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Abstract

This thesis offers an original contribution to knowledge on distance-based methods
for preference rankings and preference-approvals and the definition of a new ranking
method for textual analysis. The essay starts with a short review of rankings, focus-
ing on leading distance and correlation measures along with ranking aggregation and
prediction tasks. Then, we present the definition of a new element weighted rank cor-
relation coefficient and its corresponding element weighted ranking distance for linear,
weak, and incomplete orderings. The proposed measures, encoding the individual im-
portance of alternatives and their similarity structure, allow us to build two algorithms
to perform weighted aggregation and prediction of rankings.
The focus then shifts to preference-approvals, an extension of the traditional preference
model obtained by combining preference rankings and approval voting. In this frame-
work, one of the most pressing issues is to develop clustering methods to tackle the
complexity of the preference-approval space. To this aim, a new preference-approval
metric is first proposed to identify optimal clusters of votes. The alternatives are
then clustered using a new pseudometric to reduce the complexity of the preference-
approval space.
The last chapter presents a new ranking method for topic modelling, one of the most
famous machine learning models for textual analysis. The ranking method proposed is
based on a new topic-coherence measure employing Statistically Validated Networks.
To prove the effectiveness of our ranking method, we collect the judgements of PhD
students from the University of Palermo, Italy, and construct a benchmark dataset.
These judgments are taken as ground truth, showing that the proposed measure repro-
duces human judgment rankings more precisely than the state-of-the-art measures.
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The right understanding of any matter,

and a misunderstanding of the same matter,

do not wholly exclude each other.

- Franz Kafka
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Chapter 1

Introduction

A widespread data collection practice for gathering preference data is to ask a group
of people to provide their opinion on a finite selection of choices. Preference rankings
arise when voters are asked to order the alternatives from best to worst. The main issues
concerning the analysis of preference rankings are the aggregation and the prediction
of preferences. The aggregation of preferences consists of identifying a compromise
or a “consensus”1. The prediction of preferences, also called Label Ranking, consists
of building preference models that learn to predict the ranking responses of new in-
stances based on a set of predictor characteristics. One of the most effective ways to
tackle these two tasks is to employ distance-based methods. The approaches in the
literature are based on the classical unweighted rank distance measures. Thus, they are
not sensitive to the individual importance of alternatives. Nevertheless, in many set-
tings, assigning erroneously the ranking position of a highly relevant label should be
considered more serious than making a mistake in assigning a negligible one. More-
over, an efficient classifier should be able to take into account the similarity between
the elements to be ranked. This thesis initially deals with weighted aggregation and
prediction of preferences. To this aim, we propose a new element-weighted rank cor-
relation coefficient, τx,e, as an extension of Emond and Mason (2002) τx, and a new
element-weighted rank distance, dK,e, as an extension of the Kemeny and Snell (1962a)
distance dK . The two proposed measures are then used to build an algorithm to identify
the weighted consensus ranking and an algorithm to perform weighted Label Ranking.

1It should be noted that there is no single definition of “consensus” in the scientific community. In this
thesis, following the statistical community (D’Ambrosio et al., 2015, 2017a,b), the consensus represents the
median ranking, i.e. the result of preference aggregation. While in the Social Choice community, the term
consensus most commonly refers to the degree of agreement among the set of judges (Garcı́a-Lapresta and
Pérez-Román, 2010).
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Preference rankings consider a preferential order among alternatives without distin-
guishing between acceptable and unacceptable alternatives. That is, if a is ranked
above b, we can only infer that a is preferred to b, but we cannot infer anything about
their absolute acceptability. In several surveys of real data, voters are asked to in-
dicate a binary qualitative judgement on alternatives in addition to their preference
rankings. For instance, evaluators in a project finance review process are required to
rank the potential projects and determine which ones should receive financial support.
The approval voting system (Brams and Fishburn, 1978) separates the set of acceptable
alternatives from the unacceptable alternatives without considering any preferential or-
dering. In other words, voters draw an imaginary cut-off line that separates acceptable
and unacceptable alternatives. Combining preference rankings and approval voting
gives preference-approval structures. When dealing with preference-approvals, the ex-
pressivity of voters explodes. To address the complexity of the preference-approval
space, developing clustering methods is one of the most urgent issues. This thesis pro-
poses the definition of new distances in the preference-approval context to deal with
the clustering task. Firstly, a new metric between preference-approvals is proposed and
compared to the existing distance functions to deal with voters’ clustering. Secondly, a
pseudometric on the set of alternatives is presented and used for clustering alternatives
to reduce the complexity of the preference-approval space and provide a more accessi-
ble interpretation of the data.
The task of providing a ranking of alternatives is valuable in several scientific fields.
For example, in the field of textual analysis, when dealing with topic models, providing
a ranking of the estimated latent topics is beneficial. In fact, many times, not all of a
model’s estimated topics are semantically coherent and correspond to genuine domain
themes. Some topics can be a collection of irrelevant or unchained words representing
insignificant themes. Therefore, developing a ranking method that automatically ranks
learned topics closely matching human judgments is desirable. The last chapter of the
thesis offers a new coherence metric for determining a final ranking of topics based on
their semantic interpretability.

1.1 Outline of the thesis

We report a brief description of the thesis chapters;

• Introduction
Chapter 1 outlines all preliminary concepts that will be used throughout the dis-
sertation and provides a quick introduction to the issues discussed in the thesis.
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• Preliminaries on rankings
Chapter 2 highlights the primary classical distances used to measure disagree-
ment between rankings and the correlation coefficients associated with each dis-
tance. It also addresses two critical issues: ranking prediction and aggregation.

• Element weighted Kemeny distance for ranking data
The third chapter investigates the consensus between rankings taking into ac-
count the importance of items (element weights). For this purpose, it includes
a new element-weighted rank correlation coefficient, and its corresponding ele-
ment weighted ranking distance. The procedure to obtain the weighted consen-
sus ranking among several individuals is described, and its performance is stud-
ied by simulation and application to real datasets. A scientific paper extracted
from this chapter (Albano and Plaia, 2021) has already been published.

• A weighted distance-based approach with boosted decision trees for Label
Ranking
The main contribution of the fourth chapter is to formulate a flexible Label Rank-
ing ensemble model which encodes the similarity structure and a measure of the
individual label importance to predict rankings. Precisely, the proposed method
consists of three item-weighted versions of the AdaBoost boosting algorithm
for label ranking. Our proposal’s predictive performance is investigated through
simulations and applications to three real datasets. A scientific paper extracted
from this chapter (Albano et al., 2022b) has already been published.

• A family of distances for preference-approvals
The fifth chapter proposes a new method for defining the distance between preference-
approvals, taking into account the disagreements in preferences and approvals for
each pair of alternatives jointly. The proposed distance is compared to the exist-
ing distance functions to deal with clustering problems. Specifically, we prove
that our metric improves the estimated clusters in terms of stability and accuracy.
A scientific paper extracted from this chapter (Albano et al., 2022a) has already
been published.

• A new pseudometric for clustering alternatives in preference-approvals
The sixth chapter proposes a new procedure for clustering alternatives in order
to reduce the complexity of the preference-approval space and provide a more
accessible interpretation of data. To that end, we present a new family of pseu-
dometrics on the set of alternatives that take into account voters’ preferences
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via preference-approvals. A scientific paper extracted from this chapter 6 was
submitted to a scientific journal.

• Ranking coherence in Topic Models using Statistically Validated Networks
The seventh chapter offers a new ranking method, based on Statistically Vali-
dated Networks (SVNs), to explore the quality of topic models. The proposed
method allows one to distinguish between high-quality and low-quality topics
using a battery of statistical tests. We demonstrate the method’s effectiveness
through an analysis of a real text corpus, showing that the proposed measure
correlates more with human judgement than the state-of-the-art coherence mea-
sures. A scientific paper extracted from this chapter has been accepted for pub-
lication in a scientific journal.

• Conclusions
In the last Chapter the conclusions are drawn.
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Chapter 2

Preliminaries on rankings

Ranking is one of the most effective cognitive processes used by people to handle many
aspects of their lives. It is also a simple and efficient data collection technique to un-
derstand individuals’ perceptions and preferences for some items. When some subjects
are asked to indicate their preferences over a set of alternatives, ranking data are called
preference data. Therefore, preference data arise when a group of n individuals (e.g.
judges, experts, voters, raters) express their preferences for a finite set of m items (la-
bels, elements or alternatives). Preference data can be expressed by ordering the items
(when alternatives are placed in order from best to worst) or using rankings (when al-
ternatives are fixed in any pre-specified order and preferences are expressed by using
integers to indicate the rank of each alternative). In other words, the ordering is the
vector of labels ordered from best to worst, while the ranking is the vector of inte-
gers indicating the preferential order among the labels. Indeed, it is always possible to
derive the ranking from the corresponding ordering and vice versa.

2.1 Notation

Formally, given the finite set of alternatives (or class labels) Y = {y1, . . . ,ym}, the rank-
ing π is a mapping from Y to the set of ranks {1, . . . ,m}, endowed with the natural or-
dering of integers; π = {Pπ(y1), . . . ,Pπ(yi), . . . ,Pπ(ym)}, where Pπ : Y −→ {1, . . . ,m}
is the rank of each alternative, being 1 for the alternative ranked first, 2 to the alterna-
tive ranked second, and so on.
If the m items, {y1, . . . ,ym}, are ranked in m distinguishable ranks, a complete (full)
ranking or linear ordering is achieved (Cook, 2006), π ∈ L(Y ) where L(Y ) denotes the
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set of linear orders on Y . Assigning positions to alternatives in linear orders is trivial
because indifferences among distinct alternatives are not allowed. For example, given
5 items, say Y = {y1,y2,y3,y4,y5}, the ordering (y2 ≻ y3 ≻ y4 ≻ y1 ≻ y5) corresponds
to the ranking π1 = (4,1,2,3,5). The ranking π1 is, in this case, one of the 5! (or m!
with m items) possible permutations of 5 elements.

When some items receive the same preference, then a tied ranking or a weak ordering
is obtained, π ∈W (Y ) where W (Y ) denotes the set of weak orders on Y . There are
different ways of assigning positions to the alternatives in weak orders. Here we fol-
low the one used by Garcı́a-Lapresta and Pérez-Román (2011), that is based on Smith
(1973), Black (1976) and Cook and Seiford (1982).
Given π ∈W (Y ), the position of yi ∈ Y in π is assigned through the mapping Pπ :

Y −→ [1,m] defined as:

Pπ(yi) = m−#
{

yk ∈ Y | yi ≻ yk
}
− 1

2
·#
{

yk ∈ Y \{yi} | yi ∼ yk
}
. (2.1)

Where, given a generic set T , #T denotes the cardinality of T . For example, the weak
ordering (y2 ≻ y1 ∼ y3 ≻ y4 ≻ y5), where the judge likes y1 and y3 equally well (i.e. the
items are tied), corresponds to the ranking π2 = (2.5,1,2.5,4,5). Finally, in real situa-
tions, sometimes not all items are ranked: we observe partial rankings when judges are
asked to rank only a subset of items (for example, only m− 1 items), and incomplete
rankings when judges can freely choose to rank only some items.

2.2 Distances and correlation for rankings

Because of their data reduction properties and ease of acquisition and representation,
rankings have gained significant attention in the past few years. Within this framework,
one of the main issues is evaluating the distance and the correlation between two rank-
ings. The most famous correlation measures between rankings include Kendall’s τb,
later generalized by Emond and Mason (2002) τx.
As regards the distances, several measures have been proposed for ranking data (Ke-
meny and Snell 1962a; Spearman 1987). Given a set X , a distance is a function
d : X×X → R where, for all π1 and π2 ∈ X , holds:

1. reflexivity d(π1,π1) = 0;

2. positivity d(π1,π2)≥ 0

7



3. symmetry d(π1,π2) = d(π2,π1).

A distance measure is said to be a metric when it satisfies the triangle inequality:

4. triangle inequality d(π1,π2)≤ d(π1,π3)+d(π3,π2), ∀π3 ∈ X .

Finally, d is said to be a pseudometric if it does not satisfy the identity of indiscernibles:

5. identity of indiscernibles d(π1,π2) = 0 if and only if π1 = π2.

Kemeny and Snell (1962a) introduced a metric defined on linear and weak orders,
known as Kemeny distance (or metric), later generalized to the framework of partial
orders by Cook et al. (1986), which satisfies the constraints of a distance measure suit-
able for rankings.
Cook (2006) highlights the difficulties in treating the Kemeny metric, an issue already
underlined by Emond and Mason (2002) and connected to the mathematical formula-
tion using absolute values (see Eq.(2.7)). For this reason, the latter introduced a new
correlation coefficient, strictly related to the Kemeny distance, and proposed using this
coefficient as a basis for deriving a consensus among a set of rankings.
A correlation coefficient takes values between -1 and +1, i.e. rankings in full agreement
are assigned a correlation of +1, those in full disagreement are assigned a correlation
of -1, and all others lie in between. A distance d between two rankings, instead, is a
non-negative value, ranging in [0,Dmax], where 0 is the distance between a ranking
and itself, while Dmax varies among distances. This makes the correlation coefficient
more intuitive as a measure of agreement between rankings. Considering the (finite)
set S of all weak orderings of m objects, any rank correlation coefficient on S is also
a distance metric on S, and vice versa. A distance metric d can be transformed into a
correlation coefficient c (and vice-versa) using the linear transformation c = 1− 2d

Dmax .

2.2.1 Kendall’s correlation coefficient τb

Kendall’s correlation coefficient is probably the best-known measure for ranking data
(Kendall, 1948). It can be calculated by creating a score matrix of a ranking. A rank
vector π with m objects can be transformed into a symmetric m×m score matrix1,

1It is worth noting that the score matrix Oπ1 (xi,x j) is also known in the literature as ai j (see Kemeny
and Snell 1962a, p. 11 or see Emond and Mason 2002).
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whose elements Oπ1(yi,y j) are defined by:

Oπ1(yi,y j) =


1 if yi is preferred to y j (yi ≻ y j)

0 if yi = y j or yi is tied with y j (yi ∼ y j)

−1 if y j is preferred to y j (y j ≻ yi)

(2.2)

Kendall’s correlation coefficient τb between two rankings, π1 with score matrix Oπ1(yi,y j)

and π2 with score matrix Oπ2(yi,y j) is defined as:

τb(π1,π2) =
∑

m
i=1 ∑

m
i=1 Oπ1(yi,y j)Oπ2(yi,y j)√

∑
m
i=1 ∑

m
i=1 Oπ1(yi,y j)2 ∑

m
i=1 ∑

m
i=1 Oπ2(yi,y j)2

. (2.3)

When two rankings are the reversal of each other τb is equal to −1. When comparing
linear orderings, the denominator always works out to the constant m(m− 1). Con-
versely, when comparing weak orderings the denominator will compute to a lesser
value, reduced according to the total number of ties declared in each ranking. Emond
and Mason (2002) pointed out that an all-ties ranking results in a zero-filled score ma-
trix and can never be estimated as a solution, because of the zeros in the numerator
divided by zeros in the denominator results in an unknown number. Kendall’s correla-
tion coefficient is a measure of similarity and can be transformed into a dissimilarity
or distance measure via the linear transformation dτb = 1− τb, where dτb is Kendall’s
distance.

2.2.2 Emond and Mason’s correlation coefficient τx

When dealing with tied rankings, Emond and Mason (2002) showed that Kendall’s
distance (dτb ) violates the triangle inequality. To solve this difficulty, they redesigned
the elements in Kendall’s τb score matrix in Eq.(2.2) and renamed it to τx. The elements
in the new score matrix oπ(yi,y j) for rank vector π are now defined by:

oπ(yi,y j) =


1 if yi is preferred or tied with y j (yi ⪰ y j)

0 if yi = y j

−1 if y j is preferred to yi (y j ≻ yi).

(2.4)

The new correlation coefficient is defined as:

τx(π1,π2) =
∑

m
i=1 ∑

m
j=1 oπ1(yi,y j)oπ2(yi,y j)

m(m−1)
. (2.5)
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When ties are not allowed, τx reduces to τb; the former differs from the latter in giving
a score of 1 to ties instead of 0; this allows to solve the known Kendall’s problems with
weak orderings.

2.2.3 Spearman’s distance ds

The Spearman’s distance is calculated by taking the square root of the well-known
Spearman’s ρ . The distance between two rank vectors π1 and π2 is defined by:

ds(π1,π2) =

√
m

∑
i=1

(π1(yi)−π2(yi))2. (2.6)

When a ranking contains tied objects, these objects must be given the average of the
corresponding rank values. A problem identified by Emond and Mason (2000) is that
Spearman’s ds suffers from what is known as the sensitivity to irrelevant alternatives
(an irrelevant alternative is one that is asymmetrically dominated, this means that the
object is less preferred in every ranking to another object but not by every other ob-
ject (Emond and Mason 2000)). In other words, adding extra irrelevant objects to the
ranking exercise could change the maximum agreement solution. This technical flaw
arises because Spearman’s ds treats the ranks as numerical values instead of categorical
ordered values. Because of this sensitivity to irrelevant alternatives, Spearman’s ds is
unsuitable as a rank correlation coefficient in the weighted rankings problem.

2.2.4 Kemeny distance dK

Kemeny (1959) introduced several properties that a suitable distance measure for rank-
ings should satisfy:

1. reflexivity, positivity, symmetry and the triangular inequality;

2. the measure of distance should not be affected by a relabeling of the set of objects
to be ranked;

3. if two rankings are in complete agreement at the beginning and at the end of the
list and differ only in the middle, than the distance does not change after deleting
both the first and the last objects to be ranked;

4. the minimum positive distance is one,
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and introduced a distance, dK , that satisfies all these constraints.
The Kemeny distance dK between two rankings of size m, π1 with score matrix Oπ1(yi,y j)

and π2 with score matrix Oπ2(yi,y j) (defined in Eq.(2.2)) is a city block distance de-
fined as:

dK(π1,π2) =
1
2

m

∑
i=1

m

∑
j=1

∣∣Oπ1(yi,y j)−Oπ2(yi,y j)
∣∣. (2.7)

The Kemeny metric is a city block distance taking the shortest path between two rank-
ings. The factor 1

2 takes into account that the two triangular matrices that are created
by the sum of absolute differences of the score matrices are identical. The maximum
distance from a complete ranking to its reversal is m(m− 1) while the maximum dis-
tance of a ranking containing t ties is given by: m(m−1)−2t.
Considering the usual relation between a distance d and its corresponding correlation
coefficient τ = 1− 2d

Dmax , where Dmax is the maximum distance, dK is in a one-to-one
correspondence to the rank correlation coefficient τx proposed by Emond and Mason
(2002).
The Kemeny distance is a geodesic distance in the permutation polytope, or permu-

tahedron (see Thompson 1993; Heiser 2004). The permutation polytope is defined as
“the convex hull of all vectors that are obtained by permuting the coordinates of a vec-
tor containing the first m integers” (Heiser, 2004). It is a convex figure containing the
m! permutations of m objects. The convex hull forms an (m−1)-dimensional object, in
the intersection of a hypersphere and a hyperplane, graphically representable only for
m≤ 4. If weak orders are considered, the permutation polytope is extended to include
permutations of nondistinct values. Thus, the generalized permutation polytope is de-
fined as the convex hull of the points in Rm whose coordinates are permutations of m

not necessarily distinct values. Figure 2.1 shows the generalized permutation polytope
in the case of m = 4 alternatives, named (A,B,C,D).
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Figure 2.1: Permutation polytope for full and partial rankings of four objects (Heiser
and D’Ambrosio, 2013).

The links in the figure indicate a switch from one inequality to equality, except for the
lines in the hexagons that connect to partial rankings with tie-blocks of three, which
represent two switches. The natural graphical distance in the generalized permutation
polytope is the sum of the line segments that must be crossed along the shortest path
to get from one node to another, and this distance is equivalent to the count of the
smallest number of interchanges of two adjacent elements required to transform one
ranking into another. That is, the natural distance measure is the Kemeny distance.

