation of point aggregation depending
on the properties of the GRF. In detail, estimating the covariance parameters, we
have found that the LGCP model achieves a better fitting to the analysed spatio-
temporal point patterns, and correctly captures all the residual clustered structures.



4.1. Inhomogeneous spatio-temporal point process on networks for GPS data 113

A crucial issue when considering an LGCP on the network is the choice of the
most appropriate distance metric. In this work, given the small difference between
the observed Euclidean and shortest-path distances, we fit the LGCP model by min-
imum contrast, based on the intensity estimated on the whole plane, and restricting
the results only on the network. Future works could deal with the development
of methods able to fit LGCPs on networks. Indeed, even if the estimation of the
covariance parameters by minimum contrast can be easily adapted to linear net-
works considering inhomogeneous versions of the pair correlation function and the
K-function on the networks, the generation of the Gaussian Random Field on the
network remains an open question.

Our approach results in the possibility of both improving the fitting to the data,
as well possibility of identifying the main determinants of the spatial displacement
of points. The main contribution of the latter to our application is to give a better
knowledge of the determinants of spatial intensity of cruise passengers’ stop loca-
tions during their visit in urban contexts, which may orient destination management
policy.

Indeed, by knowing in advance (based on predictions) the behaviour of the visi-
tor’s stops in terms of their spatial arrangements and temporal counts, policymakers
and police can anticipate these movements of visitors throughout the city.

Finally, the proposed modelling strategies, i.e. the purely spatial Gibbs point
process model and log-Gaussian Cox processes fitted on the network, could be useful
in analyzing different data settings and problems describing any phenomenon with
a complex spatio-temporal dependence occurring on a linear network. Indeed, our
methodology can be easily adapted to analysing crime data or public health diseases,
as examples of phenomena evolving in space and time.
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4.2 Self-exciting point processes on linear networks for
crime data

D’Angelo, N., Payares, D., Adelfio, G., and Mateu, J. (2022f). Self-exciting point
process modelling of crimes on linear networks. Statistical Modelling.
https: // doi. org/ 10. 1177/ 1471082X221094146

A number of papers have dealt with the analysis of crime data using the Self-Exciting
point process theory after the analogy drawn by Mohler et al. (2011) between af-
tershock ETAS models and crime. In particular, several papers have proposed a
Hawkes-type point process modelling framework for crime data, as this type of data
is usually clustered (Reinhart, 2018; Park et al., 2021). Recently, Zhuang and Mateu
(2019) proposed a spatio-temporal Hawkes-type point process model, which includes
a background component with daily and weekly periodisation and a clustering com-
ponent that is triggered by previous events. Their model is used to describe the
occurrences of violence or robbery cases in an urban environment during two years,
and their results show that robbery crime is highly influenced by daily life rhythms,
revealed by its daily and weekly periodicity, and that about 3% of such crimes can
be explained by clustering.

As crime events are naturally constrained to occur on the street structure of a
city, in this analysis, we advocate the use of the theory of point processes on linear
networks. Most of the literature about spatial and spatio-temporal point processes
on networks is concerned with the non-parametric estimation of the first-order in-
tensity (Moradi et al., 2019; Moradi and Mateu, 2020; Mateu et al., 2020). However,
only a recent example is given in section 4.1 of this thesis, dealing with paramet-
ric intensity specification of inhomogeneous first-order intensities on networks to
analyse the spatio-temporal distribution of visitors’ stops by touristic attractions
in Palermo (Italy). This latter work only considered inhomogeneous Poisson mod-
els and did not take into account the potential Self-Exciting behaviour of points.
Other recent papers that deal with the model building of non-Poisson models are
the following. Baddeley et al. (2017) adapt to linear networks popular procedures
for constructing a point process, such as the Switzer-type pseudostationary process,
Cell process, and Cluster processes. Van Lieshout (2018) defines nearest-neighbour
point processes on graphs with Euclidean edges and linear networks, which can be
seen as analogues of renewal processes on the real line. Rasmussen and Christensen
(2021) adapt the so-called conditional intensity function used for specifying point
processes on the timeline to the setting of directed linear networks, considering
specific classes of point process models as Poisson processes, Hawkes processes, non-
linear Hawkes processes, self-correcting processes, and marked Hawkes processes,
used in that paper to analyse simulated and neurological data.

https://doi.org/10.1177/1471082X221094146
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Following these considerations, as none of the above-mentioned papers about
point process modelling of crime has proposed models taking into account the road
network geometry, the aim of this section is to analyse crime data with Self-Exciting
point processes while also accounting for the underlying network structure where
events occur. Statistical analysis of network data presents severe challenges (Badde-
ley et al., 2020). A network is not spatially homogeneous, which creates geometrical
and computational complexities and leads to new methodological problems with a
high risk of methodological error. Real network data, such as crime data, can also
exhibit an extremely wide range of spatial scales. These problems pose a significant
challenge to the classical methodology of spatial statistics based on stationary pro-
cesses, which is largely inapplicable to data on a network. Note also that the choice
of distance metric on the network is pivotal in the theoretical development and in the
analysis of real data. This is thus a key aspect when treating robberies that happen
on the streets of a city to better model and understand the true spatial and tem-
poral structures underpinning such types of crimes. Indeed, regarding the intensity
estimation issue addressed in this section, considering the geometry of the network
in the fitting procedure represents a reasonable choice, given the increasing avail-
ability of road network data and computational resources nowadays. For instance,
from a practical point of view, the predicted intensity could be obtained only where
events are driven to occur. Of course, crimes are an obvious example of constrained
point patterns, and therefore, the impact of considering the road network structure
in the inference procedure potentially reflects on more detailed information, which
may then drive policy actions. In detail, we analyse robbery crimes that occurred
in the city of Bucaramanga (Colombia) in 2018. We fit a model similar to the semi-
parametric specification employed in Zhuang and Mateu (2019) into the network
case. Therefore, the first main contribution of the current section regards the pro-
posal of an extension of the Hawkes model proposed by Zhuang and Mateu (2019).
We do not only include the network geometry in the fitting procedure but also draw
conclusions on the scale of shortest-path distances, typically more appropriate when
dealing with point processes occurring on linear networks. We find that our pro-
posed model achieves a much better fit when compared to the planar counterpart,
allowing us to better interpret the results.

Examples of applications incorporating the external information in Self-Exciting
models can be found in Schoenberg (2016); Reinhart (2018); Adelfio and Chiodi
(2020). In particular, Park et al. (2021) modelled gang-related violent crimes in Los
Angeles (California) using spatio-temporal Hawkes processes, proposing an algo-
rithm to estimate the spatio-temporal varying background rate non-parametrically
as a function of demographic covariates. Therefore, the second contribution of this
section concerns a further extension of our proposed model by including external
covariates in the purely spatial background component, following the specification
of Self-Exciting models that Meyer et al. (2012) proposed in an epidemiological con-
text. In spatial point process theory, the spatial covariates are referred to as those
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variables with observable values, at least in principle, at each spatial location in the
spatial window. For inferential purposes, their values must be known at each point
of the data point pattern and at least at some other locations. Therefore, in the
crime data context, those would comprehend socio-economic characteristics of the
analysed regions, as in Park et al. (2021) such as education level, illiteracy, access to
public services like water, electricity, sewerage, and unemployment, housing quality,
socio-economic status. Other available covariates could be related to the distance to
and density of facilities per street (such as police stations, hospitals, and schools),
environmental characteristics (slope, PM10), and street characteristics (direction,
type, structures). In this section, we consider spatial covariates in the background
component, even though the specification of the proposed model would also allow
for the inclusion of marks in the triggered component (see Adelfio and Chiodi (2020)
for their proposal in the seismic context, and Chiodi et al. (2021) for an application).

We find that the inclusion of some spatial covariates in the background compo-
nent further improves the fitting of the model, and therefore it lays the bases for
future developments in this promising direction, such as the inclusion of individual-
related covariates into the triggering component.

All the codes are available through the link http://www.statmod.org/smij/

archive.html, together with the data analysed.

The structure of the section is as follows. Section 4.2.1 presents the data and the
motivating problem. Section 2.2.3.2 provided an overview of Self-Exciting spatio-
temporal point processes. The novel methods introduced in the work are detailed in
section 4.2.2. Section 4.2.3 presents the data analysis, and section 4.2.4 is devoted
to conclusions.

4.2.1 Data and motivating problem: crimes in Bucaramanga

Reports of crimes from January 2010 to September 2020 in Bucaramanga (Colom-
bia) were collected by the city Home Secretariat and the Mayor’s Office of Security
and Defense. The reports contain spatial location and time of occurrence of crimes
that happened in Bucaramanga, together with some further information such as
type of crime, severity, victim characteristics, victimiser’s crime weapon, and trans-
portation. The data aims primarily to study the behaviour in space and time of
reported crimes in Bucaramanga to define the location and population-based public
policies to mitigate the city’s reported crime rates. Further information about the
data can be found at the Municipal Digital Observatory of Bucaramanga1.

We note that in crime data, there are naturally unreported crimes and some
falsely reported crimes. The latter is not our case (or at least there potentially are
very few false cases) as the data we work with were double-checked by the Home
Secretary before releasing this info to the public instances. It is an aspect that we

1 Municipal Observatory of Bucaramanga: Crimes in Bucaramanga

http://www.statmod.org/smij/archive.html
http://www.statmod.org/smij/archive.html
https://app.powerbi.com/view?r=eyJrIjoiY2MzYzgzM2YtNWUwMC00NGNjLWE1OWUtNmM3Mjk2MWQ2Yzk0IiwidCI6IjEwMzQ3NGZjLTYwYmYtNGRiYy1iZjViLTZlMzE3ZmU5MDFlYiIsImMiOjR9
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Figure 4.15: The black points represent the armed robberies in Bucaramanga, and
the dark grey points the crimes in the city’s downtown. In light grey, the segments
of the streets of Bucaramanga city, obtained from OpenStreetMap

have to live with and assume that what we observe is just a noisy (subset) ver-
sion of the real number of crimes. So we are dealing with reported crimes rather
than with the total population of crimes. We also note that the events we focus on
here (armed robberies) recorded in the datasets often respond to complex histori-
cal police-community interactions, which means that the data collection process is
possibly influencing the reported cases. Again, this could pose a biased sampling
problem and this comes back to the fact that what we observe is a noisy, biased
version of reality.

Following Zhuang and Mateu (2019) analysis, we bound our data to only robbery-
related reported crimes, as these types of crimes are often encountered and they make
the population and society being afraid and scare of moving freely within the city.
Furthermore, we specified spatial and temporal windows to filter the original data
for computational cost and statistical representativeness purposes. The subset data
of this study comprises a spatio-temporal point pattern consisting of 2671 armed
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robberies in downtown Bucaramanga city from the 1st of January 2018 to the 31st
of December 2018. Armed robberies have sharply increased in Bucaramanga over the
last ten years, becoming the leading crime affecting the city’s inhabitants. Given this
crime frequency and situational characteristics, the local police constantly struggle
to combat and prevent their occurrence. Efforts to reduce the armed robberies
burden in Bucaramanga have been developed mainly in commercial and residential
areas where robbery rates are intimidating. For instance, the city’s downtown area
accounted for 40-60% of annual reported armed robberies in Bucaramanga between
2010 and 2020. By 2018, the figures in downtown reached almost 55% of all robbery
reported crimes. We selected armed robberies in the downtown region for 2018 as
a representative sample of robbery-related crime dynamics in Bucaramanga, as the
downtown region contains most of the city shops and facilities. Figure 4.15 displays
the armed robberies for the entire city of Bucaramanga (dark grey) and its downtown
(black) in 2018. In this study, we focus on analysing the latter subregion.

Since the reported crime locations were slightly shifted from the street con-
figuration, we relocated the points to the closest location on the linear network.
Figure 4.16 shows the georeferenced coordinates of the crimes as reported in the
original database (left panel) and the relocated coordinates matching the linear net-
work L (right panel). Figure 4.17 displays the location of the armed reported crimes
per month in 2018. We note how the number of reported crimes increases through-
out the year and concentrates east of the city’s downtown. The linear network L
is composed of 3,136 nodes and 4,290 segments referring to Bucaramanga’s down-
town. The downtown area covers 23 commercial and ten residential neighbourhoods
containing most of the city’s shops and facilities. Likewise, the Mayor’s Office of
Bucaramanga estimates that at least 60% of its inhabitants commute daily to this
area for professional, academic and touristic activities.

4.2.1.1 Spatial covariates

Demographic, socio-economic, geographical, and environmental variables were ob-
tained at the block level for the city of Bucaramanga. The data was provided by
the UN-Habitat Colombia, the United Nations program for human settlements and
sustainable urban development in Colombia. The UN-Habitat Colombia develops
multilayered indexes to assess socio-economic and demographic aspects related to
urban planning. We used all 36 variables, including socio-economic factors such as
unemployment rate, education level, literacy rate, public services coverage, socio-
economic strata, and housing quality; demographic aspects, such as total population,
gender ratio, and elderly population; environmental conditions, for instance, street
slope and street type; and geographical covariates such as distances to facilities,
the density of facilities per 10,000 inhabitants, among others. Some variables are of
continuous nature (such as a percentage) or others are just informing of the presence
/absence of a characteristic (for example, the existence of a tunnel in a street). For
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Figure 4.16: (a) Original locations of points and (b) locations relocated on the linear
network

Figure 4.17: Armed robberies in Bucaramanga’s downtown per month, 2018

reasons of space, Figure 4.18 displays six out of the thirty-six variables employed in
our analysis. As shown in the figure, the covariate value is known in each segment
of the linear network under analysis. Some of them are continuous variables, such



120 Chapter 4. New modelling approaches on linear networks

as literacy rate in panel (a), and some are binary, such as bridges, in panel (f).

Figure 4.18: Some socio-economic, demographic and environmental spatial covari-
ates used

As the covariates were georeferenced at the block level, except for the geographi-
cal ones, we translate the values into the network by assigning the median value of its
neighbouring blocks to each segment. We manually computed the values for highly
heterogeneous areas of the city. For example, the Northwestern area of Bucara-
manga’s downtown possesses the richest and poorest zones of the city. The streets
of wealthy neighbourhoods can be connected to streets belonging to poverty-stricken
blocks.

4.2.2 Model proposal

To adapt (2.34) on the underlying spatial network, the main issue is to choose
estimators for the spatial components µ̂b(x, y) and ĥ(x− u, y − v), taking properly
into account the underlying network structure. In section 2.3.2.2, we have reviewed
the most recent proposals for intensity estimation on linear networks.
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4.2.2.1 A Hawkes point process model on linear networks

The spatio-temporal Hawkes process model on the linear network L that we propose
has the following specification

λ(t, x, y) = µ0µt(t)µw(t)µL(x, y)+A

∫ t−

−∞

∫ ∫
L
g(t−s)hL(x−u, y−v)N(du×dv×ds),

(4.6)
where µL(x, y) and hL(x−u, y− v) are computed using the 2D convolutional Gaus-
sian Kernel of Rakshit et al. (2019b), which represents the best alternative for our
purposes. Indeed, Rakshit et al. (2019b) proposed a kernel estimator on a linear
network based on a 2D smoothing kernel. The original motivation was speed: this
estimator can be expressed in terms of 2D convolutions of the kernel, so it can be
computed very rapidly using the FFT.

Definition 4.1. Convolution Kernel Estimator
Let x = {x1, . . . ,xn} be a point pattern on a linear network L. Let κ denote a
bivariate kernel function, that is, a probability density on R2. The convolution kernel
estimator of the intensity is, with the uniform correction,

λ̂U (u) =
1

cL(u)

n∑
i=1

κ(u− xi), u ∈ L, (4.7)

and with Jones-Diggle correction, it becomes

λ̂JD(u) =
n∑
i=1

κ(u− xi)

cL(xi)
, u ∈ L, (4.8)

where

cL(u) =

∫
L
κ(u− v)d1v, u ∈ L. (4.9)

The denominator cL(u), defined in Equation (4.9), is the convolution of the
kernel with the arc-length measure on the network. This function is evaluated only
at locations on the network.

It is theoretically possible to choose a kernel κ that is not isotropic, that is, not
invariant under rotation. This seems undesirable in practice, except in situations
where the coordinate system is not isometric, such as the latitude-longitude coor-
dinates on a globe. We thus assume here that κ is isotropic. Unlike estimators of
the intensity based on path distances in the network, the convolution estimators are
robust against errors in the geometry of the network. If κ is uniformly continuous,
the quantities (4.7) and (4.8) are continuous functions of the point pattern x and
the linear network L, and the sums in (4.7) and (4.8), and the integral (4.9) can be
recognised as convolutions of the kernel κ with different measures M on R2 (Rakshit
et al., 2019b).
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Therefore, the fitting procedure for our model in Equation (4.6) follows the same
strategy outlined in section 2.2.3.2.1 with the main modification concerning the
planar spatial intensities µb(x, y) and h(x, y) that are substituted by their network
counterparts µL(x, y) and hL(x, y), computed using the 2D convolutional Gaussian
Kernel of Rakshit et al. (2019b), and implemented in Baddeley and Turner (2005)
package.

4.2.2.2 Further extensions: dependence on external covariates

The model in Equation (4.6) can be extended by including external spatial covariates
in µL(x, y). In the context of spatial point processes, if Z(x, y) is referred to as a
spatial covariate, this means that its value is assumed to be observable, at least in
principle, at each location (x, y) in the region of interest. For inferential purposes,
its values must be known at each point of the data point pattern and at least at
some other locations. This specification gives rise to

λ(t, x, y) = µ0µt(t)µw(t)µL(x, y,βback)

+A

∫ t−

−∞

∫ ∫
L
g(t− s)hL(x− u, y − ν)N(du× dν × ds),

(4.10)

where βback denotes the parameters associated to the spatial covariates Z(x, y) in-
cluded in the model.

Note that if the main interest would be focused on the selection of the covariates,
the algorithm in section 2.2.3.2.1 would have been modified in order to maximise the
likelihood also with respect to the parameters of the external covariates. Otherwise,
as we are interested in achieving the best fitting, we use the same algorithm, and the
selection of the variables can be performed during the setting of the first guesses,
and those can be held fixed in the E-M algorithm.

As all the available covariates are continuous in space, these can be included
linearly by choosing a basis function. If bi(x) is the ith such basis function, then the
function f is assumed to have a representation

f(x) =

q∑
i=1

bi(x)βi, (4.11)

for some values of the unknown parameters, βi.

The degree of smoothing is controlled by the basis dimension. In this section,
we keep the basis dimension fixed at a size a bit larger than it is believed could
reasonably be necessary. After having compared different numbers of knots, these
are chosen to be equal to 5 for the available external covariates, and equal to 30 for
the spatial coordinates, estimated here through thin plate regression splines.
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4.2.3 Data analysis

4.2.3.1 Model selection

As presented in section 4.2.1, we analyse 2671 armed robberies in the city of Bucara-
manga, Colombia, in 2018. We fitted Zhuang and Mateu (2019) model (recall this is
the (2.34) model on Euclidean plane) and our proposed extensions (Equations (4.6)
and (4.10)) to the data. Table 4.3 displays the bandwidths of the background events
and the windows of the triggered events that were adopted for the models. These
values are identical in every model to ensure comparability and inference. Note that
we omitted the daily periodicity term µt(t), and thus its bandwidth, as our data lacks
hourly crime data information. The weekly periodicity and long-term bandwidths
were selected to secure the resolution requirements of the temporal components. We
chose the spatial and temporal extent (15 days and 2.5 km, respectively) to restrict
the spatio-temporal domain in which we expect non-spontaneous events to occur.

Table 4.3: Temporal bandwidths for the background events and spatial and temporal
windows for the triggered events

Background Bandwidth

Weekly periodicity 0.4 days
Long-term 0.6 days

Triggered Window

Temporal 15 days
Spatial 2.5 km

We estimated the relaxation coefficients µ̂ and Â through a 40-loops iterative
algorithm as in Zhuang and Mateu (2019). We also computed the log-likelihood to
assess the fit of the three space-time point process models. Table 4.4 reports the
estimates of the relaxation coefficients and the corresponding log-likelihood. µ̂ and
Â values reached convergence after the 25th iteration in all approaches (Figure 4.19).
The convergence threshold was established as the iteration on which the difference
between the values of the kth and kth − 1 iteration is smaller than 0.0001 units.

The estimates of µ̂ have similar magnitudes in the planar model and linear
network model without background covariates. The effect of the covariates in the
estimation of µ̂ is evident. The value in the model with covariates, model in Equation
(4.10) decreases significantly compared to its counterparts. A higher value of µ̂ for
the linear network model in Equation (4.6) compared to the model in the planar
case, reflects the change of spatial support, that is, the expected number of events
increases when estimated per linear segment instead of per surface. Nonetheless,
the inclusion of covariates adjusts for the change of support forcing µ̂ to drop. Note
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that the convergence rate of µ̂ for the model in Equation (4.10) is smoother than
the one of the model without covariates.

(a)

(b)

Figure 4.19: Relaxation coefficients convergence: (a) Model (4.6) and (b) Model
(4.10)

Â changes noticeably from specifications (2.34) to specifications (4.6) and (4.10).
In the former, almost 64% of the crimes are triggered, while the latter informs that
only 1.4% and 1.6% (respectively) of armed robberies are provoked by previous
crimes. The Â estimate of our models better resembles Bucaramanga’s robbery
offences scenario: robberies typically obey the crime opportunity theory, to wit, a
robber’s motivation arises from the context and factors involved in the environment
they are situated (Larrota et al., 2017). One would expect a low triggering effect
as the offenders rather exploit the situational factors (spontaneous events) than
premeditate their crimes’ circumstances (non-spontaneous events).

The log-likelihood shows that our models fit better the armed robberies data with
a difference of 353.12 and 386.77 units for models (4.6) and (4.10), respectively. We
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fit both the background and the triggering effect directly on a linear network, and
we get accurate estimates and model the data appropriately. Furthermore, intro-
ducing covariates in the background rate improves the estimation of the relaxation
coefficients and the overall fitting of the model.

Table 4.4: Comparative results for the three fitted models

Model µ̂ Â log(L)

Model on the plane (2.34) 0.204 0.639 -706.47
Model on the network (4.6) 0.292 0.014 -353.35
Model on the network plus covariates (4.10) 0.085 0.016 -319.70

To demonstrate the advantages of the linear network models (4.6) and (4.10), we
compare their spatial results with the ones of the planar model (Equation (2.34)).
Figure 4.20 displays the spatial background rate for the three Self-Exciting point
process models. The spatial background rates share similarities in every model. Al-
though the models’ background rates present a close resemblance, the rates in the
linear network models are higher than those in the planar one. As we discussed be-
fore, the rates increase in the linear network models due to the reduction of the area
unit. The distribution of the intensities in Bucaramanga’s city centre is equivalent
in all models. However, the linear network models provide larger estimated inten-
sities in the central and northwestern regions of the study area. In particular, the
specification from Equation (4.10) displays larger and rougher high-intensity areas.
This is primarily attributed to the effects of the covariates as these affect the esti-
mates per segment rather than per unit of space. Also, note that the planar model
indeed captures the “network” nature of the data, but the clustering effect extends
to areas instead of street segments. This might lead to misinterpreting low-crime
rate streets as dangerous ones when these connect to neighbouring streets with high
crime rates. Furthermore, as the planar model is defined over continuous space, it
generates artificial intensities in locations lacking events.

One of the main differences between Zhuang and Mateu (2019) model and our
proposed approaches is the definition of the spatial triggering component. Fig-
ure 4.21 compares the spatial response function of the planar and network models.
The spatial response function of the planar model remains constant across events.
The occurrence of an armed robbery in a specific location will excite future armed
robberies within a radial distance of approximately 100 meters. This is an unreal-
istic assumption for events located in a linear network as the extent of the spatial
triggering effect depends intrinsically on the street topology. Figure 4.21(b) shows
the triggering function for four armed robberies. In our approach, hL(x, y) adapts
to the street configuration on which each event lies. The triggering window on the
linear network varies from event to event, preserving the geometrical properties of
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Figure 4.20: Spatial background rate: (a) planar model µb(x, y) (Equation (2.34)),
(b) linear network model µL(x, y) (Equation (4.6)) and (c) linear network model
with background covariates µL(x, y,βback) (Equation (4.10)). Rates are reported on
the log-scale

network structure, for example, the shortest path distance between events.

Figure 4.22 displays the temporal components of the linear network models.
The temporal results in both models were identical. The long-term trend (Figure
4.22(a)) indicates that armed robberies occur primarily in the second semester of
the year. The crime rates increase from June onwards and reach their maximum
value in December. In Colombia, the period from June to December comprises most
of the annual public and school holidays. As the number of tourists increases in
the commercial and touristic areas of the country’s main cities (such as Bucara-
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manga), local surveillance and security weaken, promoting higher crime rates. The
weekly periodicity implies that robberies occur mainly on Wednesdays, Fridays, and
Saturdays. The original data also reports these days as the days with the highest
frequencies of armed robberies. On Wednesdays, the city centre’s main venues such
as restaurants, bars, and cinemas offer discounts on their services, attracting many
locals. Fridays and Saturdays are naturally the days when most people commute
to the city centre for recreational activities. People leaving venues in late hours
and limited public transport provide the offenders with the ideal circumstances to
take advantage of. The temporal response function (Figure 4.22(c)) suggests that
after an armed robbery occurs, subsequent armed robberies are triggered within the
coming ten days. However, the triggering effect lessens after one week.

Figure 4.21: Spatial triggering function: (a) planar model h(x, y) and (b) linear
network model hL(x, y)

4.2.3.2 Covariates results

As previously introduced, we select the covariates to include in the model in Equa-
tion (4.10) prior to the E-M procedure. Among the significant external covariates
affecting the background spatial intensity, we have cycleway, pedestrian, primary,
residential, secondary, service, and tertiary highways, bridges and steep slopes. In-
deed, all of these binary variables are significant in explaining the crime pattern
and their estimated coefficients are all positive meaning that the crimes are most
likely to occur in those places. Only one-way street and flat slope coefficients are
estimated as negative values, meaning that crimes are less likely to occur there.

In Figure 4.23, we show the marginal relationship among the significant contin-
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Figure 4.22: Temporal outputs: (a) Long-term function µt(t); (b) weekly periodicity
µw(t); (c) temporal response function g(t)

uous covariates and the intensity of the point pattern under study. We consider a
smoothing procedure based on fixed-bandwidth kernel density estimation (Badde-
ley et al., 2012), in accordance with sections 3.1.2 and 4.1.3. The non-parametric
combination of these variables plus the event coordinates best explains (based on
the Akaike criteria) the linear network point pattern.

4.2.3.3 Residual analysis

As stated in some previous papers (Adelfio et al., 2020; Adelfio and Schoenberg,
2009), the main problem when dealing with residual analysis for point processes is
to find a correct definition of residuals since the one used in dependence models
cannot be used for point processes.

For the temporal domain diagnostics of the fitted model, the marginal time
process can be obtained by integrating the estimated intensity function with respect
to the observed spatial region (Adelfio and Chiodi, 2015b). Indeed, given a point
process N = {(ti, xi, yi), i = 1, . . . , n} which is determined by a conditional intensity
λ(t, x, y|Ht), the transformation

ti → τi =

∫ ti

0

∫
X
λ(u, x, y|Ht)dxdydu

transforms N into a stationary Poisson process N ′ with unit rate (Vere-Jones and
Schoenberg, 2004). The resulting process is called the transformed time sequence
(Ogata and Katsura, 1988). Then, a plot of τi versus i can give insight into the
quality of the fitting in time, concluding that the model has a good fit to the data
if the transformed time sequence does not deviate significantly from the standard
Poisson process. In particular, this plot, together with a plot of the estimated time
intensities, informs on the time at which departures from model assumptions are
more evident. See Schoenberg (2002) for details on the bands’ construction.

We thus consider this type of residual analysis for the best-fitted model in the
previous section, i.e. the model based on Equation (4.10). Figure 4.24 depicts both
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Figure 4.23: Non-parametric estimate of the intensity of the analysed point pattern,
as a function of the available variables for the crime data: literacy rate (a), housing
quality score (b), water coverage (c), unemployment rate (d), number of hospitals
per street population (e), and number of police stations per street population (f). The
considered smoothing procedure is based on fixed-bandwidth kernel density estimation

the cumulative frequencies of the original time sequence, and the transformed time
for the data for all three models for comparison purposes. We, in particular, follow
the recommendation by Zhuang and Mateu (2019) which compare the real and the
transformed rates of event occurrences.

Inspecting Figure 4.24, we note that model (4.10) provides the best fit, with the
cumulative frequencies lying within the confidence interval at 95%. Although the
transformed times deviate from the average rate of occurrence at some points, the
overall trend remains consistent. Transformed times diverge from the actual time,
mostly in low crime rate periods, for example, in the first months of the year when
just a few armed robberies were reported. Furthermore, the fluctuation in the rate
of occurrence of the transformed times could be attributed to the kernel estimation.

Similarly to the time component, one of the most used methods for diagnostics
of spatial point processes is the smoothed raw residuals, which follow the same line
of reasoning (see section 2.1.4.2.1). We employ the same reasoning, knowing that
λ†(u) is the smoothed version of the estimate of the intensity of the fitted models,
and of course u ∈ L. The difference in Equation (2.17) should be approximately
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Figure 4.24: Cumulative frequencies of armed robberies events: (a) original occur-
rence times; (b) transformed times for model (2.34); (c) transformed times for model
(4.6); and (d) transformed times for model (4.10). The 95% confidence bands under
a Poisson process are also shown in dashed lines

zero when the fitted model is close to the real one. Therefore, the best model is the
one with the lowest values of the smoothed raw residuals.

Figure 4.25 depicts the smoothed raw residuals for the two models fitted on the
network, and for the model in the planar case, along with their distributions. Even
though smoothed raw residuals are most appropriate for parametric specifications
of fitted models, we still manage to obtain useful information. Indeed, it appears
evident that both models on the network achieve a good fit to the data if compared
to their planar version, which tends to overestimate the intensity in several areas.
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  Smoothed raw residuals of model (8)
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Figure 4.25: Maps and histograms of smoothed raw residuals for models (2.34), (4.6),
and (4.10), respectively

Furthermore, the model with covariates provides residuals with a lower range and
magnitude compared to the model with no covariates. All in all, the smoothed raw
residuals of the model with covariates are overall better than the ones of the model
with no covariates, even though both models still represent good competitors if
compared to the planar version. We note that there were other options for carrying
out diagnostics in this analysis. First, super thinned residuals (Clements et al.,
2012), which have the disadvantage of being less straightforwardly applicable, as
they require a tuning parameter to be chosen. Another possible option could have
been using the weighted spatio-temporal second-order statistics, as in Adelfio et al.
(2020), which do not require any transformation of the data. However, we opted for
diagnostic procedures separated in space and time, due to the separable specification



132 Chapter 4. New modelling approaches on linear networks

of the models employed in the analysis. Nevertheless, the chosen diagnostics allows
us to interpret separately the contribution of the space specification into the network,
as evident from Figure 4.25.

4.2.4 Conclusions and discussion

In this section, we analyse robbery crimes as events of a spatio-temporal point pat-
tern living on a linear network structure. We first fit a Euclidean planar model
following Zhuang and Mateu (2019) providing two parameters related to the back-
ground and triggered occurrence rates. We further propose an extension of that
model in order to take into account the linear network. This allows us both to
include the network geometry into the fitting procedure, but most importantly, to
draw conclusions on the scale of shortest-path distances, more appropriate when
dealing with point processes occurring on linear networks. Furthermore, starting
from the specification of this second model, we are also able to include the depen-
dence on external covariates rightly constrained onto the spatial support of the road
network. We find that our proposed models on the network achieve a much better
fit when compared to the planar counterpart.

As future work, we draw different lines of research, both methodological and ap-
plied. From a methodological perspective, the proposed Self-Exciting model could
be extended by including external covariates in the triggered components, as pro-
posed by Meyer et al. (2012) in an epidemiological context, and Adelfio and Chiodi
(2020) in the seismic one. Indeed, the model could include individual-specific co-
variates in the triggered component of the conditional intensity function, by means
of an exponential linear predictor. This would allow for including the dependence
on some specific characteristics of the event i.e. the crime, such as the gender, or
the age of the victim.

Another main issue is related to the fitting procedure. Indeed, the proposed
algorithm could be modified in order to include the estimation of the covariates pa-
rameters at each iteration of the Expectation-Maximization procedure. This would
allow considering only the crimes most likely to be background events when select-
ing the spatial covariates, as done by Park et al. (2021), since, in principle, only
background crimes should be used. The best model, and therefore the best set of
covariates, could be selected by comparing some information criterion of the fitted
competitor models.

Finally, we could follow a multivariate specification analysing several types of
crimes in only one modelling strategy.



Chapter 5

Local Indicators of
Spatio-Temporal Association on
linear networks

In this Chapter, we introduce the Local Indicators of Spatio-Temporal Association
functions on linear networks, focusing on the ones based on the local K-functions.

While most of the literature about point processes on networks is concerned
with the non-parametric estimation of the spatio-temporal intensity (Moradi et al.,
2019; Mateu et al., 2020; Moradi and Mateu, 2020), some papers have recently
addressed second- and higher-order characteristics of point patterns occurring on
linear networks (Moradi and Mateu, 2020; Cronie et al., 2020). However, none
of these approaches has considered local properties of the introduced second-order
statistics to measure local first- or second-order structure.

As a starting point, we consider global second-order statistics for spatio-temporal
point processes occurring on networks, namely the K-function, developed in the non-
Euclidean space of linear networks by Moradi and Mateu (2020), and reviewed in
section 2.3.3. We, therefore, consider here the local counterpart of this second-order
statistics to measure the local structure of point patterns occurring on network-based
structures, proposing Local Indicators of Spatio-Temporal Association (LISTA) func-
tions based on the K-function on linear networks.

The aim of this chapter is to take into account individual contributions of points
in some statistical procedures, such as diagnostics, and hypothesis testing, in order
to individuate sub-regions where point patterns behave differently in terms of clus-
tering. Specifically, in section 5.1, the proposed LISTA functions are used to assess
local differences between the spatio-temporal second-order structure of two point
patterns occurring on the same linear network. Moreover, in section 5.2 we show
a number of simulations to test their performance in diagnosing spatio-temporal
models fitted to point pattern data on networks. Details on the simulation schemes
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implemented and used in this chapter come in section A.

Therefore, we propose the local spatio-temporal inhomogeneous K-function for
the i-th event (ui, ti) on a linear network as

K̂i
L,I(r, h) =

1

|L||T |
∑

(ui,ti)6=(v,s)

I{dL(ui,v) < r, |ti − s| < h}
λ̂(ui, ti)λ̂(v, s)M((ui, ti), dL(ui,v), |ti − s|)

, (5.1)

and the corresponding local pair correlation function

ĝiL,I(r, h) =
1

|L||T |
∑

(ui,ti)6=(v,s)

κ(dL(ui,v)− r)κ(|ti − s| − h)

λ̂(ui, ti)λ̂(v, s)M((ui, ti), dL(ui,v), |ti − s|)
, (5.2)

weighted by the reciprocal of the normalising factor

D(X) =
n− 1

|L||T |

n∑
i=1

∑
i 6=j

1

λ̂(ui, ti)λ̂(uj , tj)
, (5.3)

obtaining 1
D(X)K̂

i
L,I(r, h) and 1

D(X) ĝ
i
L,I(r, h). Basically, we avoid summing up all

the points as in the global statistics counterparts, and we denote the individual
contribution to the global statistics with the index i.

The homogeneous versions are computed by weighting the second-order summary
statistics by the constant intensity λ̂ = n/(|L||T |), obtaining

K̂i
L(r, h) =

1

λ̂2|L||T |

∑
(ui,ti)6=(v,s)

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

, (5.4)

and

ĝiL(r, h) =
1

λ̂2|L||T |

∑
(ui,ti)6=(v,s)

κ(dL(ui,v)− r)κ(|ti − s| − h)

M((ui, ti), dL(ui,v), |ti − s|)
. (5.5)

Following the Euclidean case, we provide the operational definition based on the
local second-order spatio-temporal summary statistics on a linear network.

Definition 5.1. Any local second-order spatio-temporal summary statistic
λi2,L((u, t), (v, s)) computed on an observed point pattern x = (ui, ti), i = 1, . . . , n on
a linear network L, where (ui, ti) ∈ L × T , that satisfies the following operational
definition

λ̂2,L((u, t), (v, s)) =
1

n− 1

∑
(ui,ti)∈x

λ̂i2,L((ui, ti), (v, s)), (5.6)

where λ̂2,L is an estimator of the global second-order intensity function, can be called
a LISTA function on a linear network.
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Corollary 5.1. Knowing that the sum of the individual contributions given by the
local estimator of the K-function in Equation (5.4) are actually equal to the global
statistics, Equation (5.6) is satisfied, and therefore it can be called LISTA function
on a linear network.

Throughout the thesis, we will only focus on the K-function, but of course, also
the pair correlation function can serve as an alternative.
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5.1 Assessing local differences between the second-order
structure of two point patterns on a network

D’Angelo, N., Adelfio, G., and Mateu, J. (2021b). Assessing local differences
between the spatio-temporal second-order structure of two point patterns
occurring on the same linear network. Spatial Statistics, 45:100534

As local second-order characteristics provide information on how events relate to
nearby events, in this Section, we aim at employing the proposed LISTA functions
to build a local test to identify differences between the local spatio-temporal second-
order structure of two patterns occurring on the same linear network.

Indeed, spatio-temporal clustering analysis is a key aspect of the practical anal-
ysis of spatio-temporal point patterns, and the detection of clustering structure in
a spatio-temporal point pattern occurring on a linear network is still an unexplored
topic.

Thanks to the proposed local test, we are able to explore how individual points
are related to their neighbouring events and classify points with similar spatio-
temporal local second-order structures, identifying the areas that differ in terms of
clustering behaviour. This classification is not possible by using global estimates
as they average out all local structures. This chance is particularly relevant when
dealing with Self-Exciting point processes specified through a conditional intensity
function as the sum of a background component and a triggered one. The esti-
mation procedure for such models commonly requires the need of declustering the
analysed events into a background point pattern, which we shall call large-scale term
henceforth to avoid confusion, and the triggered component one, typically display-
ing a more clustered behaviour. Some examples include the analyses of seismic data
(Zhuang et al., 2002, 2004; Zhuang, 2006), in which events can be declustered into
mainshocks and aftershocks, or crime data in which events can be declustered into
primary and secondary events (Mohler et al., 2011; Zhuang and Mateu, 2019), as
well as traffic data (Lim et al., 2016; Fan et al., 2018; Song et al., 2018; Kalair et al.,
2021). Other recent applications of Self-Exciting processes concern phenomena such
as epidemics (Schoenberg et al., 2019; Lesage, 2020), in which both the declustering
of primary and secondary events, as well as the accounting for the underlying linear
network could be relevant.

Therefore, motivated by the availability of information about the underlying
network in which these patterns occur, it appears suitable to develop novel statistical
methodologies and computational techniques that take into account the geometry of
the linear network. Indeed, as stated by Baddeley et al. (2020), due to geometrical
complexities, the analysis of individual data observed along a network of lines is
extremely challenging. Moreover, the intrinsic lack of homogeneity in a network
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militates against the traditional methods of spatial statistics.

In this Section, we provide simulation studies to assess the performance of the
testing procedure of local second-order structures. In particular, we consider ho-
mogeneous, inhomogeneous, and clustered spatio-temporal point processes to study
how the test behaves under these different settings. We expect that the local test
performs better as the number of points increases and the clustered structure of the
pattern strengthens. Note that we show some inhomogeneous scenarios to reinforce
that our test is also helpful and reliable in these cases, even though we are only
considering second-order structure.

Nevertheless, real data analysis often requires more complex model specifications.
In some real data, such as seismic, traffic or crime events, a clear separation cannot
be performed between the so-called “parents” and “children” points, as in clustered
point processes. Therefore, in our simulation study, we also consider more complex
spatio-temporal point processes, such as Self-Exciting processes, where each point
of the pattern can potentially produce offspring.

We also provide an application of the proposed methodology to two traffic-related
datasets that are of particular importance for society.

Section 5.1 is structured as follows. Section 5.1.1 is devoted to the proposal
of the test for local spatio-temporal second-order structure, and in section 5.1.2
its performance is assessed through simulation studies. Note that the simulation
schemes implemented and used for our purposes are reported in Appendix A. An
application to two case studies on traffic data comes in section 5.1.3. Conclusions
are drawn in section 5.1.4.

5.1.1 Testing for local second-order structure on a network

We now formally define the local null hypothesis H0 we aim at testing, and out-
line the statistical testing procedure for local interaction, motivated by Siino et al.
(2018b) for the Euclidean context, adapting it to the network case. In this particular
context, ignoring the network would result in bias when computing the K-functions,
as without the network correction M((u, t), r, h) (introduced by Ang et al. (2012)
for the purely spatial case and extended by Moradi and Mateu (2020) to the spatio-
temporal context) that basically counts the number of points lying exactly at the
shortest-path distance r ≥ 0 and the time distance h ≥ 0 away from the point (u, t),
we would overestimate the number of points in any spatio-temporal lag considered.
Note that our test is based on a subtraction of two K functions which are adapted
to the geometry of the network. Although the network is the same for both terms
of the difference, the events are different, and M((u, t), r, h) provides different cor-
rections. Thus it is important to consider K-functions over the network rather than
on the Euclidean plane.

The aim is to detect significant differences in the local second-order structure
of two given point patterns x and z, both occurring on the same linear network,
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and being realisations of the point processes X and Z, respectively. Therefore,
the proposed testing procedure can be useful for comparing the local behaviour of
different types of events occurring on the same network. We test the null hypothesis
of no differences in the spatio-temporal second-order structure of the two observed
point patterns x and z with respect to the ith point xi = (ui, ti) ∈ x, with i =
1, . . . , n. Formally, for each point (u, t) ∈ x, the hypothesis test reads as

H0 : no difference in the local second-order structure of (u, t)

w.r.t {{x \ (u, t)} ∪ z}
H1 : significant difference in the local second-order structure of (u, t)

w.r.t {{x \ (u, t)} ∪ z}

Rejecting H0 for most of the points in the point pattern x means that the local
second-order structures of x and z around those arbitrary points (u, t) are different,
and therefore the second-order global structure of x and z is different, meaning that
they are most likely coming from different underlying point processes.

Nevertheless, in addition to this global conclusion, the most interesting results
concern the rejection of H0 for specific points, allowing for the identification of
points for which the spatio-temporal local behaviour varies with the spatio-temporal
location. This could also result in the identification of areas where the spatio-
temporal local second-order structure of the points in the pattern of interest x differs
the most and needs to be further analysed. If, for instance, the significant points
tend to cluster in time and space, this could indicate multiple underlying generating
processes, in contrast to a unique one.

Furthermore, the identification of a significant point may already be an indication
of outlying behaviour for the remaining points.

To take into account the geometry of the underlying network, we develop a testing
procedure based on the proposed homogeneous LISTA functions. A permutation
test approach is considered, where the null distribution of a given statistical test
is estimated by randomly permuting the labels attached to the two point patterns.
The steps of the testing procedure are as follows

1. Define the point pattern of interest x and the background pattern z, assumed to
be realisations of the point processes X and Z, with N(X) = n and N(Z) = m.
Typically, x is the point pattern with the most clustered structure, between
the two;

2. Set k as the number of permutations;

3. For each point (ui, ti) ∈ x

(a) Estimate the LISTA function K̂i
L(r, h), for fixed spatial and temporal

ranges r and h;
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(b) Define q−i = {{x \ (ui, ti)} ∪ z} as the point pattern obtained as the
superposition of all the points in x except the i-th one, and all the points
in z;

(c) Define labx and labz as the set of labels attached to the generated points
in the new pattern q−i, identifying the points coming from the observed
point patterns {x\(ui, ti)} and z, of cardinality n−1 and m, respectively;

(d) Generate k point patterns q−i,j by independently and randomly sampling
from the same population, where j = 1, . . . , k. That is, randomly per-
muting the labels of the n+m− 1 points in q−i and retaining only those
n− 1 points with labels labx;

(e) Define k point patterns qi,j under the null hypothesis, by re-adding the
point (ui, ti) to q−i,j ; Each of the resulting point patterns qi,j will be of
size n, as the original point pattern of interest x;

(f) Compute the proposed local deviation test (Illian et al., 2008)

T i =

∫ t0

0

∫ r0

0

(
K̂i
L(r, h)− K̂−iL,H0

(r, h)
)2

drdh

where K̂−iL,H0
(r, h) is the LISTA function for the ith point, averaged over

the j = 1, . . . , k permutations, and where r0 and t0 are the maximum
spatial and temporal ranges considered in the K-functions;

(g) Finally, a p-value is computed for each point of the pattern x as

pi =
k∑
j=1

I(T i,jH0
≥ T i)
k

,

where

T i,jH0
=

∫ t0

0

∫ r0

0

(
K̂i,j
L (r, h)− K̂−i,jL,H0

(r, h)
)2

drdh,

with K̂i,j
L (r, h) being the LISTA functions on the k patterns generated

from the null hypothesis, and K̂−i,jL,H0
(r, h) being the LISTA function av-

eraged over the points of the kth permutation.

The testing procedure ends with providing a vector pi of N(X) = n p-values. The
null hypothesis is not accepted if pi ≤ α, where α is the fixed nominal value of the
type I error.

5.1.2 Simulation studies

A simulation study is carried out to assess the performance of the testing procedure.
We simulate from both the null and the alternative hypothesis to compute the
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empirical level and the power of the test. In particular, the linear network considered
for the simulations comes from the dataset chicago of the package spatstat.data

(Baddeley et al., 2021) of R (R Core Team, 2022). This dataset is a record of spatial
locations of crimes that occurred in 2002 in Chicago (Illinois, USA) close to the
University of Chicago. We note that alternative networks could have been used, but
this represents a general network structure similar to our datasets. Finally, we set
the number of permutations k = 99 for the simulation studies and the applications
in the following section.

5.1.2.1 Empirical level

To assess the empirical level we simulate from the null hypothesis of no difference
in the spatio-temporal second-order structure of two given point patterns x and z
with respect to the ith point (ui, ti) ∈ X. So the generating intensity is the same for
each of the two point patterns. We run 100 simulations, and compute the rejection
rates at a significant level α = 0.05, for spatio-temporal homogeneous Poisson point
processes with an expected number of overall events E[n+m] equal to {150, 300, 450}.
An example of a spatio-temporal homogeneous Poisson point process is represented
in Figure 5.1. Results of the simulations are in Table 5.1.
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Figure 5.1: Spatio-temporal homogeneous Poisson process. Left panel: The projec-
tion of data onto the network. Right panel: The cumulative number of data points
versus occurrence time.

The p-values under the null hypothesis should behave like a standard uniform
random variable, with mean and variance approximately equal to 0.5 and 0.083,
respectively. Increasing the number of points results in a slight improvement in the
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rejection rate, although there is no difference moving from 300 to 450 points.

Table 5.1: Rejection rates at α = .05, with means and variances of the p-values
for the test of local second-order structure. The point patterns of interest x and the
background one z are simulated from spatio-temporal homogeneous Poisson processes
with parameter λ = E[n+m]/2.

X Z E[n+m] rate mean var

Homogeneous Homogeneous 150 0.087 0.438 0.085
Homogeneous Homogeneous 300 0.066 0.474 0.085
Homogeneous Homogeneous 450 0.066 0.469 0.085

5.1.2.2 Power

For evaluating the power of the test, we simulate from the alternative hypothesis of
the difference in the local second-order structure between x and z. Therefore, the
two generating intensities are different. In particular, the point pattern x is assumed
to be more inhomogeneous than the pattern z.

We emphasise that we consider inhomogeneous patterns for our power analysis
to place ourselves in the worst case (as we are using homogeneous versions of the
K-function) and evaluate the power under these conditions.

We consider different scenarios for the point pattern of interest x, simulating
from

1. an inhomogeneous Poisson process with intensity

λ(x, y, t) = exp(8.25− 4y − 2t), (5.7)

with t ∈ [0, 1]. Figure 5.2 shows an example of an inhomogeneous Poisson
process with intensity function in (5.7).

2. a clustered Poisson process (Gabriel et al., 2013) in which parents form a
Poisson process with intensity (5.7) and with time ranging from 0 to 200. An
example of a clustered Poisson process with 15 parents and 10 children per
parent is reported in Figure 5.3.

3. an ETAS model with CIF as in (2.35) and with homogeneous large-scale term
with spatial intensity function f(·), and t ∈ [0, 200]. An ETAS process, simu-
lated with parameters
θ = (µ, κ0, c, p, α, d, q) = (0.079, 0.004, 0.013, 1.2, 0.5, 0.424, 1.165) and no ex-
ternal covariates comes in Figure 5.4.



142 Chapter 5. Local indicators of spatio-temporal association on linear networks

4. an ETAS model with the same parameters and time vector, but with the large-
scale term with intensity function f(·) generated by an inhomogeneous spatial
intensity, given by

λ(x, y) = exp(a− 4y), (5.8)

where a is taken as the logarithm of the number of background points.

Note that for the first three scenarios, the background pattern z is always sim-
ulated from a homogeneous Poisson process with a constant intensity equal to
λ = E[n+m]/2, on the same network of x.

The results are shown in Tables 5.2 and 5.3 for the point processes of interest
coming from inhomogeneous and clustered processes, respectively. Tables 5.4 and
5.5 report the results of the patterns simulated from the ETAS model. In partic-
ular, Table 5.4 reports the results of the ETAS simulated model (with large-scale
term constant in time and space), partitioning points by the stochastic declustering
approach (Zhuang et al., 2002, 2004; Zhuang, 2006) and then assigning to x the
triggered points and to z the ones of the large-scale term. In Table 5.5 results refer
to simulation from the ETAS model but with x representing the whole point pattern
(both large-scale and triggered component) and z simulated from a homogeneous
Poisson process.

  xy−locations on linear network

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

cumulative number

time

Figure 5.2: Spatio-temporal inhomogeneous Poisson process with intensity function
as in (5.7) . Left panel: Projection of data onto the network. Right panel: Cumula-
tive number of data points versus occurrence time.