2.3 Aggregation of rankings: the consensus problem

There are many approaches for identifying a ranking representative of a group of
judges. Arrow (1951) presented certain desirable features that a ranking system must
have and demonstrated that no rule could meet all of them simultaneously. As a result,
several preference aggregation models have been proposed, each satisfying subsets of
desirable criteria. The first models proposed belong to the class of voting methods (or
counting methods). The most popular counting methods are: the Borda count (Borda,
1781), which counts the total rank for each alternative, and the Condorcet method
(Condorcet, 1785), which is based on pairwise comparisons of alternatives. More re-
cently, statisticians and computer scientists studied the problem from numerous angles
to try to establish an aggregation technique. Kemeny and Snell (1962a) suggested us-
ing a distance function to characterize the median ranking as a specific definition of
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consensus ranking. They defined the median ranking as that ranking that minimizes
the sum of the Kemeny distance between itself and all other orderings in the sam-
ple of judges. According to Arrow’s Axioms, the Kemeny ranking rule is the only
rule that meets the independence of irrelevant alternatives and the reinforcement axiom
(Young and Levenglick, 1978; Ali and Meilă, 2012). Finding the Kemeny ranking is
regrettably a computational difficulty, as the problem is NP-hard even with only four
votes (Bartholdi et al., 1989; Cohen et al., 1999). Because the topic is significant in
so many domains, many academics have focussed on developing excellent, practical
methods to solve it. Emond and Mason (2002) proposed a Branch-and-Bound algo-
rithm to solve the consensus ranking problem. They introduced the Combined Input
Matrix (CI), defined as the summation of each input ranking scorematrix. In this way,
the rankings information is stored in a single matrix. Then, the consensus ranking is
identified, within the set of all weak orderings of m objects, through an iterative pro-
cess that makes use of a system of increasing penalties. Branch-and-bound algorithms
are accurate and helpful in many practical applications, although they are slow, espe-
cially when the number of objects is high, or the degree of internal consensus in the
data is weak. For this reason, Amodio et al. (2016) and D’Ambrosio et al. (2015)
proposed two accurate algorithms (QUICK and FAST) as an alternative to Emond and
Mason (2002)’s branch-and-bound algorithm to provide savings in computational time.
Later, D’Ambrosio et al. (2017b) developed a differential evolution algorithm, called
DECoR, for the median ranking detection under Kemeny’s axiomatic framework. They
compared their proposal with both branch-and-bound and other heuristic algorithms
showing that when the number of objects is larger than 100, the DECoR algorithm is
enormously faster than the QUICK, preserving the same degree of accuracy.
Alternative procedures for aggregating rankings based on different axiomatic frame-
works and distance metrics have been developed (Cook and Seiford, 1978; Cook, Wade
D. et al., 1986; Cook et al., 2007). In this thesis, due to the desirable mathematical
properties and geometric interpretation of the Kemeny distance, we focus on the me-
dian ranking approach for finding the consensus ranking. This method will be explored
further in later sections and extended to incorporate weighted distances.

2.4 Prediction of rankings: the Label Ranking task

Label Ranking (LR) is an emerging non-standard supervised classification problem
with practical applications in different research fields. The Label Ranking task aims
at building preference models that learn to order a finite set of labels based on a set
of predictor features. The Label Ranking (LR) task is an extension of the conven-
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tional classification setting. Given an instance x = {x1,x2, . . . ,xK} from the instance
space X , we associate x with a ranking π of the labels in the finite set of class labels
Y = {y1, . . . ,ym}. The predictive performance of the LR-classifier is one of the main
issues to investigate. Typically, given an instance xl with label ranking πl , and the
ranking π∗l predicted by an LR model, the discrepancy between πl and π∗l is measured
through a suitable distance function.
Label Ranking is associated with three relevant supervised learning problems: mul-
ticlass classification, multilabel classification and multilabel ranking. In multiclass
classification, each instance is associated with a single label; this can be seen in our
framework as a ranking where only the first (top-1) position in a ranking matters. In
multilabel classification, we are interested in the bipartite partition of all class labels
into relevant and irrelevant labels: that is to say, a ranking where we are interested
only in the top-k positions where all items are tied. Finally, multilabel ranking can be
considered a generalization of multilabel classification and label ranking. The goal is
to identify relevant labels from a set of predefined class labels and rank them according
to their relevance. It is a typical top-k ranking or what we call partial ranking. Rank-
ing data is a simple and efficient data collection technique. The label ranking task has
gained significant attention in the last decade to understand the perceptions and pref-
erences of individuals for some items. Due to its practical significance, Label Ranking
has been applied in many different fields, and a large number of methods have been
proposed or adapted for label ranking. Zhou et al. (2014) conducted a review of exist-
ing label ranking methods and provided a basic taxonomy of these methods. In their
work, they distinguish: i) Decomposition methods such as Log-linear models (Dekel
et al., 2003), Constraint classification (Har-Peled et al., 2003) and Ranking by pair-
wise comparison (Hüllermeier et al., 2008); ii) Probabilistic methods such as Mallows
Models (Cheng and Hüllermeier, 2009), Plackett-Luce (Cheng et al., 2010), Gaussian
mixture model (Grbovic et al., 2012), Decision trees (Cheng et al., 2009); iii) Similarity

approaches such as Naive Bayes (Aiguzhinov et al., 2010), Association rules (De Sá
et al., 2011), Multilayer perceptron (Ribeiro et al., 2012).
The tree-based approaches (Cheng et al., 2009) have become the most popular tech-
niques in the last years due to their ease of interpretation. Specifically, Cheng et al.
(2009) proposed Label Ranking Trees (LRT), one of the first label ranking methods
based on a decision tree algorithm. As a core component, their approach estimates lo-
cal models, assuming that the probability distribution of the output is locally constant,
by deriving an approximation of an ML estimation based on the Mallows model. Lee
and Philip (2010) combined the strength of a tree model and the existing distance-based
models to build a model that can handle ranking data. They introduced a recursive par-
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titioning algorithm for building a tree model with a distance-based ranking model fitted
at each leaf.
Philip et al. (2010) established a new decision tree model for the analysis of ranking
data; they modified the existing splitting criteria to let them precisely measure the im-
purity of a set of ranking data. They also introduced types of impurity measures for
ranking data, namely g-wise and top-k measures. Similarly, Plaia and Sciandra (2019)
proposed using a univariate decision tree for ranking data based on the positional-
weighted distances for complete and incomplete rankings and considers the area under
the ROC curve as a tool both for pruning and model assessment.
In decision tree learning, the classifier’s predictive performance is substantially im-
proved by aggregating many decision trees. For this reason, the LR community has
also devoted increasing attention to ensemble methods in recent years.
Aledo et al. (2017), inspired by the decision tree algorithm (LRT), designed two weak
tree-based classifiers. They showed through an experimental study that bagging these
weak learners, using unsupervised frequency-based discretization to select the split
point, is competitive with the ensemble of LRT and state-of-the-art algorithms in terms
of accuracy.
de Sá et al. (2017) proposed an ensemble of decision trees for Label Ranking, based
on Random Forests, called Label Ranking Forests (LRF). Their method is tested with
two base-level methods: Ranking Trees (RT) and Entropy Ranking Trees (ERT). In a
similar work, Zhou and Qiu (2018) presented a random forest label ranking method
using random decision trees to retrieve nearest neighbours. They developed a two-step
rank aggregation strategy based on Borda’s method to aggregate neighbouring rankings
discovered by the random forest into a final predicted ranking.
Werbin-Ofir et al. (2019) studied the aggregation sub-task of label ranking ensembles.
They proposed a novel aggregation method called Voting Rule Selector (VRS), a flexi-
ble approach that learns the best rule for a given dataset. The authors claimed that their
algorithm can be easily incorporated in every setting, which involves label ranking en-
sembles to improve their overall prediction performance, and may also be valuable in
various other fields concerned with aggregation of rankings.
Dery and Shmueli (2020) presented a novel boosting-based algorithm, BoostLR, for
improving the prediction performance of label ranking ensembles. They used Kendall’s
τb coefficient to calculate the loss between the predicted and actual rankings and weighted
and Borda’s count as aggregation method.
Plaia et al. (2017, 2021a) proposed a theoretical and computational definition of bag-
ging and boosting for label ranking; their approach considers decision tree as weak
learners, the Kemeny distance (Kemeny, 1959) as a measure of impurity in the split-
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ting process, and its related rank correlation coefficient τx (Emond and Mason, 2002)
for identifying the median ranking in the final nodes.
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Chapter 3

Element weighted Kemeny
distance for ranking data

3.1 Introduction

In general, distances between rankings consider all items equally important and are not
sensitive to where the disagreement occurs. Kumar and Vassilvitskii (2010) introduced
two essential aspects for many applications involving distances between rankings: po-
sitional weights and element weights. Positional weights allow to take into account
the particular position of disagreement between two rankings when computing their
distance/similarity, i.e., for example, the researcher may want to consider swapping
elements near the head of a ranking more critical than swapping elements in the tail of
the ranking.
Conversely, element weights refer to the role played by the objects that judges are rank-
ing: in certain situations, swapping some particular objects should be less penalizing
than swapping others. For example, let us consider a survey in which a group of peo-
ple is asked to rank ten social networks. In this case, it would be reasonable to assign
weights proportional to the social network’s stock market value (e.g. Facebook would
receive the highest weight) so that a disagreement between two popular platforms re-
ceives a larger penalization than an inversion between less famous ones. In other words,
if two judges agree in assigning the position of the most important alternatives, they
will be highly positively correlated. Another example comes from the voting theory:
when ranking politicians, the weights allow taking into account that some candidates
are similar (belonging to the same party or political coalition) and that transposing sim-
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ilar candidates induces a smaller cost than transposing dissimilar candidates. Here two
judges that commit many inversions between politicians coming from different parties
will be negatively correlated.
A critical issue involving rankings concerns the aggregation of the preferences in or-
der to identify a compromise or a “consensus” (Kemeny and Snell 1962b, Fligner
and Verducci 1990). The most popular approaches to cope with this problem are re-
lated to distances/correlations (Kemeny and Snell 1962b,Cook et al. 1986, Fagot 1994,
D’Ambrosio and Heiser 2016). As a matter of fact, in order to obtain homogeneous
groups of subjects with similar preferences, it is natural to measure the spread be-
tween rankings through dissimilarity or distance measures. In this sense, a consensus
is defined as the closest ranking (i.e. with the minimum distance) to the whole set of
preferences. Another possible way to measure (dis)-agreement between rankings in a
consensus problem is a correlation coefficient.
Even in this case, a weighted procedure to perform rank aggregation would prove ben-
eficial. While a position weighted correlation coefficient τw

x , for both linear and weak
ordering, has been proposed by Plaia et al. (2021b), here we aim at introducing an
element weighted correlation coefficient called τx,e as an extension of τx provided by
Emond and Mason (2002), and a new weighted distance called dK,e as an extension of
Kemeny distance. We will prove that the proposed correlation coefficient reduces to
Emond and Mason’s τx when equal weights are set, and that it is related to the proposed
distance through the linear transformation τx,e = 1− 2dK,e

Dmax .
The proposed weighted correlation coefficient will be used to deal with a consensus
ranking problem, i.e. to find the ranking which best represents the rankings/preferences
expressed by a group of judges.
The chapter is organized as follows. The next section deals with the introduction of
element weights in the distance definition. In Section 3.3, some intuitive methods to
assign weights to elements are discussed. The algorithm for finding the consensus rank-
ing is described in Section 3.4. In Section 3.5, the algorithm is applied to simulated
and real data. Finally, the concluding remarks are presented in Section 3.6.

3.2 Item weighted distances and correlation coefficient

Kumar and Vassilvitskii (2010) introduced two issues that are essential for many appli-
cations involving distances between rankings, namely, positional weights and element
weights. The issue of positional weights has been explored by relevant researches
(Garcı́a-Lapresta and Pérez-Román 2010; Can 2014; Plaia et al. 2018, 2019). In this
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chapter, we deal with case ii) and propose the weighted version of the Kemeny metric
and the correlation coefficient introduced by Emond and Mason (2002).
The weighting vector w = (w1,w2, . . . ,wm) with wi ≥ 0 is used to take into account the
importance of the items where wi is the importance given to the ith-item in a ranking.

3.2.1 Introducing element weights in the Kemeny distance

There are many ways to introduce weights in a distance measure, and each of them
corresponds to a different penalization of each inversion between two generic items
in two rankings. For example, one can decide that an inversion of elements yi and
y j should have a penalty proportional to the arithmetic average of their weights, say
wi+w j

2 . The corresponding weighted version of the Kemeny distance, in this case, will
be:

adK,e(π1,π2) =
1
2

m

∑
i=1

m

∑
j=1

wi +w j

2

∣∣Oπ1(yi,y j)−Oπ2(yi,y j)
∣∣, (3.1)

where, Oπ1 and Oπ2 are the score matrices of rankings π1 and π2, as defined in the first
Chapter, Eq.(2.2). It can be easily demonstrated that the maximum value of Eq.(3.1)
is (m−1)∑

m
i=1 wi. An alternative could be the product of the weights wiw j; the corre-

sponding weighted Kemeny distance will be defined as:

pdK,e(π1,π2) =
1
2

m

∑
i=1

m

∑
j=1

wiw j
∣∣Oπ1(yi,y j)−Oπ2(yi,y j)

∣∣, (3.2)

the maximum value of Eq.(3.2) being equal to ∑
m
i=1 ∑

m
j=1 wiw j. It can be proved that,

regardless of the choice of weighting procedure, the mathematical properties of the
Kemeny distance are preserved. Therefore, these methods should be compared in the
light of their impact on the resulting weighted Kemeny distance.
Let’s consider, for example, three different rankings of three items, say y1, y2 and y3,
π1 = (1,2,3), π2 = (2,1,3), π3 = (2,3,1) and a weighting vector w = (10,10,1) (Tab.
3.1).
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Table 3.1: Weighting vector and data matrix

w

y1 y2 y3

10 10 1

Elements

y1 y2 y3

π1 1 2 3
π2 2 1 3
π3 2 3 1

Let us compute the weighted Kemeny distances between π1 and the other rankings π2,
π3 using the two penalization method discussed before (Tab. 3.2).

Table 3.2: Weighted Kemeny distances

Items adK,e pdK,e

π1 vs π2 20 200
π1 vs π3 22 40

According to adK,e, the distance π1 vs π3 (22) is slightly higher than π1 vs π2 (20) while

pdK,e claims the contrary, stating that π1 vs π3 (40) is far lower than π1 vs π2 (200).
π1 assigns the first position to item y1, the second one to item y2 and finally item y3 is
ranked third. With π1 used as a reference, π2 switches the ranks of y1 and y2 but keeps
y3 in the last position. π3 changes the rank of every item moving y3 to the first position,
y1 to the second one, and finally y2 to the third one.
Apparently, π3 changes more frequently the position of items, but it keeps unchanged
the ordering of y1 and y2. That is to say, either π3 and π1 prefer y1 to y2, while π2

doesn’t. Since y1 and y2 are the most important elements according to the weighting
vector w, their inversion should be overly penalized. This implies that π3 resembles π1

more than π2 does.
To better understand the results, let us compute the relative weight, ri j. The relative
weight represents how much each inversion influences the resulting dK,e. It is computed
as the ratio of the weight of generic inversion between yi and y j over the total sum of
weights.
When using the arithmetic average, the relative weight of each inversion between two
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generic elements i and j is defined as follows:

ari j =


wi+w j

(m−1)∑
m
i=1 wi

, if i ̸= j

0 if i = j
(3.3)

while in the case of the product, the relative weight of each inversion is:

pri j =


2wiw j

∑
m
i=1 ∑

m
j=1(wiw j)

, if i ̸= j

0 if i = j.
(3.4)

In both cases the relative weights must sum up to 1; ∑
m
i< j ri j = 1. Let’s compute the

relative weights with the data of table(3.1):

Table 3.3: Relative weights ari j of each inversion with arithmetic average

y1 y2 y3

y1 0 - -
y2 0.476 0 -
y3 0.262 0.262 0

Table 3.4: Relative weights pri j of each inversion with product

y1 y2 y3

y1 0 - -
y2 0.834 0 -
y3 0.083 0.083 0

The inversion between y1 and y2, when using the arithmetic average, will “cost” ap-
proximately the 48% of the maximum obtainable Kemeny distance (table3.3). In con-
trast, when using the product (table3.4), the same inversion has a more considerable
influence, equal to 83%. In this example, the product of weights turns out to be the
most appropriate method. In broader terms, the product aggregation pdK,e concentrates
the mass of weights on the inversions of the most important items, while the arithmetic
average adK,e distributes it more evenly.
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The critical point for the researcher is to think about the relative weight of each in-
version when assigning the individual weights. From now on, for the purpose of this
thesis, the item-weighted Kemeny distance will be indicated as dK,e, and it will employ
the product of strictly positive weights (wi > 0) as penalization, keeping in mind that
the relative weights are what really matter.

3.2.2 A new weighted rank correlation coefficient

Combining the weighted Kemeny distance proposed, dK,e, and the extension of τx pro-
vided by Emond and Mason (2002), we propose a new weighted rank correlation coef-
ficient between two rankings π1 and π2:

τx,e(π,π2) =
∑

m
i=1 ∑

m
j=1 wiw joπ1(yi,y j)oπ2(yi,y j)

max[dK,e]
, (3.5)

where, oπ1 and oπ2 are the score matrices of rankings π1 and π2, as defined in the first
Chapter, Eq.(2.4). While, the denominator of the formula represents the maximum
value of the weighted Kemeny distance max[dK,e] = ∑

m
i=1 ∑

m
j=1 wiw j.

Correspondence between distance and correlation

Following the relation τ = 1− 2d
Dmax , we prove the following equation:

∑
m
i=1 ∑

m
j=1 wiw joπ1(yi,y j)oπ2(yi,y j)

max[dK,e]
= 1−

2dK,e

max[dK,e]
. (3.6)

PROOF:

∑
m
i=1 ∑

m
j=1 wiw joπ1(yi,y j)oπ2(yi,y j)

∑
m
i=1 ∑

m
j=1 wiw j

= 1−
∑

m
i=1 ∑

m
j=1 wiw j

∣∣Oπ1(yi,y j)−Oπ2(yi,y j)
∣∣

∑
m
i=1 ∑

m
j=1 wiw j

m

∑
i=1

m

∑
j=1

wiw joπ1(yi,y j)oπ2(yi,y j) =
m

∑
i=1

m

∑
j=1

wiw j−
m

∑
i=1

m

∑
j=1

wiw j
∣∣Oπ1(yi,y j)−Oπ2(yi,y j)

∣∣

m

∑
i=1

m

∑
j=1

wiw joπ1(yi,y j)oπ2(yi,y j) =
m

∑
i=1

m

∑
j=1

wiw j(1−
∣∣Oπ1(yi,y j)−Oπ2(yi,y j)

∣∣)
the left side and the right side of the equation are equal, the proof is due to Emond and
Mason (2002). To prove this equality we will show that over any pair of objects yi and
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y j the two summations correspond, i.e. that:

���wiw j (1−
∣∣Oπ1(yi,y j)−Oπ2(yi,y j)

∣∣)+���wiw j (1−|Oπ1(y j,yi)−Oπ2(y j,yi)|) =

���wiw j (oπ1(yi,y j)oπ2(yi,y j))+���wiw j (oπ1(y j,yi)oπ2(y j,yi))
(3.7)

There are nine possible combinations of preferences for objects yi and y j between rank-
ings π1 and π2, but only four distinct cases must be considered. The other five are
equivalent to one of these four through a simple relabelling of the rankings and/or the
objects.

Case 1: π1 prefers object yi over yl , as does π2.
The values are: Oπ1(yi,y j) = 1, Oπ1(y j,yi) = −1, Oπ2(yi,y j) = 1, Oπ2(y j,yi) = −1.
These yield the left side: 1−|1−1|+1−|(−1)− (−1)|= 2, the right side values are
identical in this case: oπ1(yi,y j) = 1, oπ1(y j,yi) =−1, oπ2(yi,y j) = 1, oπ2(y j,yi) =−1
yield the same total: (1)(1)+(−1)(−1) = 2.

Case 2: π1 prefers object yi over y j, while π2 ranks them as tied.
The values are: Oπ1(yi,y j) = 1, Oπ1(y j,yi) = −1, Oπ2(yi,y j) = 0, Oπ2(y j,yi) = 0.
These yield the left side: 1−|1− 0|+ 1−|(−1)− 0)| = 0. The right side values are:
oπ1(yi,y j) = 1, oπ1(y j,yi) =−1, oπ2(yi,y j) = 1, oπ2(y j,yi) =−1 yield the same total:
(1)(1)+(−1)(1) = 0.

Case 3: π prefers object yi over y j, while π2 prefers y j over yi.
The values are: Oπ1(yi,y j) = 1, Oπ1(y j,yi) = −1, Oπ2(yi,y j) = −1, Oπ2(y j,yi) = 1.
These yield the left side: 1− |1− (−1)|+ 1− |− 1− 1| = −2. The right side values
are: oπ1(yi,y j) = 1, oπ1(y j,yi) = −1, oπ2(yi,y j) = −1, oπ2(y j,yi) = 1 yield the same
total: (1)(−1)+(−1)(1) =−2.