The power of the test strongly depends on the similarity between the X and Z
processes and the number of generated points, getting better results for increasing
sizes. Based on these results, the test is able to correctly detect individual local
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Figure 5.3: Spatio-temporal clustered Poisson process with 15 parents. Left panel:
Projection of data onto the network. Right panel: Cumulative number of data points
versus occurrence time.
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Figure 5.4: Spatio-temporal ETAS model with conditional intensity function as in
(2.35) and homogeneous large-scale term with spatial intensity function f(·). Left
panel: Projection of data onto the network. Right panel: Cumulative number of data
points versus occurrence time.

differences when the two point patterns come from processes with different local
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Table 5.2: Rejection rates at α = .05 for the test of local second-order structure.
We simulate the patterns of interest from the inhomogeneous Poisson process with
intensity as in (5.7).

X Z E[n+m] Power

Inhomogeneous Homogeneous 150 0.644
Inhomogeneous Homogeneous 300 0.769
Inhomogeneous Homogeneous 450 0.855
Inhomogeneous Homogeneous 600 0.948

Table 5.3: Rejection rates at α = .05 of the test of local second-order structure.
We simulate the patterns of interest from a clustered Poisson process, with parent
intensity coming from an inhomogeneous Poisson process, as in (5.7).

X Z E[n+m] parents children per parent Power

Clustered Homogeneous 150 15 10 0.251
Clustered Homogeneous 300 15 20 0.387
Clustered Homogeneous 150 5 30 0.887
Clustered Homogeneous 300 5 60 0.934

Table 5.4: Rejection rates at α = .05 of the test of local second-order structure. We
simulate from the ETAS model in (2.35) and split the pattern into large-scale and
triggered events through stochastic declustering.

X Z E[n+m] µ κ0 Power

Triggered Homogeneous spatial large-scale intensity 150 0.099 0.231 0.293
Triggered Homogeneous spatial large-scale intensity 300 0.099 0.231 0.263

Table 5.5: Rejection rates at α = .05 of the test of local second-order structure. We
simulate X from the ETAS model in (2.35), whose large-scale term is simulated with
a spatial intensity from a homogeneous Poisson process.

X Z E[n+m] µ κ0 Power

ETAS with hom. spatial large-scale intensity Hom. 150 0.118 0.185 0.469
ETAS with hom. spatial large-scale intensity Hom. 300 0.236 0.185 0.494

second-order structures. This is the case in which the background pattern z is
homogeneous, while the point pattern of interest x comes from an inhomogeneous
point process or a clustered one. In this latter case, the lower the number of parents
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(the more clustered the structure of the pattern x is), the higher the power of the
test. In both cases, the power increases as the expected number of points increases
too.

It is interesting to look at the results when simulating from even more complex
point processes, such as ETAS models. According to a branching structure, the
conditional intensity function of the Self-Exciting model is defined as the sum of a
term describing the large-time scale variation (spontaneous activity or background,
generally assumed homogeneous in time but not in space) and one relative to the
small-time scale variation due to the interaction with the events in the past (induced
or triggered activity). In general, when simulating from the ETAS models, the power
of the test is quite low. This is a reasonable result. Indeed, when assigning the points
of the large-scale and of the triggered component to Z and X, of course, the local
second-order structure is the same even if the global one might seem different, as
the spatio-temporal location of the triggered events strongly depends on the events
of the large-scale component. In addition, one main assumption of the ETAS model
states that any event can be either an immigrant (parent) or an offspring, that is, all
events (both large-scale and induced ones) may have offspring (Ogata and Katsura,
1988; Ogata, 1998). The dependence between the location of the large-scale and the
triggered events can be elicited from Figure 5.5.

Moreover, when comparing a point pattern of interest x coming from an ETAS
model and a background pattern z coming from a homogeneous pattern, the local
second-order structure of the two point patterns does not differ significantly, as also
the ETAS model consists of an independent homogeneous pattern represented by
the events of the large-scale component.

In the last experiment, we indeed simulated the point pattern of interest x from
an ETAS model with inhomogeneous spatial intensity as the large-scale term. The
background pattern z is still a homogeneous spatio-temporal point process, gener-
ated independently of x. The results come in Table 5.6.

Table 5.6: Rejection rates at α = .05 of the test of local second-order structure.
We simulate X from the ETAS model in (2.35), whose spatial large-scale term is
simulated from the inhomogeneous Poisson process in (5.8).

X Z E[n+m] µ κ0 Power

ETAS with inh.spatial large-scale intensity Inh. 150 0.026 0.028 0.710
ETAS with inh. spatial large-scale intensity Inh. 300 0.053 0.028 0.952

As expected, the power increases as the model used for generating X is basically
a superposition of a large-scale process, homogeneous in time but inhomogeneous in
space and the triggered process.
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Figure 5.5: Spatio-temporal ETAS model with conditional intensity function as in
(2.35). Upper panels: Events of the large-scale component. Bottom panels: Triggered
events. Left panels: Projection of data onto the network. Right panels: Cumulative
number of data points versus occurrence time.

5.1.3 Application to traffic data

We analyse two datasets on traffic accidents, one from Medellin (Colombia) and
the other from Barcelona (Spain). For each dataset, we know the spatial and tem-
poral locations of the traffic accidents occurring on the underlying linear network
represented by the streets of the city under analysis. Both datasets actually con-
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sist of multitype point patterns, according to the type of traffic accident, i.e. the
mark. Based on this knowledge, we split the datasets into two distinct point pat-
terns, defining a point pattern of interest x and an alternative (background) pattern
z. We aim to investigate the difference in the spatio-temporal local second-order
structure of the two resulting point patterns. Once we have applied the proposed
local test, we can distinguish the significant points from the non-significant ones. In
addition, by projecting these points onto the network, we can identify the points of
the pattern of interest for which the spatio-temporal local second-order structure is
more different from the background pattern, and identify those areas where these
points occur more often.

5.1.3.1 Medellin traffic data

We analyse traffic accidents in the city of Medellin (Colombia), a dataset containing
the locations of traffic accidents consisting of 1215 traffic accidents in 2019 in down-
town Medellin. The entire data were published in the OpenData portal of Medellin
Town Hall at
https://www.medellin.gov.co/geomedellin/index.hyg. The dataset actually consists
of a multitype point pattern, categorised based on the damages caused by the acci-
dent (see a description in Table 5.7).

Table 5.7: Number of Medellin’s traffic accidents by type.

Type n

Damages only 675
Injuries to people 536
Deaths 4

In our analysis, we do not consider the four events representing car accidents
that lead to deaths, and we define the accidents leading to damages as the point
pattern of interest x, and the accidents causing injuries to people as the alternative
(background) pattern z (see Figure 5.6).

We thus test the hypothesis of the difference in the spatio-temporal local second-
order structure between the two point patterns considered. The application of the
test provides a p-value for each point in x, and by comparing those to the confidence
level α = 0.05 we can identify significant events, i.e. those points for which H0 is
not accepted and therefore the local second-order structure is significantly different
from the background process, and non-significant events. The significant events are
100 out of the 675 events, and they are shown in Figure 5.7.

The results of the application of the local test support our hypothesis of the two
point patterns behaving differently in terms of spatio-temporal local second-order
structure. Furthermore, displaying the significant events and the non-significant
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Figure 5.6: Top panel: Point pattern of damages. Bottom panel: Point patterns of
injuries. Left panel: Projection of data onto the network. Right panel: Cumulative
number of data points versus occurrence time.

events allows for identifying the areas containing those events whose spatio-temporal
local second-order structure is different from the background pattern.

5.1.3.2 Barcelona traffic data

We now analyse traffic accidents in the city of Barcelona (Spain). This dataset rep-
resents a spatio-temporal point pattern consisting of 10536 traffic accidents recorded
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Figure 5.7: Left panel: Significant events. Right panel Non-significant events. These
are obtained by applying the local test to the point pattern of interest x, represented
by damages, and the alternative patterns z, represented respectively by injuries.

in 2019 (Moradi et al., 2021).

The dataset also reports detailed information about the traffic accidents recorded.
Available covariates regard, of course, the spatial location, and the temporal loca-
tion, both referring to the actual date (i.e. day of the week, month and year) and
the hour during the day. For the purpose of our analysis, we constrain the net-
work to some streets in downtown Barcelona, and we consider only the temporal
coordinate as the hour of the day and only four types of accidents. This subsetting
allows considering only types of events relevant for testing our proposed methodol-
ogy, as they represent the point patterns with the most interesting spatio-temporal
behaviour. Furthermore, restricting the spatial window prevents considering areas
in which the displacement of points is too sparse and also eases the computational
aspect of the running of the testing procedure. The number of events for each type
of event considered comes in Table 5.8.

Table 5.8: Number of Barcelona’s traffic accidents by type.

Type n

Vehicles hitting pedestrians 223
Head-on and side-impact collisions 331
Collisions with non-moving objects 81
Head-on collisions 593
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In our analysis, we define the “Vehicles hitting pedestrians” accidents as the
point pattern of interest x (Figure 5.8), and the remaining three point patterns
as the alternative (background) pattern z (Figure 5.9), namely: (1) both “Head-
on and side-impact collisions” accidents, (2) “Collisions with non-moving objects”
accidents, and (3) “Head-on collisions” accidents.
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Figure 5.8: Point pattern of vehicles hitting pedestrians for Barcelona data. Left
panel: Projection of data onto the network. Right panel: Cumulative number of
data points versus occurrence time.

Again, the results of the application of the local test support our hypothesis
of the different point patterns considered behaving differently in terms of spatio-
temporal local second-order structure. In Table 5.9, the number of significant and
non-significant events found after having applied the local test is reported for each
considered combination.

Table 5.9: Number of significant and non-significant events found after having ap-
plied the local test.

x z sign. non-sign.

Vehicles hitting pedestrians Head-on and side-impact collision 35 188
Vehicles hitting pedestrians Collisions with non-moving objects 34 189
Vehicles hitting pedestrians Head-on collisions 40 183

Figure 5.10 depicts the significant events and the non-significant events, allowing
us to draw interesting conclusions. It appears evident that there are some areas in
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Figure 5.9: Point patterns of (a) head-on and side-impact collision, (b) collisions
with non-moving objects, and (c) head-on collisions. Left panel: Projection of data
onto the network. Right panel: Cumulative number of data points versus occurrence
time.

which the significant events are clustered. This is even more evident in front-lateral
collisions and lateral accidents. In addition, the spatial patterns of their significant
events are quite similar, indicating that their difference in the local second-order
structure with respect to Vehicles hitting pedestrians, does not differ that much.
Finally, the events representing the accidents towards non-moving objects differ
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with respect to the Vehicles hitting pedestrians more randomly in space.

5.1.4 Conclusions

In this Section, we have proposed a local test to assess local differences between the
spatio-temporal second-order structure of two point patterns occurring on the same
linear network, based on the Local Indicators of Spatio-Temporal Association on
linear networks.

We have shown that the local test is able to correctly identify the spatio-temporal
difference in the local second-order structure of two point patterns occurring on the
same linear network by simulating from different scenarios, with the point pattern
of interest being generated from inhomogeneous, clustered, and Self-Exciting point
processes. As expected, we have found that the test’s power increases as the number
of points and the clustered structure of the point pattern of interest increase too.

We have applied these features to two case studies, analysing traffic data repre-
sented by a marked point process occurring on the streets of Medellin and Barcelona,
where the marks represent the type of car accident. In both cases, the local test
has been used to test the hypothesis of difference among different point patterns,
assumed to differ in their spatio-temporal local behaviour. Thanks to the pro-
posed local test, we have been able to explore how individual points are related
to their neighbouring events and classify points with similar spatio-temporal local
structures, identifying the areas that differ in terms of clustering behaviour. Further-
more, displaying the significant events has allowed identifying the areas containing
those events whose spatio-temporal local second-order structure is different from the
background pattern.

The analysed point patterns are basically identified by characteristics of the
events, i.e. the marks, recorded together with their spatial and temporal location.
Future analyses could regard the application of the local test to patterns whose
splitting is due to a statistical procedure, such as the stochastic declustering of the
Self-Exciting point processes. Indeed, the topic of fitting parametric point process
models while also accounting for the underlying network structure is still quite un-
explored, and only a recent attempt has been carried out to fit Self-Exciting models
to processes occurring on a network (Kalair et al., 2021). We believe that the latter
represents an interesting research path for the future.

A final comment is in order. We have argued that we only use homogeneous ver-
sions of the K-function as we are interested in second-order structure. Additional
simulation studies, not reported here for brevity, have shown that a local test based
on the inhomogeneous K-function adds bias to the results, given that the contribu-
tion of the difference in the second-order characteristics is masked by the variability
in the fitting of the first-order intensities. Indeed, when considering inhomogeneous
Poisson patterns for X and homogeneous ones for Z with an expected number of
points for both patterns of 450, the homogeneous test provided a power of 0.83, but
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Figure 5.10: Left panel: Significant events. Right panel: Non-significant events.
These are obtained by applying the local test to the point pattern of interest x, repre-
sented by Vehicles hitting pedestrians, and the alternative patterns z, represented re-
spectively by: (a) Head-on and side-impact collision, (b) Collisions with non-moving
objects, and (c) Head-on collisions.
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when we correct by inhomogeneous K-functions, this power reduces down to 0.74.
However, more exploration and deep analysis should be considered in this regard in
order to better understand the effect of the first-order intensity on our statistical
test.
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5.2 Local space-time diagnostics on networks through
LISTA functions

D’Angelo, N., Adelfio, G., and Mateu, J. (2022b). Local inhomogeneous
second-order characteristics for spatio-temporal point processes occurring on linear
networks. Statistical Papers, http: // doi. org/ 10. 1007/ s00362-022-01338-4

At the beginning of this Chapter, we have extended local indicators of spatio-
temporal association (Siino et al., 2018b), known as LISTA functions, for spatio-
temporal point processes occurring on linear networks.

As the proposed local second-order statistics can be used for obtaining further
insight into the local structure of the analysed point pattern, and on the character-
istics of individual points, in section 5.1.1, we have used the LISTA homogeneous
versions to build a local test allowing to assess local differences between the spatio-
temporal second-order structure of two point patterns occurring on the same linear
network.

The present section aims at developing inhomogeneous versions of two local
second-order statistics for spatio-temporal point processes occurring on networks,
namely the K-function and the pair correlation function (Moradi and Mateu, 2020).
In particular, following Adelfio et al. (2020) for the Euclidean case, we use LISTA
functions based on local inhomogeneous second-order statistics on networks to assess
the goodness-of-fit of general spatio-temporal models. Indeed, the peculiar lack
of homogeneity in a network structure discourages the use of traditional spatial
and spatio-temporal methods based on stationary processes (Baddeley et al., 2020).
Therefore, weighted second-order statistics are appropriate diagnostic tools since
they directly apply to data without assuming homogeneity (Adelfio et al., 2020).

We provide several simulation studies by weighting the contribution of each ob-
served point by the inverse of the intensity function coming from several types of
inhomogeneous point processes on the network. In particular, we consider Poisson,
Self-Exciting and log-Gaussian spatio-temporal processes, and detail the correspond-
ing simulation procedures on a linear network.

The section is structured as follows. Section 5.2.1 develops some properties of the
local weighted second-order statistics defined in this chapter. Then, through some
simulation studies, in section 5.2.2 we show how the proposed LISTA functions can
be used as diagnostic tools for different fitted models. Further, an application to a
case study is presented in section 5.2.3. Conclusions are drawn in section 5.2.4.

http://doi.org/10.1007/s00362-022-01338-4
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5.2.1 Some properties of local weighted second-order statistics

In the following, we provide some properties of the proposed estimators.

Theorem 5.1. For a Poisson process, we have E[K̂i
L(r, h)] = rh.

Proof.

E[K̂i
L(r, h)] =

1

λ2|L||T |
E

[ ∑
(ui,ti)6=(v,s)

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

]
(By theorem (2.38) and since λ(2) ≡ λ2 for a Poisson process)

=
1

λ2|L||T |

∫
L×T

∫
L×T

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

λ2d2(v, s)

=
1

λ2|L||T |
λ2

∫
L×T

∫
L×T

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

d2(v, s)

=
1

|L||T |

∫
L×T

∫
L×T

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

d2(v, s)

(By the change of variables in (2.39))

=
1

|L||T |

∫ ∞
0

∫ ∞
0

∑
(v,s)∈L×T :
dL(ui,v)=r,
|ti−s|=h

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

drdh

=
1

|L||T |

∫ ∞
0

∫ ∞
0

∑
(v,s)∈L×T :
dL(ui,v)=r,
|ti−s|=h

I{(||ui − v||) < r, |ti − s| < h}
M(ui, ti)

drdh

=
1

|L||T |

∫ ∞
0

∫ ∞
0

I{(||ui − v||) < r, |ti − s| < h}M(ui, ti)

M(ui, ti)
drdh

=
1

|L||T |

∫ ∞
0

∫ ∞
0

I{(||ui − v||) < r, |ti − s| < h}drdh

(taking the conditional expectation with respect to its filtration)

=
1

|L||T |
|L||T |rh

= rh
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Theorem 5.2. If the process is weighted by the true intensity function, the expec-
tation of K̂i

L,I(r, h) is the same as the expectation of K̂i
L(r, h).

Proof.

E[K̂i
L,I(r, h)] =

=
1

|L||T |
E

[ ∑
(ui,ti)6=(v,s)

I{dL(ui,v) < r, |ti − s| < h}
λ(ui, ti)λ(v, s)M((ui, ti), dL(ui,v), |ti − s|)

]
(Second-order Campbell’s theorem in (2.38))

=
1

|L||T |

∫
L×T

∫
L×T

I{dL(ui,v) < r, |ti − s| < h}
λ(ui, ti)λ(v, s)M((ui, ti), dL(ui,v), |ti − s|)

λ(v, s)d2(v, s)

=
1

|L||T |
1

λ(ui, ti)

∫
L×T

∫
L×T

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

1

λ(v, s)
λ(v, s)d2(v, s)

=
1

|L||T |
1

λ(ui, ti)

∫
L×T

∫
L×T

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

d2(v, s)

(Change of variables in (2.39))

=
1

|L||T |
1

λ(ui, ti)

∫ ∞
0

∫ ∞
0

∑
(v,s)∈L×T :
dL(ui,v)=r,
|ti−s|=h

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

drdh

=
1

|L||T |
1

λ(ui, ti)

∫ ∞
0

∫ ∞
0

∑
(v,s)∈L×T :
dL(ui,v)=r,
|ti−s|=h

I{(||ui − v||) < r, |ti − s| < h}
M(ui, ti)

drdh

=
1

|L||T |
1

λ(ui, ti)

∫ ∞
0

∫ ∞
0

I{(||ui − v||) < r, |ti − s| < h}M(ui, ti)

M(ui, ti)
drdh

=
1

|L||T |
1

λ(ui, ti)

∫ ∞
0

∫ ∞
0

I{(||ui − v||) < r, |ti − s| < h}drdh

(taking the conditional expectation with respect to its filtration)

=
1

|L||T |
1

λ(ui, ti)
λ(ui, ti)|L||T |rh

= rh

We know that the expectation of K̂L,I(r, h), when the intensity used for the

weighting is the true generator model, is the same as the expectation of K̂L(r, h) for
the Poisson process, that is E[K̂L(r, h)] = rh.
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We have proved that the same result holds for the local version K̂i
L,I(r, h), mean-

ing that our proposed local estimator K̂i
L,I(r, h) for a general point process, weighted

by the true intensity function, has the same expectation of the local estimator
K̂i
L(r, h) under the Poisson case.

Based on this result, we can use our proposed local estimator K̂i
L,I(r, h) as a

diagnostic tool for general spatio-temporal point processes occurring on a linear
network. Since the local inhomogeneous estimator behaves as the corresponding
homogeneous one of a Poisson process, we can follow the approach for diagnostics in
a local scale in Adelfio et al. (2020) and use our proposed LISTA functions based on
the K-function for assessing the goodness-of-fit of spatio-temporal point processes
on linear networks with any generic first-order intensity function λ(·, ·).

Basically, departures of the LISTA functions K̂i
L,I(r, h) from the Poisson ex-

pected value rh directly suggest the unsuitability of the intensity function λ(·) used
in the weighting of the LISTA functions. This means that, if the estimated intensity
function used for weighting in our proposed LISTA functions (5.4) is the true one,
then the LISTA functions should behave as the corresponding ones of a homogeneous
Poisson process (5.1), that corresponds to the reference model.

5.2.2 Simulation studies: local space-time diagnostics on networks

This section is devoted to the use of the proposed LISTA functions to assess the
goodness-of-fit of different spatio-temporal models fitted to point patterns occurring
on linear networks.

We show some simulation studies by generating different spatio-temporal point
patterns and then performing diagnostics on different fitted intensities. By com-
paring the values of the LISTA functions and their theoretical values, we evaluate
whether the LISTA functions can correctly identify the true intensity when this is
constrained on a network.

Since in simulations the weights are obtained by considering the real intensity
function, the inhomogeneous statistics are expected to behave as the ones of a ho-
mogeneous Poisson process. If departures from such behaviour were observed, that
would be an indication that the data comes from a model identified by a first-order
intensity function different from the one used in the weighting procedure.

5.2.2.1 Simulation set up

We simulate 100 space-time point patterns from 3 different inhomogeneous processes
with 150 points on average: (a) a spatio-temporal inhomogeneous Poisson process
on a linear network; (b) a spatio-temporal ETAS model; (c) a log-Gaussian Cox
process (see Appendix A for the details on the proposed simulation algorithms).

For assessing the usefulness of the weighted LISTA functions also in network
domains, we carry out a simulation study considering three different scenarios, in
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which the K-function is weighted by:
• The real intensity function, known in simulations
• The estimated intensity by a nonparametric kernel density function
• The intensity function estimated by a homogeneous Poisson intensity (wrong

model).
We expect that the expected value of the spatio-temporal LISTA K-function,

when weighting by the true or estimated intensity, resembles that of a Poisson pro-
cess, and therefore when a wrong model is used for the intensity, the expected value
would be far from the Poisson one.

5.2.2.2 Results

For each of the three previously defined scenarios, we compute the chi-squared statis-
tics between the LISTA functions and their theoretical values K̂i

L,Theo(r, h) = rh.
In particular, we use the LISTA functions based on the inhomogeneous K-function,
weighted each time with a different fitted intensity. The χ2

i values are obtained
following the expression

χ2
i =

∫
L

∫
T

((
K̂i
L,I(r, h)− rh

)2
rh

)
dhdr, (5.9)

one for each point in the point pattern. We weight the LISTA functions K̂i
L,I(r, h)

with different intensities: the true one, a kernel density function, and a constant
one. The latter of course is not a good fit, as we have simulated from inhomogeneous
processes. In Figure 5.11, as expected, the lowest values are found in correspondence
with the true intensity and the non-parametric kernel-based estimation, while the
largest values are encountered for the constant intensity. The same holds for the
ETAS process, and for the log-Gaussian Cox process, in Figure 5.12 and Figure 5.13,
respectively.

In summary, LISTA functions are able to correctly identify the true intensity
and spot the best fit among candidate models.

We now report an example of an application on an ETAS process, simulated
through the same procedure outlined in section 2.2.3.2.2, to show further advantages
of using LISTA functions for carrying out diagnostics.

5.2.2.3 Motivating example: a simulated ETAS process

To show some advantages of using LISTA functions, instead of their global counter-
parts, we simulate an ETAS process on the network (under the same conditions as
in Figure 5.12).

We then compute the LISTA functions weighting them with three different inten-
sities: the true one, a fitted one, and a constant one. For assessing their goodness-of-
fit, the standard approach (Baddeley et al., 2015) would require the computation of
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Figure 5.11: Distributions of the χ2
i statistics computed for assessing the differences

between the local LISTA functions on the network and the theoretical expected value,
calculated for each individual point from a simulation of an inhomogeneous Poisson
process with intensity as in (3.2).
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Figure 5.12: Distributions of the χ2
i statistics computed for assessing the differences

between the local LISTA functions on the network and the theoretical expected value,
calculated for each individual point from a simulation of an ETAS process with in-
tensity as in (2.35).

the global inhomogeneous second-order summary statistics in section 2.3.3, weighted
with their respective intensities. In Figure 5.14 we represent the difference between
the global K-functions and their theoretical values, weighted by the three consid-
ered intensities. The surfaces whose values are closest to zero are the ones whose
intensity best resembles the true one. According to these results, the global second-
order characteristic is able to correctly identify the true intensity. This result in
corroborated by the values of the χ2, equal to 7.05, 8.32, and 19.26, for the true, the
ETAS, and the constant intensities, respectively. However, the main reason for using
LISTA functions is that the global summary statistics do not provide information
on the individual points, and thus cannot identify which points influence the most
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Figure 5.13: Distributions of the χ2
i statistics computed for assessing the differences

between the local LISTA functions on the network and the theoretical expected value,
calculated for each individual point from a simulation of a log-Gaussian Cox process
following the parameters in section 2.2.3.1.

the goodness-of-fit of the model.
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Figure 5.14: Difference between the global K-functions and their theoretical values,
weighted by: (a) the true intensity; (b) the intensity estimated with the etasFLP

(Adelfio and Chiodi, 2015b) package of R; (c) the constant intensity given by λ̂ =
n/|L||T |.

Therefore we compute the LISTA functions, and again compare them to their
theoretical values, by computing the χ2

i values (see Figure 5.15). Clearly, LISTA
functions help to identify the true intensity as well as the best fit, in a similar
manner to their global counterparts. Nonetheless, LISTA functions present further
advantages. The main usefulness of carrying out diagnostics with LISTA functions
is to get an insight into the local behaviour of the points of the analysed pattern,
and therefore to identify the influential points. We indeed identify influential points
by retaining only those points that exhibit χ2

i values larger than a fixed threshold.
For instance, fixing the 75th percentile of the distributions of the χ2

i values, and
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considering as influential points those with a χ2
i larger than this percentile, we

obtain the black points in Figure 5.16.
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Figure 5.15: Distributions of the χ2
i statistics computed for assessing the differences

between the local LISTA functions on the network and the theoretical expected value,
calculated for each individual point of the simulated ETAS process.

  True   ETAS   Constant

Figure 5.16: In black: Influential points for the three intensities, which exhibit the
χ2
i values above the 75th percentile. The triangles indicate the points with χ2

i values
above the 95th percentile.

We note that the influential points vary with the fitted intensity. In detail,
we notice that the influential points obtained for the constant intensity are mainly
placed in the clusters, and therefore indicate that we might need a better model in
those areas, such as an inhomogeneous one. Furthermore, the resemblance between
the true intensity and the kernel one (in terms of actual points, and not in the
χ2
i values only), indicates that the kernel achieves a better fit if compared to the

constant one. In Figure 5.17, we report the distributions of the χ2
i values of the

influential points detected and shown in Figure 5.16. It is clear that the influential
points of the wrong (constant) intensity are the ones contributing most to the bad
fit of the model if compared to those of the true (or the most suitable) intensity.
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Figure 5.17: Distributions of the χ2
i values above the 75th percentile of the detected

influential points detected, and shown in Figure 5.16 in black.

Figure 5.18 shows an additional advantage of using LISTA functions. Indeed,
their surfaces can be displayed and the different clustered structures of each individ-
ual point can be elicited. Of course, depending on the application, this can provide
useful information. It can be interesting to plot the LISTA functions of the influ-
ential points, providing information on the clustered structure of individual points.
Also, the degree of the identified clustered structure can be elicited and contextu-
alised in the application. In particular, Figure 5.18 depicts the LISTA functions of
the influential points, above the 95th percentile, detected and shown in Figure 5.16
as triangles. Under the Poisson case, we expect the K-function to take rh values.
In graphical terms, we expect the LISTA functions in Figure 5.18 to increase with
those two distances, namely, to have constantly increasing values, from bottom-left
to top-right. Points with different behaviour, such as the 41st, indicate that the lo-
cal structure around that point is somewhat deviating from the Poissonian case. In
particular, for that point, we expect neighbouring points to start grouping together
abruptly after a specific spatial distance. Overall, the temporal distance does not
seem to influence the local structure.

5.2.3 Application to traffic data

We analyse traffic accidents in the city of Medellin (Colombia), a dataset contain-
ing the locations of traffic accidents consisting of 1215 traffic accidents in 2019 in
downtown Medellin (see Figure 5.19).

We evaluate and compare an inhomogeneous intensity fitted with a kernel den-
sity with a constant one. Figure 5.20 depicts the distribution of the χ2

i statistics
computed for assessing the differences between the local LISTA functions on the
network and the theoretical expected value, weighted by an inhomogeneous inten-
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Figure 5.18: LISTA functions of the influential points, above the 95th percentile,
detected and shown in Figure 5.16 as triangles. From top to bottom: influential
points of the true intensity, the ETAS one, and the constant one.

sity, and by a constant one. Clearly, the inhomogeneous one seems to report a much
better fit.

We, therefore, separate the most influential points from the rest, retaining only
those who exhibit chi-squared values larger that the 99th percentile. We note in
Figure 5.21 that the two fitted intensities generally identify different influential
points. It is also possible to represent the individual LISTA functions and look at
the structures that are more clustered (Figure 5.22). We indeed can notice different
behaviours. For instance points 49 and 777 display a quite regular and common K-
function with the lowest values at the lowest spatial and temporal ranges. However,
other points display peculiar behaviours, with the largest values for some specific
spatial and temporal ranges. The same considerations can be drawn for the LISTA
functions weighted by the constant intensity (Figure 5.23).

So, on the one hand, the constant intensity is not appropriate and this means
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that an inhomogeneous intensity should be fitted to the data. Nevertheless, this
information could have been elicited from the inspection of the global statistics. On
the other hand, using LISTA functions has allowed identifying the most influential
points and this result could lead to a further study on those particular points. This
could be done by treating the point patterns as marked, considering some available
characteristics of the events. Then, visual inspection of the areas where most of the
influential points occur may guide further analysis of these spatio-temporal areas.
For instance, one could think of fitting a parametric intensity that accounts for some
characteristics of the network, by means of some available spatial covariates.

  xy−locations on linear network

2 4 6 8 10 12
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4000

6000

8000
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Figure 5.19: The dataset represents the spatio-temporal locations of traffic accidents
in the downtown of Medellin (Colombia) in the period of 2019. Left panel: The
projection of data onto the network. Right panel: The cumulative number of data
points versus occurrence time.

5.2.4 Conclusions

In this Section, we have extended Local Indicators of Spatio-Temporal Association
(LISTA) functions on a linear network to their inhomogeneous versions proposing
the inhomogeneous version of the local spatio-temporal K and pair correlation func-
tions on the networks, previously introduced. Through simulations, we have shown
that the LISTA functions are useful for the diagnostics of models specified on the
networks. We have proved, and also shown by simulations, that the proposed meth-
ods do not rely on any particular model assumption on the data, and thus they can
be applied to whatever the generator model of the process. Therefore, an appeal-
ing feature of the method is that it can be used for assessing the goodness-of-fit of
spatio-temporal point processes occurring on linear networks characterised by any
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Figure 5.20: Distributions of the χ2
i statistics computed for assessing the differ-

ences between the local LISTA functions on the network and the theoretical expected
value, for the Medellin dataset. Left panel: The LISTA functions are weighted by
an inhomogeneous intensity. Left panel: The LISTA functions are weighted by a
homogeneous intensity.

  Kernel   Constant

Figure 5.21: In black: Influential points for the Medellin dataset, identified as those
that exhibit chi-squared values larger than the 99th percentile. Left panel: The LISTA
functions are weighted by an inhomogeneous intensity. Left panel: The LISTA func-
tions are weighted by a homogeneous intensity.

first-order intensity function.

Given the growing availability of proposed models on the networks, we believe
that the proposed diagnostic approach could be of great interest. Just to cite some
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Figure 5.22: LISTA functions of the influential points associated to the inhomoge-
neous intensity, for the Medellin dataset.

recent works using this methodology, section 4.1 dealt with parametric intensity
specification of inhomogeneous first-order intensities on networks to analyse the
spatio-temporal distribution of visitors’ stops by touristic attractions in Palermo
(Italy). The authors fitted a Gibbs point process model with mixed effects for the
purely spatial component, as well as a spatio-temporal log-Gaussian Cox process,
adapting them to the underlying road network. Then, Gilardi et al. (2021) proposed
a spatio-temporal model to analyse the ambulance interventions that occurred in
the road network of Milan (Italy) from 2015 to 2017, adopting a non-separable
first-order intensity function, based on a Poisson regression model for the temporal
component, and a network kernel function for the spatial dimension. Finally, section
4.2 has taken into account the Self-Exciting behaviour of points, proposing a spatio-
temporal Hawkes point process model adapted to linear networks to analyse crime
data in Bucaramanga (Colombia).

We note that the LISTA functions can be used to fit the first-order intensity
function. This option is explored in chapter 7 of this thesis. Namely, summary
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Figure 5.23: LISTA functions of the influential points associated to the homogeneous
intensity, for the Medellin dataset.

statistics such as the K-function or the pair correlation function are commonly em-
ployed for some fitting procedures such as the minimum contrast for the estimation
of the correlation parameters of Cox processes. Considering the individual contri-
butions of such statistics could provide local estimates: see section 3.2 for a recent
application to local log-Gaussian Cox processes. Consequently, our proposed LISTA
functions could be used to fit intensities on linear networks, even though, to the
authors’ knowledge, no attempt has been made in this direction so far.



Chapter 6

Local characteristics of
functional marked point
processes and their application
to seismic data

Seismic events can be characterized both by the spatio-temporal hypocentre loca-
tions and by the seismic waveform associated to each event. To correctly detect the
arrival of the first P-wave, as well as to perform earthquake forecasting, it is crucial
to understand the nature of the generating event. Indeed, while the spatial (and
temporal) location of the epicentre of the earthquake is typically studied within the
theory of point processes, the seismic waveforms are commonly investigated through
Functional Data Analysis (FDA), for earthquake detection and characterization.

In this Section, we want to create a link between these sources of information,
relating all the knowledge of the available seismograms to the point pattern locations,
defining novel methods for earthquake analyses. This approach formally refers to
the theory of Functional Marked Point Processes (FMPPs).

In section 6.1, we first aim at constructing a test of random labelling using
the individual contributions of points into the summary statistics used to run the
test. This represents an interesting context of application where we would expect
waveforms (i.e. functional marks) to be similar to those of near points. Introducing
a local test would allow us to identify where this assumption holds or not.

We believe that some interesting research questions could be answered by the
analysis of the seismic phenomenon through the theory of FMPPs. With particular
reference to the test of random labelling, we could investigate the following: do the
waveforms and their characteristics depend on the spatial location? Are there some
areas where the above hypothesis does not hold?

The achievement of this unification of data and statistical tools would result in

169
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building a framework where it would be possible to exploit the available information
of the seismic phenomenon altogether, as well as use them in different contexts of
analysis also characterised by a similar structure in terms of the phenomenon and
available data.

Then, section 6.2 deals only with the functional aspect of seismic events and
proposed a novel statistical picking algorithm for detecting the arrival times of the
first P- and S-waves in a seismic waveform. The proposal is compared to a state-of-
the-art picking algorithm, namely the STA/LTA approach, and its performance is
further demonstrated through an application to real data.
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6.1 Local inhomogeneous weighted summary statistics
for marked point processes

D’Angelo, N., Adelfio, G., Mateu, J., and Cronie, O. (2022d). Local
inhomogeneous weighted summary statistics for marked point processes.
https: // arxiv. org/ abs/ 2208. 09233 Journal of Computational and
Graphical Statistics. Major revisions

The analysis of a point pattern, given as a collection of points in a region, typically
begins with computing an estimate of some summary statistic which may be used
to find specific structures in the data and suggest suitable models (Chiu et al., 2013;
Daley and Vere-Jones, 2007; Gelfand et al., 2010; Illian et al., 2008; Van Lieshout,
2000). The choice of the summary statistic depends both on the pattern at hand
and on the feature or hypothesis of interest.

A widely used summary statistic for descriptive analyses and diagnostics, which
is obtained as an instance of the so-called reduced second-moment measure (Cressie
and Collins, 2001; Chiu et al., 2013; Moller and Waagepetersen, 2003), is Ripley’s
K-function (Ripley, 1976), which is based on the assumption of a non-marked sta-
tionary and isotropic point process. In the marked case, assuming discrete marks
and stationarity, cross versions of the K- or nearest neighbour distance distribu-
tion functions have been proposed (Diggle, 2013). For real-valued marks, the mark
correlation type-functions in Penttinen and Stoyan (1989); Illian et al. (2008) are
widely used and such second-order statistics have been studied in more detail and
reformulated by Schlather (2001), in order to obtain a more rigorous formulation.
However, although the assumption of stationarity is mathematically appealing, un-
fortunately, it can rarely be justified in practice, where, mostly, the intensity tends
to change over the study region. This is to say that the underlying point process
is inhomogeneous and, in the unmarked case, Baddeley et al. (2000) proposed an
inhomogeneous extension of the K-function for a class of point processes, which
are referred to as second-order intensity-reweighted stationary. Their ideas were ex-
tended to spatio-temporal point processes in Gabriel and Diggle (2009); Møller and
Ghorbani (2012). Further, Moller and Waagepetersen (2003) proposed an exten-
sion of this K-function to second-order intensity-reweighted stationary multivariate
point processes. As indicated in Cronie and van Lieshout (2016); Iftimi et al. (2019),
this structure may be extended to K-functions for general marked point processes.
To analyse higher-order interactions in general stationary marked point processes,
Van Lieshout (2006) proposed marked versions of the nearest neighbour distance dis-
tribution functions, the empty space function and the J-function. These summary
statistics, which allow us to study spatial interactions between different mark group-
ings of the points, were later extended to the inhomogeneous setting by Cronie and

https://arxiv.org/abs/2208.09233
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van Lieshout (2016); Iftimi et al. (2019). In particular, to test for random labelling,
Cronie and van Lieshout (2016) proposed inhomogeneous Lotwick-Silverman-type
Monte Carlo tests based on their new summary statistics, while Iftimi et al. (2019)
proposed second-order Monte Carlo tests based on permuting the attached marks.
Further details on the random shift-type testing considered in Lotwick-Silverman-
type tests can be found in Mrkvička et al. (2021).

Despite the relatively long history of point process theory (see e.g. Diggle, 2013;
Stoyan and Stoyan, 1994; Daley and Vere-Jones, 2007), few approaches have been
proposed to analyse spatial point patterns where the features of interest are func-
tions/curves instead of qualitative or quantitative variables. Examples of point
patterns with associated functional data include forest patterns where for each tree,
we have a growth function, curves representing the incidence of an epidemic over
a period of time, and the evolution of distinct economic parameters such as un-
employment and price rates, all for distinct spatial locations. The study of such
configurations allows for analysing the effects of the spatial structure on individual
functions. Illian et al. (2006) consider for each point a transformed Ripley (1976)’s
K-function to characterise spatial point patterns of ecological plant communities,
whilst Mateu et al. (2007) build new marked point processes formed by spatial loca-
tions and curves defined in terms of Local Indicators of Spatial Association (LISA)
functions, which describe local characteristics of the points. They use this approach
to classify and discriminate between points belonging to a clutter and those belong-
ing to a feature. Finally, the idea of analysing point patterns with attached functions
has been presented coherently by Comas et al. (2011); Ghorbani et al. (2021).

Ghorbani et al. (2021) introduced a very broad framework for the analysis of
Functional Marked Point Processes (FMPPs), indicating how they connect the point
process framework with both Functional Data Analysis (FDA; Ramsay and Silver-
man (2002)) and geostatistics. In particular, they defined a new family of sum-
mary statistics, so-called weighted n-th order marked inhomogeneous K-functions,
together with their non-parametric estimators, which they exploited to analyse Span-
ish population structures, such as demographic evolution and sex ratio over time.
This summary statistic family can be used to run a Monte Carlo test of random
labelling, e.g. by means of global envelopes test (GET; Myllymäki et al. (2017)), to
assess whether the functional marks of the analysed pattern are spatially dependent.
However, this procedure is essentially global, since it does not provide information
on the points which mostly contributed to the rejection of the random labelling
hypothesis. Therefore, motivated by the need of detecting such points, and thus
the regions in which they are located, where the functional marks really do depend
on the surrounding structure, in this section we introduce a new class of summary
statistics, local t-weighted marked n-th order inhomogeneous K-functions. These
are used to propose a local test of random labelling. Here t refers to a function
which governs how much weight we put on different aspects of the marked point
process/pattern.
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Further, we use the developed tools to analyse seismic data. Note that while
the spatial (and temporal) locations of the epicentres of earthquakes are typically
analysed within the framework of point processes, the associated seismic waveforms
are commonly investigated in separate analyses through FDA. Applying the local
test allows us to identify where one would expect waveforms (i.e. functional marks)
to be similar to those of nearby points.

All the performed analyses are carried out through the R Core Team (2022)
software, and the codes are available from the first author. Preliminary data ma-
nipulation is performed through the software Python (Van Rossum and Drake Jr,
1995).

The structure of the section is as follows. In section 6.1.1, the motivation of this
work is presented, showing the dataset and problem that will be further analysed
along the section. Section 6.1.2 contains some preliminaries on functional marked
point processes. In section 6.1.3, we present our proposed local t-weighted n-th
order inhomogeneous K-functions and their main properties, also relating them to
their global counterparts. Section 6.1.4 outlines the main steps to run a local test
of random labelling. In section 6.1.5, we present a motivating example to show the
further advantages of a local test, compared to a global one. To have a comprehensive
understanding of the performance of the proposed local test, we show simulation
results under different scenarios. Section 6.1.6 provides an application to seismic
data. Finally, conclusions are drawn in section 6.1.7.

6.1.1 Data and motivation

Earthquakes’ detection provides a whole set of data which are usually studied sepa-
rately, i.e. spatial (and temporal) occurrence of points through point process theory
(Siino et al. (2017); Iftimi et al. (2019); D’Angelo et al. (2022g), to cite just a few
recent works), and the analysis of waveforms through FDA (Adelfio et al., 2011,
2012; Chiodi et al., 2013).

A recently released set of data on Italian seismic activity encompasses both of
these data types. The Italian seismic dataset for machine learning (INSTANCE)
is a dataset of seismic waveforms data and associated metadata (Michelini et al.,
2021), which includes 54008 earthquakes for a total of 1159249 3-channel wave-
forms. It also contains 132330 3-channel noise waveforms. For each of these wave-
forms, 115 metadata (i.e. statistical variables) are available, providing information
on the station, trace, source, path and quality. Overall, the data are collected
by 19 networks which consist of 620 seismic stations. The dataset is available on
http://www.pi.ingv.it/instance/.

The earthquake list in the dataset is based on the Italian seismic bulletin (http:
//terremoti.ingv.it/bsi) of the “Istituto Nazionale di Geofisica e Vulcanologia”,
includes events which occurred between January 2005 and January 2020, and in the
magnitude range between 0.0 and 6.5. The waveform data have been recorded

http://www.pi.ingv.it/instance/
http://terremoti.ingv.it/bsi
http://terremoti.ingv.it/bsi
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Figure 6.1: Top-left panel: Earthquake locations; Top-right panel: Seismic stations
used for waveforms extraction. The symbol sizes are proportional to earthquake mag-
nitude and the number of arrival phases recorded by stations, respectively; Bottom
panels: Seismic waveforms of some events with magnitude in the range [2, 4]. Source:
Michelini et al. (2021).

primarily by the Italian National Seismic Network. The top panels of Figure 6.1
depict the earthquake locations and the seismic stations which recorded the events.

In the bottom panels of Figure 6.1, some waveforms contained in the dataset are
represented. All the waveform traces have a length of 120 seconds, are sampled at
100 Hz, and are provided both in counts and ground motion physical units after de-
convolution of the instrument transfer functions. Details on this filtering procedure
are found in Michelini et al. (2021). The waveform dataset is accompanied by meta-
data consisting of more than 100 variables providing comprehensive information on
the earthquake source, the recording stations, the trace features, and other derived
quantities.
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6.1.2 Preliminaries on marked point processes

Throughout the section, we consider a marked point processe Y = {(xi,mi)}Ni=1

(Daley and Vere-Jones, 2007, Definition 6.4.1), with ground points xi in the d-
dimensional Euclidean space Rd, d ≥ 1, which is equipped with the Lebesgue mea-
sure |A| =

∫
A dz for Borel sets A ∈ B(Rd). A closed Euclidean r-ball around

x ∈ Rd will be denoted by b[x, r]. By definition, the ground process Yg = {xi}Ni=1,
obtained from Y by ignoring the marks, is a well-defined point process on Rd in
its own right. We shall assume that Y is simple, that is, it almost surely (a.s.)
does not contain multiple points. Note that, formally, Y is a random element
in the measurable space (Nlf ,N ) of locally finite point configurations/patterns
x = {((x1,m1), . . . , (xn,mn))}, n ≥ 0 (Daley and Vere-Jones, 2007; Van Lieshout,
2000). We assume that the mark space M is Polish and equipped with a finite
reference measure ν on the Borel σ-algebra B(M). The Borel σ-algebra B(Rd ×
M) = B(Rd) ⊗ B(M) is endowed with the product measure A × E 7→ |A|ν(E),
A× E ∈ B(Rd ×M). We will let Y (A× E) =

∑
(x,m)∈Y 1{(x,m) ∈ A× E}, where

1 is the indicator function, denote the cardinality of the random set Y ∩ (A× E).

Given this general setup, one may obtain various forms of marked point processes,
most notably multivariate/multitype point processes with M = {1, . . . , k} (Diggle,
2013) and functional marked point processes with M given by a suitable function
space (Ghorbani et al., 2021).

6.1.2.1 Functional Marked Point Processes

In this section, we provide the definition of functional marked point processes fol-
lowing Ghorbani et al. (2021).

In classical FDA, one analyses a collection of functions {f1(t), . . . , fn(t)}, t ∈
T ⊂ [0,∞), n ≥ 1, which take values in some Euclidean space Rk, k ≥ 1, and
belong to some suitable function space, typically an L2-space. Although t usually
represents time, it could also represent some other quantity, for example, spatial
distance. Classically, one would assume that such a collection of functions constitute
realisations or samples {F1(t), . . . , Fn(t)}, t ∈ T of some collection of independent
and identically distributed (iid) random functions or stochastic processes F1, . . . , FN .
Such an assumption may, however, be questioned in certain settings. For example,
two functions fi and fj , which are spatially close to each other in Rk, could gain
(or lose) from being close to each other. Accordingly, it seems natural to relax
the iid assumption for F1, . . . , FN . A natural way to handle such a scenario is to
generate F1, . . . , FN conditionally on some collection of (dependent) random spatial
locations. Note that the conditional distribution of F1, . . . , FN could render them
either dependent or independent. Moreover, note that we assume to work with some
fully observed functions at an arbitrarily dense grid. This setting is often unrealistic,
but mathematically convenient.
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To facilitate such a setting, we consider a functional marked point process (Ghor-
bani et al., 2021), which is defined as a marked point process where the marks are
random elements in some (Polish) function space,M, most notably the space of L2-
functions f : T → Rk. Realisations of FMPPs are called functional marked point
patterns. It is noteworthy that the original formal construction of functional marked
point processes by Ghorbani et al. (2021) also included an additional non-functional
mark so that each ground process point would be marked by a pair which consists
of a function and a non-functional variable. We here do not consider such auxiliary
non-functional marks.

6.1.2.2 Product densities

Provided that it exists, the n-th order intensity/product density function ρ(n), n ≥
1, which is the density of the n-th order factorial moment measure α(n), may be
specified through the n-th order Campbell formula. It states that, for any non-
negative measurable function h on (Rd ×M)n, the expectation of the random sum
of h over n-tuples of distinct points of Y satisfies

E

 6=∑
(x1,m1),...,(xn,mn)∈Y

h((x1,m1), . . . , (xn,mn))

 =

=

∫
· · ·
∫
h((x1,m1), . . . , (xn,mn))ρ(n)((x1,m1), . . . , (xn,mn))

n∏
i=1

dxiν(dmi).

(6.1)

Heuristically, ρ(n)((x1,m1), . . . , (xn,mn))dx1ν(dm1) · · · dxnν(dmn) gives the prob-
ability that Y has points in infinitesimal neighbourhoods d(xi,mi) 3 (xi,mi) ∈
Rd ×M with measures dxiν(dmi), i = 1, . . . , n. Moreover, we retrieve α(n)((A1 ×
E1)× · · · × (An ×En)), (Ai ×Ei) ∈ B(Rd ×M), i = 1, . . . , n, by letting h be given
by the indicator function 1{(x1,m1) ∈ (A1 × E1), . . . , (xn,mn) ∈ (An × En)}. It
further follows that

ρ(n)((x1,m1), . . . , (xn,mn)) = fx1,...,xn(m1, . . . ,mn)ρ(n)
g (x1, . . . , xn),

where ρ
(n)
g is the n-th order product density of Yg and fx1,...,xn(·) is a conditional

density function on Mn which governs the joint distribution of n marks, given that
their associated ground process points are given by x1, . . . , xn ∈ Rd. These, in turn,
yield the corresponding mark distributions

Mx1,...,xn(E1, . . . , En) =

∫
E1

· · ·
∫
En

fx1,...,xn(m1, . . . ,mn)

n∏
i=1

ν(dmi),

which govern the joint distribution on n marks, given the associated ground process
locations.
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The intensity measure of Y , which coincides with the first-order factorial moment
measure, here satisfies

α(A× E) =E[Y (A× E)] =

∫
A

∫
E
ρ(x,m)dxν(dm)

=

∫
A

∫
E
fx(m)ρg(x)dxν(dm) =

∫
A
Mx(E)ρg(x)dx, (6.2)

where the first order intensity functions ρ = ρ(1) and ρg = ρ
(1)
g are typically referred

to as the intensity functions of Y and Yg. Note that ρ may be viewed as a “heat
map” which reflects the infinitesimal chance of having a point of Y at/around an
arbitrary location in Rd ×M. When the intensity function (of the ground process)
is constant, we say that the (ground) process is homogeneous, otherwise, it is called
inhomogeneous.

When conditional on the ground process, all marks have the same marginal uni-
variate distribution, so that M z(E) =

∫
E fz(m)dν(dm) =

∫
E f(m)dν(m) = M(E),

we say that X has a common (marginal) mark distribution. This holds e.g. when Y
is stationary, i.e. when its distribution is invariant under translations of the ground
points. Here α(A × E) = ρgM(E)|A| and ρg > 0 is the constant intensity of the
ground process. We will see that, at times, it is particularly convenient to have
here that the reference measure ν coincides with the common mark distribution M ,
which implies that the common mark density f is set to 1 and ρ(x,m) = ρg(x).