Case 4: Both π1 and π2 rank the objects as tied.
The values are: Oπ1(yi,y j) = 0, Oπ1(y j,yi) = 0, Oπ2(yi,y j) = 0, Oπ2(y j,yi) = 0. These
yield the left side: 1−|0−0|+1−|0−0|= 2. The right side values are: oπ1(yi,y j) = 1,
oπ1(y j,yi) = 1, oπ2(yi,y j) = 1, oπ2(y j,yi) = 1 yield the same total: (1)(1)+(1)(1) = 2.
The two methods give identical results in all four distinct cases, completing the proof.
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Minimum and maximum values of τx,e

From the previous proofs, τx,e takes its maximum value, equal to 1, if and only if
Case 1 or Case 4 are observed. Therefore, contrary to what happens with τx, τx,e

assumes the maximum value even when a generic all tied ranking is compared with
itself. Analogously, τx,e can be minimum and equal to -1, if and only for all yi and y j

only Case 3 occurs.

Correspondence between weighted and unweighted measures

For equal weights assigned to the items, wi = C with i = 1,2, . . . ,m the weighted dis-
tance is proportional to the classic Kemeny distance.

dK,e =C2dK (3.8)

PROOF:

dK =
1
2

m

∑
i=1

m

∑
j=1

∣∣Oπ1(yi,y j)−Oπ2(yi,y j)
∣∣ dK,e =

1
2

m

∑
i=1

m

∑
j=1

wiw j
∣∣Oπ1(yi,y j)−Oπ2(yi,y j)

∣∣
if wi =C for each i= 1, . . . ,m⇒wiw j =C2 and dK,e =

C2

2 ∑
m
i=1 ∑

m
j=1

∣∣Oπ1(yi,y j)−Oπ2(yi,y j)
∣∣.

Corollary. Since τx ≡ dK and τx,e ≡ dK,e, the weighted rank correlation coefficient
is equivalent to the rank correlation coefficient defined by Emond and Mason when
equal importance is given to items: τx,e = τx with wi =C for i = 1,2, . . . ,m.

3.2.3 The case of 0-weight items

Sometimes the n×m matrix Π, whose lth row represents the ranking of the lth judge
(defined as in Table 3.1), contains some negligible items representing just noise. One
may want to compute the weighted Kemeny distance between two or more rankings
overlooking the set of irrelevant items. To do this, those elements are assigned a weight
equal to 0. To deal with the 0-weight situation, the data matrix Π should be modified
in order to lead back to the well-known case wi > 0.
Let us define two rankings and one weighting vector: π1 =(1,2,3,4,5), π2 =(4,1,2,5,3)
and w = (0,1,1,1,0). The weighting vector states that elements y1 and y5 should not
influence the distance between π1 and π2. We proceed to remove the first and fifth
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Table 3.5: Weighting vector and original data matrix

w

y1 y2 y3 y4 y5

0 1 1 1 0

Elements

y1 y2 y3 y4 y5

π1 1 2 3 4 5
π2 4 1 2 5 3

columns of the data matrix, thus defining:

• two new rankings π ′1 and π ′2 that keep just the elements with a non-zero weight
and re-assign the positions: π ′1 = (1,2,3), π ′2 = (1,2,3);

• a new weighting vector w′ with all non-zero entries w′ = (1,1,1).

Table 3.6: Weighting vector and modified data matrix

w′

y2 y3 y4

1 1 1

Elements

y2 y3 y4

π ′1 1 2 3
π ′2 1 2 3

The new rankings π ′1 and π ′2 concern only the three items with non-zero weight: y2, y3

and y4. It should be noted that element y2 is ranked 2nd by π1, while in the new ranking
π ′1 y2 is ranked 1st since y1 is removed, a similar situation is met for the other elements
y3 and y4.
Therefore, the distance dK,e between π1 and π2 with weighting vector w = (0,1,1,1,0)
reduces to the distance dK,e between π ′1 and π ′2 with weighting vector w′ = (1,1,1), and
it’s equal to 0. This transformation easily allows us to move from the case of wi ≥ 0 to
the case of wi > 0.

3.2.4 A variant of element weights: the element similarities

Sometimes, for example, when dealing with multi-level data, the weights can be as-
signed following the item similarity criterion: i.e. swapping two elements that can
be considered similar in some aspects should be less penalized than swapping two
dissimilar ones. In this setting, a symmetric penalization matrix Pm×m, reflecting the
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dissimilarity among the elements, is needed. In other words, the P matrix establishes
the penalty (pi j = p ji) for each inversion of two generic items. The weighted Kemeny
distance between two rankings π1 and π2 when using the item similarities method be-
comes:

dK,e(π1,π2) =
m

∑
i< j

pi j
∣∣Oπ1(yi,y j)−Oπ2(yi,y j)

∣∣ (3.9)

where pi j is the generic element of the penalization matrix P. The relative weight of
each generic inversion can still be computed:

ri j =


pi j

∑
m
i< j pi j

, if i ̸= j

0 if i = j
(3.10)

with ∑
m
i< j ri j = 1. To illustrate the notion of similarities, let us consider an example

from voting theory. When dealing with rankings of politicians, it should be taken
into account that candidates are gathered into political parties, which share common
objectives and adhere to specific ideological areas. Swapping candidates from the same
political party should have a smaller impact on the results of an election than swapping
candidates from different parties. Let π1, π2, π3 be three rankings of politicians.

Table 3.7: Data matrix

Politicians

Clinton Obama Bush

π1 1 2 3
π2 2 1 3
π3 1 3 2

The rankings π2 and π3 differ from π1 only in one adjacent transposition. In the first
case, the swap involves members of the same political party, while in the second case,
the transposed candidates belong to two different parties. Hence it is reasonable to
assume that the first distance should be smaller than the second one.
In this example, we decided to penalize swapping politicians of the same party with a
weight equal to 1 while swapping politicians of different parties with a weight equal to
10. The penalization matrix is shown in Tab. 3.8, and the relative weights in Tab. 3.9.
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Table 3.8: Penalization matrix

Clinton Obama Bush

Clinton 0 - -
Obama 1 0 -
Bush 10 10 0

Table 3.9: Relative weights ri j of each inversion with item similarities

Clinton Obama Bush

Clinton 0 - -
Obama 0.04 0 -
Bush 0.48 0.48 0

Finally, the resulting Kemeny distances are reported in Tab. 3.10.

Table 3.10: Unweighted and weighted Kemeny distances

Items dK dK,e

π1 vs π2 2 2
π1 vs π3 2 20

The introduction of weights allows us to account for the similarities between politi-
cians. In fact, according to the weighted distance dK,e, π2 resembles π1 more than π3

does.
The corresponding rank correlation coefficient, which uses item similarities, is defined
as:

τx,e(π1,π2) =
∑

m
i< j pi j oπ1(yi,y j)oπ2(yi,y j)

maxdK,e
. (3.11)

Note that, Eqs (3.9) and (3.11) can be considered as tweaks of (3.2) and (3.5) obtained
by replacing wiw j with pi j. Both methods involve applying a penalty to the inversion
of each pair of labels, but the penalties are derived differently.
In conclusion, the item similarity method is handy when dealing with multi-level data.
In this case, the data matrix contains rankings of politicians (level 1) who belong to

27



political parties (level 2).

3.3 The choice of weights

The choice of the weights is crucial because it determines the relative weight of each
inversion, and thus the Kemeny distance and the corresponding correlation coefficient.
In general, there is not a unique optimal solution to cope with this problem. Many
times is up to the researcher to assign the weights to express his apriori knowledge
on the alternatives, while in other situations, some unequivocal parameters allow dis-
tinguishing the important elements from the irrelevant ones. This section shows an
intuitive method to assign weights when partial rankings are present.

3.3.1 Frequency-based weights

This method uses a deterministic procedure to assign individual weights. Suppose that
the n×m data matrix contains n incomplete rankings of m elements; in this case, not
all the items are ranked by all the judges. Assuming that choosing to rank an item is
a proxy of the greater importance that a judge gives to that item (with respect to the
items not ranked), the weights wi can be defined as

wi = 100
Ti

n
for i = 1, . . . ,m, (3.12)

where Ti stands for “number of judges that assigns a non-zero rank to the ith-element”,
the weights wi are rounded down so that wi ∈ N.
In other words, the frequency-based method assigns higher weights to items that are
included several times in partial rankings of the data matrix. When using this method,
in order to observe τx,e > τx, a particular situation must occur: the ordering of the
generic elements i and j (e.g. i≻ j), who have the highest inclusion probabilities, must
be respected by the vast majority of the incomplete rankings. This usually happens
when there is a high agreement between judges assigning the first and the last positions,
but there is uncertainty about the middle positions.
Let us consider an example from the Ballon d’Or award voting to clarify the notion
of frequency-based weights. The Ballon d’Or is an annual football award presented
by France Football1 that is generally regarded as the most prestigious individual award
for football players. The winner of the FIFA Ballon d’Or is annually chosen, in a
system based on positional voting, by international journalists, the coaches, and the

1https://www.francefootball.fr/

28



FIFA national teams’ captains.
Voters are provided with a shortlist of 23 players from which they could select the three
players they deemed to have performed the best in the previous calendar year. That is,
each judge returns a partial ranking expressing only the top 3 positions.
Our example will focus on the Ballon d’Or award vote that took place in 2018. The
total number of judges was 503, while the players who received at least a vote were:
Ronaldo, De Bruyne, Griezmann, Hazard, Kane, Mbappé, Messi, Modric, Salah, and
Varane. The judges’ preferences are reported in Tab. 3.11.

Table 3.11: Ordering data matrix

Players

1 2 3

π1 De Bruyne Ronaldo Modric
π2 Ronaldo Modric De Bruyne
π3 Modric Ronaldo De Bruyne
. . . . . . . . . . . .

π503 Modric Mbappé Griezmann

The weights of each footballer, computed according to Eq.(3.12), are reported in Tab.
3.12. Table 3.13 compares the item-weighted and unweighted Kemeny distances com-

Table 3.12: Weighting vector

Weights

Ronaldo De Bruyne Griezmann Hazard Kane Mbappé Messi Modric Salah Varane

56 14 27 20 3 40 24 79 26 11

puted between the first three judges.

Table 3.13: Item weighted Kemeny distances dK,e

Items dK dK,e

π1 vs π2 4 5894
π2 vs π3 2 10962
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The introduction of frequency-based weights allows distinguishing high-relevant foot-
ballers from negligible ones. In particular, according to the weighted distance, dK,e, the
judge rankings π2 and π3 appear to be more different than the couple π1-π2, since they
disagree on the ordering of the most important footballers (with the highest weights),
i.e. Ronaldo and Modric. On the contrary, the unweighted distance dK , which does
not consider the importance of items, regards the couple π2-π3 more similar than the
couple π1-π2.

3.4 Reaching the weigthed consensus ranking

Now, we are interested in defining a weighted version of the consensus ranking fol-
lowing the approach based on a measure of distance/correlation; the median ranking
approach (Kemeny, 1959). The weighted correlation coefficient τx,e (Eq. (3.5) and
Eq.(3.11)) and the weighted Kemeny distance (Eq.(3.2 and Eq.(3.9)) are used to deal
with the aggregation of preferences.
Given a n×m matrix Π, whose l-th row represents the ranking associated with the l-th
judge, the purpose is to identify the median ranking π̂ within the universe of the per-
mutations (with ties) of m elements, Sm, that best represents the average consensus of
the subjects involved (i.e. the matrix Π). Considering that there is a one-to-one corre-
spondence between a rank correlation coefficient and a distance, the solution ranking is
reached by minimizing the average distance or, equally, maximizing the average rank
correlation:

π̂ = argmin
π∈Sm

n

∑
l=i

dK,e(π
(l),π) (3.13)

π̂ = argmax
π∈Sm

n

∑
l=i

τx,e(π
(l),π), (3.14)

where Sm is the universe of all rankings with m objects.
As introduced in Chapter 2, Emond and Mason (2002) proposed the BB algorithm
to deal with the consensus ranking problem. Amodio et al. (2016) and D’Ambrosio
et al. (2015) proposed two accurate algorithms, they called QUICK and FAST, for
identifying the median ranking when dealing with weak and partial rankings, in the
framework of the Kemeny approach.
In this chapter, the procedure to derive a weighted consensus is based on their work,
but τx,e and dK,e encode the spread among rankings considering label weights.
Indicating as si j and π

(l)
i j the scoring matrices for S and the lthrow of Π, l = 1, ..,n, the
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problem is:

max
n

∑
l=1

∑
m
i=1 ∑

m
j=1 wiw jsi jπ

(l)
i j

∑
n
i=1 ∑

n
j=1 wiw j

= max
m

∑
i=1

m

∑
j=1

si jcew
i j (3.15)

where cew
i j = ∑

n
l=1 wiw jπ

(l)
i j . The score matrix CIew = [cew

i j ] is a modified version of the
Combined Input Matrix (CI) proposed by Emond and Mason. It results from a summa-
tion of each input ranking multiplied by the weight. Defined in this way, it summarizes
the information about the input rankings and the weights in a single matrix.
Emond and Mason conceived a branch-and-bound algorithm to maximize the numer-
ator of Eq (3.15) (since the denominator is a fixed quantity depending on the number
of items and their weights), by defining an upper limit on the value of that dot product.
This limit is given by the sum of the absolute values of the elements of CIew:

V =
m

∑
i=1

m

∑
j=1

∣∣∣cew
i j

∣∣∣. (3.16)

Let Q = 1 be a vector of ones of size m. Let cew
i j be the m×m element weighted

combined input matrix. By taking into account all the combinations of m objects,
each pair of items is evaluated once by considering the two associated cells in CIew.
A moderately accurate first candidate to be the median ranking can be computed as
follow:

• If sign ci j = 1 and sign c ji =−1 then Qi = Qi +1;

• If sign ci j =−1 and sign c ji = 1 then Q j = Q j +1;

• If sign ci j = 1 and sign c ji = 1 then Qi = Qi +1,Q j = Q j +1

In this way, we obtain the updated rank vector Q containing the number of times each
object is preferred to the others in the pairwise comparisons. This vector is the starting
point for the algorithm. The detailed algorithm employing the defined quantities can
be found in Amodio et al. (2016) and D’Ambrosio et al. (2015).
Data analysis is performed using our code written in R language (available upon re-
quest). The proposed BB algorithm has been implemented in R environment by suit-
ably modifying the corresponding functions of the ConsRank package (D’Ambrosio,
2021).
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3.5 Experimental evaluation

This section aims to show the impact of the element weighting procedure on the con-
sensus ranking. As soon as the weighted version of the QUICK algorithm finds the
consensus ranking, a numerical measure of agreement is provided: the weighted cor-
relation coefficient τx,e. In a consensus problem, the value of the corresponding τx,e

is crucial because it represents the overall agreement between the estimated consensus
π̂ and the input rankings Π. That is to say, if the consensus ranking’s τx,e is close to
0, then it’s uncorrelated with the input rankings. Therefore there is not a real optimal
solution. The interest lies in pointing out how the consensus ranking and the corre-
sponding τx,e vary according to the weighting vector w employed.
In order to study the performance of the τx,e we will consider two simulation models
and two real datasets.

3.5.1 Simulation under model I

In the first simulation study (Model I), ranking data were generated according to a
vector of random variables with 5 independent components X = (X1,X2,X3,X4,X5)

T ,
each one following a Gaussian distribution Xi ∼N (µi,σ

2
i ). The vector of means is

µ = (µ1 = 0.8,µ2 = 1.2,µ3 = 1.6,µ4 = 1.6,µ5 = 1.7), and the vector of standard de-
viations is σ = (σ1 = 0.4,σ2 = 0.3,σ3 = 0.6,σ4 = 0.6,σ5 = 0.4).
Each judge observes one realization of the random vector X ; x = (x1,x2,x3,x4,x5)

T

and produces his ranking by assigning the first position, i.e. rank 1, to the item that has
the lowest value of x and so on. For example, a judge observes the kth realization of
X, say xk = (1.021,1.521,1.474,2.16,1.857) and assigns the following ranking vector
π(xk) = (1,3,2,5,4).
Since µ1 < µ2 < µ3 = µ4 < µ5, item number 1 will be reasonably placed most of the
time in first position while item number 5 in the last one, furthermore having ties is
improbable.
The item weighting vectors employed are w1 = (1,1,1,1,1), w2 = (10,1,1,1,10) and
w3 = (1,1,10,10,1). Let’s remind that w1 will produce an unweighted version of con-
sensus since it assigns the same weight to each item. In contrast, w2 assigns higher
weights to the external items, and finally w3 assigns higher weights to the internal
items.
According to Model I, we generated 1000 samples of size 100, i.e. X100×5. For each
sample, the consensus ranking and the corresponding τx,e are estimated according to
each weighting vector.
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In Tabs. 3.14, 3.15, 3.16 the relative weights of each generic inversion depending on
the weighting vector are reported.

Table 3.14: Relative weights ri j of each generic inversion when using w1

Item1 Item2 Item3 Item4 Item5

Item1 0 - - - -
Item2 0.1 0 - - -
Item3 0.1 0.1 0 - -
Item4 0.1 0.1 0.1 0 -
Item5 0.1 0.1 0.1 0.1 0

Table 3.15: Relative weights ri j of each generic inversion when using w2

Item1 Item2 Item3 Item4 Item5

Item1 0 - - - -
Item2 0.061 0 - - -
Item3 0.061 0.001 0 - -
Item4 0.061 0.001 0.001 0 -
Item5 0.613 0.061 0.061 0.061 0

Table 3.16: Relative weights ri j of each generic inversion when using w3

Item1 Item2 Item3 Item4 Item5

Item1 0 - - - -
Item2 0.001 0 - - -
Item3 0.061 0.061 0 - -
Item4 0.061 0.061 0.613 0 -
Item5 0.001 0.001 0.061 0.061 0

When equal weights are set, each inversion has the same relative weight determining
the dK,e and τx,e (Tab. 3.14). That is to say, the mass of weights is evenly distributed.
On the contrary, vectors w2 and w3 mainly emphasize the inversion of the two most
important items attributing the 61.3% of the total weight.
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Table 3.17: Distribution of consensus ranking vs weighting vector

Consensus ranking w1 w2 w3 Total

(1, 2, 3, 4, 5) 456 449 458 1363
(1, 2, 3, 5, 4) 112 121 109 342
(1, 2, 4, 3, 5) 413 405 413 1231
(1, 2, 4, 5, 3) 16 13 17 46
(1, 2, 5, 3, 4) 119 127 114 360
(1, 2, 5, 4, 3) 26 23 27 76

Total 1142 1138 1138 3418

Tab. 3.17 counts how many times the ith candidate is chosen to be the consensus rank-
ing by the QUICK algorithm when using the jth weighting vector. Six candidates have
been chosen at least once as consensus. It can be noticed that the weighted QUICK
algorithm, regardless of the weighting vector employed, picks as the optimal solution
predominantly the candidates (1,2,4,3,5) and (1,2,3,4,5) coherently with the gener-
ating model parameters. As one may notice, the algorithm finds more than one optimal
solution approximately in 10% of the simulations (total ≈ 1100).
Figure 3.1 compares the conditional distributions of τx,e for the three different weight-
ing vectors.
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Figure 3.1: Distribution of τx,e vs weighting vectors

The conditional distributions of τx,e depending on the weighing vectors, are very dif-
ferent. In particular, when using w2 = (10,1,1,1,10), the corresponding τx,e takes high
values varying from 0.57 to 0.83 with median and mean approximately equal to 0.73.
This happens because the vast majority of the judges prefer item number 1 to item
number 5. Thus, there is a strong concordance between them, assigning the ranking of
the items with the highest weight. In fact, as pointed out in Tab. 3.15, the inversion of
item number 1 with item number 5 has the largest relative weight equal to 61.3%. This
implies that if most of the judges do not commit the over-penalized inversion, they will
exhibit a firm agreement, as indicated by the τx,e of the consensus ranking. That is, the
optimal solution is a proper synthesis of the input rankings.
On the contrary, conditioning to w3 = (1,1,10,10,1), the corresponding τx,e takes
small values ranging from 0.14 to 0.37, the median is equal to 0.21 and mean equal
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to 0.22. Again this is strong evidence of the impact of weights. The weighting vector
w3 brings out the strong disagreement that exists between the judges in the determina-
tion of the rank of item number 3 and item number 4. In this case, just over half of the
judges prefer item number 3 to item number 4. Therefore, the consensus ranking found
is not a proper synthesis of the input rankings.
Such results are due to either the weighting vectors and the weighting aggregation
procedure (i.e. product aggregation), mainly emphasizing the inversion of the most
important items. If one wants to distribute the mass of weights more evenly, they
should decrease the individual weights or use another type of weighting scheme (e.g.
arithmetic mean or geometric mean).

3.5.2 Simulation under model II

The second simulation (Model II) is run in order to include ties in the model matrix.
Data are again generated according to a vector of random variables with 5 indepen-
dent components Y = (Y1,Y2,Y3,Y4,Y5)

T , each one following a Gaussian distribution
Yi ∼ N (µi,σ

2
i ). The vector of means is µ = (µ1 = 0.8,µ2 = 1.2,µ3 = 1.6,µ4 =

1.6,µ5 = 1.7), and the vector of standard deviations is σ ′ = (σ1 = 0.4,σ2 = 0.3,σ ′3 =
0.005,σ ′4 = 0.005,σ5 = 0.4). Each judge observes one realization of the random vector
Y rounded to the second decimal place y= (y1,y2,y3,y4,y5)

T and produces his ranking.
The item weighting vectors employed are again w1 = (1,1,1,1,1), w2 = (10,1,1,1,10)
and w3 = (1,1,10,10,1).
We generated 1000 samples of size 100, i.e. Y100×5 according to Model II. For each
sample, the weighted QUICK algorithm estimates the consensus ranking and the corre-
sponding τx,e according to the weighting vectors. Due to either the rounding of digital
places and the choice of small standard deviation of item number 3 and item number
4, many judges will produce ties in their rankings. The results of the simulation are
shown in Tab. 3.18 and Figure 3.2.

Table 3.18: Distribution of consensus ranking vs weighting vector

Consensus ranking w1 w2 w3 Total

(1, 2, 4, 4, 4) 4 4 4 12
(1, 2, 3.5, 3.5, 5) 979 979 980 2938
(1, 2, 4.5, 4.5, 3) 17 17 17 51

Total 1000 1000 1001 3001
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Tab. 3.18 shows that the choice of the consensus ranking is unequivocal. Over 97%
of the time, consistently with the data generator model, QUICK selects the candidate
(1, 2, 3.5, 3.5, 5) as the optimal solution. This is evidence of the goodness of the
algorithm’s performance.
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Figure 3.2: Distribution of τx,e vs weighting vectors

Once again, the highest agreement between the judges and the consensus ranking is
reached using the weighting vector w2. In fact, the corresponding τx,e varies from 0.64
to 0.87 with mean and median equal to 0.78. The lowest agreement is reached with w3,
when the corresponding τx,e takes values between 0.47 and 0.68 with median and mean
equal to 0.57. The three conditional distributions turn out to be much more similar
than they were in the first simulation. This is due to two factors, firstly the standard
deviations of item number 3 and item number 4 (σ ′3 = σ ′4 = 0.005) are much lower than
in the first simulation (σ3 = σ4 = 0.6). Therefore item number 3 and item number 4
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cause less noise, and consequently, their rankings are indeed defined. This is visible in
Tab. 3.18, where there is only one real candidate to be the consensus. In other words,
there is less uncertainty about the internal items. Secondly, ties are allowed. In this
example, item number 3 and item number 4 are equally likeable; therefore, the average
agreement among judges will be higher if allowed to express a tie. This is particularly
evident in the case of w3; in the first simulation, the similarity between item number 3
and item number 4 caused strong disagreement between the judges, while in the second
simulation, the two factors menage to mediate.

3.5.3 A real data application: the ISTAT dataset

ISTAT2 dataset concerns the sample survey “Aspetti della vita quotidiana” (aspects of
daily life); it provides basic information on the daily lives of individuals and fami-
lies. Since 2005 it has been conducted annually in February. The information gathered
makes it possible to learn about citizens’ habits and the problems they face every day.
Thematic areas on different social aspects follow each other in the questionnaires, al-
lowing us to understand how individuals live and how satisfied they are with their con-
ditions, their economic situation, the area where they live, the functioning of services,
etc. The data matrix dimension is 22×10; the rows are the 20 regions of Italy and the
autonomous provinces of Trento and Bolzano, and the columns stand for the problems
related to the city, such as parking difficulties (A), inefficiency of public transport (B),
traffic (C), poor street lighting (D), poor road conditions (E), dirty roads (F), air pollu-
tion (G), noise (H), risk of crime (I), bad smell (L). In the original data X, the xi j cell
is the percentage of people in the ith region who feel that their city particularly suffers
from the jth problem. We re-arranged the data such that within each row rank 1 is as-
signed to the problem with the highest percentage, and so on. In other words, there are
22 judges (the regions) expressing their preferences on 10 elements (problems), where
the item that is ranked first is the problem that afflicts the region the most.
The aim is to study the influence of the weighting vector on the resulting consensus
ranking. Two weighting vectors will be compared; w1 which assigns the same weight
to each element, and w2 which is based on the item similarity criterion, i.e. swapping
similar items should be less penalized than swapping two dissimilar ones.
For this purpose, we found three clusters of items. Cluster number 1 called “Mobility
and road conditions” that contains the items: A, B, C, D, E. Cluster number 2, called
“Livability” includes: F, G, H, L. Finally, cluster number 3 contains only element I
(risk of crime). With w2, we penalized swapping elements of the same cluster with a

2https://www.istat.it/

38



weight equal to 1 while swapping elements of a different cluster with a weight equal to
50. In this case, the relative weight of each inversion between two generic elements yi

and w j is defined as follows:

ri j =


0.001 if yi,y j belong to the same cluster

0.034 if yi,y j belong to the different clusters

0 if yi = y j

(3.17)

Table 3.19: Relative weight of each inversion

A B C D E F G H I L

A 0.000 - - - - - - - - -
B 0.001 0.000 - - - - - - - -
C 0.001 0.001 0.000 - - - - - - -
D 0.034 0.034 0.034 0.000 - - - - - -
E 0.001 0.001 0.001 0.034 0.000 - - - - -
F 0.034 0.034 0.034 0.001 0.034 0.000 - - - -
G 0.034 0.034 0.034 0.001 0.034 0.001 0.000 - - -
H 0.034 0.034 0.034 0.001 0.034 0.001 0.001 0.000 - -
I 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.000 -

L 0.034 0.034 0.034 0.001 0.034 0.001 0.001 0.001 0.034 0.000

The consensus estimated for each weighting vector is shown in Tab. 3.20

Table 3.20: Consensus ranking for each weighting vectors

1 2 3 4 5 6 6 8 9 10 τx,e

w1 E A B C D G H F I L 0.69
w2 E A B C D G H F I L 0.78

The consensus ranking shows that elements of cluster 1 “Mobility and road condi-
tions”, take up the first five positions. In particular, element E (road conditions) worries
the citizens the most. The impact of weights is visible. Although the optimal solution
remains the same, the value of τx,e increases. The value of the correlation coefficient
stands for the representativeness of the optimal solution found by the algorithm. In
this case, taking into account the element similarities increases the representativeness
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of the consensus ranking. The positive variation of τx,e reveals that most of the time,
the disagreement among the regions’ rankings occurs between similar elements, i.e.
belonging to the same cluster. Therefore the general weighted agreement, computed
with w2, is higher than the unweighted one computed using w1.

3.5.4 A real data application: the Quiz dataset

The quiz dataset (Jacques et al., 2014) contains the answers of 70 students (40 of the
third year and 30 of the fourth year) from Polytech’Lille (Statistics Engineering School,
France) to the four following quizzes: Literature Quiz, Football Quiz, Mathematics
Quiz and Cinema Quiz. In this study, the Mathematics Quiz will be analysed; it consists
of ranking four numbers according to increasing order: A = π

3 , B = log(1), C = e2,
D = 1+

√
5

2 .
Each student provides his ranking without using the calculator such that the data matrix
has 70 rows and 4 columns. Differently from the previous examples, the exact order of
items is known, that is; log(1)< π

3 < 1+
√

5
2 < e2, i.e. B < A < D <C.

The QUICK algorithm allows us to find out the unweighted consensus ranking, {B ≻
A≻D≻ C} with correlation coefficient τx = 0.85. Therefore the global solution is the
right one. Furthermore, the degree of concordance between students is high.
Now we assume that the students had no difficulty in realising that the elements B
(log(1)) and C (e2) had to be placed in the first and last position respectively, and maybe
this “easy choice” let the correlation coefficient grows. Therefore we want to test
whether the students were good enough to recognise the exact order of elements A ( π

3 )
and D ( 1+

√
5

2 ). A way of doing that is to define a vector of weights w=(10,1,1,10) that
emphasises the inversion between A and D and then to compute the weighted consensus
ranking and the corresponding correlation coefficient τx,e. The relative weight of each
inversion is reported in table3.21.

Table 3.21: Relative weights ri j of each generic inversion

A B C D

A 0.000 - - -
B 0.071 0.000 - -
C 0.071 0.007 0.000 -
D 0.709 0.071 0.071 0.000

The weighted consensus ranking is {B ≻ A ≻ D ≻ C} and the corresponding τx,e is
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0.72. What does it mean? Although decreased, the value of τx,e is still quite high,
indicating that the unweighted consensus was robust and not mainly influenced by the
“easy choice”. At the same time, items A and D are indeed the most difficult values to
rank: τx,e assumes its minimum value, 0.72, with a vector of weights w = (10,1,1,10)
and its maximum value, 0.90, with a vector of weights w = (1,10,10,1) (items B and
C are the easiest to rank). In this way, τx,e can also be helpful to verify where (i.e.
referring to which items) the disagreement between rankings mainly occurs.

3.6 Concluding remarks

Within the framework of preference data, where individuals express their preferences
over a set of items, the main interest lies in evaluating the agreement between them
and obtaining a synthesis of their preferences by computing a consensus ranking. Dif-
ferent approaches have been proposed in the literature to cope with this problem, but
the most popular one is probably related to distances/correlations. Usually, these are
not sensitive to the importance of items since each inversion is considered equally im-
portant. In many cases, this assumption could be simplistic. For this reason, in this
chapter, we provided an element weighted rank correlation coefficient τx,e for linear,
weak and incomplete orderings. We demonstrated the correspondence between τx,e and
the corresponding weighted Kemeny distance dK,e. Finally, we showed that in the case
of equal weights for all items wi = C, the weighted rank distance dK,e is proportional
to the well-known Kemeny distance dK , while the correlation coefficient τx,e is equal
to the Emond and Mason’s τx. From the simulation study and the real data examples,
we demonstrated that the BB algorithm allows us to find the true consensus and to
show how the weighting vector affects the representativity of the median ranking. The
weighted consensus algorithm’s computational effort was investigated by considering
some simulations, shown in Appendix A.1. We progressively increased the sample
size (from 200 to 1000) and the number of items (from 3 to 10). Compared with the
unweighted algorithm, the weighted consensus algorithm entails a slight increase in
computational time which has never exceeded 30%.
Future studies could further explore this issue by including the element weighting pro-
cedure in a cluster analysis of ranking data. When dealing with preference data, cluster
analysis attempts to identify homogeneous groups of rank choices (clusters). Using
weights allows for considering the importance of alternatives minimizing the distances
between cluster members.
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Chapter 4

A weighted distance-based
approach with boosted decision
trees for Label Ranking

4.1 Introduction

Preference data commonly arises when n judges (raters, voters or experts) order m dif-
ferent items (labels, alternatives or elements) from the most to the least preferred. In
many real-world cases, the ranking responses are paired with additional features which
characterize the judges, e.g., socioeconomic and socio-demographic characteristics. In
these cases, the goal is learning a function that predicts the ranking responses of new
instances, and determining how covariates affect the response rankings.
In the literature, especially in the computer science community, the same issue is fre-
quently referred to as Label Ranking (LR). Specifically, Label Ranking is defined as a
non-standard supervised classification problem that aims at learning a mapping from
instances (or judges) to rankings over a finite set of predefined elements (labels) (Zhou
et al., 2014). In this framework, instances are therefore defined by a set of features,
or, equivalently, considering the statistical community, judges paired with a set of in-
dependent variables. Throughout this chapter, we will use interchangeably the terms
judges, raters and instances to refer to the set of preferences possibly paired with inde-
pendent variables.
LR can be thought of as a variant of the standard classification problem since it requires
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ranking all labels for each instance rather than assigning a single response label. The
set of models aiming to study individual or collective decision processes and proce-
dures to predict a preference relation on a set of elements is called Preference Learning

(Fürnkranz and Hüllermeier, 2010). In this context, LR can be considered as a branch
of preference learning along with other methodologies such as Recommender Systems
(Cohen et al., 1999) and Learning to Rank (Liu, 2011).
Many methods were proposed in the last decade to tackle the LR problem, such as de-
composition approaches (Dekel et al., 2003; Har-Peled et al., 2003; Hüllermeier et al.,
2008), probabilistic approaches (Cheng and Hüllermeier, 2008; Cheng et al., 2010; Gr-
bovic et al., 2012; Rodrigo et al., 2021), but the tree-based approaches (Cheng et al.,
2009) have become the most popular techniques in the last years due to their ease of
interpretation (Heiser and D’Ambrosio, 2013; Aledo et al., 2017; de Sá et al., 2017;
Werbin-Ofir et al., 2019; Dery and Shmueli, 2020; Plaia et al., 2021a). Decision trees
are typically fast to train and relatively easy to interpret since the model can be pic-
tured as a tree structure. Still, unfortunately, as stated by the authors of the leading
decision tree learning books (Breiman et al., 1984), they are unstable suffering from
high variance. The decision trees learned from different data sub-samples may be quite
different. Decision trees are often referred to as weak learners; indeed they are often
combined to build a strong learner.
The best-performing ensemble methods in the LR literature are bagging (Aledo et al.,
2017; Plaia et al., 2021a), random forest (de Sá et al., 2017; Zhou and Qiu, 2018) and
boosting (Dery and Shmueli, 2020; Plaia et al., 2021a). The main idea is to improve the
precision of the decision trees by perturbing the training set, using bootstrapping, and
then combining the results of several decision trees into a single predictor. These pro-
cedures belong to the class of methods called Perturb and Combine (Breiman, 1996).
In order to fit ensemble methods into the LR framework, the characterization of dis-
tance and correlation measures suitable for ranking data is needed. Distance and corre-
lation measures for rankings are then used to i) construct a measure of impurity in the
tree splitting process; ii) specify an aggregation method for the preferences in order to
identify the consensus ranking (defined as the best representative ranking of the whole
set of preferences); iii) introduce a loss function to assess the predictive performance
of the proposed label ranker.
Although tree-based approaches in the literature differ in several aspects, they all rely
on unweighted distance and correlation measures. Therefore, these measures are nei-
ther sensitive to the importance nor to the similarity of labels. Nevertheless, in many
settings, failing to predict the ranking position of a highly relevant label should be con-
sidered more serious than failing to predict a negligible one. Moreover, an efficient
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classifier should be able to take into account the similarity between the elements to be
ranked. In such situations, a weighted distance is needed to deal with the similarity of
labels (i.e. politicians). Similarly, it would be desirable to introduce weighted distances
in label ranking algorithms to take into account additional information on the labels of
a ranking. The features, properties and importance of weighted ranking distances are
widely discussed in the literature (Kumar and Vassilvitskii 2010; Garcı́a-Lapresta and
Pérez-Román 2010; Can 2014; Plaia et al. 2018, 2019; Albano and Plaia 2021), but no
effort has been made to incorporate them into label ranking algorithms. This chapter
proposes a new item-weighted version of the boosting ensemble algorithm for the label
ranking task.
To do this, we extend the work of Plaia et al. (2021a), where they proposed a boosting
algorithm for label ranking, by introducing the item-weighted Kemeny distance (Al-
bano and Plaia, 2021) as a measure of impurity in the splitting process and its related
rank item-weighted correlation coefficient for identifying the consensus ranking in the
final nodes.
We evaluate the performance of the proposed method on real data and assess its robust-
ness to outliers on simulated data with increasing noise levels and different weighting
structures.
The chapter is organized as follows: Section 4.2 discusses the importance of ensemble
methods for improving tree prediction performance. Section 4.3 presents our main pro-
posal, which is three item-weighted boosting algorithms to deal with label ranking, and
the steps for its implementation in the R statistical software environment are described.
Finally, in Section 4.4, the procedures are compared through application to both real
and simulated datasets. Conclusions conclude the chapter.

4.2 Decision trees and boosting methods

Breiman et al. (1984) developed Classification and Regression Trees (CART) as an
alternative non-parametric approach to classification and parametric regression proce-
dures. Decision trees perform hierarchical partitions of the feature space X into a set
of T rectangular, non-overlapping regions R1, . . . ,RT to predict the response value of
any instance x ∈X . Each leaf defines a region of X formed by the set of instances
corresponding precisely to the same node responses and, thus, the same traversal of
the tree in such a way that all observations belong to exactly one region. Decision
tree ensembles were initially designed for classification tasks and applied to regression
problems shortly after. Besides, some profitable attempts have been made to extend
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them to ranking/preference data in the last decade.
Boosting, one of the best-known Perturb and Combine methods, originated from the
question posed by Kearns and Valiant (1994) of whether a set of weak classifiers could
be converted into a robust classifier. Freund and Schapire (1996, 1997) designed Ad-
aBoost (which stands for adaptive boosting), an ensemble algorithm aiming to drive
the training set error rapidly to zero. The key idea consists of repeatedly using the base
weak learning algorithm on differently weighted versions of the training data, yielding
a sequence of weak classifiers that are finally combined (Galar et al., 2011). That is,
starting with the same probability to pick up each instance in the sample, p(l) = 1

N ,
form the first training set T (1) by iteratively resampling from T . The sequence of clas-
sifiers and training sets is built, and p(l) is increased for those cases that have been
most frequently misclassified. At termination, classifiers are combined by a weighted
or simple voting. Breiman (1998) refer to algorithms of this type as “adaptive resam-
pling and combining,” or “arcing” algorithms.
Boosting is regarded as “one of the most powerful learning ideas introduced in the last
twenty years” (Hastie et al., 2009), and remains one of the most widely used and stud-
ied ensemble methods with applications in numerous fields. Probably the most severe
disadvantage of AdaBoost is that it can be very susceptible to noise, even with reg-
ularization, at least on artificially constructed datasets (Schapire, 2013). Mohri et al.
(2018) pointed out that in the presence of noise, the distribution weight assigned to ex-
amples that are harder to classify substantially increases with the number of rounds of
boosting; these examples end up dominating the selection of the base classifiers. They
also stated that “empirical results suggest, however, that the performance of AdaBoost
tends to degrade more than that of other algorithms for this uniform noise model”.
Variations of AdaBoost were developed for multi-class problems (Freund and Schapire,
1997), multi-label problems (Schapire and Singer, 2000), regression problems (Drucker,
1997; Solomatine and Shrestha, 2004), learning to rank problems (Cohen et al., 1999;
Xu and Li, 2007; Wu et al., 2010) and finally, to label ranking (Dery and Shmueli,
2020; Plaia et al., 2021a).

4.3 Building an item-weighted tree ensemble for label
ranking

This section aims to outline our main proposal, which is a variation of AdaBoost based
on the item-weighted Kemeny distance dK,e (Eqs. 3.2-3.9) to perform the LR task.
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The proposed approach aggregates the predictions of several weighted distance-based
trees in order to obtain a strong learner. Section 4.3.1 defines the decision tree mod-
elling splitting criteria used to build each tree, while Section 4.3.2 describes the pro-
posed ensemble method. Furthermore, covariates are considered to explain individual
differences in evaluating choice alternatives. For this reason, defining how much each
covariate contributes to identifying clusters of homogeneous respondents is a crucial
issue to be addressed.

4.3.1 Weighted distance-based trees: splitting and labelling crite-
ria

To extend classical univariate classification trees to deal with rankings (a vector of
multiple responses), the definition of the partitioning metric itself must be generalized.
In this work, following Sciandra et al. (2017) and Plaia and Sciandra (2019), in order to
avoid the problem related to the multivariate nature of the ranking vector, each vector
of preferences will be considered as a unique multivariate entity, i.e., a categorical tag

is assigned to each distinct ranking. For example, when dealing with the universe of
weak orderings of 4 items the tagging strategy employs 75 different categorical tags,
Tab. 4.1.