When Y is independently marked, i.e. when the marks are independent condi-
tional on the ground process, fx1,...,xn(m1, . . . ,mn) = fx1(m1) · · · fxn(mn) for any
n ≥ 1 and if, in addition, there is a common mark distribution, whereby the marks
are iid conditional on the ground process, we say that Y is randomly labelled and
note that fx1,...,xn(m1, . . . ,mn) = f(m1) · · · f(mn).

6.1.2.2.1 Intensity reweighted stationarity We next turn to the notion of a
k-th order marked intensity reweighted stationary (k-MIRS) marked point process
Y (Ghorbani et al., 2021). We say that Y is k-MIRS, k ∈ {1, 2, . . .}, if ρ is bounded
away from 0 and the correlation functions

g(n)((x1,m1), . . . , (xn,mn)) =

=
ρ(n)((x1,m1), . . . , (xn,mn))

ρ(x1,m1) · · · ρ(xn,mn)
=
fx1,...,xn(m1, . . . ,mn)

fx1(m1) · · · fxn(mn)

ρ
(n)
g (x1, . . . , xn)

ρg(x1) · · · ρg(xn)
, n ≥ 1,

satisfy g(n)((x1,m1), . . . , (xn,mn)) = g(n)((z + x1,m1), . . . , (z + xn,mn)) for any
z ∈ Rd and any n ≤ k. Note that g(1)(·) ≡ 1 and that the second ratio on the

right-hand side is the n-th order correlation function, g
(n)
g , of the ground process.

Provided that the product densities of all orders exist, stationarity implies k-MIRS
for all orders k ≥ 1. Note further that g(n)(·) ≡ 1, n ≥ 1, for a Poisson process
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and when g(n)((x1,m1), . . . , (xn,mn)) > 1 points of Yg in infinitesimal neighbour-
hoods of x1, . . . , xn with marks in infinitesimal neighbourhoods of m1, . . . ,mn tend
to cluster/aggregate. Similarly, g(n)((x1,m1), . . . , (xn,mn)) < 1 indicates inhibi-
tion/regularity.

6.1.2.3 Palm distributions

Let Y be a simple marked point process whose intensity function exists. Many of
the summary statistics we will consider can be expressed in terms of reduced Palm
distributions. These satisfy the reduced Campbell-Mecke formula which states that,
for any non-negative measurable function h on the product space (Rd ×M)×Nlf ,

E

 ∑
(z,m)∈Y

h((z,m), Y \{(z,m)})

 =

∫
E[h((x,m), Y !(x,m))]ρ(x,m)dxν(dm) (6.3)

=

∫
E!(x,m)[h((x,m), Y )]ρ(x,m)dxν(dm).

Here Y !(x,m) is the reduced Palm process at (x,m) ∈ Rd×M, which we interpret as
Y conditioned on the null event that there is a point in (x,m), which is removed upon
realisation. The probability distribution P !(x,m)(·) = P!(x,m)(Y ∈ ·) = P(Y !(x,m) ∈ ·)
on (Nlf ,N ), which corresponds to E!(x,m), is called the reduced Palm distribution
at (x,m).

6.1.3 Local weighted marked summary statistics

Global summary statistics have had a prominent role in the statistical analysis of
point processes. More precisely, their non-parametric estimators are typically used
to characterise the degree of spatial interaction present in the underlying data-
generating point process. In section 6.1, we have reviewed a few such examples, for
instance, K-functions.

The individual contributions to a global statistic, which are commonly called
Local Indicators of Spatial Association (LISA) functions, can be used to identify
outlying components measuring the influence of each contribution to the global
statistic (Anselin, 1995). This is the case of the scatter plot based on the local Moran
index (Anselin, 1996). On the other hand, individual contributions can be used to
test for specific local structures, such as spatial association and hot spot detection
in areal data (Getis and Ord, 1992). Basically, the local statistics mentioned so far
are often used to analyse areal data but Getis and Franklin (1987) introduced a
local version of the K-function for spatial point processes to show that trees exhibit
different kinds of heterogeneity when examined at different scales of analysis. The
notion of individual functions for certain statistics has also been studied in Stoyan
and Stoyan (1994) and Mateu et al. (2010) showed that the local product density
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function (Cressie and Collins, 2001) is more sensitive to identifying different local
structures and unusual points than the local K-function. Applications of LISA
functions range from the detection of features in images with noise (Mateu et al.,
2007) to the detection of disease clusters (Moraga and Montes, 2011). In Siino et al.
(2018b) the authors extend local indicators of spatial association to the spatio-
temporal context (LISTA functions) based on the second-order product density, and
these local functions have been used to define a proper statistical test for clustering
detection. Recently, LISTA functions have been used both for diagnostic (Adelfio
et al., 2020) and fitting purposes (D’Angelo et al., 2022c). Finally, D’Angelo et al.
(2021b) extended LISTA functions to spatio-temporal point processes living on linear
networks.

As we have clearly indicated, an alternative to studying the aforementioned
global summary statistics for marked point processes is considering local summary
statistics which describe the spatial interaction in the vicinity of a given marked
point. In order to do so here in the marked context, we introduce the function

L((x,m),x) = Ln((x,m),x; t̃, ρ̃) = (6.4)

=

6=∑
(x1,m1),...,(xn−1,mn−1)∈x

t̃((x,m), (x1,m1), . . . , (xn−1,mn−1))

ρ̃(x,m)ρ̃(x1,m1) · · · ρ̃(xn−1,mn−1)
,

for (x,m) ∈ Rd×M, point pattern x ∈ Nlf and measurable t̃ : (Rd×M)n → R, n ≥
2. Note that, formally, the argument ρ̃ does not need to be the true intensity function
ρ of Y , it could e.g. be a plug-in estimator. We will exploit Definition 6.1, and thereby
(6.4), to define proper notions of (mark-weighted n-th order inhomogeneous) local
summary statistics.

Definition 6.1. Given a marked point process Y , we refer to the family of n-th
order local marked cumulative summary statistics of Y associated with t̃ and ρ̃, as
L((x,m), Y \ {(x,m)}; t̃, ρ̃), (x,m) ∈ Y .

The construction of a specific local statistic is obtained by identifying when, for
some function family {t̃r},

G(r, Y ) =
∑

(x,m)∈Y

Ln((x,m), Y \ {(x,m)}; t̃r, ρ̃) (6.5)

forms an estimator of an existing global summary statistic.

Using n-th order local marked cumulative summary statistics to quantify local
spatial interactions for a point pattern x entails inserting an estimate ρ̂(x,m) =
f̂z(m)ρ̂g(x) for the unknown intensity ρ(x,m) = fz(m)ρg(x), i.e. setting ρ̃ = ρ̂.
When we assume that there is a common mark distribution which coincides with the
mark reference measure ν, we obtain that ρ̂(x,m) = ρ̂g(x), i.e. the intensity estimate
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does not depend on the mark values. Imposing this assumption is particularly
convenient when dealing with functional marks since the estimation of the mark
density, which here is a density on a function space, is rather challenging and beyond
the scope of this work. Note that when Y is randomly labelled, it has a common
mark distribution and in this setting the assumption ρ̂(x,m) = ρ̂g(x) thus makes
sense.

Turning to the distributional properties of the n-th order local marked cumulative
summary statistics, we next derive their expectations under the assumption of k-
MIRS. Note, in particular, that the choice of t̃ plays a significant role here.

Theorem 6.1. When Y is k-MIRS and ρ̃ = ρ, for any W ∈ B(Rd) the expectation
of L((x,m), Y \ {(x,m)}∩W ×M; t̃, ρ), (x,m) ∈ Y ∩W ×M, is almost everywhere
given by

∫
W−x

· · ·
∫
W−x

(∫
M
· · ·
∫
M
t̃((x,m), (x1 + x,m1), . . . , (xn−1 + x,mn−1))×

×
f0,x1,...,xn−1(m,m1, . . . ,mn−1)

f0(m)fx1(m1) · · · fxn−1(mn−1)
ν(dm1) · · · ν(dmn−1)

)
×

× g(n)
g (0, x1, . . . , xn−1)dx1 · · · dxn−1,

when 2 ≤ n ≤ k. Moreover, the expectation of G(r, Y ∩ W ×M) is obtained by
replacing t̃ by t̃r in the expression above and integrating it over W ×M with respect
to the reference measure on Rd ×M.

Proof. Note first that the expectation coincides with

E!(x,m)[Ln((x,m), Y ∩W ×M; t̃, ρ)] =

=E!(x,m)

 6=∑
(x1,m1),...,(xn−1,mn−1)∈Y ∩W×M

t̃((x,m), (x1,m1), . . . , (xn−1,mn−1))

ρ(x,m)ρ(x1,m1) · · · ρ(xn−1,mn−1)

 .
Hence, our starting point will be the reduced Campbell-Mecke formula. Consider
an arbitrary bounded A× E ∈ B(Rd ×M). It follows that

E

 ∑
(x,m)∈Y ∩A×E

6=∑
(x1,m1),...,(xn−1,mn−1)∈Y \{(x,m)}∩W×M

t̃((x,m), (x1,m1), . . . , (xn−1,mn−1))

ρ(x,m)ρ(x1,m1) · · · ρ(xn−1,mn−1)

 =

=

∫
A×E

E!(x,m)

 6=∑
(x1,m1),...,(xn−1,mn−1)∈Y ∩W×M

t̃((x,m), (x1,m1), . . . , (xn−1,mn−1))

ρ(x1,m1) · · · ρ(xn−1,mn−1)

dxν(dm).
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On the other hand, by the Campbell formula, we have that

E

 ∑
(x,m)∈Y ∩A×E

6=∑
(x1,m1),...,(xn−1,mn−1)∈Y \{(x,m)}∩W×M

t̃((x,m), (x1,m1), . . . , (xn−1,mn−1))

ρ(x,m)ρ(x1,m1) · · · ρ(xn−1,mn−1)

 =

=

∫
A×E

∫
Rd×M

· · ·
∫
Rd×M

1{x1, . . . , xn−1 ∈W}t̃((x,m), (x1,m1), . . . , (xn−1,mn−1))×

× g(n)((x,m), (x1,m1), . . . , (xn−1,mn−1))dx1ν(dm1) · · · dxn−1ν(dmn−1)dxν(dm)

=

∫
A×E

∫
Rd×M

· · ·
∫
Rd×M

n−1∏
i=1

1{ui ∈W − x}t̃((x,m), (u1 + x,m1), . . . , (un−1 + x,mn−1))×

× g(n)((0,m), (u1,m1), . . . , (un−1,mn−1))du1ν(dm1) · · · dun−1ν(dmn−1)dxν(dm)

by the imposed k-MIRS and a change of variables, ui + x = xi. Hence, since
A× E ∈ B(Rd ×M) was arbitrary, for almost every (x,m) we have that

E!(x,m)[Ln((x,m), Y ; t̃, ρ)] =

=

∫
(W−x)×M

· · ·
∫

(W−x)×M
t̃((x,m), (u1 + x,m1), . . . , (un−1 + x,mn−1))×

× g(n)((0,m), (u1,m1), . . . , (un−1,mn−1))du1ν(dm1) · · · dun−1ν(dmn−1)

=

∫
W−x

· · ·
∫
W−x

(∫
M
· · ·
∫
M
t̃((x,m), (u1 + x,m1), . . . , (un−1 + x,mn−1))×

×
f0,u1,...,un−1(m,m1, . . . ,mn−1)

f0(m)fu1(m1) · · · fun−1(mn−1)
ν(dm1) · · · ν(dmn−1)

)
×

× g(n)
g (0, u1, · · · , un−1)du1 · · · dun−1,

by Fubini’s theorem.

The first thing we note is that when Y is independently marked than the density
ratio in the expression for the expectation vanishes. In addition, if Y is a Poisson
process on Rd×M which satisfies being a marked point process with mark spaceM,
then the expectation reduces to an integral with t̃ as integrand. These observations
may be used as benchmarks for when Y exhibits mark (in)dependence and spatial
interaction locally.

6.1.3.1 Special cases

We next illustrate how (6.5), through Definition 6.1 and (6.4), reduces to several
existing summary statistic estimators by varying t̃ and ρ̃.
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6.1.3.1.1 Ground K -functions First, set n = 2 and t̃ to t̃r((x,m), (x1,m1)) =

w(x, x1)1{x1 ∈ x + C}/|W |, r ≥ 0, where W ⊆ Rd, |W | > 0, and w(·) is an
edge correction term. If the ground process is stationary with intensity ρg > 0
and ρ̃(x,m) ≡ ρg, then (6.5) with Y set to Y ∩W ×M reduces to an estimator
of Ripley’s K-function when x + C = x + b[0, r] = b[x, r] whereas if the ground
process is inhomogeneous and we set ρ̃(x,m) = ρg(x), it follows that (6.5) reduces
to an estimator of the inhomogeneous K-function (Baddeley et al., 2000) for Yg.
The extension to space-time is straightforward: replace the Euclidean ball b[0, r] by
C = {(x, s) : ‖x‖ ≤ r, |s| ≤ t} ∈ B(Rd+1), where ‖ · ‖ denotes the Euclidean norm
(Cronie and Van Lieshout, 2015; Gabriel and Diggle, 2009; Iftimi et al., 2019).

6.1.3.1.2 Marked K -functions When n = 2, if we let t̃r((x,m), (x1,m1)) =
w(x, x1)1{x1 ∈ x+C}1{m ∈ E,m1 ∈ E1}/(|W |ν(E)ν(E1)) and ρ̃ = ρ in (6.4), using
a suitable edge correction function w(·), then G(r, Y ∩W×M) in (6.5) reduces to an
estimator of the marked second-order reduced moment measure KEE1(C) of Iftimi
et al. (2019), which measures the intensity reweighted interactions between points
with marks in E and points with marks in E1, when their separation vectors belong
to C ∈ B(Rd). We note that measures of this kind are in general not symmetric, i.e.
KEE1(·) 6= KE1E(·) (Iftimi et al., 2019). Furthermore, choosing C to be the closed
origin-centred ball b[0, r] of radius r ≥ 0, we consider the marked inhomogeneous
K-function KEE1

inhom(r) of Cronie and van Lieshout (2016), which measures pairwise
intensity reweighted spatial dependence within distance r between points with marks
in E and points with marks in E1.

By additionally letting n > 2, we obtain a definition of a marked n-th order
reduced moment measure, KE×

n−1
i=1 Ei(C1 × · · · × Cn−1), which measures the inten-

sity reweighted spatial interaction between an arbitrary point with mark in E and
distinct (n − 1)-tuples of other points, where the separation vectors between the
E-marked point and these n− 1 points, which have marks in E1, . . . , En−1, belong
to C1, . . . , Cn−1. We note that Ci = b[0, r], i = 1, . . . , n− 1, r ≥ 0, yields an n-point

version of the marked inhomogeneous K-function K
E×n−1

i=1 Ei
inhom (r) of Cronie and van

Lieshout (2016), which may be used to analyse intensity reweighted interactions be-
tween a point with mark in E and n− 1 of its r-close neighbours, which have marks
belonging to the respective sets E1, . . . , En−1.

6.1.3.1.3 Weighted marked reduced moment measures and K -functions
Finally, by letting ρ̃ = ρ and t̃((x,m), (x1,m1), . . . , (xn−1,mn−1)) be given by the
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product of

t̃(m,m1, . . . ,mn−1) =t(m,m1, . . . ,mn−1)
1{m ∈ E}
ν(E)

n−1∏
i=1

1{mi ∈ Ei}
ν(Ei)

, (6.6)

w̃(x, x1, . . . , xn−1) =w(x, x1, . . . , xn−1)

n−1∏
i=1

1{xi ∈ (x+ Ci)},

for E ∈ B(M), ν(E) > 0, and Ci × Ei ∈ B(Rd) × B(M) = B(Rd ×M), ν(Ei) > 0,

i = 1, . . . , n − 1, we obtain an unbiased estimator K̂E×
n−1
i=1 Ei

t (C1 × · · · × Cn−1) =
G(r, Y ∩W ×M) of the t-weighted marked n-th order reduced moment measure of
Ghorbani et al. (2021),

KE×
n−1
i=1 Ei

t (C1 × · · · × Cn−1) =
1

|W |ν(E)
∏n−1
i=1 ν(Ei)

× (6.7)

× E

[ ∑
(x,m)∈Y ∩W×E

6=∑
(x1,m1),...,(xn−1,mn−1)∈Y \{(x,m)}

t(m,m1, . . . ,mn−1)

ρ(x,m)
×

×
n−1∏
i=1

1{xi − x ∈ Ci}1{mi ∈ Ei}
ρ(xi,mi)

]
assuming that the edge correction function w is such that unbiasedness holds. Ex-
amples of such w include the minus sampling edge correction and the translational
edge correction (Ghorbani et al., 2021). Note here that one just as well could have
merged the scaled indicators in the expression for t̃ with t so that t̃ = t. Ghorbani
et al. (2021) included this mark set filtering to highlight that their summary statistic
generalises previously proposed ones.

6.1.3.2 Local t-weighted nth-order marked inhomogeneous K-function

In this section, we provide the estimator corresponding to the local contributions of
(6.7) and discuss its properties.

Definition 6.2. Let t̃ be (up to indicator-scaling) as in (6.6) and consider

K̂(x,m)×n−1
i=1 Ei

t (C1 × · · · × Cn−1) = Ln((x,m), Y \ {(x,m)} ∩W ×M; t̃, ρ̃) =

=
1

ρ̃(x,m)ν(E)
∏n−1
i=1 ν(Ei)

6=∑
(x1,m1),...,(xn−1,mn−1)∈Y \{(x,m)}∩W×M

w(x, x1, . . . , xn−1)×

× t(m,m1, . . . ,mn−1)

n−1∏
i=1

1{xi − x ∈ Ci}1{mi ∈ Ei}
ρ̃(xi,mi)

, (x,m) ∈ Y ∩W ×M,

(6.8)
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for some suitable edge correction w in (6.6), W ∈ B(Rd), E ∈ B(M), ν(E) > 0, and

Ci × Ei ∈ B(Rd ×M), ν(Ei) > 0, i = 1, . . . , n − 1.We refer to K̂(x,m)×n−1
i=1 Ei

t (r) =

K̂(x,m)×n−1
i=1 Ei

t (b[0, r]n−1), r ≥ 0, as a local t-weighted marked n-th order inhomoge-

neous K-function. In particular, K̂(x,m)
t,n (r) = K̂(x,m)×Mn−1

t (r) does not perform any
explicit mark set filtering.

Note first that when there is a common mark distribution which coincides with
the reference measure on M, setting ρ̃ = ρ we, for instance, obtain

K̂(x,m)
t,n (r) =

=

6=∑
(x1,m1),...,(xn−1,mn−1)∈Y \{(x,m)}∩(b[x,r]∩W )×M

t(m,m1, . . . ,mn−1)w(x, x1, . . . , xn−1)

ρg(x)ρg(x1) · · · ρg(xn−1)

since ν must be a probability measure here.
Regarding the distributional properties of (6.8), when Y is k-MIRS, Theorem

6.1 tells us that the expectation is given by

1

ν(E)

n−1∏
i=1

1

ν(Ei)

∫
Rd
· · ·
∫
Rd
w(x, x1 + x, . . . , xn−1 + x)

n−1∏
i=1

1{xi ∈ (x+ Ci) ∩ (W − x)}×

×

(∫
E1

· · ·
∫
En−1

t(m,m1, . . . ,mn−1)
f0,x1,...,xn−1(m,m1, . . . ,mn−1)

f0(m)fx1(m1) · · · fxn−1(mn−1)
ν(dm1) · · · ν(dmn−1)

)
×

×g(n)
g (0, x1, . . . , xn−1)dx1 · · · dxn−1.

In particular, under independent marking the mark-related integral within brack-
ets reduces to

∫
E1
· · ·
∫
En−1

t(m,m1, . . . ,mn−1)ν(dm1) · · · ν(dmn−1), whereby (6.8) is
given by the product of this term and a term measuring intensity reweighted spatial
interaction.

6.1.3.2.1 Test functions for FMPPs Turning to the FMPP case, by choos-
ing different test functions t(·) for the functional marks, we may extract different
features. We here focus on pairwise interactions, i.e. n = 2.

The test function t is intended to reflect similarities between functions. Hence, a
natural starting point would be a metric t(f1, f2) = d(f1, f2) on the function space
M, which does not necessarily need to be the underlying assumed metric on M.
The first candidate that comes to mind is an Lp-distance:

t(f1, f2) =

(∫ b

a
|f1(t)− f2(t)|pdt

)1/p

, 1 ≤ p ≤ ∞, (6.9)

where p = ∞ represents the supremum metric. For any choice of p in (6.9), simi-
larity between functions implies a small value of the test function. Other tentative
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functions are semi-metrics based on the Lp distance between the s-th derivatives of
the functions, for different combinations of p and s, with the L1 and L2 distances
being particular cases, and semi-metrics based on functional principal component
analysis.

A further alternative is the functional marked counterpart of the test function
for the classical variogram, given by

t(f1, f2) =

∫ b

a
(f1(t)− F̄ (t))(f2(t)− F̄ (t))dt, (6.10)

with F̄ (t) = (1/n)
∑n

i=1 fi(t) being the average functional mark at time t for the
observed functional part of the point pattern. Such averaging is motivated by the
assumption of a common mark distribution.

6.1.4 Local test for random labelling

Simple hypotheses for spatial point patterns, such as Complete Spatial Randomness,
are commonly tested using an estimator of a global summary statistic, e.g., Ripley’s
K-function. In this context, one typically resorts to Monte Carlo testing. The first
step is then to generate Q simulations under the null hypothesis, and to estimate
the chosen summary statistic for both the observed pattern and the simulations.
In order to study whether there is random labelling in a (functional) marked point
process, the simulations are obtained by permuting the (functional) marks, that is,
randomly assigning them to the spatial points of the ground pattern, which are kept
fixed. Then, the chosen summary statistic is estimated for each of these permuta-
tions and global envelopes at a given nominal level are generated based on them.
The result of the test can be assessed graphically: if the summary statistic estimate
for the observed pattern exits the envelopes, we proceed with the assumption that
the underlying FMPP is not randomly labelled. Furthermore, it is possible to calcu-
late a p-value based on the position of the observed summary statistic within the qth
envelopes, following Myllymäki et al. (2017). We know, however, that the conclu-
sion drawn from the application of the above-mentioned global test pertains to the
whole analysed process, indicating whether all the functional marks are randomly
labelled or not. Motivated by the will to further detect the specific points, and
regions, where the functional marks really do depend on the other marked points,
we propose a local test for random labelling. The main idea is to run a global enve-
lope test on each point of the analysed pattern by means of the previously proposed
local t-weighted marked inhomogeneous K-functions, to draw different conclusions
about the individual points, based on the obtained p-values. In Algorithm 1 we out-
line the proposed local test. Note that we alternatively may use sampling without
replacement in step 5 of Algorithm 1.
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Algorithm 1 Local test of random labelling

1: Set a fixed nominal value α for type I error;
2: Consider a (functional) marked point pattern x = {(xj ,mj)}kj=1, k ≥ 1;
3: Set a number of simulations, Q ≥ 1;
4: for each q = 1, . . . , Q: do
5: Randomly sample k (functional) marks, with replacement, from the original
k ones;

6: Denote the resulting point pattern by xq = {(xj ,mq
j)}kj=1;

7: end for
8: for each j = 1, . . . , k, do

9: Compute L
(j,q)
n = {K̂

(xj ,m
q
j )×

n−1
i=1 Ei

t (r; xq)}r∈[0,rmax] for all q = 1, . . . , Q;

10: Apply global envelope testing, using the functions L
(j,q)
n , q = 1, . . . , Q, to

generate the envelopes;
11: Obtain a p-value pj from the test;
12: Reject the null hypothesis for the jth point if pj ≤ α.
13: end for

6.1.5 Motivating example and simulation study

This section is dedicated to simulation studies to assess the performance of our
proposed local test. First, section 6.1.5.1 provides a motivating example of the use
of such a test, by means of simulated data resembling seismic events, which in turn
have motivated this work. In particular, this means simulating the functional marks
as seismic waveforms, following the typical abrupt change in variance of the signal
in correspondence with the arrivals of the first P- and S-waves. Then, section 6.1.5.2
presents an extensive simulation study, showing diverse and more general settings.
Specifically, we assess the performance of the test by summarising the results in
terms of classification rates.

6.1.5.1 The need for a local test

We simulate a homogeneous spatial point pattern with 250 points on the unit square,
W = [0, 1] × [0, 1], which represents the ground pattern. For each ground point xi,
we simulate a functional mark of the form

fi(t) =y(t) = µ(t) + ε(t), t ∈ T = [0, 1],

ε(t) ∼N(0, σ(t)2),

σ(t)2 =0.2 + 7.51{t > 0.4} − 51{t > 0.6},

where the mean signal µ(t) is taken to be zero.
The spatial ground point pattern and the corresponding waveform for a given

point are shown in Figure 6.2(a)-(b). Since the marks/waveforms are simulated from
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the same model, and independently of each other and the spatial locations of the
points, we see that such a process is indeed randomly labelled.
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Figure 6.2: Simulated earthquake locations (a); Simulated waveform attached to the
red point on the left (b); Result of the global test (c).