Table 4.1: Tagging strategy applied to the universe of permutations (with ties) of 4
items

Ranking Tag
π1 = {1,1,1,1} 1
π2 = {1,1,1,2} 2

. . . . . .
π75 = {4,3,2,1} 75

Note that, when the dissimilarity between two categorical tags needs to be computed,
we resort to the item-weighted distance 3.2, 3.9 between the corresponding rankings.
In other words, the categorical tags act as identifiers:

d(Tag1,Tag75)≡ dK,e

(
(1,1,1,1) , (4,3,2,1)

)
.

The standard recursive binary partitioning process, used by the CART methodology, is
applied to build a classification tree for preference rankings, where the tagging strategy
is used both in the splitting and labelling phases.
The recursive binary partitioning process is a top-down algorithm. The root node,
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containing all observations, is split into a nested sequence of subtrees:

Tm = {root−node} ⊂ ·· · ⊂ T0 = {full− tree}.

The partition of data follows a splitting criterion which consists of maximizing the
reduction in the impurity, ∆i(s, t), resulting from the split s in node t:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR),

where pL and pR are the proportions of units in node t assigned to the left child node tL
and to the right child node tR respectively at the s-th split. The child nodes will then be
further split recursively. All nodes that cannot be further split are called terminal nodes
or leaves, and the others are called internal nodes.
A decrease in node impurity at each step must be evaluated considering all covariates
and their potential split points. The problem has already been addressed in the litera-
ture; Piccarreta (2010) proposes an impurity function based on dissimilarities, but the
proposed measures cannot be used to handle preference data. Impurity measures prop-
erly suited for rankings are needed. The novelty of our work is to use the item-weighted
Kemeny distance (Albano and Plaia, 2021) as an impurity function i(t) in a node t:

i(t) = ∑
i, j∈t
i̸= j

d(Tagi,Tag j) = ∑
i, j∈t
i ̸= j

dK,e(πi,π j), (4.1)

where dK,e is the item-weighted distance measure between the rankings belonging to
the same node t via the set of predictors X . Note that, the formula to compute dK,e

depends on the weighting scheme chosen. Specifically, Eq. (3.2) is used when weights
are assigned to labels individually, while Eq. (3.9) is employed for weights based on
the similarity of labels.
An exhaustive search algorithm is used to determine the best splitting rule that gives
the greatest reduction of impurity, i.e. the smallest sum of weighted distances of the
two child nodes.
To conclude the process, a class response or class ranking is assigned to each terminal
node during the labelling phase. A response tag represents the predicted value for
all the instances within the same node. In this work, following the median ranking
approach described in Section 3.4, we identify the resulting class response as the tag
associated with the corresponding consensus ranking in a leaf.
Given Nt rankings in a terminal node t, the consensus ranking π̂t is the solution of the
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minimization of Eq.(3.13), the sum being extended to all the rankings πl ∈ t in the leaf:

π̂t = arg minπt∈Sm

Nt

∑
l=1

dK,e(πl ,πt).

In this way, the final outcome of the classification tree is a categorical tag, Tagt , which
identifies a rank vector, π̂t (a vector of multiple responses).

4.3.2 Item-weighted boosting algorithm

While developing a new weighted label ranking algorithm, much effort should be de-
voted to defining a noise-robust procedure. To this aim, we introduce a first version of
the LR algorithm that reproduces the one proposed by Plaia et al. (2021a) by replacing
the rank correlation coefficient τx with the item-weighted rank correlation coefficient
τx,e and using the impurity function defined in Eq.4.1 (AdaBoost.R.M1 (1)). Secondly,
we propose two tweaks (AdaBoost.R.M2 (2) and AdaBoost.R.M3 (3)), both aiming to
reduce the influence of label noise and improve predictive performance.
The proposed algorithms combine classifiers, iteratively created from weighted ver-
sions of the learning sample, with weights adaptively modified, iteration by iteration,
so that previously misclassified rankings have a higher probability of being sampled in
subsequent iterations. The final predicted rankings are computed by a weighted com-
bination of the intermediate rankings of the iterative process. In the following, two
vectors of weights will be used:

• the vector of working weights pb: updated at each b iteration of the algorithm.
More specifically, pb represents the probability of each instance being included
in the bootstrap sample;

• the vector of label weights w: representing the importance of each item in the
ranking (as defined in section 3.4). The importance of each item stays constant
during the procedure. If the item-weighting scheme follows the item similarity
criterion, the vector of weights w is replaced by the penalization matrix P; thus
wi ·w j is replaced by pi j.

AdaBoost.R.M1

The first weighted LR algorithm AdaBoost.R.M1 is based on AdaBoost.R (Plaia et al.,
2021a), opportunely adapted to item-weighted ranking data (Algorithm 1).
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Algorithm 1 AdaBoost.R.M1 - Item-weighted boosting for ranking data

Input: A training set T , a number of iterations B, a vector of weights w
Output: a ranker C f (.) that maps a given x to a ranking of the labels

1: initialize pb(l) = 1/n ∀l = 1,2, ...n
2: for b← 1 to B do
3: take a sample Tb, drawn from the training set T using weights pb(l)
4: fit a ranking tree Cb(.) to Tb

5: eb = ∑l∈Tb
pb(l)

(
1− τx,e(l)+1

2

)
where τx,e(l) = τx,e(Cb(xl),πl)

6: νb =
1
2 ln
(
(1− eb)/eb

)
7: update the weights pb+1(l) = pb(l)exp

(
νb

(
1− τx,e(l)+1

2

))
and normalize

them
8: end for
9: C f (xl) = arg maxπl∈Sm ∑

B
b=1 νbτx,e(Cb(xl),πl))

The algorithm requires as input a vector of weights w representing label importance
and to fix the number of iterations B. The first step consists of initializing the working
weights pb(l) = 1/n, which are assigned to each observation in the training set T of
size n.
At each iteration b, a tree Cb(.) is trained on Tb leading to a predicted ranking for each
instance π̃b

l =Cb(xl) (steps 3 and 4).
The ranking error eb of the ranking tree Cb(.) is estimated employing the item-weighted
correlation coefficient τx,e between each predicted ranking π̃b

l and its real value πl (step
5) given the vector of weights w :

eb =
n

∑
l=1

pb(l)

(
1−

τx,e(π̃
b
l ,πl)+1
2

)
. (4.2)

Since
(

1− τx,e(π̃
b
l ,πl)+1
2

)
∈ [0,1] and ∑

n
l=1 pb(l) = 1, then eb variable is a convex com-

bination, such that eb ∈ [0,1].
If the prediction π̃b

i and the observed value πi are in full disagreement then τx,e = −1
and 1− (τx,e +1)/2 = 1.
Step 6 consist in computing a factor νb, as a function of eb, for updating the weights
pb(l).

νb =
1
2

ln
(
(1− eb)/eb

)
. (4.3)

The νb value can be interpreted as the specific iteration model weight, derived as a
function of the error in each iteration. The lower the error eb, the higher the weight νb.
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Moreover, this value is also used in the final decision rule, giving more importance to
the trees that made a lower error.
Finally, the weights pb(l) are updated through a multiplier, and normalized after each
iteration (step 7).

pb+1(l) = pb(l)exp

(
νb

(
1−

τx,e(l)+1
2

))
. (4.4)

The way the working weights are updated ensures that the procedure focuses more on
hard-to-predict instances. Formally, the lower the item-weighted correlation coefficient
between the predicted and the observed ranking, the higher the probability that this
observation is resampled in the new iteration. The iterative procedure continues until a
stopping criterion (i.e., νb ≥ 0.5) or the maximum number of trees is reached.
The final prediction (step 9) comes from the last step of the procedure. The item-
weighted boosting uses rank aggregation (D’Ambrosio et al. 2015; Amodio et al. 2016;
D’Ambrosio 2021) to combine the predictions of each individual tree.
The aggregated ranking for a generic l-th observation at the b-th iteration is

π̂lb = argmax
πl∈Sm

b

∑
k=1

νbτx,e(π̃l
k,πl), with b = 1,2, . . . ,B, (4.5)

where the factor νb, is the weight related to the b-th tree. In other words, the trees
providing better estimates will receive more voting power in the final prediction.
Once each unit has been assigned a predicted ranking tree by tree, the aggregated error
at the b iteration is

err(b) = 1−
τx,e(b)+1

2
, (4.6)

where τx,e(b)= 1
n ∑

n
l=1 τx,e(π̂lb,πl) is the average of τx,e of the b-th tree over all the units

in the training set T . Then, we define a “predictor matrix” (Tab. 4.2) that summarizes
all predictors. Furthermore, the procedure allows determining the overall importance
of covariates by averaging over their importance, resulting in each of the b trees, with
weights νb.
Once the structure of the first version of weighted boosting has been defined, we define
two tweaks algorithms (AdaBoost.R.M2 and AdaBoost.R.M3) intending to improve
the predictive performance of the procedure. As stated earlier, outliers in the training
set are hard-to-predict observations. Therefore, the boosting procedure may focus too
much on these observations and give them a very high weight by increasing the number
of trees. As a result, the overall performance of the algorithm can be worsened in some
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Table 4.2: Predictor matrix structure

Weights ν1 ν2 ... νb ... νB

Trees C1(.) C2(.) ... Cb(.) ... CB(.)

1 π̂11 π̂12 ... π̂1b ... π̂1B
2 π̂21 π̂23 ... π̂2b ... π̂2B
. . . ... . ... .
. . . ... . ... .
. . . ... . ... .
n π̂n1 π̂n2 ... π̂nb ... π̂nB

Error err(1) err(2) ... err(b) ... err(B)

scenarios.

AdaBoost.R.M2

Adaboost.R.M2 stems from the idea of modifying the loss function so that the work-
ing weights pb are updated following a “less aggressive” function. In other words, a
function that is less sensitive to outliers. In fact, step 7 of the algorithm shows that
weights are updated through a multiplier, such as pb+1 = pb ·M1, where the multiplier
is defined as

M1 = exp

(
νb

(
1−

τx,e(l)+1
2

))
.

However, the exponential increase in the error could result in excessive weight being
assigned to outliers. An alternative (see Schapire and Freund 2013) is to use a binary
logistic function such as

M2 = log2(1+ exp

(
νb

(
1−

τx,e(l)+1
2

))
).

Fig. 4.1 compares M1 and M2 as a function of τx,e. Indeed, it is clear that the binary
logistic multiplier M2 is upper bounded by exponential multiplier M1, for each value of
τx,e.

51



−1.0 −0.5 0.0 0.5 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

τx,e

M
ul

tip
lie

r

M1
M2

Figure 4.1: Exponential multiplier M1 and binary logistic multiplier M2, vs the ranking
correlation coefficient τx,e, with eb = 0.1.

Adaboost.R.M2 is detailed in the algorithm 2, that compared with AdaBoost.R.M1
only modifies step 7. The function to update the weights is now pb+1(l)= pb(l) log2(1+

exp
(

νb

(
1− τx,e(l)+1

2

))
).
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Algorithm 2 AdaBoost.R.M2 - Item-weighted boosting for ranking data

Input: A training set T , a number of iterations B, a vector of weights w
Output: a ranker C f (.) that maps a given x to a ranking of the labels

1: initialize pb(l) = 1/n ∀l = 1,2, ...n
2: for b← 1 to B do
3: take a sample Tb, drawn from the training set T using weights pb(l)
4: fit a ranking tree Cb(.) to Tb

5: eb = ∑l∈Tb
pb(l)

(
1− τx,e(l)+1

2

)
where τx,e(l) = τx,e(Cb(xl),πl)

6: νb =
1
2 ln
(
(1− eb)/eb

)
7: update the weights pb+1(l) = pb(l) log2(1+ exp

(
νb

(
1− τx,e(l)+1

2

))
and normalize them

8: end for
9: C f (xl) = arg maxπl∈Sm ∑

B
b=1 νbτx,e(Cb(xl),πl))

AdaBoost.R.M3

The key idea of AdaBoost.R.M3 is to let the outliers dominate the growth of the last
trees but to strongly penalise the models with a high error rate in the final prediction
phase. For instance, Tab. 4.3 reports a demonstrative example in which the procedure
is run for ten trees, and the last ones are dominated by outliers; thus, they have low
predictive power on the test set. Then, giving each model a weight of ν2

b rather than
νb allows penalising trees dominated by outliers by reducing their voting power on the
final prediction.
Tab. 4.3 shows the model weights

(
ν , ν2

)
and the corresponding relative weights,(

νb/(∑
B
k=1 νk), ν2

b/(∑
B
k=1 ν2

k )
)

b = 1, . . . , B, of the demonstrative example.
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Tree Weight Relative weight
νb ν2

b νb/(∑
B
k=1 νk) ν2

b/(∑
B
k=1 ν2

k )

1 0.45 0.20 0.09 0.06
2 0.60 0.36 0.11 0.11
3 0.70 0.49 0.13 0.14
4 0.70 0.49 0.13 0.14
5 0.95 0.90 0.18 0.26
6 0.77 0.59 0.15 0.17
7 0.50 0.25 0.09 0.07
8 0.25 0.06 0.05 0.02
9 0.20 0.04 0.04 0.01
10 0.15 0.02 0.03 0.01

Table 4.3: Model weights and relative model weights of a demonstrative example.

It is clear that the effect of the last three bags on the final prediction has been consid-
erably turned down. In fact, their cumulative relative weight approximately reduced
from 0.12(0.05+ 0.04+ 0.03) to 0.04(0.02+ 0.01+ 0.01). In contrast, the relative
weight of the fifth tree has significantly increased from 0.18 to 0.26.
Adaboost.R.M3 is detailed in the algorithm 3, that compared with AdaBoost.R.M1
only modifies step 9, where the final prediction is obtained.

Algorithm 3 AdaBoost.R.M3 - Item-weighted boosting for ranking data

Input: A training set T , a number of iterations B, a vector of weights w
Output: a ranker C f (.) that maps a given x to a ranking of the labels

1: initialize pb(l) = 1/n ∀l = 1,2, ...n
2: for b← 1 to B do
3: take a sample Tb, drawn from the training set T using weights pb(l)
4: fit a ranking tree Cb(.) to Tb

5: eb = ∑i∈Tb
pb(l)

(
1− τx,e(l)+1

2

)
where τx,e(l) = τx,e(Cb(xl),πl)

6: νb =
1
2 ln
(
(1− eb)/eb

)
7: update the weights pb+1(l) = pb(l)exp

(
νb

(
1− τx,e(l)+1

2

))
and normalize

them
8: end for
9: C f (xl) = arg maxπl∈Sm ∑

B
b=1 ν2

b τx,e(Cb(xl),πl))
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4.4 Experimental evaluation

This section aims to show the impact of label weights on the LR boosting algorithm.
The main interest lies in pointing out how the prediction error varies according to the
weighting scheme employed. In order to compare the performance of the three pro-
posed methods, twelve simulated and three real datasets will be considered.
The methods are experimentally evaluated through a five-fold cross validation proce-
dure. That is, each dataset was randomly partitioned into five separate folds. Four folds
were used as the training set in each branch, and the last fold (a different one for each
branch) was used as the test set. For each training set, the proposed boosting proce-
dure with B = 50 iterations is run, and at the end, the fifty predictions are aggregated,
as shown in step 9 of each algorithm. To compute the difference between the final
predicted ranking and the real ranking, a linear transformation of the weighted rank-
ing correlation coefficient err(b) =

(
1− τx,e(b)+1

2

)
was utilized for each test instance.

Then, the average over all test instances in the five test folds was computed to give a
final measure for each dataset.
We would like to emphasise that simulations play a fundamental role in assessing the
performance of the proposed methods. In fact, simulations make it possible to set the
level of label noise a priori and keep other noise parameters under control. Indeed,
one of our interests is to develop an item-weighted LR algorithm that is robust to la-
bel noise; thus, we will study how the performance of the proposed methods varies at
different noise levels. Often, in the literature, the experimental evaluation is performed
on several real datasets (Aledo et al., 2017; de Sá et al., 2017; Werbin-Ofir et al., 2019;
Dery and Shmueli, 2020). Actually, even if the number of datasets considered is large,
the true data generating process is unknown. That is, it is hard to verify why, for a
particular dataset, one method outperforms the others. On the other hand, simulated
data come from a controlled environment, which allows one to set specific parameter
settings (e.g. level of heterogeneity) and verify in which conditions a method is better
than the others.
To the best of our knowledge, we are the first to propose a boosting algorithm for the
label ranking task designed to include label weights. For this reason, a comparison with
state-of-the-art unweighted LR algorithms can be carried out only under the assump-
tion of indifference among alternatives, i.e. unitary weights w1 = w2 = · · · = wm = 1
(Section 4.4.1, Fig. 4.3). Indeed, the prediction errors of state-of-the-art LR algo-
rithms are computed using unweighted distances, whereas our methods are evaluated
through item-weighted distances. Clearly, a weighted distance is not comparable with
an unweighted distance, so a comparison with state-of-the-art algorithms appears in-
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consistent when weights are not unitary. Furthermore, the final aim is not to verify that
the introduction of weights produces lower errors, but the actual novelty is the intro-
duction of a flexible procedure that allows inhomogeneous importance to the items.
As regards the computing time, the rank aggregation step (step 9) in the procedure en-
tails a slight increase in average computation time, which does not exceed 30%, with
respect to QUICK and FAST’s ones (a graphical comparison, considering 3 to 10 items,
can be found in the Appendix, fig. A.1). The computational efficiency of the QUICK
and FAST algorithms is widely described in D’Ambrosio et al. (2015); Amodio et al.
(2016) while the computational efficiency of their weighted versions in Albano and
Plaia (2021).
Data analysis is performed using our code written in R language (available upon re-
quest) by opportunely modifying available functions in the R packages ConsRank
(D’Ambrosio, 2021), rpart (Therneau et al., 2015) and adabag (Alfaro et al., 2013).

4.4.1 Simulation study

Following D’Ambrosio and Heiser (2016) and Plaia et al. (2021a), we considered a pre-
dictor space (X1 and X2), with X1 ∼U(0,10) and X2 ∼U(0,6), which was partitioned
into five regions as shown in Figure 4.2.
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Figure 4.2: Theoretical partition of the predictor space (X1,X2) with 4 items

The number of datapoints, i.e. instances, (of 4 items) within each sub-partition, was
determined by: i) randomly drawing from a normal distribution N (0,10), ii) dividing
them by their summation, iii) multiplying by the true sample size (N = 200; N = 500).
The rankings (datapoints) within each sub-partition were generated from a Mallows
Model (Mallows, 1957), one of the first probability models proposed for rankings,
frequently used in both theoretical and applied studies. It is an exponential model
defined by a central permutation π0 and a dispersion parameter θ .
When θ > 0, π0 represents the mode of the distribution, i.e., the permutation with
the highest probability to be generated. The π0 values for our simulation studies are
shown in Figure 4.2. The probability of any other ranking decays exponentially with
increasing distance to the central permutation. The dispersion parameter controls the
steepness of this decline. Assuming that π is a generic ranking, the probability for this
ranking is given by

Pr(θ) =
exp
(
−θd(π,π0)

)
ψ(θ)

, (4.7)

where d is a ranking distance measure and ψ(θ) is a normalization constant.
In this chapter, we set two simulation scenarios, in the first one (Model I), we generated
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rankings assuming the Kemeny distance dK as defined in Eq. (3.2). In the second
simulation study, we assume the item-weighted Kemeny distance dK,e as defined in
Eq. (3.9). In both scenarios, we let the dispersion parameter θ vary according to
three different levels of noise (low with θ = 2, medium with θ = 0.7 and high with
θ = 0.4). In this way, we compare the robustness to label noise of the three proposed
algorithms. Finally, we consider two levels for the sample size (N = 200, N = 500) in
the experimental design. We fix the number of trees B to 50, the maximum depth of
each tree to 4, and run a five-fold cross validation to provide confident results.

Simulation under model I

In the first simulation scenario, we generate rankings using the unweighted Kemeny
distance dK . We produce six different datasets, considering two levels for the sample
size N in the experimental design and three different noise levels θ . We applied the
three ensemble methods defined in Section 4 to all six datasets, considering three dif-
ferent weighting vectors: w1 = (1,1,1,1), w2 = (5,2,2,5) and w3 = (10,1,1,10). Let
us remind that w1 will produce an unweighted version of the algorithm since it assumes
indifference over alternatives. Hence, under w1, the comparison of our method with
the state-of-the-art, Dery and Shmueli (2020)’s BoostLR who, showed to outperform
other tree-based label ranking algorithms in the literature, can be carried out.
In contrast, w2 assigns higher weights to the external items, and finally, w3 concen-
trates most of the weight mass on the external items, so the inversion between the first
and the last item will be over-penalised (see Albano and Plaia (2021) for a detailed
discussion on the item-weighting scheme).
Figs.4.3, 4.4, 4.5 compare AdaBoost.R.M1, AdaBoost.R.M2 and AdaBoost.R.M3 in
all the simulated datasets, plotting the five-fold cross validation error (err(b) Eq.4.6)
vs the number of trees b. For the sake of readability, the scale of the y-axis changes
when θ varies but remains the same when n varies. In this way, it is possible to compare
the graphs row by row visually. The starting point of each line is the error correspond-
ing to the first tree; therefore, the plot shows the improvement produced by the boosting
algorithms when the number of trees grows up (after each block of ten trees, the aver-
age err(b) is displayed).
Figure 4.3 allows us to compare our proposal with the state-of-the-art BoostLR. In four
out of six scenarios, the prediction errors of Adaboost.R.M3 are lower than those of
BoostLR. Specifically, BoostLR produces consistently superior results in the first sce-
nario, characterised by a significant degree of variability (θ = 0.4) and small sample
size (n = 200).
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In general, the AdaBoost.R.M3 algorithm has high predictive performance. Indeed, in
70% of the scenarios, AdaBoost.R.M3 performs best; this is particularly evident with a
mild level of label noise (θ = 0.7). However, in some scenarios, e.g. high noise levels
(θ = 0.4) and small sample size n = 200, AdaBoost.R.M2 and AdaBoost.R.M1 can
achieve comparable or lower errors than AdaBoost.R.M3.
The simulation study allows highlighting the impact of the weights. Indeed, under
Model I, rankings were generated using the unweighted Kemeny distance dK in the
Mallows mode; thus, a strongly unbalanced weighting vector (such as w3) tends to
destabilise the prediction errors leading to unstable trends. In other words, as we move
away from the assumptions of the data-generating process, the results get worse.
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Figure 4.3: AdaBoost.R.M1, AdaBoost.R.M2, AdaBoost.R.M3 and BoostLR (Dery
and Shmueli, 2020) for all the simulated scenarios with 50 trees. Different levels of
homogeneity among the rankings, θ = (0.4,0.7,2), two sample sizes, n = (200,500)
and weights w1 = (1,1,1,1), Model I.
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Figure 4.4: AdaBoost.R.M1, AdaBoost.R.M2 and AdaBoost.R.M3 for all the simu-
lated scenarios with 50 trees. Different levels of homogeneity among the rankings,
θ = (0.4,0.7,2), two sample sizes, n = (200,500) and weights w2 = (5,2,2,5), Model
I.
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(b) θ = 0.4, n = 500

0.
30

0.
32

0.
34

0.
36

Number of trees

er
ro

r

1 10 20 30 40 50

(c) θ = 0.7, n = 200
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Figure 4.5: AdaBoost.R.M1, AdaBoost.R.M2 and AdaBoost.R.M3 for all the simu-
lated scenarios with 50 trees. Different levels of homogeneity among the rankings,
θ = (0.4,0.7,2), two sample sizes, n = (200,500) and weights w3 = (10,1,1,10),
Model I.
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Simulation under model II

In the second simulation study scenario, we analyse the three proposed algorithms as-
suming consistency with the data generating process. That is, we generate rankings
using the item-weighted Kemeny distance dK,e into the Mallows model (4.7) and con-
sider the same weighting scheme in the boosting phase. For setting the simulation
study, we exploit the item similarity criterion; as stated in Section 2.2, the weights are
assigned following the idea that swapping two elements that can be considered similar
in some aspects should be less penalised than swapping two dissimilar ones. There-
fore,we define a symmetric penalization matrix P (Tab.4.4, reflecting the dissimilarity
between the four elements to be ranked {A,B,C,D}).
Such a weighting scheme is easily fitted in the real world; for example, suppose n stu-
dents are asked to rank 4 different subjects, namely items = {A= Maths, B=Physics,
C=History, D=Philosophy}. It is reasonable to assume that the rankings of two students
who disagree on very different subjects (e.g. mathematics and philosophy) are more
different than those of two students who disagree on similar subjects (e.g. mathematics
and physics or philosophy and history).
We consider two levels for the sample size N, three different noise levels θ and the
item similarity weighting scheme with penalisation matrix P defined in Tab.4.4.
Figure 4.6 shows that, on average, AdaBoost.R.M3 has the best predictive perfor-
mance, although the differences between the three procedures are slight in setting with
low label noise.

Table 4.4: Simulated data penalization matrix P.

A B C D

A 0 5 20 20
B 5 0 20 20
C 20 20 0 5
D 20 20 5 0
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(b) θ = 0.4, n = 500
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(d) θ = 0.7, n = 500
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Figure 4.6: AdaBoost.R.M1, AdaBoost.R.M2 and AdaBoost.R.M3 for all the simu-
lated scenarios with 50 trees. Different levels of homogeneity among the rankings,
θ = (0.4,0.7,2), two sample sizes, n = (200,500) and a penalization matrix P, Model
II.
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4.4.2 Real Data applications

The performance of the item-weighted boosting method are also investigated through
an application to three real datasets summarized in Tab. 4.5 and analyzed also by Aledo
et al. (2017); de Sá et al. (2017, 2018), Werbin-Ofir et al. (2019), Dery and Shmueli
(2020) and Plaia et al. (2021a).

Dataset Judges Covariates Labels

German2005 402 31 5
German2009 407 33 5
Top7Movies 300 7 7

Table 4.5: Characteristics of the real-world datasets.

The first two datasets regard election data and contain socio-economic information
from regions of Germany and its electoral results, which took place in 2005 and 2009.
The 413 records correspond to the administrative districts of Germany, which are de-
scribed by 39 covariates. The outcome is the set of rankings on five items: CDU (con-
servative), SPD (centre-left), FDP (liberal), Green (centre-left) and Left (left-wing).
To define the weighting scheme, we follow the intuition that swapping similar parties
(e.g. two different parties belonging to the centre-left) should have a smaller impact
on the results of an election than swapping two dissimilar ones (e.g. a conservative
and a left-wing). Therefore, we arrange parties in a straight line, Fig. 4.7, where the
Left-wing and Conservative parties are at the extremes.

Left CDUGreen FDP
SPD

0 25 50 75 100

Figure 4.7: Parties similarity

Then, we introduce the penalisation matrix shown in Tab. 4.6 which approximates the
similarity structure of parties. Let zi be the co-ordinate of the i-th political party along
the line defined in Fig. 4.7, then the dissimilarity between party i and party j will be
found as

Dis(i, j) = |zi− z j|.
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In the case of parties Green and SPD, which have the same co-ordinate, their dissimi-
larity is assumed to be equal to 5.

Table 4.6: Political parties penalization matrix P.

CDU SPD FDP Green Left

CDU 0 75 25 75 100
SPD 75 0 50 5 25
FDP 25 50 0 50 75

Green 75 5 50 0 25
Left 100 25 75 25 0

The item-weighted boosting algorithm was performed on a limited number of trees
(B = 50) and considering a maximum depth (number of the splits in the tree) equal to
4. Figs. 4.8, 4.9 show the prediction error of the item-weighted boosting applied to
German Elections datasets with penalization matrix P (Tab. 4.6), while variable impor-
tance can be found in the appendix (Fig. B.1).
The boosting procedures were evaluated through a five-fold cross validation. As ex-
pected, the accuracy improves when the number of trees grows up. Therefore, the
item-weighted boosting minimizes the prediction error taking into account the similar-
ity structure of items.
As regards German2005 dataset, AdaBoost.R.M3 achieves the best results. Moreover,
the prediction errors err(b) of the three procedures become generally quite stable af-
ter 30 trees. In contrast, AdaboostM2 and AdaboostM3 have comparable errors in the
German2009 dataset.
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Figure 4.8: Item-weighted boosting applied to German Elections dataset 2005: err(b).
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Figure 4.9: Item-weighted boosting applied to German Elections dataset 2009: err(b).

The last dataset, The Top7movies, was presented in the chapter by de Sá et al. (2018).
It has been derived as a subset of the MovieLens 1M Dataset (Harper and Konstan,
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2015) 1. The original dataset has 1 million ratings from 6000 users on 4000 movies.
Demographic data such as gender, age, occupation, city, state, latitude and longitude
are available for each user. de Sá et al. (2018) selected the subset of users who have
rated all the seven most rated movies. This means that demographic data and a ranking
of 7 movies per user are obtained. The labels in this dataset represent the following
movies:

A: American Beauty (1999) (Drama)

B: Star Wars: Episode IV—A New Hope (1977) (Action, Adventure, Fantasy)

C: Star Wars: Episode V—The Empire Strikes Back (1980) (Action, Adventure, Fan-
tasy)

D: Star Wars: Episode VI—Return of the Jedi (1983) (Action, Adventure, Fantasy)

E: Jurassic Park (1993) (Action, Adventure, Sci-Fi)

F: Saving Private Ryan (1998) (Drama, War)

G: Terminator 2: Judgment Day (1991) (Action, Sci-Fi)

In the dataset, many rankings contain ties. In addition, we decided to take a random
sample of N = 300 from the original dataset.
For defining a Penalisation matrix P, we retrieved from IMDb 2 website the genres of
each film and compared them to obtain the similarity structure. Note that the number
of genres provided for each film varies from one to three.
Let Gi denote the set whose elements are the different genres of film i, for example, i =

E (where E=Jurassic Park) then GE = {Action, Adventure, Sci-fi}. The dissimilarity
between two generic movies i and j is computed according to:

Dis(i, j) =

90−30 ·#(Gi∩G j) if Gi∩G j ̸= Gi∪G j

5 if Gi∩G j = Gi∪G j

(4.8)

For example, since GE = {Action, Adventure, Sci-fi} and GB = {Action, Adventure, Fantasy}
then Dis(E,B) = 30. The Penalization matrix is shown in detail in Tab. 4.7.
In Fig.4.10, the error err(b) (4.6) vs the number of trees b, both in training and in the
test set, are plotted, while Tab.B.1, in the appendix, reports the importance of the vari-
ables.

1https://grouplens.org/datasets/movielens/1m/
2https://www.imdb.com/
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Table 4.7: Top7 movies penalization matrix P.

A B C D E F G

A 0 90 90 90 90 60 90
B 90 0 5 5 30 90 60
C 90 5 0 5 30 90 60
D 90 5 5 0 30 90 60
E 90 30 30 30 0 90 30
F 60 90 90 90 0 90 90
G 90 60 60 60 30 90 0

Fig. 4.10 shows that AdaBoost.R.M3 and AdaBoost.R.M1 prediction error are very
similar, lower than AdaBoost.R.M2 until 20 trees, where a local minimum is hit. It
can be considered as a stopping point for the iterative process; in fact, after the 20th
iteration, AdaBoost.R.M3 and AdaBoost.R.M1 prediction error starts to increase and
then stabilises.
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Figure 4.10: Item-weighted boosting applied to Top7movies dataset: err(b).
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4.5 Concluding remarks

The novelty of this chapter is to propose an item-weighted approach for Label Rank-
ing where the similarity structure and the importance of labels in each ranking are
considered. Specifically, we define three item-weighted versions (AdaBoost.R.M1,
AdaBoost.R.M2, and AdaBoost.R.M3) of the boosting algorithm AdaBoost for la-
bel ranking. The procedures are implemented in R, by incorporating some functions
of ConsRank package (D’Ambrosio, 2021) within a user-written split function of
rpart library (Therneau et al., 2015) and adabag (Alfaro et al., 2013). The algo-
rithms combine many weighted distance-based trees for ranking data to obtain a flexi-
ble, strong learner. The key idea is to consider the item-weighted Kemeny distance dK,e

(Albano and Plaia, 2021) as a measure of impurity in the splitting process and its re-
lated rank correlation coefficient τx,e to identify the median ranking in the final nodes.
This approach is particularly fitting when dealing with multi-level data, as shown in
Section 4.4, where the data matrix contains rankings of political parties (level 1) who
belong to political coalitions (level 2). In this case, an unweighted label ranking proce-
dure, which assumes indifference among alternatives, would merely minimise the total
distance without considering the similarity of political parties.
The three proposed methods differ in how they deal with label noise; that is Ad-
aBoost.R.M1 (1) does not counteract label noise, while AdaBoost.R.M2 (2) updates
the working weights at each iteration b using a “gentle” function, and AdaBoost.R.M3
(3) obtains the final predicted rankings by penalising the bad intermediate trees of the
iterative process. The three methods are compared, investigating their performance
through real and simulated data applications. In particular, we demonstrate that Ad-
aBoost.R.M3 performs best in many scenarios, having the lowest prediction errors even
at a high noise level. We also investigate the computational effort of the item-weighted
consensus procedure, highlighting a slight increase in average computation time.
Moreover, although the goodness of LR learners is mainly evaluated through their pre-
dictive performance, we highlight that the proposed item-weighted LR algorithm can
also be used as an interpretative method to select and measure the overall covariates’
importance, rather than a “black box” that forecasts without a clear understanding of
the underlying rules.
Future research should consider the potential effects of weights to improve the algo-
rithm scalability concerning the number of items and might include a component that
automatically learns label weights to generalise the answer to any label ranking issue
avoiding the need for a domain expert.
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Chapter 5

A family of distances for
preference-approvals

5.1 Introduction

In social choice theory, preference rankings and approvals are two popular ways to col-
lect the preferences of a group of agents on a set of alternatives. Preference rankings
order the alternatives from best to worst without distinguishing between acceptable and
unacceptable alternatives. That is, if a is ranked above b, we can only infer that a is pre-
ferred to b, but we cannot infer anything about their absolute acceptability. In contrast,
the approval voting system (Brams and Fishburn, 1978) consists of separating the set
of acceptable alternatives from the set of unacceptable alternatives without considering
preferences neither over acceptable nor over unacceptable alternatives.
Preference rankings and approval voting are related, but they are basically different
types of information and cannot be inferred from each other.
In this chapter, we focus on preference-approval structures. They combine preferences
over the alternatives, through a weak order, and establish which alternatives are accept-
able (Brams 2008, Chapter 3; Brams and Sanver 2009; Sanver 2010). In preference-
approval structures, voters can pay attention to which alternatives are acceptable and si-
multaneously rank-order them. Voters may either rank-order unacceptable alternatives
or avoid declaring their preferences about them1 by (implicitly) showing indifference

1This is the case of fallback voting in Brams and Sanver (2009).
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between these alternatives2.
Generally, extensions to ranking measures have mainly focused on the definition of
weighted distances (see Garcı́a-Lapresta and Pérez-Román 2010; Albano and Plaia
2021; Plaia et al. 2021b). In the last years, there has been a dramatic increase in recent
publications about preference-approval structures and the introduction of consensus
and distance measures in that setting.
Erdamar et al. (2014) introduced a family of distances in the preference-approval set-
ting, and they applied them to measure the consensus in that framework. Kamwa
(2019) studied the propensity of the preference-approval voting of electing the Con-
dorcet winner/loser when they exist.
Dong et al. (2021) established some axioms implying the existence of a distinct dis-
tance function of preference-approval systems. They investigated a preferences aggre-
gation model in the context of group decision-making based on the proposed axiomatic
distance function.
Kruger and Sanver (2021) investigated the compatibility between ordinal and evalua-
tive approaches to social choice theory under two weak assumptions: respect for una-
nimity and independence of evaluation of each alternative. They claimed that there is
an incompatibility between the two and described some options whenever the second
assumption is relaxed.
Long et al. (2021) developed a two-stage consensus reaching method for multi-attribute
group decision making problems with preference-approval structures, promoting the
efficiency of consensus reaching.
Barokas and Sprumont (2022) extended the classing Borda count to rank alternatives
in preference-approval setting, constructing an axiomatization of a new aggregation
procedure called broken Borda rule.

In this chapter, we propose a new distance for preference-approvals, following the
axiomatic approach of the Kemeny distance. However, while the Kemeny distance
can only consider the preference-discordance, our approach takes into account the
approval-discordance as well and use an aggregation function to combine the two types
of information for each pair of alternatives.
We show that using, as an aggregation function, the family of weigthed power means (a
class of weighted quasiarithmetic means) brings the benefit of many interesting prop-
erties. The final aggregated distance will thus be the sum of the pairwise preference-
approval discordances. Furthermore, we show that our distance respects the funda-

2If the number of alternatives is large, voters may have difficulties to rank-order all the alternatives (see
Dummett 1984, p. 243).
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mental properties to be defined as a metric and that, under certain assumptions, it has a
precise geometric interpretation.
Our proposal can be regarded as the generalization of the Erdamar et al. (2014) dis-
tance measure, with the two coinciding for a specific parameter setting. However, we
show that the proposed distance family has some advantages over the existing one as it
is more versatile and performs better in cluster analysis.

Finally, the proposed metric is used to cluster a set of preference-approvals into homo-
geneous groups, considering the whole 2-dimensional universe of preference-approvals
and a real case study.
The chapter is organized as follows. Section 5.2 is devoted to introduce basic notation,
preference-approvals and the codifications used throughout the chapter. Section 5.3
includes our proposal for measuring distances between preference-approvals and some
results. Section 5.4 offers some applications for the clustering task. Finally, Section
5.5 concludes the chapter with some remarks.

5.2 Preference-approval

Consider that a set of voters V = {v1, . . . ,vn}, with n≥ 2, have to express their opinions
over Y . We assume that each voter ranks the alternatives in Y by means of a weak
order and, additionally, assesses each alternative as either acceptable or unacceptable
by partitioning Y into A, the set of acceptable alternatives, and U = Y \A, the set of
unacceptable alternatives, where A and U can be empty sets.
We also assume the following consistency condition: given two alternatives yi and y j,
if y j is acceptable and yi is ranked above y j, then yi should be acceptable as well.

Definition 1 A preference-approval on Y is a pair (π,A) ∈W (Y )×P(Y ) satisfying

the following condition:

∀yi,y j ∈ Y
(
(yi ≻ y j and y j ∈ A) ⇒ yi ∈ A

)
.

With R(Y ) we denote the set of preference-approvals on Y .

Remark 1 If (π,A) ∈R(Y ), then the following conditions are satisfied:

1. ∀yi,y j ∈ Y
(
(yi ∈ A and y j ∈U) ⇒ yi ≻ y j

)
.

2. ∀yi,y j ∈ Y
(
(yi π y j and yi ∈U) ⇒ y j ∈U

)
.
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We now illustrate preference-approval structures through the following example.

Example 1 Let us consider (π,A) ∈R({y1, . . . ,y8}) represented by

y4

y1 y6

y2

y3

y5 y7 y8.

It means that alternatives in the same row are indifferent, alternatives in upper rows are
preferred to those located in lower rows, alternatives above the line are acceptable, i.e.,
A = {y1,y2,y4,y6}, and those below the line are unacceptable, i.e., U = {y3,y5,y7,y8}.

Table 5.1 includes the number of possible approvals, linear orders, weak orders and
preference-approvals when the number of alternatives is m = 2,3, . . . ,10.

Approvals Preferences Preference-approvals
m Linear orders Weak orders

2 4 2 3 8
3 8 6 13 44
4 16 24 75 308
5 32 120 541 2 612
6 64 720 4 683 25 988
7 128 5 040 47 293 296 564
8 256 40 320 545 835 3 816 548
9 512 362 880 7 087 261 54 667 412

10 1 024 3 628 800 102 247 563 862 440 068

Table 5.1: Number of approvals, linear orders, weak orders and preference-approvals.

It is well-known that the total number of approvals (subsets of Y ) and linear orders are
2m and m!, respectively. The number of weak orders is m!(log2 e)m+1/2 (see Good
1980). The formula for calculating the number of preference-approvals has never been
defined in the literature. For the first time, the exact number of preference-approvals
for m = 2,3, . . . ,10 alternatives is reported herein in Tab. 5.1. The formula to compute
the exact number of preference-approvals on a set of m alternatives is

ω(n) =
m

∑
r=0

(r+1)!S(r)m , (5.1)
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where S(r)m is a Stirling integer (number) of the second kind defined by David and
Barton (1962, p. 294), Abramowitz and Stegun (1964, p. 824) and more thoroughly
in Fisher and Yates (1953, p. 78), while r denotes the number of distinct positions in
a weak order on m alternatives, also known as buckets. For example, considering four
alternatives, if two are tied for first place, and the other two are tied for third place, we
can say that the number of distinct positions, or buckets, is two.
Table 5.2 shows the quotients between preference-approvals and approvals. In turn,
Tab. 5.3 shows the quotients between preference-approvals and weak orders.
It is clear that the expressivity of voters explodes with preference-approvals.

m Quotients

2 2
3 5.5
4 19.25
5 81.62
6 406.06
7 2 316.91
8 14 908.39
9 106 772.29

10 842 226.63

Table 5.2: Quotients between
preference-approvals and approvals.

m Quotients

2 2.67
3 3.38
4 4.11
5 4.83
6 5.55
7 6.27
8 6.99
9 7.71
10 8.43

Table 5.3: Quotients between
preference-approvals and weak orders.