Having generated the data, we first run a global envelope test for random labelling,
by randomly permuting the simulated waveforms, i.e. the functional marks, keeping
the location of the points fixed. We run the test by means of the t-weighted marked
n-th order inhomogeneous K-function of Ghorbani et al. (2021), with n = 2, making
it a second-order summary statistic, and t given by the test function (6.10), i.e. the
functional marked counterpart of the test function for the classical variogram. As
previously mentioned, we assume that there is a common mark distribution which
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coincides with the reference measure on the mark space so that the intensity function
is estimated by the ground process intensity estimate. To be as objective as possi-
ble, we do not use the homogeneous intensity estimator ρ̂g(·) = Yg(W )/|W | here but
instead we use a kernel intensity estimator, as in practice it would be unknown to us
whether the actual ground process is (in)homogeneous. We use a Gaussian kernel
intensity estimator ρ̂g(·), where we select the bandwidth, h, according to Cronie and
Van Lieshout (2018). More specifically, we minimise the discrepancy between the
area of the observation window and the sum of reciprocal estimated intensity values
at the points of the point pattern, i.e. we minimise CvL(h) = (|W |−

∑
i 1/ρ̂g(xi;h))2,

where the sum is taken over all the data points xi and ρ̂g(xi;h) is the kernel inten-
sity estimate with bandwidth h, evaluated in xi. Then, once the bandwidth has
been selected, the intensity estimate is corrected for edge effects through global
edge correction (the option diggle=FALSE in the spatstat function density.ppp),
i.e. dividing the estimate by the convolution of the Gaussian kernel with the window
of observation (Diggle, 1985). Finally, for w we use Ripley’s isotropic edge correction
in the summary statistic to correct for edge effects. We repeated the procedure 39
times, obtaining the result depicted in Figure 6.2(c). We stress that our approach
seems to be robust with respect to the bandwidth specification, i.e. the choice of
bandwidth selection approach plays a minor role in the final result.

As evident from Figure 6.2(c), the observed summary statistic completely lies
within the envelopes, and this confirms the expected result of lack of spatial depen-
dence/structure of the functional marks. This result is further corroborated by the
non-significant p-value, equal to 0.1.

6.1.5.1.1 Simulating spatially dependent functional marks To make the
functional marks spatially dependent, we then superimpose a homogeneous spatial
point pattern with 50 points, generated in the [0, 0.5] × [0, 0.5] square, i.e. the
bottom left region of the entire study region W . For these additional points, we
generate different functional marks than before, namely with the underlying trend
µ(t) = 10 + 6 sin(3πzt). Consequently, we have simulated an FMPP with spatially
varying functional marks, i.e. not random labelled. We, therefore, expect a global
test of random labelling to confirm this.

We first run the same global test of random labelling as before. We use Q = 39
and obtain a global p-value of 0.025. This, together with the observed K-function
lying outside the envelopes (Figure 6.3(a)), indicates the ability of the global test to
correctly detect the spatial dependence of the functional marks.

We know, however, that this conclusion should not be drawn for each point
of the pattern if we consider local restrictions of it, but specifically for those in
the vicinity of the [0, 0.5] × [0, 0.5] square. We, therefore, proceed by running our

proposed local test, based on the proposed second-order local K-function K̂(x,m)
t,2 (r),

r ∈ [0, rmax], in Definition (6.2), with the same choice of test function t(·) and the
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Figure 6.3: Result of global test for the spatially dependent simulated data (a); Out-
put of the local test: significant points for which the hypothesis of random labelling
is rejected are in pink (b).

same intensity estimation scheme as for the global one. Figure 6.3(b) depicts the
points of the simulated point pattern, and it displays in pink those points for which
the local test came out significant. Hence, this illustrates that the proposed local
test is able to correctly identify some of the points and, consequently some parts
of the region where the hypothesis of random labelling does not hold locally. Note
that a universally preferable option for rmax does not exist. In this work, it is set to
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min(xW , yW )/4, where xW and yW represent the maximum width and height of the
observation region W , respectively. Note that this rule of thumb is supported by
Diggle (2013). Indeed, changing the value of rmax has an impact on the final results,
and we found that our choice provided the best compromise among the options.

6.1.5.2 Extended simulation study

This section aims to study the proposed method’s performance in terms of classifica-
tion rates considering different scenarios concerning both the ground processes and
the functional marks’ structures. To this end, we simulate different such scenarios
to obtain a comprehensive understanding of the results of the local test in different
settings.

In detail, we consider three types of ground process structures, all with an ex-
pected point count of 200: (1) a homogeneous Poisson process; (2) an inhomogeneous
Poisson process with intensity function ρg(x) = ρg(x1, x2) = exp(3.5 + 3x2), x ∈W ;
(3) a Thomas process, with the intensity of the Poisson process of cluster centres
equal to 25, the standard deviation of random displacement of a point from its clus-
ter centre equal to 0.05, and mean the number of points per cluster equal to 7. They
are all generated in W , i.e. the unit square, and will be referred to as the base pat-
terns. Then, we superimpose additional simulated patterns in the [0, 0.5] × [0, 0.5]
square, coming from the same generating processes but with an expected number
of points of 50. Hereby the expected total number of points on [0, 0.5] × [0, 0.5] is
50 + 200/4 = 100, and on its complement, it is 150. These additional patterns will
be referred to as feature patterns.

As for the functional marks, we consider the time domain T = [0, 10] and,
practically, we sample each simulated mark function in 100 equally spaced time
points in T . We assume that each functional mark satisfies fi(t) = Z(xi, t), where
xi is the ith ground point and

Z(x, t) = µ+ ξ(x, t), (x, t) ∈W × T , (6.11)

for a zero-mean stationary Gaussian random field ξ with covariance function C(h, u).
Here h and u denote the spatial and the temporal lags, respectively. For the base
patterns, we consider µ = 5 and a pure nugget effect model with covariance function
C(h, u) = σ21{h = 0}, σ2 = 0.01. In other words, each fi is random noise with
mean 5 and variance 0.01 and all fi’s are iid. See the grey curves in the bottom
panel of Figure 6.4. For the feature patterns, we consider three different marking
models:

1. Shifted base model: We here let ξ have the same form as in the base model
but let µ = 5.5.

2. Decreased variance base model: We here let ξ have the same form as in the
base model but let σ2 = 0.001.
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3. Non-separable space-time model: We here let µ = 5 and consider a space
isotropic covariance function given by C(h, u) = (ψ(u)+1)−δ/2φ(h/

√
ψ(u) + 1).

Here, φ is a normal mixture and the corresponding covariance function only
depends on the distance between two points, while ψ is a variogram model,
which we choose according to a fractal Brownian motion with fractal dimension
α = 1. This is an intrinsically stationary isotropic variogram model.

We note that the first two of these scenarios represent independent but not identically
distributed marks, whereas in the third scenario we additionally have that the marks
are also dependent. A graphical representation of the scenarios comes in Figure 6.4.
On the top panel, we display the three ground patterns. On the bottom ones, the
corresponding functional marks are depicted.
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Figure 6.4: Simulation scenarios. Top panels: spatial ground patterns; Bottom
panels: functional marks of model (6.11) (in grey) and of the marking models in
item 1, 2, and 3, from left to right (in pink).

We show the results of the local test in terms of true-positive rate (TPR), false-
positive rate (FPR), and accuracy (ACC), averaging over 100 simulated point pat-
terns in Table 6.1. The rates are defined as

TPR =
true positives

positives
, FPR =

false negatives

negatives
, ACC =

true positives and negatives

positives and negatives
.

We of course wish to have TPR and ACC close to 1 and FPR close to 0.
As shown in Table 6.1, the performance of the local test in terms of classifica-

tion rates strongly depends on the difference in the functional marks. Specifically,
changing only the mean of the underlying random field is not enough to properly
identify the points of the feature patterns.
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This sufficiently improves when changing the variance only, but the best result
is obtained when the whole model is changed, that is, changing the correlation
structure. The effect of the type of ground pattern is less evident but still present.
The inhomogeneous Poisson scenario reports the best classification rates, followed
by the Thomas and homogeneous Poisson ones.

Finally, we found that the test function t(·) based on the L2 distance in Equation
(6.9) gave better results overall. To further explore how the choice of test function
influences the test, we also compared it to a test function incorporating a derivative
function accounting for the shape of the functional marks. This yielded similar
results but turned out to be more computationally demanding.

Table 6.1: Results of the local test averaged over 100 simulated point patterns with
an expected point count of 250 each.

Ground process Marking model TPR FPR ACC

Homogeneous Poisson (1) 0.112 0.346 0.583
Homogeneous Poisson (2) 0.583 0.066 0.820
Homogeneous Poisson (3) 0.870 0.024 0.896

Inhomogeneous Poisson (1) 0.032 0.585 0.449
Inhomogeneous Poisson (2) 0.648 0.084 0.856
Inhomogeneous Poisson (3) 0.895 0.023 0.932

Thomas (1) 0.109 0.394 0.571
Thomas (2) 0.637 0.088 0.846
Thomas (3) 0.865 0.025 0.925

6.1.6 Real seismic data analysis

We analyse data coming from the ISTANCE dataset, presented in section 6.1.1.
More specifically, we analyse a sample dataset provided at http://www.pi.ingv.

it/instance/. The dataset contains 10000 records of 300 events, together with the
associated metadata. Figure 6.5 shows the earthquake locations and time occur-
rences.

We first compute the proposed local K-function. The left panels of Figure 6.6
depict the estimated local summary statistics. In particular, the green lines rep-
resent the global statistics, while the grey ones represent the individual contribu-
tions. In blue we also represent the theoretical value. In the top-left panel, the
K-function is based on a kernel intensity estimate whose bandwidth is selected by
Diggle (2013)’s rule, while in the bottom-left panel the bandwidth is chosen as in
Cronie and Van Lieshout (2018). We observe some relevant differences: while with
Diggle (2013)’s rule we depict different local K-functions deviating from the global

http://www.pi.ingv.it/instance/
http://www.pi.ingv.it/instance/
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Figure 6.5: Earthquake locations and time occurrences

one, following Cronie and Van Lieshout (2018), we find a unique outlying local K-
function. This may be explained by the fact that Cronie and Van Lieshout (2018)’s
approach tends to yield a bit too large bandwidths when large parts of the study
region contain no points, while Diggle (2013)’s approach tends to yield too small
bandwidths in general. See Cronie and Van Lieshout (2018) for details. Note that
by increasing the bandwidth we decrease the intensity estimate and, as a conse-
quence, the summand denominators in (6.8) are decreased. Therefore, we run the
proposed local test of random labelling with both options for the bandwidth se-
lection and, as expected, the differences observed in the computation of the local
K-functions are reflected in the results of the test.

Figure 6.6 displays the significant points (centre panels) and the non-significant
ones (right panels). The top panels show the results with Diggle (2013)’s band-
width while the bottom ones are obtained with Cronie and Van Lieshout (2018)’s
bandwidth. For both choices, we selected a significance level of 0.1. We observe
that the significant points tend to be similar in both cases, therefore the choice
of bandwidth (selection method) does not seem to be crucial. We note that such
bandwidth-induced differences were missing in the previously run simulation study.
We attribute this sensitivity of the procedure to the shapes of the functional marks,
which are obviously more variable if compared to the simulated ones.

Nevertheless, both bandwidths lead to significant events belonging to important
well-known Italian seismic sequences. Of course, these sequences are likely generated
by different underlying processes, giving rise to long-term and highly correlated
aftershocks.

6.1.7 Conclusions

In this work, we have proposed a general form for local summary statistics for marked
point processes, which has been exploited to define the family of local inhomogeneous
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Figure 6.6: Left panels: Local K-functions. Center and right panels: Results of the
local test at α = 0.1. Top panels: The K-function is based on a kernel intensity
estimate whose bandwidth is selected by Diggle (2013)’s rule. Bottom panels: The
bandwidth is chosen as in Cronie and Van Lieshout (2018).

mark-weighted summary statistics for spatial point processes with functional marks,
i.e. Functional Marked Point Processes. We have employed such local summary
statistics to construct a local test for random labelling, that is, to identify points,
as well as regions, where this hypothesis does not hold.

More specifically, we first introduce a general local function for marked point
patterns. With this specification, we are able to show that this function may be
exploited to generate most summary statistics established in the literature. With
particular reference to the functional marked context, we define the family of local
t-weighted marked n-th order inhomogeneous summary statistics based on the K-
function, which is a local contribution to a global summary statistic estimator. We
obtain a result for the expectation of the general local summary statistic and exploit
it to derive an expression for the expectation of our t-weighted local statistics.

Having access to these tools, we have proposed a local test of random labelling,
resorting to the second-order version of our proposed local estimator, obtaining a



6.1. Local inhomogeneous summary statistics for marked point processes 195

local test useful for identifying specific regions where a global test would not detect
the atypical behaviour of the points.

To study the performance of the test in terms of classification rates, we have con-
ducted a simulation study, considering a number of scenarios with different ground
processes and structures for the functional marks. Such simulations have shown
that in many settings, the local test performs well in identifying points of a pattern
where the hypothesis of random labelling is not verified.

We can draw a number of future work paths. Nevertheless, the local functions
proposed in this section can be considered as a very informative synthesis of the lo-
cal second-order behaviour, useful for characterising the study area by an extended
marked model, based on the FMPP theory. Incorporating local characteristics as
functional marks would become part of the so-called Constructed functional marks
(CFMs), which are marks reflecting the geometries of point configurations in neigh-
bourhoods of the individual points.

Concerning the application to seismic data, we aim at including also auxiliary
(non-functional) marks in the analysis. These could contain synthetic information
about the waveforms, such as the arrival times of the seismic event, or the inter-time
between the two. The achievement of the unification of earthquake data and the
FMPP theory would result in building a framework where it would be possible to
exploit the available information of the seismic point process altogether.

A final comment concerns the possible extension of this work’s tools to spatio-
temporal ground processes, which of course are of importance for processes which
typically exhibit spatio-temporal interactions, such as the seismic one. Undoubtedly,
such extension would be crucial for accounting for the temporal dimension of the
seismic events, whose realization depends on their past history, as proved by the
existence of aftershocks. From a methodological point of view, this would mean to
consider a spatio-temporal marked point process Y = {(xi,mi)}Ni=1, with ground
points xi in the 3-dimensional space R2 × R+. Concerning the global summary
statistics in equation (6.5), it would be sufficient to substitute the Euclidean ball by
a cylinder with the same center and radius, and a temporal height. Furthermore,
local summary statistics in space and time are well established, both theoretically
(Siino et al., 2018b; Adelfio et al., 2020) and computationally (Gabriel et al., 2021).
Therefore, it would only be necessary to employ the spatio-temporal LISTA functions
in our proposed test. This is out of the scopes of this paper, but it surely represents
an interesting path to cover in future.
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6.2 A new picking algorithm based on the variance piece-
wise constant models

D’Angelo, N., Di Benedetto, A., Adelfio, G., D’Alessandro, A., and Chiodi, M.
(2022e). A new picking algorithm based on the variance piecewise constant
models. Stochastic Environmental Research and Risk Assessment,
https: // doi. org/ 10. 1007/ s00477-022-02218-x

Earthquakes may be generated by fracture processes in the Earth’s crust, causing a
partial release of the elastic strain energy stored by tectonic processes. The released
energy is partially propagated away from its source as a wave field. There are three
basic types of seismic waves - P-waves (also known as primary waves, travelling at
the greatest velocity through the Earth), S-waves (transverse waves also known as
secondary waves, slower than P-waves) and surface waves (similar in nature to water
waves and travel just under the Earth’s surface). P-waves and S-waves are sometimes
collectively called body waves. The spatial sampling of the wave-field and recorded
by a seismic network are the waveforms represented by seismograms. A correct regis-
tration and detection by the seismic station of the arrival of the first P-wave, as well
as other relevant phases of the seismic event, is crucial for understanding the nature
of the generating event (Adelfio et al., 2012). An earthquake monitoring network is
a set of seismic stations (accelerometer and velocimeters) suitably distributed over
the territory capable of detecting the occurrence of an earthquake. In addition to
sensors capable of measuring the shaking generated by the earthquake, a seismic
network includes data transmission and processing systems capable of determining
in the shortest possible time the location of an earthquake (hypocenter) and its
magnitude. When a seismic network is very efficient, i.e. able to automatically and
quickly detect an earthquake, it can be used as an early warning tool. Both in the
case of use for seismic monitoring and for early warning, the first step to be faced
is the correct detection of the seismic event and the correct estimate of the arrival
times of the main seismic phases. Given the great growth of seismic networks and
the large amount of data that is collected during seismic sequences, the development
of automatic picking algorithms capable of carrying out a precise and reliable iden-
tification of the arrival times of seismic phases has become increasingly important.
These algorithms must be at the same robust but not computationally complex so
that they can be executed in real-time and also used for early warning purposes. An
accurate picking can allow precise hypocentral localization. Moreover, high-quality
data can be used for tomographic reconstructions of the subsoil.

More in detail, as stated above, the first arrival times on seismograms coincide
with the arrival of the first P-wave. The time of the phase-detection T̂i at a station
i is interpreted as the first P-phase arrival time, which is, of course, affected by an

https://doi.org/10.1007/s00477-022-02218-x
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error εi. T̂i may be written as T̂i = T0+ti+εi, where T0 is the earthquake origin time
and ti is the travel time of a P-wave to station i. The coincidence trigger detects
an event if for any combination of a minimum number of stations (typically three
or four) the condition |T̂i − T̂j | ≤ ε is met. ε is the maximum allowed difference
between trigger times at neighbouring stations. This coincidence trigger works sat-
isfactorily for local or regional networks, where the inter-distance among the seismic
stations is not large. For global networks, this simple event detection algorithm
has to be modified. Küperkoch et al. (2012) review the most widespread automatic
picking algorithms. Comparative works among different pickers have been carried
out in literature (Sleeman and Van Eck (1999); Aldersons (2004); Küperkoch et al.
(2010)). Here we briefly outline the most known in the literature. Allen (1978,
1982) introduce the concept of characteristic function (CF), obtained by one or sev-
eral non-linear transformations of the seismogram and should increase abruptly at
the arrival time of a seismic wave. This allows both to estimate the arrival time
from the CF and assess the quality estimation. Allen’s picker is a fast and robust
algorithm, which also accounts for automatic quality assessment. However, since
this algorithm is just based on the amplitude information, it might miss emergent
P-onsets. A comparative study by Küperkoch et al. (2010) shows that this algorithm
tends to pick somewhat early compared to what an analyst would pick.
Another widely used picking algorithm is the one proposed by Baer and Kradolfer
(1987). This algorithm is frequently applied, e.g. by ‘Programmable Interactive
Toolbox for Seismological Analysis’ (PITSA, Scherbaum et al. (1999)) and the pick-
ing system MannekenPix (Aldersons (2004)). In contrast to Allen’s squared envelope
function, this CF is sensitive to changes in amplitude, frequency and phase.
The Baer and Kradolfer’s picker is also very fast and robust and quite user-friendly,
needing just four input parameters. A shortcoming of this algorithm is the missing
automated quality assessment. Several comparative studies (Sleeman and Van Eck
(1999); Aldersons (2004); Küperkoch et al. (2010)) show how this picking algorithm
tends to be somewhat late compared to manual P-picks.
The statistical properties of the seismogram might be characterized by its distribu-
tion density function and by parameters like variance, skewness and kurtosis. The
latter two are parameters of higher order statistics (HOS) and are defined by Har-
tung et al. (2014). Though just amplitude-based, higher-order statistics are quite
sensitive to emergent P-onsets. In combination with a sophisticated picking algo-
rithm (e.g. Küperkoch et al. (2010)), which exploits the entire information provided
by the determined CF, it yields excellent results. If precisely tuned, the automated
quality assessment proposed by Küperkoch et al. (2010) gives similar weights as the
analysts. However, choosing the parameters for this sophisticated algorithm is quite
difficult and needs a great experience.
Finally, the so called autoregressive-Akaike-Information-Criterion-piker (AR-AIC)
proposed by Sleeman and Van Eck (1999) is based on the work by Akaike (1998,
1975), Morita (1984) and Takanami and Kitagawa (1988). It is a highly sophis-
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ticated algorithm based on information theory. The algorithm is computationally
quite expensive and hence much slower than the other reviewed pickers.
In this work, we advocate the usage of the algorithm proposed in Adelfio (2012)
for the automated seismogram onset time determination. This considers the case
of the changepoint detection procedure for changes in variation, assuming that the
variance function can be described by a piecewise constant function with segments
delimited by unknown change points. It is worth noticing that there exists a wide
literature about changes in mean in a Gaussian model (Chernoff and Zacks, 1964;
Gardner, 1969; Hawkins, 1992; Worsley, 1979), as well as the problem of variance
change-point detection, mostly focusing on autoregressive time-series models (Wich-
ern et al., 1976; Wang and Wang, 2006; Zhao et al., 2010).

In D’Angelo et al. (2020), a new automatic picking algorithm, based on the pro-
posal of Adelfio (2012) and suitable for the implementation of an automatic seismic
surveillance system, is proposed and tested on a set of 100 synthetic seismograms,
showing that the model is always able to correctly detect the arrival of the first
P-wave, as well as other relevant phases of the seismic event, such as the arrival of
the first S-wave and the end of the seismic event. These simulated waveforms all
presented the same true values of arrival times but different underlying noises.

In D’Angelo et al. (2021a) the performance of the proposed algorithm is tested
on a set of simulated waveforms as generated by seismic events with different char-
acteristics, such as the magnitude, and with different scenarios of detection, namely
with different epicentral distances from the nearest seismic station that first recorded
the event. This allows for assessing the performance of the algorithm with respect
to the different characteristics of both the seismic event and the detection scenario,
to identify the most suitable scenario for the application of our algorithm. Those
preliminary experiments show that the algorithm performs well in identifying the
arrival times of the first P- and S-waves. In particular, the arrival time of the first
P-waves is detected more easily than the arrival time of the first S-waves. This is a
relevant result because the arrival time of the first P-wave represents the beginning
of the seismic event. Furthermore, it is noticed that the post-selection algorithm
is not always able to correctly identify the relevant changepoints among the first
estimated subset of possible values.

Following these results, in this section, we aim to present our proposed algo-
rithm’s methodology, suitable for the automatic identification of the two relevant
phrases in a seismic waveform: the arrival times of the P- and S-waves. To assess
the algorithm’s performance in different scenarios, we simulate a new richer dataset
of waveforms with different magnitudes and epicentral distances. Moreover, to show
the advantages of our approach, we compare our results with that obtained, apply-
ing a standard Short Time Average over Long Time Average (STA/LTA) algorithm
(Allen, 1978).

These two algorithms lead to similar results in terms of performance. However,
the proposed algorithm is characterized by greater flexibility and automation capac-
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ity, as it does not require testing and optimization phases. This peculiarity makes
it potentially very useful in earthquake routine analysis in the case of novel seismic
networks, in particular in those areas where earthquake characteristics are unknown.
Indeed, features like the window width, threshold and characteristic function may
depend on the recording network and on the application. The proposed algorithm
just requires setting the maximum number of potential changepoints, denoted as
K∗. This may influence the computational time, as the larger is K∗, the more
the time to estimate the corresponding changepoints, and most of all, the time to
compare the set of the reduced models by the used lars procedure, for finding the
best changepoints. Furthermore, our proposal provides automatic detection of the
arrival time of the P- and S- waves, and therefore, no intervention is needed by the
researcher to identify the arrivals. Finally, the proposed algorithm can be easily
modified to allow the identification of further seismic phases, such as the end of the
seismic event.

The structure of the section is as follows. Section 6.2.1 presents the new picking
algorithm. Section 6.2.2 reports the testing of the algorithm on a dataset of simu-
lated waveforms. An application to real data is presented in section 6.2.3. Section
6.2.4 contains the conclusions and future works.

6.2.1 Methodology: Variance piecewise constant models

This section proposes a new methodology for the automatic picking of arrival times
based on the theory of the variance piecewise constant models.

Adelfio (2012) considers the case of changepoint detection procedure for changes
in variation, assuming that the variance function can be described by a piecewise
constant function with segments delimited by unknown change points.

Let yi be the outcome and xi be the observed sample, for i = 1, 2, . . . , n occasions.
Let us assume that yi = µi + εi, where µi is for instance a sinusoidal function
representing the observed signal and εi ∼ N(0, σ2

i ) is an error term. In this context,
σ2
i is a variance function approximated by a piecewise constant regression function

with K0 + 1 segments. An example is shown in Figure 6.7.
For simplicity, the model for changes in variance after the k∗th observation is

yi =

{
µi + λεi 1 ≤ i ≤ k∗

µi + λ̃εi k∗ ≤ i ≤ n

with λ, λ̃, and k∗ unknown and {
H0 : λ = λ̃

H1 : λ 6= λ̃

Taking advantage of a generalized linear model formulation of the investigated prob-
lem, the test for stepwise changes in the variance of a sequence of Gaussian random
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Figure 6.7: An example of simulated signal and its corresponding variance with jump
points. The red dashed lines indicate the true changepoints.

variables may be transformed equivalently to the case of testing for changes in the
mean of the squared residuals from an estimated linear model that accounts for the
mean behaviour of the observed signal. The estimation of the mean signal µ̂ can be
carried out by using a standard smoothing procedure, e.g., fitting a cubic smoothing
spline to the data. Following a suggestion in Smyth et al. (2001), a gamma general-
ized linear model (GLM) is fitted with a log-link function, with the response given
by the squared studentized residuals si = (yi − ŷi)2/wi, with ŷ = µ̂ and weights
wi = 1 − hi, where hi is the ith diagonal element of the hat matrix H. According
to this approach, testing H0 against H1 means that we are looking for a change in
the mean of the residuals from a fitted linear model.