5.2.1 Codifications

Given A⊆Y , the indicator function (or characteristic function) of A, IA : Y −→{0,1},
is defined as

IA(yi) =

 1, if yi ∈ A,

0, if yi ∈ Y \A.
(5.2)

Remark 2 Every preference-approval (π,A)∈ π({y1, . . . ,ym}) can be codified in terms
of Pπ(yi) (Eq. (2.1)) and IA(yi) (Eq. (5.2)) as follows:(

Pπ(y1),Pπ(y2), . . . ,PR(ym)
)

&
(

IA(y1), IA(y2), . . . , IA(ym)
)
. (5.3)

Example 2 Consider the preference-approval (π,A) ∈R({y1,y2,y3,y4}) represented
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by
y4

y1

y2

y3

Following Eq. (5.3), (π,A) is codified as (2,3,4,1)&(1,1,0,1).

The sign function, sgn : R−→ {−1,0,1}, is defined as

sgn(a) =


1, if a > 0 ,

0, if a = 0 ,

−1, if a < 0 .

5.3 The proposal

Given two preference-approvals
(
(π1,A1),(π2,A2)

)
∈R(Y ) and two generic alterna-

tives yi,y j ∈ Y , we now introduce two indices that measure the discordances between
these alternatives with respect to preference and approvals, respectively.
The pairwise preference-discordance between yi and y j is defined as

pi j =
1
2
· |sgn

(
Pπ1(y j)−Pπ1(yi)

)
− sgn

(
Pπ2(y j)−Pπ2(yi)

)
|. (5.4)

Taking into account Eq. (2.2), Eq. (5.4) can be defined in an equivalent and simpler
way:

pi j =
1
2
· |Oπ1(yi,y j)−Oπ2(yi,y j)|, (5.5)

and therefore, pi j ∈ {0, 0.5, 1}.
The pairwise approval-discordance between yi and y j is defined as

ai j =
1
2
·
(
|IA1(yi)− IA2(yi)|+ |IA1(y j)− IA2(y j)|

)
, (5.6)

and again ai j ∈ {0, 0.5, 1}.
In both cases, the values of 0, 0.5 and 1 indicate a null, moderate and high discordance,
respectively. In order to generate a global measure of discordance between two alter-
natives, we consider an aggregation function (see Beliakov et al. 2007; Grabisch et al.
2009; Ramı́k and Vlach 2012, Sect. 2, among others).
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Definition 2 Given an aggregation function h : [0,1]× [0,1] −→ [0,1], the distance

associated with h, D : R(Y )×R(Y )−→ [0,1], is defined as

D
(
(π1,A1),(π2,A2)

)
=

2
m · (m−1)

·
m

∑
i, j=1
i< j

h(pi j,ai j). (5.7)

Among the huge variety of aggregation functions, in this proposal, we consider a class
of weighted quasiarithmetic means3: the family of weighted power means, h : [0,1]×
[0,1]−→ [0,1], defined as

h(x,y) =
(
λ · xr +(1−λ ) · yr) 1

r , (5.8)

where λ ∈ [0,1] and r > 0.

Remark 3 Weighted power means, defined in Eq. (5.8), have interesting properties
(see, for instance, Beliakov et al. (Beliakov et al., 2007, pp. 45-47)):

1. Continuity: h is continuous.

2. Monotoniciy: (x≤ x′ and y≤ y′) ⇒ h(x,y)≤ h(x′,y′), for all x,y,x′,y′ ∈ [0,1].

3. Idempotency: h(x,x) = x for every x ∈ [0,1].

4. Compensativeness: min{x,y} ≤ h(x,y)≤max{x,y} for all x,y ∈ [0,1].

5. Comparability: h is increasing in r.

6. Symmetry: h(x,y) = h(y,x) for all x,y ∈ [0,1] ⇔ λ = 0.5.

7. lim
r→∞

h(x,y) = max{x,y}.

8. lim
r→0

h(x,y) = xλ · y1−λ (weighted geometric mean).

Notice that the inputs of h in Eq. (5.7) are the pairs of 0, 0.5, 1. In Tables 5.4 and
5.5 we show the values of h for these pairs and different values of the parameter r for
λ = 0.5, 0.75, respectively.
According to Tables 5.4 and 5.5, the parameter r governs the penalty for each pair of
values. Indeed, as r increases, so does the value of h(pi j,ai j). As a result, taking an
excessively large r value results in very similar penalties and reduces the weight of
high discordance compared to moderate discordance.
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(x,y) h(x,y)

r = 0.5 r = 1 r = 1.5 r = 2 r = 5 r = 10
(0,0) 0 0 0 0 0 0
(0,0.5) 0.12 0.25 0.31 0.35 0.44 0.47
(0,1) 0.25 0.50 0.63 0.71 0.87 0.93
(0.5,0) 0.12 0.25 0.31 0.35 0.44 0.47
(0.5,0.5) 0.50 0.50 0.50 0.50 0.50 0.50
(0.5,1) 0.73 0.75 0.77 0.79 0.88 0.93
(1,0) 0.25 0.50 0.63 0.71 0.87 0.93
(1,0.5) 0.73 0.75 0.77 0.79 0.88 0.93
(1,1) 1 1 1 1 1 1

Table 5.4: Values of h for λ = 0.5.

(x,y) h(x,y)

r = 0.5 r = 1 r = 1.5 r = 2 r = 5 r = 10
(0,0) 0 0 0 0 0 0
(0,0.5) 0.03 0.12 0.20 0.25 0.38 0.44
(0,1) 0.06 0.25 0.40 0.50 0.76 0.87
(0.5,0) 0.28 0.38 0.41 0.43 0.47 0.49
(0.5,0.5) 0.50 0.50 0.50 0.50 0.50 0.50
(0.5,1) 0.61 0.62 0.64 0.66 0.77 0.87
(1,0) 0.56 0.75 0.83 0.87 0.94 0.97
(1,0.5) 0.86 0.88 0.89 0.90 0.95 0.97
(1,1) 1 1 1 1 1 1

Table 5.5: Values of h for λ = 0.75.

Taking into account Eq. (5.7) with the aggregation function h in Eq. (5.8), we now
introduce the family of distances on preference-approvals that we analyze in the present
chapter.

Definition 3 Given λ ∈ [0,1] and r > 0, the distance associated with λ and r is the

3They are defined as h(x,y) = g−1
(

λ ·g(x)+(1−λ ) ·g(y)
)

, where g is a generating function (see, for
instance, Ostasiewicz and Ostasiewicz 2000 and Beliakov et al. 2007, Section 2.3).
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mapping Dr
λ

: R(Y )×R(Y )−→ [0,1] defined as

Dr
λ

(
(π1,A1),(π2,A2)

)
=

2
m · (m−1)

·
m

∑
i, j=1
i< j

(
λ · pr

i j +(1−λ ) ·ar
i j

) 1
r
. (5.9)

Remark 4 When r = 2 and λ = 0.5, the geometric interpretation of h(pi j,ai j) is
related to the Euclidean distance.
Fig. 5.1 reports the preference-approval plane, that is a Euclidean plane having on
the x-axis the pairwise preference-discordance, pi j, and on the y-axis the pairwise
approval-discordance, ai j.
If r = 2 and λ = 0.5, then h(pi j,ai j) is proportional to the Euclidean distance between
(pi j,ai j) and the origin, (0,0), d

(
(pi j,ai j),(0,0)

)
:

h(pi j,ai j) =
√

0.5 · (p2
i j +a2

i j) =
√

0.5 ·d
(
(pi j,ai j),(0,0)

)
, i.e.,

h(pi j,ai j) ∝ d
(
(pi j,ai j),(0,0)

)
.

This means that the aggregation function h can be interpreted as a proper distance in
the preference-approval plane. As a result, the point of greatest discordance, (1,1),
will be the farthest from the origin of the axes. Conversely, (0,0) represents the point
of greatest agreement. The red segments in Fig. 5.1 are proportional to the values
h(pi j,ai j) for each pi j,ai j ∈ {0,0.5,1}.
Thus, the aggregated distance D2

0.5

(
(π1,A1),(π2,A2)

)
(see Eq. (5.9)) can be inter-

preted as the sum of m·(m−1)
2 Euclidean distances in the preference-approval plane.

That is,

D2
0.5

(
(π1,A1),(π2,A2)

)
=
√

0.5 ·
m

∑
i, j=1
i< j

d
(
(pi j,ai j),(0,0)

)
.
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Figure 5.1: Preference-approval plane.

Proposition 1 Dr
λ

is a metric on R(Y ) for all λ ∈ (0,1) and r ≥ 1. That is, for all

(π1,A1),(π2,A2) ∈R(Y ) the following conditions are satisfied4:

1. Positivity: Dr
λ

(
(π1,A1),(π2,A2)

)
≥ 0.

2. Symmetry: Dr
λ

(
(π1,A1),(π2,A2)

)
= Dr

λ

(
(π2,A2),(π1,A1)

)
.

3. Identity of indiscernibles: Dr
λ

(
(π1,A1),(π2,A2)

)
= 0 ⇔ (π1,A1) = (π2,A2).

4. Triangle inequality: Dr
λ

(
(π1,A1),(π3,A3)

)
≤Dr

λ

(
(π1,A1),(π2,A2)

)
+Dr

λ

(
(π2,A2),(π3,A3)

)
,

for every (π3,A3) ∈R(Y ).

The proof can be found in the Appendix C.1.

Remark 5 If λ ∈ {0,1}, then Dr
λ

is not a metric.

If λ = 0, let (π1,A1),(π2,A1)∈R(Y ) be such that π1 ̸= π2. Then, we have Dr
λ

(
(π1,A1),(π2,A1)

)
=

0.
If λ = 1, let (π1,A1),(π1,A2)∈R(Y ) be such that A1 ̸=A2. Then, we have Dr

λ

(
(π1,A1),(π1,A2)

)
=

0.
Consequently, if λ ∈ {0,1}, then Dr

λ
does not verify the identity of indiscernibles,

hence it is not a metric.
4If 0 < r < 1, then Dr

λ
reduces to a distance since the triangle inequality does not hold

80



Proposition 2 demonstrate that our proposal can be considered as a generalization of
the preference-approval distance proposed by Erdamar et al. (2014).
Given two preference-approvals

(
(π1,A1),(π2,A2)

)
∈R(Y ), its distance, dλ

(
(π1,A1),(π2,A2)

)
,

is generated from the preference distance and the approval distance marginally, and
eventually aggregate them by a convex combination.
The authors measure the disagreement between preferences by using the Kemeny met-
ric (Kemeny, 1959), dK :

dK(π1,π2) =
m

∑
i, j=1
i< j

|sgn
(
Pπ1(y j)−Pπ1(yi)

)
− sgn

(
Pπ2(y j)−Pπ2(yi)

)
|.

Or, equivalently, by considering the Score matrix Eq. (2.2), as defined in Chapter 1,
Eq.(3.2):

dK(π1,π2) =
m

∑
i, j=1
i< j

|Oπ1(yi,y j)−Oπ2(yi,y j)|.

Notice that dK(π1,π2) ∈ [0,m · (m−1)].
In turn, the approval disagreement is measured through the Hamming metric (Ham-
ming, 1950), dH :

dH(A1,A2) =
m

∑
i=1
|IA1(yi)− IA2(yi)|. (5.10)

Notice that dH(A1,A2) ∈ [0,m].
In order to aggregate dK and dH as a global distance, the two metrics are normalized to
the same codomain [0,1] via dividing by their maximum distances.
The mappings dR : R(Y )×R(Y ) −→ [0,1] and dA : R(Y )×R(Y ) −→ [0,1] are de-
fined as

dR

(
(π1,A1),(π2,A2)

)
=

dK(π1,π2)

m · (m−1)
,

dA

(
(π1,A1),(π2,A2)

)
=

dH(A1,A2)

m
.

The two normalized distances are eventually aggregated in a final preference-approval
distance, dλ : R(Y )×R(Y )−→ [0,1], defined as

dλ

(
(π1,A1),(π2,A2)

)
=

λ ·dR

(
(π1,A1),(π2,A2)

)
+(1−λ ) ·dA

(
(π1,A1),(π2,A2)

)
, (5.11)
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where λ ∈ [0,1] is a parameter used to control the relative relevance of the two com-
ponents.
Taking into account Eqs. (3.2) and (5.10), Eq. (5.11) can be re-written as

dλ

(
(π1,A1),(π2,A2)

)
=

λ

m · (m−1)
·

m

∑
i, j=1
i< j

|Oπ1(yi,y j)−Oπ2(yi,y j)|+

1−λ

m
·

m

∑
i=1
|IA1(yi)− IA2(yi)|. (5.12)

Proposition 2 For all (π1,A1),(π2,A2) ∈R(Y ) and λ ∈ [0,1] it holds

D1
λ

(
(π1,A1),(π2,A2)

)
= dλ

(
(π1,A1),(π2,A2)

)
.

The proof is given in Appendix C.2. Note that Proposition 2 is valid for weighted power
means. They are the proper weighted quasiarithmetic means that allow us to generalize
the distance between preference-approvals introduced by Erdamar et al. (2014).
In Proposition 2, we have shown that Dr

λ
= dλ when r = 1. We now show that is not

true if r ̸= 1.

Proposition 3 If r ̸= 1, Dr
λ

(
(π1,A1),(π2,A2)

)
= dλ

(
(π1,A1),(π2,A2)

)
for all (π1,A1),(π2,A2)∈

R(Y ) and λ ∈ [0,1] is not true.

PROOF: Let us consider the case of two alternatives. Notice that in Eq. (5.9),
when m = 2, Dr

λ
reduces to the h function computed in i = 1 and j = 2. That is,

Dr
λ

(
(π1,A1),(π2,A2)

)
= h(p12,a12) = (λ · pr

12+(1−λ ) ·ar
12)

1
r . By Proposition 2, we

have D1
λ

(
π1,A1),π2,A2)

)
= dλ

(
(π1,A1),(π2,A2)

)
= λ · p12 +(1−λ ) ·a12.

If we force the equality D1
λ

(
(π1,A1),(π2,A2)

)
= Dr

λ

(
(π1,A1),(π2,A2)

)
, we have λ ·

p12 +(1−λ ) ·a12 = (λ · pr
12 +(1−λ ) ·ar

12)
1
r , i.e.,

(λ · p12 +(1−λ ) ·a12)
r = λ · pr

12 +(1−λ )ar
12. (5.13)

We have to prove that there exist p12,a12 ∈ {0,0.5,1} and λ ∈ [0,1] such that Eq.
(5.13) is not true for any r ̸= 1.
If p12 = 1 and a12 = 0, then Eq. (5.13) becomes λ r = λ , and it is true if and only if
λ ∈ {0,1}. In all the other cases, if r ̸= 1, then Eq. (5.13) is false.
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5.4 Clustering tasks

This section shows how the proposed distance can be used to study the universe of
preference-approvals and to determine clusters.
Subsection 5.4.1 examines the universe of preference approvals in the case of two al-
ternatives in order to observe how the values of r and λ affect the creation of homo-
geneous clusters. Afterwards, the influence of the two parameters r and λ when the
number of alternatives n varies is investigated.
Subsection 5.4.2 provides an application on real data, to investigate how the countries
of the European Union can be clustered into groups, according to their preference-
approvals on nine alternatives concerning social values. The dataset used comes from
the Eurobarometer website5.

5.4.1 Universe of preference-approvals

Let us consider the 2-dimensional preference-approval universe where the set of al-
ternatives is Y = {y1,y2}. Following Eq. (5.3), the preference-approvals (πi,Ai),
i = 1,2, . . . ,8, are represented by two 2-dimensional vectors:

(2,1)&(1,1) ≡
y2

y1 (2,1)&(0,1) ≡
y2

y1

(2,1)&(0,0) ≡ y2

y1

(1,2)&(1,1) ≡
y1

y2

(1,2)&(1,0) ≡
y1

y2

(1,2)&(0,0) ≡ y1

y2

(1.5,1.5)&(1,1) ≡
y1 y2

(1.5,1.5)&(0,0) ≡
y1 y2

The distances between preference-approvals on two alternatives for r = 1 and λ = 0.5

5https://europa.eu/eurobarometer/screen/home.
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(Fig. 5.2) and λ = 0.75 (Fig. 5.3) are reported in the heatmaps.
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Figure 5.2: Distances between preference-approvals for 2 alternatives, r = 1 and λ =
0.5.

Increasing the value of λ emphasizes the discordance in the preference part, and mod-
ifies the relationships between the corresponding preference-approvals. Indeed, when
λ = 0.75, there is an increase in the intensity of the distances at the top-right hand side
of the graph, which concerns the triples

(2,1)&(1,1), (2,1)&(0,1), (2,1)&(0,0)

and
(1,2)&(0,0), (1,2)&(1,1), (1,2)&(1,1).

The hierarchical relationship between objects is reported in Fig. 5.4; the dendrograms
show how the hierarchical clustering of the eight preference-approvals changes based
on Dr

λ
.

Fig. 5.4 shows that the value of λ strongly influences the hierarchical aggregation of
preference-approvals. A similar analysis can be carried out by varying the value of r.
In Fig. 5.5 the distances between the corresponding preference-approvals, for r = 2
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Figure 5.3: Distances between preference-approvals for 2 alternatives, r = 1 and λ =
0.75.
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Figure 5.4: Hierarchical clustering dendrogram for 2 alternatives, r = 1, λ = 0.5 (left)
and λ = 0.75 (right).
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Figure 5.5: Distance between preference-approvals for 2 alternatives, r = 2, λ = 0.5

and λ = 0.5 are shown.
Compared to Fig. 5.2, Fig. 5.5 shows a general increase of distances determined by
the increase of r. In particular,

D2
λ

(
(π1,A1),(π2,A2)

)
≥ D1

λ

(
(π1,A1),(π2,A2)

)
,

for all (π1,A1),(π2,A2) ∈R(Y ). This is due to h being increasing in r.
The dendrograms between preference-approvals objects are reported in Fig. 5.6.
Fig. 5.6 shows that an increase in r contributes differently (with respect to an increase
in λ ) to the change of the hierarchical aggregation structure. In fact, the two dendro-
grams merge preference-approvals in the same way. What changes is the “height” at
which there is the aggregation or, in other words, the distance to be tolerated to aggre-
gate two preference-approvals. Note that this happens only for two alternatives.
Tables 5.6, 5.7, 5.8 and 5.9 show the cophenetic correlation coefficient6 (see Sokal and

6The cophenetic correlation coefficient is a measure of similarity between dendrograms. It is particularly
used in biostatistics to investigate how faithfully a dendrogram preserves the pairwise distances between the
original unmodeled data points, or also to study where raw data tend to occur in clumps or clusters. This
coefficient has also been proposed as a nested cluster test (see Rohlf and Fisher 1968 and Saraçli et al. 2013).
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Figure 5.6: Hierarchical clustering dendrogram for 2 alternatives, r = 1 (left), r = 2
(right) and λ = 0.5.

Rohlf 1962 and Schlee 1973, pp. 278-284) between dendrograms, for m = 2, 3, 4, 5
and λ = 0.5. The cophenetic coefficient was computed in R using the dendextend
package (Galili, 2015).

m = 2 1 1.5 2 5 10
1 1

1.5 0.99 1
2 0.98 1 1
5 0.94 0.97 0.98 1

10 0.90 0.94 0.97 1 1

Table 5.6: Cophenetic dendrogram correlations for m = 2, r = 1, 1.5, 2, 5, 10 and
λ = 0.5.

m = 3 1 1.5 2 5 10
1 1

1.5 0.76 1
2 0.76 1 1
5 0.63 0.68 0.70 1
10 0.65 0.71 0.73 0.99 1

Table 5.7: Cophenetic dendrogram correlations for m = 3, r = 1, 1.5, 2, 5, 10 and
λ = 0.5.
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m = 4 1 1.5 2 5 10
1 1

1.5 0.85 1
2 0.80 0.83 1
5 0.71 0.76 0.88 1
10 0.70 0.75 0.86 0.99 1

Table 5.8: Cophenetic dendrogram correlations for m = 4, r = 1, 1.5, 2, 5, 10 and
λ = 0.5.

m = 5 1 1.5 2 5 10
1 1

1.5 0.80 1
2 0.72 0.79 1
5 0.61 0.73 0.81 1
10 0.57 0.69 0.79 0.95 1

Table 5.9: Cophenetic dendrogram correlations for m = 5, r = 1, 1.5, 2, 5, 10 and
λ = 0.5.