The proposed approach can be considered as a wider version of the cumSeg
models proposed in Muggeo and Adelfio (2011) for independent normally distributed
observations with constant variance and piecewise constant means to detect multiple
changepoints in the mean of the gene expression levels in genomic sequences by the
least-squares approach. The authors assume that the datum yi, ∀i is defined as the
sum of the signal µi and noise εi ∼ N(0, σ2

i ) and that µi is approximated by a
piecewise constant regression function with K0 + 1 segments, that is:

yi = β1 + δ11(xi > ψ1) + · · ·+ δK01(xi > ψK0) + εi.

Here, 1(·) is the indicator function, such that 1(x) = 1 is x is true, ψ represents the
K0 locations of the changes on the observed phenomenon, β1 is the mean level for
xi < ψ1, and δ is the vector of the differences in the mean levels at the change points.
The authors proceed to take the cumulative sums of the jump-points model to get
a convenient modelling expression that faces the discontinuities at the changepoints
ψk assuming a piecewise linear or segmented relationship. Therefore, looking for
changes in variance, the model is specified as

g(θi) = β1xi + δ1(xi − ψ1)+ + · · ·+ δK0(xi − ψK0)+ (6.12)
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where the term (xi−ψk)+ for the changepoint k is defined as (xi−ψk)1(xi > ψk), and
θi = E[

∑i
j sj ]. This model specification has the advantage of an efficient estimating

approach via the algorithm discussed in Muggeo (2003, 2008), fitting iteratively the
generalized linear model:

g(θi) = β1xi +
∑
k

δkŨik +
∑
k

γkṼ
−
ik , (6.13)

where Ũik = (xi− ψ̃k)+, Ṽ −ik = −1(xi > ψ̃k). The parameters β1 and δ are the same
of Equation (6.12), while the γ are the working coefficients useful for the estimation
procedure Muggeo (2003). At each step, the working model in Equation (6.13) is
fitted and new estimates of the changepoints are obtained via

ψ̂k = ψ̃k +
γ̂k

δ̂k

iterating the process up to convergence. K∗(< K) values are returned, producing
the fitted model

g(θ̂∗i ) = β̂1 + δ̂Vi1 + · · ·+ δ̂K∗ViK∗ ,

where Vik = 1(xi > ψ̂k) for k = 1, 2, . . . ,K∗ and the squared residuals are modelled
as the response of a gamma GLM with the logarithmic link function. Selecting the
number of significant changepoints means selecting the significant variables among
V1, . . . , Vk, where K∗ is the number of estimated changepoints from model (6.12).
The author solves the model selection problem by using the lars algorithm by Efron
et al. (2004). Thus, the optimal fitted model with K̂∗ < K∗ changepoints, is selected
by the generalized Bayesian Information Criterion (BICCn), that is:

BICCn = −2 logL+ edf log(n)Cn

where L is the likelihood function, edf is the actual model dimension quantified by
the number of estimated parameters (including the intercept, the δ and ψ vectors),
and Cn is a known constant. The vector of the corresponding selected changepoints
is denoted by ψ̂

∗
.

The first issue concerns the value of Cn to be used in the BICCn criterion to
select the changepoints. In D’Angelo et al. (2020), by simulation, the performance
of different specifications of Cn is assessed and, among the different examined spec-
ifications of Cn, simulations reveal that Cn = log log n has the best performance.
Thus, we use this value for the provided analysis.

6.2.1.1 The proposed algorithm: Changepost

Based on the above methodology, we propose a further algorithm (denoted as change-
post) to detect, among the estimated changepoints, the two corresponding to the
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arrival of the first P-wave, and the arrival of the first S-wave. Formally, we define
the relevant changepoints to be identified as the true arrival times of the first P- and
S-waves, denoted by ψ1 and ψ2, respectively (i.e. K0 = 2). In particular, we com-
pare the ratio between the variances of the subsequent phases identified by the K̂∗

changepoints ψ̂
∗

estimated by the main algorithm. The two relevant changepoints
are selected as the two ones in correspondence to the two biggest variance ratios.
The pseudo-code comes in Algorithm 1.

Algorithm 2 changepost

Input: ψ̂
∗

= {ψ̂∗1, . . . , ψ̂∗K̂∗}; si = (yi − ŷi)
2/wi; S = {s1, . . . , sn} ; start = 1;

end = n
Output: ψ̂

1: for (i in 1 : K̂∗) do
2: if (i == 1) then

3: ratio[i]← var(S[start:ψ̂∗i ])

var(S[start:ψ̂∗i+1])

4: end if
5: if (1 < i < K̂∗) then

6: ratio[i]← var(S[ψ̂∗i−1:ψ̂∗i ])

var(S[ψ̂∗i−1:ψ̂∗i+1])

7: end if
8: if (i == K̂∗) then

9: ratio[i]← var(S[ψ̂∗i−1:ψ̂∗i ])

var(S[ψ̂∗i−1:end])

10: end if
11: end for
12: ratio[ratio < 1]← (ratio[ratio < 1])−1

13: ψ̂ ← ψ̂
∗
[which(rank(ratio) > K̂∗ − 2)]

As shown in steps (4), (7), and (10), for each estimated changepoint ψ̂∗i , we
compute the ratio between the variance of the interval delimited by the ψ̂∗i−1 and

ψ̂∗i , and the variance of the interval between ψ̂∗i−1 and ψ̂∗i+1. Then, in step (14),

the two highest ratios suggest which are the corresponding changepoints ψ̂1 and ψ̂2

leading to the most relevant changes in variance.

Figure 6.8 depicts the changepoints identified by changepost, on the simulated
data of Figure 6.7. As the variance of the real signal is σ2

i = 0.5+81(i > .2)+31(i >
.6) + 1(i > .8), it is evident that changepost correctly identifies the changepoints
corresponding to the most abrupt changes in the variance.
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Figure 6.8: Simulated data of Figure 6.7. The red dashed lines indicate the change-
points identified by the main algorithm, described in section 6.2.1. The red straight
lines indicate the ones further identified by changepost.

6.2.2 Simulations: Evaluating the performance of the algorithm
changepost

In this section, the proposed picking algorithm for the automatic seismogram onset
time determination (simply denoted as changepost) is tested on a dataset of sim-
ulated waveforms. Simulated seismograms are used to have the maximum control
over the arrival times of the P- and S- phases on the waveforms. This aspect is
of fundamental importance for the correct validation of the algorithm, impossible
with experimental seismograms. Indeed, when using real data, i.e. experimental
seismograms, it is not possible to know with certainty the arrival times of the seis-
mic phases. Experimental seismograms are recordings of ground motion, or seismic
waves, generated at several kilometres in depth and distance. The identification of
the arrival times of the seismic phases on experimental seismograms, or the best pick-
ing of the P and S waves, is carried out manually by expert seismologists. However,
even an expert seismologist may introduce errors and uncertainties in the picking
phase. Thus, for controlling the precision and accuracy of an automatic picking pro-
cedure, the best practice is to start from simulated data, with well-known seismic
phases arrival times.

We aim at capturing the performance variations due to some characteristics of
both the seismic event and its detection, which in turn affect some characteristics of
the waveforms. Therefore, seismic events with different magnitudes are simulated,
assuming different distances from the nearest seismic station.

Our tests allow highlighting the most general scenarios for the algorithm. Wave-
forms generated by earthquakes of small magnitude often have energy comparable
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to the background noise and allow for validation of the functioning of the algorithm
in case of a low signal-to-noise ratio. Waveforms with different magnitudes and
epicentral distances can also differ greatly in terms of frequency content. Events
with small in magnitude and with small epicentral distances are generally rich in
other frequencies. On the contrary, events with high magnitude and great epicentral
distance are also rich in low frequencies. Variations in the epicentral distance also
affect the nature of the seismic phases P and S.

The seismic phases, and more generally the shape of the seismograms, depend
on the epicentral distance. At very small epicentral distances (from a few kilometres
to a few tens of kilometres) the seismic waves travel inside the upper crust. The
seismic phases coming first to the surface are not undergone refraction and reflection
phenomena. They can be considered direct waves. At greater distances instead (typ-
ically over a hundred kilometres), the seismic phases first emerging on the surface are
refracted critically from the upper mantle (Mohorovich discontinuity). Therefore,
using three epicentral distances (10, 250 and 50 kilometres), simulations involve the
recording of three different types of earthquakes, corresponding respectively to local
events, whose first arrival seismic phases are direct waves, regional events, in which
the first seismic phases are seismic waves critically refracted by the upper mantle,
and transitional events.

6.2.2.1 The simulation setup

The waveforms are simulated as coming from seismic events with different character-
istics, referring to altogether 12 scenarios, one for each combination of the following:

• 3 distances from the nearest station that recorded the seismic event: 10, 50
and 250 km;

• 4 magnitudes: 2, 3, 4 and 5.

For each scenario, 100 waveforms are simulated, all assumed to have impulsive onset
of P- and S- waves and standard seismic noise. Moreover, the synthetic signals are
generated with a sampling rate of 200 samples per second.

The seismic waveforms are simulated using the deterministic hybrid approach
proposed by Mourhatch and Krishnan (2020). In detail, the low-frequency con-
tent (limited to a frequency of 0.5 Hz) of the ground motion is generated from a
kinematic source model using the open-source seismic wave-propagation package
SPECFEM3D (Komatitsch and Tromp, 1999; Komatitsch et al., 2004), that imple-
ments the spectral-element method, incorporating the regional 3-D wave-speed struc-
ture of the earth. Following Mourhatch and Krishnan (2020), low-frequency syn-
thetic SPECFEM3D seismograms are combined with high-frequency seismograms
generated using a variant of the classical EGF (Empirical Green’s Function) ap-
proach.
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Figure 6.9: A simulated waveform for each scenario and true arrival times. From
left to right: increasing magnitude levels. From top to bottom: increasing distance
from the nearest seismic station.

For each seismic event, we generate all three components of motion (i.e. North-
South, East-West and Vertical). In our analysis, we only report the results for the
Vertical component, for the sake of brevity. In Figure 6.9, an example of waveforms
(vertical movement component) for each of the considered scenarios with highlighted
the true P- and S arrival times is shown.

6.2.2.2 Simulation results for changepost

Table 6.2 reports the empirical means (m) and Mean Squared Error values (s) of
the two relevant changepoints estimated by the proposed algorithm over the 100
waveforms coming synthetic seismic events, for the four different Magnitudes and
three epicentral distances. For each epicentral distance, we assume different true
arrival times (in blue). Along with the mean and the mean squared error values, we
also compute the percentage of waveforms where no changepoint is estimated.

Overall we may notice that, as expected, the changepost algorithm performs
the best as the distance from the nearest seismic station that recorded the event
decreases and as the magnitude of the seismic event increases. This is the case
with the best signal-to-noise ratio. Indeed, the NA values are most likely to occur
when the magnitude is small and the distance is large, that is basically when the
P- and S-waves have comparable or lower energy with respect to the background
noise, which is indiscernible from that. In such cases, the arrival times can not be
estimated correctly. The scenario in which the distance from the nearest seismic
stations is 50 km is the one reporting no NAs, regardless of the magnitude level.
Nevertheless, this does not represent the best picking scenario, as the uncertainty of
the estimates is larger than the performance in the 10 km scenario.
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Table 6.2: Empirical means (m) and Mean Squared Error values (s) of the two rele-
vant changepoints detected by changepost, over the 100 waveforms of each simulated
dataset, with four different magnitudes and three epicentral distances.

M ψ1 ψ2 NA%
10 km

true 41.6 42.75
2 m 41.415 43.101 7

s 0.107 2.256
3 m 41.514 42.708 1

s 0.017 1.604
4 m 41.496 42.278 2

s 0.012 1.355
5 m 41.382 45.751 1

s 0.055 1.081
50 km

true 47.63 53.714
2 m 47.592 53.394 0

s 0.002 5.168
3 m 47.453 57.686 0

s 0.240 49.011
4 m 47.229 53.194 0

s 0.789 19.630
5 m 47.118 55.537 0

s 0.376 45.036
250 km

true 75.26 103.15
2 m - - 100

s - -
3 m - - 100

s - -
4 m 75.115 105.626 0

s 7.904 80.144
5 m 74.192 103.592 1

s 1.322 434.865
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Table 6.3: STA/LTA settings

STA/LTA Parameters (s) 10 km 50 km 250 km

STA window length 0.1 0.5 2.5
LTA window length 1 5 25
Threshold Trigger on 5.0 5.0 5.0
Threshold Trigger off 2.5 2.5 2.5

6.2.2.3 Comparison with STA/LTA

In this paragraph, we compare the changepost picking algorithm, based on the vari-
ance piecewise constant models, introduced in section 6.2.1, with the Short-Term
Average/Long-Term Average (STA/LTA) method (Allen, 1978).

The STA/LTA method is the simplest and most commonly picking technique
used in earthquake seismology. The STA/LTA method computes the ratio of the
continuously computed average energy (generally the waveforms envelope, the ab-
solute amplitude, or other characteristic functions) of a recorded trace in two syn-
chronous moving-time windows: a Short-Term window and a Long-Term window
(STA/LTA ratio). The short-time window permits to highlight of sudden amplitude
changes in the signal, while the long-time one estimates the current average of the
seismic noise. Therefore, the STA/LTA ratio allows for highlighting variations in
energy in the signal with respect to the background noise. These energy variations
can be identified by setting thresholds: when the STA/LTA ratio exceeds a certain
threshold, the arrival of a seismic phase is identified. The output of the STA/LTA
algorithm is the characteristic function Ek, defined as:

Ek = x2
k + (x′k)

2 + C

where xk is the seismic trace, x′k is its derivative and C is an empirical weighting
constant.

This method is undoubtedly computationally efficient, and its variants are widely
used for the picking of seismic phases. However, it needs a calibration phase to
identify both the best length of the STA and the LTA and the best threshold level.
The optimal STA width depends on the frequency content of the seismic event
and, therefore, on its magnitude and epicentral distance. Similarly, the width of
the LTA should also be chosen according to the noise characteristics. The trigger
threshold is also very important: values that are too high can lead to the failure to
identify the arrival of the seismic phases, and values that are too low can provide
false identifications. This method can therefore be inaccurate in the case of a low
signal-to-noise ratio.

After several optimization tests for each earthquake class, we set the parameters
reported in Table 6.3 for comparison. Once the parameters are set, we run the tests,
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Table 6.4: Empirical means (m) and Mean Squared Error values (s) of the two
relevant arrival times estimated by the STA/LTA algorithm over the 100 waveforms
of each simulated dataset, with four different magnitudes and three distances.

M ψ1 ψ2 NA%
10 km

true 41.6 42.75
2 m 41.605 - 0

s 0.000 -
3 m 41.589 42.272 0

s 0.003 0.413
4 m 41.573 42.853 0

s 0.000 0.140
5 m 41.514 42.740 0

s 0.009 0.291
50 km

true 47.63 53.714
2 m 47.682 49.148 1

s 0.018 35.847
3 m 47.620 47.642 0

s 0.034 36.873
4 m 47.617 53.632 0

s 0.006 0.430
5 m 47.589 53.472 0

s 0.006 2.193
250 km

true 75.26 103.15
2 m 78.275 129.137 82

s 9.145 989.601
3 m 82.935 129.166 90

s 58.905 922.363
4 m 75.809 106.600 0

s 0.655 13.357
5 m 75.351 107.340 0

s 0.033 21.231
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obtaining the results reported in Table 6.4. We have noticed that the number of
the picked arrival times is generally lower using the STA/LTA, with respect to the
changepost algorithm. Then, a further note is needed. Before computing Mean,
MSE and NA%, we set the picking’s STA/LTA results in this way: for each seismic
event, we check if there are zero picking, one or more than one picking. If zero
picking is observed, we only increment the NA%. Instead, if we find one or more
than one picking, the closest picking to the real picking is determined. Just after
finding all picking values for all events, we compute Mean and MSE for picked events,
and NA%, as for the proposed algorithm. This specification is due since there are a
number of cases where the STA/LTA algorithm picks a unique arrival time (see the
first scenario – S-waves – in Table 6.4).

Nevertheless, if the number of the estimated picked arrival times K̂∗ is large, the
probability of having a picking close to the true one increases, resulting in smaller
mean squared error values and then, influencing the results as mentioned above.
Therefore, we define a probability index, computed for each waveform q: let ψ̂

∗
q be

the vector of the K̂∗q > 1 estimated changepoints, the probability index is defined as
follows:

1(ψ̂∗q ≤ true± pick)

K̂∗q
, (6.14)

where 1(·) is the indicator function, such that 1(x) = 1 if x is true, i.e. counting how

many times the changepoints ψ̂
∗
q estimated for the waveform q fall inside the interval

±pick around the true arrival time (which varies with the scenario considered).

In Tables 6.5 and 6.6 we report the computed probability index (6.14), for the
proposed picking algorithm and for the STA/LTA algorithm, respectively. In partic-
ular, we set the pick to 0.2 seconds, and compute (6.14) for both the P- and S-arrivals,
separately. Then, those values are averaged with respect to the 100 waveforms of
each scenario, and the percentage of NAs is reported, to take into account both the
waveforms where no changepoint is estimated (i.e. NAs in Tables 6.2 and 6.4) and
those cases in which 1(K̂∗q ≤ true ± pick) = 0, i.e. no estimated changepoint for
that specific waveform falls into the interval.

From Tables 6.5 and 6.6, we may notice that STA/LTA outperforms changepost
in picking the P- Phases times. Almost in all the S- Phases, instead, STA/LTA
provides the highest NA%: the scenario with a distance of 10 km and magnitude 2
is the only one where changepost provides 100% of NAs. Moreover, for the scenario
250km distance and magnitude 2, changepost does not find any changepoint and then
provides the highest NA%. This percentage gradually decreases as the magnitude
increases.
When the distance is 50km, even in lower magnitudes, the changepost algorithm
provides a lower percentage of NA than STA/LTA. Overall, changepost outperforms
STA/LTA in the S- Phases picking. Otherwise, the STA/LTA picking time is better
for the P- Phases, being more precise in terms of tenths of a second.
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Table 6.5: Percentage of the changepoints estimated by the changepost algorithm,
lying within a ±0.2 interval around the true value.

M ψ1 NA% ψ2 NA%

2 0.540 8 0.000 100
10 km 3 0.740 1 0.020 96

4 0.650 2 0.070 86
5 0.200 69 0.115 77

2 0.500 0 0.020 96
50 km 3 0.500 0 0.010 98

4 0.300 43 0.020 96
5 0.165 67 0.005 99

2 - 100 - 100
250 km 3 - 100 - 100

4 0.130 74 0.145 71
5 0.010 98 0.010 98

Table 6.6: Percentage of the changepoints estimated by the STA/LTA algorithm,
lying within a ±0.2 interval around the true value.

M ψ1 NA% ψ2 NA%

2 1.000 0 0.000 100
10 km 3 0.935 1 0.020 96

4 0.433 0 0.253 38
5 0.551 0 0.150 63

2 0.805 12 0.000 100
50 km 3 0.935 5 0.000 100

4 0.512 1 0.128 74
5 0.464 0 0.112 73

2 0.000 100 0.000 100
250 km 3 0.000 100 0.000 100

4 0.170 81 0.000 100
5 0.456 14 0.000 100
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A comment on the computational cost is in order. Indeed, computation time
is crucial in automated seismogram onset time determination, mostly accounting
for its implications in seismic monitoring and in earthquake early warning systems.
Even tough we have assessed that changepost is quite slower than STA/LTA, the
computational time of the former does not represent a limitation. The only set-
ting influencing the computational time is K∗, that is the maximum number of
changepoints to be detected: the larger K∗, the higher the computational time, but
also the more the estimated change points. Therefore, since changepost is able to
process hundreds of waveforms within minutes, the researcher could even consider
to reproduce the analyses with different values of K∗, depending on the available
time and the complexity of the waveforms. Therefore, even tough STA/LTA has
lower computational time, the automation of changepost counterbalances its higher
computational cost.

6.2.3 Application to real data

The seismic events selected for showing an application to real data belong to the
seismic sequence of L’Aquila (Italy) in 2009. The complete database is made up of
80 seismic events recorded by 12 stations with 3 components (identify the component
of motion to which they refer: Up-Down, North-South and East-West), for a total
of 2880 waveforms. They all exhibit a magnitude between 3 and 4.1. The waveforms
were sampled at 100 Hz, and the length total of each of the waveforms is 100 seconds
(10,000 samples). To increase the signal ratio noise, a bandpass filter was applied
in the frequency band between 0.1 and 35 Hz. Such an operation was necessary
to eliminate frequencies related to electronic and anthropic noise clearly not part
of seismic signals. Also, the waveforms have been normalized with respect to the
maximum amplitude.

Figures 6.10 and 6.11 contain five waveforms selected to show the results, and the
arrival times identified by changepost and STA/LTA, respectively. For the proposed
changepost procedure, K∗ is set to 10. In Figure 6.10, the red dashed lines represent
all the K̂∗ change-points detected by the main algorithm, while the solid red ones
identify the two selected change-points, representing the arrival times of the P- and
S-waves, respectively. Figure 6.11 depicts the results of the application of STA/LTA:
the solid red lines indicate the estimated arrival times. As evident from the two
figures, while changepost is always able to identify two arrival times (most likely
to represent the arrivals of the P- and S-waves), the STA/LTA algorithm either
succeeds in identifying only very early arrival times (very likely to be arrival times
of the P-waves) or completely fails to identify any arrival time.

This is an expected result for the seismic events considered in this experiment,
in particular using the STA/LTA settings reported in Table 2. Better results for
the STA/LTA algorithm, comparable with those just shown with synthetic seismo-
grams, could be obtained only after a few rounds of optimization of the triggering
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Figure 6.10: Vertical components of three seismic events detected by the seismic
station BSSO - Busso (Italy) during the L’Aquila seismic sequence occurred in 2009.
Red dashed lines: all the K̂∗ change-points estimated by the main algorithm. Red
straight lines: the K̂ = 2 change-points, among the K̂∗ estimated ones, most likely
to represent the true arrival times of the P- and S-waves.
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Figure 6.11: Vertical components of three seismic events detected by the seismic
station BSSO - Busso (Italy) during the L’Aquila seismic sequence occurred in 2009.
Red straight lines: the arrival times identified by STA/LTA.
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parameters. These results confirm the conclusion drawn by the simulation study,
that is the high flexibility of the proposed changepost algorithm. Indeed, it does not
require either testing or optimization phase, and its accuracy is almost independent
of the analyzed dataset.

6.2.4 Conclusions

The precise and quick determination of the arrival times of the main seismic phases is
of fundamental importance for seismic surveillance and routine earthquake hypocen-
ter determination. Clearly, to be suitable also for early warning, a picking algorithm
must be computationally efficient, avoid false alarms, and time picking must be as
accurate as possible.

With these premises, in this work, we proposed a novel picking algorithm for the
automatic P- and S- waves onset time determination. The changepost algorithm is
based on the variance piecewise constant models. The effectiveness and robustness
of our picking algorithm were tested on synthetic seismograms. In order to make
the STA/LTA algorithm work correctly, many tests are necessary to optimize the
processing parameters. These parameters (window width, threshold, characteristic
function) are clearly a function of the type of seismicity recorded by the network
and must be optimized from time to time.

If compared to the well-established STA/LTA offline picking algorithm, the
changepost opens a promising path. Indeed, changepost is entirely automatic, mean-
ing that no choice of any parameters is needed to run the algorithm. This feature
can be particularly important when, for example, the characteristics of the seismic-
ity of a given area are not well known or when a new seismic monitoring network
is set up. The only prior setting regards the maximum number of changepoints to
be detected: the larger the number, the more the resulting estimated changepoints,
but also the higher the computational time. Furthermore, changepost provides au-
tomatically the arrival time of the P- and S- waves, and therefore, no intervention
is needed by the researcher to identify the arrivals among those possibly triggered.

Changepost can be easily modified to allow the identification of further seismic
phases, such as the end of the seismic event. Certainly, interesting results can
be obtained by applying the same technique to transforms of the original signal
(integrated signal, derivative, frequency filtered, etc.). These future developments
that we are foreseeing could certainly improve the performance of the proposed
algorithm.

A possible extension of the proposed method is in progress, considering multidi-
mensional signals. The proposed approach can be used as a new picking algorithm
to automatically identify the P- and S-waves arrival times on different seismograms
recording the same seismic event.



Chapter 7

Minimum contrast for
first-order intensity estimation

D’Angelo, N. and Adelfio, G. Minimum contrast for the first-order intensity
estimation of complex spatio-temporal point processes. Work in progress

In this section, we introduce some in-progress results for future research. We start
from the theoretical result related to the expectation of the weighted K-function,
using the true first-order intensity function. This theoretical result can serve as
an estimation method for obtaining the parameters’ estimates of a specific model
assumed for the data. Indeed, parameters in spatial-temporal point process models
are typically fit by maximum likelihood estimation or some of its variants. The
motivation is to generally avoid dealing with the complex likelihoods of some point
process models, like the ETAS process, and their maximization. By further consider-
ing the local second-order characteristics, we can obtain the whole set of parameters
assumed for the fitted model, one for each point of the analysed point pattern.

In detail, section 7.1 provides the sketch of the proposed method, section 7.2
reports some provisional simulations, and section 7.3 concludes with some ideas to
be developed in future.

7.1 Methodology

We advocate the use of the K-function for inferential tools, exploiting the theoretical
results in Adelfio et al. (2020) for estimating the parameters of a model, assumed for
the data. In a few words, the spatio-temporal K-function estimator (both local and
global) for a general point process, weighted by the true intensity function, has the
same expectation of the local spatio-temporal K-function under the Poisson case.

215
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Figure 7.1: (a) Theoretical K-function of a simulated Poisson process with 500
points. (b) Estimated K-function, weighted by the true intensity function. (c)-(d)
Estimated K-functions, weighted by some wrong intensities.

The idea is shown graphically in Figure 7.1. Panel (a) of Figure 7.1 displays
the theoretical K-function of a simulated Poisson process with 500 points. As an
example, we estimate three K-functions, weighted by: the true intensity (panel (b))
and two wrong intensities (250 in panel (c) and 750 in panel (d)). From these plots,
we can observe that the overall behaviour of the K-function is the same, and the
only difference is the values of the actual K-functions. In particular, the K-function
weighted by the true intensity function reports the same values as the theoretical
one.

Indeed, the theory suggests that the squared difference between the observed
K-function and the theoretical one should approach zero, as the intensity used for
weighting the observed K-function approaches the true one. This is shown in Figure
7.2, where the squared differences between the three K-functions of Figure 7.1 and
the theoretical one are represented, together with the value of the sum of the squared
differences, on the top. As expected, the lowest value is obtained when weighting
by the true intensity function.
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Figure 7.2: Squared differences between the three K-functions of Figure 7.1 and the
theoretical one. On top, the value of the sum of the squared differences.

7.1.1 Proposal

Suppose then, that X is a point process with the intensity λ(u, t;θ) (in brief: λ(θ))
incorporates a vector of parameters θ ∈ Θ. By minimizing

M(θ) =

∫ hmax

h0

∫ rmax

r0

φ(r, h){(K̂I(r, h;λ(θ))− πr2h)}2drdh (7.1)

with respect to θ, we obtain a vector of estimates θ̂:

θ̂ = arg min
θ
M(θ). (7.2)

We believe that the optimization procedure could be improved, using a weight
as in Equation 7.1. This would basically correspond to giving more importance to
some specific points or regions. In particular, if we weight the objective function by
a φ(r, h) function, this would penalize some specific spatial and temporal lags.

For instance, Diggle (2013) suggested using φ(r, h) to weight the discrepancy
measure by the inverse (approximate) variance of the K-function (in which Guan
and Sherman (2007), used their sub-sampling method to achieve). The variance of
the K-function however, is typically unknown. For a spatial Poisson process it is
suggested to use φ(r) = r−2, but no other specific recommendations for other types
of process are given.

7.1.1.1 Local extension

The proposed estimation approach can be extended also to the local case. Suppose
that our model incorporates a vector of parameters θ. Let K̂i

I(r, h;λ(θ))) denote the
local estimators calculated from the data. For each point indexed by i we consider

Mlocal(θi) =

∫ hmax

h0

∫ rmax

r0

φ(r, h){(K̂i
I(r, h;λ(θ))− πr2h)}2drdh. (7.3)
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Then, we can obtain a vector of estimates θ̂i, one for each point i, as

θ̂i = arg min
θ
Mlocal(θi). (7.4)

7.2 Simulations

In this section, we report some provisional simulation results, for assessing the pro-
posed estimation procedure. We start by considering simple processes, as described
below. We simulate 1000 space-time point patterns in the unit cube with 500 number
of points on average from the following point processes:

• homogeneous Poisson process with constant intensity λ;

• inhomogeneous Poisson process with intensity λ(x, y, t) = exp(α+ βx).

Examples of such simulated patterns are in Figure 7.3.
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(a) Realization of a homogeneous point process with intensity λ(x, y, t) = 500
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(b) Realization of an inhomogeneous point process with intensity λ(x, y, t) = exp(2 + 6x)

Figure 7.3: Space and time locations of two examples of simulated homogeneous and
inhomogeneous patterns.
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Table 7.1 reports the mean and sqrt(MSE) of the estimated of the two con-
sidered processes, averaged over 1000 simulations. In particular, the spatial and
temporal distances in the observed weighted K-functions are 15 values ranging from
0 to rmax in Equation (7.3) equal to 1/4 of the maximum (space or time) distances.

We notice that the mean of the intensity function for the homogeneous scenario
appears systematically overestimated. This might be due to different approximations
in the computation of the space-time K-function.

For the inhomogeneous point processes, we employ a penalized procedure, not
reported here for brevity, where the penalty enters like an additional data point
which is used to “pull” in the parameter direction in which the data provides the least
information. The mean of the (unpenalized) estimates for the α and β parameters
are 4.3780 and 2.9476 (with 2.1560 and 2.3885 as standard errors, respectively).
After having added the penalization (with tuning parameter R = 2.5), we note from
Table 7.1 that the estimated parameters are pulled away towards the true values.

Table 7.1: Results over 1000 simulations.

Process E[n] True par mean sqrt(MSE) mean(s.e.)

Hom. Pois. 500 λ = 500 529.3286 39.1756 414.0448

Inhom. Pois. 500 α = 2 2.8496 2.3815 1.1852
R = 2.5 β = 6 4.8887 2.3385 1.5173

7.3 Future work

The idea presented in this section represents a work in progress. Therefore, much
can be done in future.

Section 7.1 introduced the further advantage of our proposal, showing the possi-
bility of fitting local parameters. Preliminary analyses showed a systematic overesti-
mation of the local parameters in the homogeneous case. As for the inhomogeneous
case, the local procedure achieves similar results if compared to the global penalized
version.

Moreover, we want to run extended simulation studies to assess the performance
of the proposed procedure in more complex settings, for instance, with Self-Exciting
models such as the ETAS ones.

As for the comparison with other estimation procedures, we put particular em-
phasis on the following. A similar idea is being developed by Kresin and Schoen-
berg (2022), who showed that parameters in spatial-temporal point process mod-
els, alternatively to MLE, can be estimated consistently, under general conditions,
by instead minimizing the Stoyan-Grabarnik (SG) statistic. More specifically, the
spatial-temporal region is divided up into cells, and the sum of squares of the SG
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statistic is minimized. The resulting estimator has desirable properties, is extremely
easy and quick to compute, and does not require approximation of the pesky in-
tegral in the log-likelihood formula. Therefore, we wish to compare our proposal
based on the K-function to both the Maximum Likelihood Estimation and Kresin
and Schoenberg (2022)’s proposal.



Chapter 8

Conclusions and future work

In this thesis, we have covered a wide range of topics including modelling, statistical
inference, and simulation issues on spatial and spatio-temporal point processes, point
processes on linear networks, and non-Euclidean spaces.

In particular, we have provided new local methods and models for complex
spatio-temporal point processes. In this way, we have been able to obtain greater
detail in the study of space-time phenomena, by identifying outlying points or sub-
areas that require greater attention and could be the subject of further studies. In
particular, we have explored both dependence models and second-order characteris-
tics.

Furthermore, we have proven the extent of applicability of our methods, by
addressing different contexts of application, such as seismic events, GPS data, traffic
accidents, and crimes.

Nevertheless, we believe that the methods and models developed in this thesis can
be applied to different scientific fields, and could be suitable for all those phenomena
for which it makes sense to hypothesize an interdependence in space and time.

We have drawn conclusions and outlined specific future works for each of the
presented research, therefore, for a detailed discussion of the individual projects we
refer to the sections’ conclusions of the thesis.

In the following, we outline other projects related to the aims of this thesis
work. These represent some ongoing attempts to include accessory information
to the statistical procedures, namely: the linear network, local indicators of spatio-
temporal association, and textual analysis tools, which are becoming more and more
used given the increasing availability of data nowadays.

In Diaz-Sepulveda et al. (2022) we consider the problem of features detection, in
the presence of clutter, in point processes on a linear network. For the pure spatial
case, a previous study addresses the issue of nearest-neighbour clutter removal. We
extend this methodology to a more complex geometric context, where the classical
properties of a point process change and data visualization are not intuitive. As a
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result, the method is suitable for a feature with clutter as two superimposed Poisson
processes on any linear network. We present simulations and one example of traffic
accidents in Bogota-Colombia to illustrate the method.

Then, in Policastro et al. (2022), we combine robin and LISTA functions. robin
is an R package to assess the robustness of the community structure of a network
found by one or more methods to give indications about their reliability. We use it
to propose a classification algorithm of events in a spatio-temporal point pattern,
by means of the local second-order characteristics and the community detection
procedure in network analysis. We demonstrate the proposed procedure on a real
data analysis of seismic data.

Finally, in Simonetti et al. (2022), we propose to model retweet event sequences
using a marked Hawkes process. The aim is to analyse Twitter data by combining
temporal point processes theory and textual analysis. Since each retweet event
carries a set of properties, we mark the process by different characteristics drawn
from the textual analysis, finding that the tone of the description of the Twitter
user is a good predictor of the number of retweets in a single cascade.

As a general conclusion, we note that, in this thesis, we have presented the
methodology starting from purely spatial point processes definitions, moving then
to space and time, starting from Baddeley et al. (2015). The reason is that most
work on spatio-temporal statistical models and methods has developed as a series
of extensions of spatial methods rather than temporal methods. Diggle (2021)’s
suggestion asserts that the origin of the practice of extending spatial tools to space
and time is the mathematical appeal of the parametric families of covariance func-
tions for a real-valued spatio-temporal Gaussian process, which is completely (and
therefore conveniently) determined by its first and second moments.

Nevertheless, conditioning on the past is a very natural way to build scientifically
interpretable models for spatio-temporal phenomena, often with the advantage of a
more straightforward statistical analysis than for their purely spatial counterparts.
This aspect is not addressed in this dissertation, but it is believed to represent an
interesting future research path to investigate.



Appendix A

Simulation schemes for point
processes on networks

As we simulate patterns from different spatio-temporal point processes on networks,
we detail here the corresponding simulation schemes we have used throughout chap-
ter 5.

Spatio-temporal Poisson point processes

To generate a point pattern from a homogeneous Poisson point process in L × T ,
we use a two-step procedure following Gabriel et al. (2013), but adapted onto the
network:

1. Simulate the number of events n occurring in L × T according to a Poisson
distribution with mean λ|L||T |.

2. Sample each of the n locations and n times according to a uniform distribution
on L and T , respectively.

To generate a point pattern from an inhomogeneous spatio-temporal point process
on a linear network, from the spatio-temporal intensity λ̂(u, t), we proceed with the
following steps:

1. Define the generating intensity function λ0(u, t) = λ̂(u, t)

2. Set an upper bound λmax for λ0(u, t).

3. Simulate a homogeneous Poisson process with intensity λmax and denote by
N the number of generated points, with coordinates (u′, t′).

4. Compute p(u′, t′) = λ(u′,t′)
λmax(u′,t′) for each point (u′, t′) of an homogeneous Poisson

process.
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5. Generate a sample p of size N from the uniform distribution on (0, 1).

6. Thin the simulated homogeneous Poisson process x retaining the n ≤ N loca-
tions for which p ≤ p(u′, t′).

The algorithm provides a point pattern x with n points. This scheme follows the
procedure for simulating inhomogeneous point patterns outlined in Gabriel et al.
(2013). In the context of point patterns occurring on linear networks, the events are
guaranteed to be constrained on the network since each point (u, t) of the generating
intensity function λ̂(u, t) occurs only on the network line segments as either a vector
of values or a function.

The simulations of both the homogeneous and inhomogeneous Poisson point
processes are performed through the function rpoistlpp() in the R package stlnpp
(Moradi et al., 2020), by imputing the true intensity functions.

Spatio-temporal log-Gaussian Cox processes

Dealing with log-Gaussian Cox processes, the above diagnostics method has been
slightly modified. Indeed, provided the covariance parameters, diagnostics can be
carried out following the same procedure outlined above, but simulating point pat-
terns from the intensity function of the fitted LGCP. Therefore, the generation of
a point process from a spatio-temporal LGCP on a linear network is proposed and
carried out, obtaining the algorithm discussed above and replacing step 1 by adding
the two following additional steps:

1.a Generate a realisation from a Gaussian Random Field S(u, t), with covariance
function C((u, t), (v, s)) and mean function µ(u, t).

1.b Define the generating intensity function λ0(u, t) = λ̂(u, t) exp(S(u, t))

The simulation is performed through the function sim LGCPnet of the R (R Core
Team, 2022) package localpps (see Appendix B).

Spatio-temporal clustered point processes

To generate a point pattern from a Poisson cluster point process in L × T we use
the three-step procedure proposed in Gabriel et al. (2013), restraining the results on
the network. Defining W as the Euclidean observation region, we proceed with the
following steps:

1. Simulate a Poisson process of parent points with intensity λp(u, t) in W ′×T ′,
where W ′ ⊂W and T ′ ⊂ T , to avoid edge-effects.
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2. For each simulated parent, generate a random number nc of offspring from a
Poisson distribution with mean mc.

3. Generate the spatio-temporal displacements of the offspring from their par-
ents as independent realisations from the trivariate distribution with density
fX(x1, x2, x3) in R2 × R+.

4. Reallocate the points outside the linear support to the closest location on the
network.

Clustered Poisson processes are generated on the plane with the rpcp function of
the R (R Core Team, 2022) package stpp (Gabriel et al., 2021).

Space-time Epidemic Type Aftershock Sequence processes

We now outline the generating scheme for simulating a pattern from an Epidemic
Type Aftershocks-Sequences (ETAS) process (Ogata and Katsura, 1988) with con-
ditional intensity function as in Adelfio and Chiodi (2020) but adapting it to the
network. We do this by defining the space-time region in a fixed temporal range
and a linear network.

The steps for the simulations are the following:

1. Input the true parameters values µ, κ0, c, p, d, q, the β parameters, related to
covariates, other control parameters such as the boundaries of the space-time
region, and parameter b of the Gutenberg-Richter distribution.

2. Generate a random number n0 from a Poisson distribution with parameter
E(N) = µ∆t.

3. Generate n0 triples of space-time uniform coordinates in the space-time region.

4. For each point xj , j = 1, . . . , n0:

(a) Generate a random number nj from a Poisson distribution with parameter
proportional to exp(ηj).

(b) Generate nj triples of space-time coordinates of aftershocks in the space-
time region.

(c) Add the nj new points to the set of events.

5. Proceed from step (2) until all the events inside the region are involved in the
simulation process as possible generators of further events.

The algorithm provides a point pattern x with n points. It also generates n magni-
tudes and other covariates values, if specified.
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The simulation is performed through the function sim ETASnet of the R (R Core
Team, 2022) package localpps (see Appendix B). The simulation on the network
is guaranteed by the homogeneous spatial Poisson processes being generated on the
network.



Appendix B

R codes

Codes for the analyses were written using the software R Core Team (2022) by me,
and sometimes partially inspired by some original codes of Marianna Siino and Giada
Adelfio. All the codes are meant to form a package, that we shall call localpps, to
be published on CRAN. The main dependencies of the package are:

• spatstat (Baddeley and Turner, 2005);

• stpp (Gabriel and Diggle, 2009);

• stlnpp (Moradi and Mateu, 2020).

We define a stp object as a dataframe with three columns: x, y, and t. If also
the linear network L, of class linnet, is provided, a stlp object is created. The
functions summary, print, and plot are implemented to work on these two classes
of objects. See below and Figure B.1.

> stp1

Spatio-temporal point pattern

43 points

Enclosing window: rectangle = [0.044759, 5] x [0.519806, 5] units

Time period: [0.043, 4.93]

> stlp1

Spatio-temporal point pattern on a linear network

43 points

Linear network with 19 vertices and 26 lines

Enclosing window: rectangle = [-0.01, 5.1] x [-0.01, 5.1] units

Time period: [0.043, 4.93]
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Figure B.1: Plots of the stp and stlp objects. The temporal point pattern can
be displayed cumulatively by specifying tcum = T, while a barplot is automatically
plotted if there are repeated counts (typically with discrete times). If marg = F, only
the spatio-temporal point pattern is plotted.

Several functions to convert the classes of the localpps package to those of
spatstat, stpp, and stlnpp, and vice versa, are provided.

The functions STLKinhom local and STLginhom local implement the inhomo-
geneous LISTA functions proposed in section 5.2.1, in Equations (5.1) and (5.2),
respectively.
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> STLKinhom_local(X, lambda = lambda, normalize = FALSE,

+ r = NULL, t = NULL, nxy = 10)

This function takes as first input a spatio-temporal point process on the network
X, of class stlp. lambda must be a vector containing the pointwise first-order in-
tensity. normalize indicates whether the normalisation in Equation (5.3) must be
considered. If r and t are not provided, a grid is considered, starting from the nxy

values. The default is a 10 × 10 grid, where r and t are chosen using the Diggle’s
rule (Diggle, 2013).
The function returns a list of sumstlpp objects (Moradi and Mateu, 2020), one for
each point in X. Each object contains four slots: the r× t matrix with the estimated
values; the r × t matrix with the theoretical values; the vector of the spatial ranges
considered r; the vector of the temporal ranges t.

The homogeneous K-function and pair correlation functions, in Equations (5.4)
and (5.5), can be obtained easily with STLKinhom local and STLKginhom local, by
imputing a lambda vector of constant intensity values, the same for each point:

> lambda = rep(npoints(X) / (volume(X$domain) * (X$time[2] +

- X$time[1])), npoints(X))

The functions sim ETASnet and sim LGCPnet simulate ETAS processes and log-
Gaussian Cox processes on a linear network, respectively. They both return an stlp

object.

In the following, I list the main functions to perform analyses based on the
methods proposed in this thesis. Each of those functions is equipped with its own
class and methods: summary, print, and plot.

jointlgcp estimates the spatio-temporal log-Gaussian Cox processes by means
of the joint minimum contrast procedure proposed in Siino et al. (2018a). It can also
estimate the local lgcps, following the locally weighted minimum contrast procedure
introduced in section 3.2. Three covariances are available: separable exponential,
Gneiting, and DeIaco-Cesare.

If both first and second arguments are set to "global", a log-Gaussian Cox
process is fitted by means of the joint minimum contrast.

lgcp1 <- jointlgcp(stp2, formula = ~ 1, first = "global",

second = "global")

> summary.jointlgcp(lgcp1)

Joint minimum contrast fit

for a log-Gaussian Cox process with

global first-order intensity and
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global second-order intensity

--------------------------------------------------

Homogeneous Poisson process

with Intensity: 0.01221

Estimated coefficients of the first-order intensity:

(Intercept)

-4.406

--------------------------------------------------

Covariance function: separable

Estimated coefficients of the second-order intensity:

sigma alpha beta

12.649 0.397 8.057

--------------------------------------------------

Model fitted in 0.147 minutes

If first = "local", local parameters for the first-order intensity are provided.
In this case, the summary function contains information on their distributions. The
resulting intensity is used for weighting the second-order statistics used in the mini-
mum contrast procedure, therefore the covariance parameters’ estimates are different
from the ones of the previous model.

> lgcp2 <- jointlgcp(stp2, formula = ~ x, first = "local",

second = "global")

> summary.jointlgcp(lgcp2)

Joint minimum contrast fit

for a log-Gaussian Cox process with

local first-order intensity and

global second-order intensity

--------------------------------------------------

Inhomogeneous Poisson process

with Trend: ~x

Summary of estimated coefficients of the first-order intensity

(Intercept) x

Min. :-7.5243 Min. :-0.349146

1st Qu.:-2.2680 1st Qu.:-0.062339

Median :-1.0822 Median :-0.026079

Mean :-1.4498 Mean :-0.015410

3rd Qu.:-0.2572 3rd Qu.: 0.007207
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Max. : 3.1075 Max. : 0.512574

--------------------------------------------------

Covariance function: separable

Estimated coefficients of the second-order intensity:

sigma alpha beta

2.598 0.001 2.132

--------------------------------------------------

Model fitted in 0.747 minutes

For local models, some functions are implemented, with outputs in Figures B.2
and B.3.
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Figure B.2: plot.jointlgcp returns the fitted intensity, displayed both in space (by
means of a density kernel smoothing) and in space and time. localplot.jointlgcp

displays the local estimates.
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Figure B.3: localsummary.jointlgcp breaks up the contribution of the local esti-
mates to the fitted intensity, by plotting the overall intensity and the density kernel
smoothing of some artificial intensities obtained by imputing the quartiles of the local
parameters’ distributions.

Finally, if second = "local" (default option), the model with local parameters
for the covariance is fitted.

> lgcp3 <- jointlgcp(stp2, formula = ~ 1, first = "global",

second = "local")

> summary.jointlgcp(lgcp3)

Joint minimum contrast fit

for a log-Gaussian Cox process with

global first-order intensity and

local second-order intensity

--------------------------------------------------

Homogeneous Poisson process

with Intensity: 0.01221

Estimated coefficients of the first-order intensity:

(Intercept)

-4.406

--------------------------------------------------

Covariance function: separable
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Summary of estimated coefficients of the second-order intensity

sigma alpha beta

Min. : 9.806 Min. :0.1317 Min. : 6.776

1st Qu.:12.527 1st Qu.:0.1841 1st Qu.: 9.104

Median :12.907 Median :0.2851 Median : 9.382

Mean :13.057 Mean :0.3183 Mean : 9.418

3rd Qu.:13.630 3rd Qu.:0.4880 3rd Qu.: 9.836

Max. :16.213 Max. :0.4975 Max. :13.382

--------------------------------------------------

Model fitted in 3.276 minutes
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Figure B.4: In the case of local covariance parameters, plot.jointlgcp returns the
mean of the random intensity, displayed both in space (by means of a density kernel
smoothing) and in space and time. localplot.joinlgcp displays the local estimates
of the chosen covariance function.



234 Appendix B. R codes

It is also possible to fit local parameters for both the first and second-order
intensity, but we abstain from addressing this case here.

localtest runs the permutation test of the local structure of spatio-temporal
point pattern data, proposed in Siino et al. (2018b). The network counterpart is
also implemented, following section 5.1.

test <- localtest.stlp(X, Z, method = "K", k = 19)

> summary.localtest(test)

Test for local differences between two

spatio-temporal point patterns on a linear network

--------------------------------------------------

Backgound pattern X: 24

Alternative pattern Z: 32

7 significant points at alpha = 0.05
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Figure B.5: Output of summary.localtest function, with significant points in red.

Two functions carry out diagnostics, both globally (diagnoseG()) and locally
(diagnose()), as in Adelfio et al. (2020). Diagnostics of point processes on networks
is also implemented, as in section 5.2.

The diagnoseG function computes the K-function weighted by the provided
intensity to diagnose (given as a vector) and returns the sum of squared differences
between the observed and theoretical K-function. It also plots both of them (either
in the same or different scale by means of the argument samescale), and their
difference.

> diagnoseG.stp(stp1, intensity = lPOIS)

> diagnoseG.stp(stp1, intensity = lPOIS, samescale = F)
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Figure B.6: Output of the diagnoseG function.

For the local diagnostics, a threshold for the points to be considered outlying
must be specified, as follows. This corresponds to the quantile of the distribution of
the χ2

i statistics computed as in Equation (5.9).

> resPOIS <- diagnose.stp(stp1, intensity = lPOIS, p = 0.965)

> resPOIS

Points outlying from the 0.965 percentile

of the anaysed spatio-temporal point pattern

--------------------------------------

Analysed pattern X: 200 points

7 outlying points

The plot of the created objects returns information on the outlying points, as
displayed in Figure B.7

infl() returns the plots of the influential points returned by diagnose.

infl.localdiag(resPOIS)
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Figure B.7: Output of the plot.localdiag function. If marg = F, only the top
panels are plotted.
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Figure B.8: Output of the infl function: LISTA functions of the outlying points.
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de probabilités de Strasbourg, 5:191–195.

Meyer, S., Held, L., and Hohle, M. (2012). Spatio-temporal analysis of epidemic phe-
nomena using the r package surveillance. Journal of Statistical Software, 77(11).

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., and Lauciani, V.
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Mrkvička, T., Dvořák, J., González, J. A., and Mateu, J. (2021). Revisiting the
random shift approach for testing in spatial statistics. Spatial Statistics, 42:100430.

Muggeo, V. (2008). segmented: An r package to fit regression models with broken-
line relationships. R NEWS, 8/1:20–25.



252 Bibliography

Muggeo, V. M. (2003). Estimating regression models with unknown break-points.
Statistics in medicine, 22(19):3055–3071.

Muggeo, V. M. and Adelfio, G. (2011). Efficient change point detection for genomic
sequences of continuous measurements. Bioinformatics, 27(2):161–166.

Musmeci, F. and Vere-Jones, D. (1986). A variable-grid algorithm for smoothing
clustered data. Biometrics, pages 483–494.
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