Tables 5.6, 5.7, 5.8 and 5.9 show that dendrogram correlations are strictly related to
the values of r and m. Overall, the correlations between dendrograms tend to decrease
as r increases. This is especially evident when we examine the first column of each
table, which reports the correlation between dendrograms obtained with r = 1 and
dendrograms obtained with r = 1.5, 2, 5, 10. In terms of the number of alternatives,
it should be noted that as m increases, the dendrogram correlations generally decrease
with an oscillatory trend.
In other words, Tables 5.6, 5.7, 5.8 and 5.9 highlight that the parameter r has a consid-
erable influence, not only on the resulting values of the proposed distance Dr

λ
, but also

on the cluster structure discovered among the observations of the preference-approvals
universe. Specifically, as m increases and the expressiveness of the voters explodes (Ta-
ble 5.1), so does the discriminating power of r, allowing different clustering structures
to be highlighted. Indeed, the proposed family of distances Dr

λ
is more flexible than

the existing one, and it ultimately comes down to a new parameter that can be exploited
in various applications, such as maximizing the goodness of a clustering procedure.
To explore further this issue, let us consider a simulation study on the universe of 5
alternatives, which involves three steps:

1. generate four groups of clustered preference-approvals;

2. apply a hierarchical clustering algorithm for different values of r.
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3. compute an external validation index, the Adjusted Rand index (Hubert and Ara-
bie, 1985), to investigate which value of r maximises the similarity between the
estimated and the theoretical clusters.

Therefore, we aim to find the value of r that provides more reliable clusters, i.e. clusters
that are more consistent with the data-generating process.
The number of preference-approvals (on five alternatives) generated within each cluster
was determined by randomly drawing four values from a normal distribution N (50,4)
and converting them into integer numbers.
Orderings and approvals were generated individually and merged to produce the final
set of preference-approvals. Specifically, orderings within each sub-partition were gen-
erated from a Mallows Model (Mallows, 1957), already introduced in Chapter 4. The
θ values for our simulation studies are {0, 0.5, 1, 1.5, 2}. Assuming that π is a generic
ranking, the probability for this ranking is function of θ , and it is given by:

Pr(θ) =
exp
(
−θd(π,π0)

)
ψ(θ)

, (5.14)

where d is a ranking distance measure and ψ(θ) is a normalization constant.
We generated rankings assuming the Kemeny distance dK . The cluster central permu-
tations, π0, used in the analysis are reported in Tab. 5.10.

Cluster k Central permutation π0
1 (4.5, 2, 4.5, 3, 1)

2 (1, 3, 4, 2, 5)

3 (4, 3, 1.5, 1.5, 5)

4 (3, 5, 2, 4, 1)

Table 5.10: Cluster central permutations.

Approvals, within each cluster are generated from four multinomial distributions, with
probability vectors, pik, described in Tab. 5.11. Specifically, pik is the probability to
draw i approved alternatives into the k-th cluster.
After deriving clusters, the adjusted Rand index (Hubert and Arabie, 1985) is used to
assess their goodness. The adjusted Rand index is a measure of the similarity between
two sets of clusterings. It is the corrected-for-chance version of the Rand index (Rand,
1971). The correction uses the predicted similarity of all pair-wise comparisons be-
tween clusterings described by a random model to generate a baseline. Although the
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Approved alternatives i
Cluster k 0 1 2 3 4 5

1 0.10 0.40 0.25 0.15 0.05 0.05

2 0.10 0.10 0.30 0.30 0.15 0.05

3 0 0.05 0.10 0.25 0.35 0.25

4 0.35 0.30 0.15 0.10 0.05 0.05

Table 5.11: Multinomial probability vectors.

Rand Index can only provide values between 0 and +1 (0 when the two data cluster-
ings do not agree on any pair of points, and 1 when data clusterings are exactly the
same), the modified Rand Index can return negative values if the index is lower than
the expected similarity of all pair-wise comparisons between clusterings specified by a
random model.
The results (Table 5.12) are obtained by averaging the adjusted Rand index over ten
randomly generated datasets for each value of θ .

θ

0 0.5 1 1.5 2

r

1 0.093 0.267 0.591 0.847 0.801

0.5 0.114 0.249 0.435 0.692 0.822

2 0.080 0.320 0.611 0.665 0.602

3 0.090 0.274 0.568 0.607 0.559

4 0.082 0.313 0.569 0.588 0.530

5 0.081 0.301 0.558 0.553 0.502

7 0.089 0.273 0.534 0.542 0.502

10 0.074 0.276 0.528 0.540 0.502

Table 5.12: Average adjusted Rand index over r and θ .

Table 5.12 shows that, except for the case θ = 1.5, our measure Dr
λ

with r ̸= 1 results
in higher average adjusted Rand indices. Thus, r ̸= 1 allows the true clustered structure
of data to be found more accurately and provides more accurate clusters.

5.4.2 A real data application

This subsection shows how the proposed metric can be used to perform cluster analysis
on real data retrieved from the Eurobarometer website.
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Eurobarometer is a collection of cross-country public opinion surveys conducted on
behalf of the European Commission and other European Union (EU) institutions since
1973. These polls address a wide range of issues pertaining to the EU and its member
countries. The data utilized in these analyses are specifically from question Q5 of
the poll titled “Defending Democracy, Empowering citizens. Public Opinion at the
legislature’s midpoint”7.
A group of voters, divided by countries, was asked to indicate which of the following
values should the European Parliament defend as a matter of priority:

• y1: Equality between women and men.

• y2: The fight against discrimination and for the protection of minorities.

• y3: Tolerance and respect for diversity in society.

• y4: Solidarity between EU Member States and between its regions.

• y5: Solidarity between the EU and poor countries in the world.

• y6 The protection of human rights in the EU and worldwide.

• y7: Freedom of religion and belief.

• y8: Freedom of movement.

• y9: Freedom of speech and thought.

As a result, data are stored in a table (see Tab. 5.14) with 27 rows (one row for each
EU member country) and 9 columns (each column representing an alternative of Y =

{y1, . . . ,y9}). The total number of votes cast by the i-th country in favour of the j-th
alternative is shown in the table’s generic cell i j.
In order to transform the original table into a set of preference-approvals, preferences
and approvals need to be derived. For each country, the alternatives are ranked in
order of popularity, beginning with the one that received the most votes and ending
with the one that received the fewest. Furthermore, in order to generate a vector of
approvals, those alternatives that received more votes than the national average were
deemed acceptable.
For example, in Tab. 5.13 we show the votes expressed in France (the votes of all
countries are included in Tab. 5.14).

7https://europa.eu/eurobarometer/surveys/detail/2612.
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y1 y2 y3 y4 y5 y6 y7 y8 y9
France 37 17 20 12 13 20 12 12 32

Table 5.13: Votes in France.

Since the votes’ average is 19.44, the votes in France are transformed into a preference-
approval codification (see Eq. (5.3)) as

(1,5,3.5,8,6,3.5,8,8,2)&(1,0,1,0,0,1,0,0,1)

that can be visualized as follows:

y1

y9

y3 y6

y2

y5

y4 y7 y8.

To run the cluster analysis, the distance matrix 27×27 was constructed using Eq. (5.9).
All the alternatives seem important in this example, so a distinction between acceptable
and unacceptable alternatives should not be interpreted as a distinction between valu-
able and not valuable, but instead as a distinction between more and less urgent. For
this reason, λ = 0.75 was chosen in order to emphasize preference differences more
than approvals.
A cluster-wise measure of cluster stability (Hennig, 2007) is used to jointly discover
the optimal value of r and the optimal number of clusters k. Stability refers to the
property of a meaningful and valid cluster that does not change easily when the data set
is perturbed in a non-essential way. That is, when applied to many datasets collected
from the same data distribution, a reliable clustering method should produce similar
partitions. The cluster stability method (Hennig, 2007) employs three steps:

1. use various strategies to resample new data sets from the original and apply the
hierarchical clustering method to each of them;

2. for every given original cluster, find the most similar cluster using the Jaccard
coefficient (Jaccard, 1901) in the new data set and record the similarity value;

3. assess the cluster stability of every single cluster by the mean similarity taken
over the resampled data sets.
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y1 y2 y3 y4 y5 y6 y7 y8 y9

Belgium 31 15 16 23 12 24 10 14 34
Bulgaria 11 7 14 24 10 23 11 32 21

Czech Republic 12 6 10 22 8 28 4 23 25
Denmark 18 14 17 13 10 30 7 12 27
Germany 15 11 18 21 9 32 6 8 28
Estonia 11 12 14 14 5 20 8 29 24
Ireland 27 19 15 14 9 28 11 27 24
Greece 9 12 8 34 19 31 8 14 35
Spain 35 15 18 15 15 20 4 12 25
France 37 17 20 12 13 20 12 12 32
Croatia 14 14 14 20 16 25 12 28 28

Italy 25 17 14 21 11 20 9 21 29
Cyprus 25 14 5 24 21 37 10 11 24
Latvia 5 14 11 33 5 35 4 20 26

Lithuania 10 12 17 17 8 33 7 18 29
Luxembourg 23 19 17 18 13 19 7 16 22

Hungary 15 17 15 19 11 28 12 20 21
Malta 21 17 15 16 13 28 10 15 18

Netherlands 25 18 25 18 9 34 12 6 31
Austria 24 16 19 19 12 23 9 19 30
Poland 15 15 13 18 11 19 12 24 19

Portugal 32 22 16 30 20 27 7 5 17
Romania 14 12 12 20 16 24 14 28 22
Slovenia 15 8 23 19 9 32 5 24 31
Slovakia 19 10 10 20 9 21 15 35 28
Finland 15 14 15 14 6 30 7 17 26
Sweden 33 12 19 12 11 39 5 12 30

Table 5.14: Votes in the EU.

The average cluster-wise stability is shown in Fig. 5.7 as a function of r (for k = 2,3,4
clusters). The procedure suggests that the most stable cluster configuration is k = 2
and r = 2. It is worth noting that, regardless of the value of k, r > 1 always leads
to improved cluster stability. Indeed, with two clusters (k = 2) the value of r that
maximizes stability is r = 2. Whereas with three or four clusters, the optimal solution is
r = 4. In addition, as the number of clusters k increases, the average stability decreases.
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Figure 5.7: Average cluster-wise stability over r.

For several reasons, stability is a particularly relevant cluster validation measure in this
example for determining the best value of r. First, it is not possible to use external
validation measures in this case as the true clustered structure of the EU countries is
not known. At the same time, most internal validation measures employ the distance
between observations (Dr

λ
) to assess the goodness of clusters. However, this may be

an issue in our instance since the distance between observations (Dr
λ

) is influenced by
r. Therefore, to determine which value of r yields more accurate clusters, a metric that
is independent of r is desirable. Furthermore, cluster stability has been examined both
theoretically and practically (Hennig, 2007; Von Luxburg, 2010; Ullmann et al., 2022),
and it has been shown to be capable of distinguishing between meaningful stable and
spurious clusters.
Figures 5.8 and 5.9 show the resulting dendrogram and clusters, respectively, obtained
with k = 2 and r = 2.
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Figure 5.9: Map of EU voters with clusters.
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The clustering procedure suggests that the EU countries can be separated into two large
groups. Cluster 1 is mainly made up of Western European countries, whereas Cluster
2 of Eastern European countries.
To provide a more in-depth picture of how the EU countries express their views on the
nine alternatives proposed, the two preference-approvals that represent the two clusters,
that we call representative preference-approvals, are shown in Eq. (5.15).
To obtain the representative preference-approvals that summarize each cluster, prefer-
ences and approvals need to be aggregated. In each cluster, the set of preferences is
combined into a unique weak order by deriving the average position for each alternative
and ranking them according to it. Note that this aggregation method is equivalent to
the Borda count (Borda, 1781) extended to weak orders (see Smith 1973, Black 1976
and Cook and Seiford 1982).
In our example, the extended Borda count assigns a score to each alternative; for each
country, the number of alternatives ranked below plus half of the number of alternatives
that are indifferent to it:

BR(yi) = #
{

y j ∈ Y | yi ≻ y j
}
+

1
2
·#
{

y j ∈ Y \{yi} | yi ∼ y j
}
.

Similarly, the set of approvals is combined into a unique approval vector by taking
the average approval for each alternative and then considering those alternatives whose
average approval is greater than 0.5 as approved:

BI(yi) = I(
m

∑
l=1

IAl (yi)≥ m/2)

Cluster 1

y1 y9

y6

y4

y2

y3

y8

y5

y7

Cluster 2

y6

y9

y8

y4

y1 y3

y2

y5

y7

(5.15)

It is worth noting that y6 and y9, namely, “The protection of human rights in the
EU and worldwide” and “Freedom of speech and thought”, respectively, are above the
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approval line in the two representative preference-approvals, indicating that they can be
considered very urgent. Regarding y1, that is “Equality between women and men”, it is
ranked at the top of the representative preference-approval of Cluster 1, while it is just
below the approval line in the Cluster 2 representative preference-approval. Similarly,
y4, that is “Solidarity between the EU Member States and between its regions”, is
ranked fourth (above the approval line) in Cluster 2. Still, it is the first alternative below
the approval line in Cluster 1. Furthermore, Cluster 2 prioritizes y8, that is “Freedom
of movement”, which is at the end of the preference-approval of Cluster 1. Finally, in
both the two representative preference-approvals, y7, that is “Freedom of religion and
belief”, is ranked last.
Table 5.15 reports the D2

0.75 distances of each country to the representative cluster
preference-approvals.
It should be noted that, except for Greece, each country is closer to the preference-
approval of its own cluster than the other. Despite being reasonable, this result is not
trivial since the technique for obtaining the cluster preference-approval does not involve
Dr

λ
.

Some countries can be considered central in their clusters as they are very close to
the representative preference-approval, e.g. Belgium (0.092), Austria (0.096), Malta
(0.096) for Cluster 1, and the Czech Republic (0.036), Lithuania (0.094), Hungary
(0.072) and Slovenia (0.105) for Cluster 2. As a rule of thumb, the greater the distance
from the own cluster preference-approval, the more the country disagrees with the other
countries in its cluster. Finally, it is worth noting that some countries, such as Ireland,
Italy and Greece, are located in the middle of the two clusters, as they have a similar
distances to the two cluster preference-approvals.

5.5 Concluding remarks

In social choice theory, preference rankings and approvals are two popular ways to
collect the preferences of a group of agents on a set of alternatives. In the preference-
approval setting, each agent, in addition to ordering a set of alternatives from best
to worst, submits a cut-off line to distinguish between acceptable and unacceptable.
Within this framework, in this chapter, we propose a new distance for preference-
approvals, following the approach of the Kemeny distance. Given two preference-
approvals and two alternatives, we introduce two indices that measure the discordances
between these alternatives with respect to preference and approvals, and an aggrega-
tion function belonging to the class of weighted power means to define a new distance.
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Country Cluster 1 Cluster 2 Cluster assignment
Belgium 0.092 0.246 1
Bulgaria 0.487 0.192 2

Czech Rep. 0.342 0.036 2
Denmark 0.176 0.332 1
Germany 0.286 0.204 2
Estonia 0.355 0.195 2
Ireland 0.267 0.265 2
Greece 0.388 0.318 1
Spain 0.164 0.419 1
France 0.219 0.440 1
Croatia 0.387 0.156 2

Italy 0.200 0.225 1
Cyprus 0.281 0.370 1
Latvia 0.341 0.120 2

Lithuania 0.400 0.094 2
Luxembourg 0.144 0.359 1

Hungary 0.343 0.072 2
Malta 0.096 0.301 1

Netherlands 0.243 0.377 1
Austria 0.096 0.262 1
Poland 0.349 0.132 2

Portugal 0.367 0.537 1
Romania 0.463 0.204 2
Slovenia 0.415 0.105 2
Slovakia 0.354 0.219 2
Finland 0.320 0.123 2
Sweden 0.144 0.274 1

Table 5.15: Distance between countries and representative cluster preference-
approvals.

This new distance depends on two parameters. The effect of these parameters on the
distance is analyzed and described through some heatmaps. The proposed distance can
be used to study the universe of preference-approvals and to determine clusters of vot-
ers: how the two parameters characterizing the distances affect the clustering process
is shown with some dendrograms and by the cophenetic correlations among them. We
have shown that the new distance family offers some advantages compared to the exist-
ing distance function. Specifically, through a simulation study and the adjusted Rand
index, we have proved that Dr

λ
with r ̸= 1 allows the true clustered structure of data
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to be found more accurately. Similarly, through a cluster-wise stability index, we have
shown that Dr

λ
with r ̸= 1 produces more stable clusters on the real data example. The

proposed distance will be used in future work to apply fuzzy clustering algorithms to
deal with voters who do not have clear cluster assignments.
In future work, axiomatizing the new family of distance functions might prove impor-
tant. Finally, future research should examine consensus measures based on distances
between preference-approvals (see Erdamar et al. 2014), algorithms to determine rep-
resentative preference-approvals efficiently (see D’Ambrosio et al. 2017b), clustering
on alternatives (see González del Pozo et al. 2017), and also reaching consensus pro-
cesses (see Palomares et al. 2014; Garcı́a-Lapresta and Pérez-Román 2017; Chao et al.
2021, among others).

99



Chapter 6

A new pseudometric for
clustering alternatives in
preference-approvals

6.1 Introduction

Preference-approval structures have been studied recently from different perspectives
in Erdamar et al. (2014); Kamwa (2019); Dong et al. (2021); Kruger and Sanver (2021);
Long et al. (2021); Barokas and Sprumont (2022). However, little effort has been de-
voted to developing clustering algorithms that deal with preference-approvals. The
clustering task deals with classifying objects in homogeneous clusters, such that ob-
jects in a cluster are more similar to each other than they are to an object belonging
to a different cluster (see Jain et al. 1999 and Everitt et al. 2011). To the best of our
knowledge, the only proposal applying clustering algorithms to preference-approval
structures is found in Albano et al. (2022a). They introduced a family of distances be-
tween preference-approvals and used a hierarchical clustering algorithm to find homo-
geneous groups of individuals. The possibility of clustering alternatives in preference-
approvals has not yet been addressed. In this paper, we aim to fill this gap since we
argue that identifying homogeneous groups of alternatives could be beneficial to re-
ducing the complexity of the preference-approval space and provide a more accessi-
ble interpretation of data. In other words, considering a set of voters expressing their
preference-approval on a finite set of alternatives, Y = {y1, . . . ,ym} , we aim at devel-
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oping a method able to split Y into k groups, solely based on the voters’ opinions.

Although the literature on clustering algorithms applied to preference orderings is rich,
it is not straightforward to transfer it directly to the preference-approval framework
because preference-approvals are more complex structures. Clustering methods for
preference rankings can be done over the individuals or over the alternatives.
Most popular classification approaches for clustering individuals, use an algorithm
model (e.g., hierarchical clustering, tree construction) or attempt to maximize some
badness-of-fit function (e.g., K-means, fuzzy clustering, PCA, MDS). On this, see
Heiser and D’Ambrosio (2013, pp. 19-31).
Alternatively, probabilistic methods model the population of rankers assuming homo-
geneity between them. Paired comparison models (Kendall and Smith, 1940; Mallows,
1957) consider a ranking as the outcome of a paired comparison process. Parsimo-
niously modelling each paired comparison leads to the famous Mallows model and its
generalization to distance-based models (Fligner and Verducci, 1986). In this frame-
work, Jacques and Biernacki (2014) proposed the first model-based clustering algo-
rithm dedicated to multivariate partial ranking data that can take into account poten-
tially missing positions (partial rankings), occurring not necessarily at the end of the
rankings.
Despite being less studied, the task of clustering alternatives rather than individuals
in preference rankings is undoubtedly relevant. Marden (1996) defined a distance be-
tween two alternatives as the squared Euclidean distance of the ranks assigned to them.
Thus, objects will be close if the voters give them similar ranks. Finally, they applied
a simple hierarchical clustering to find meaningful groups. Sciandra et al. (2020) pro-
posed a projection pursuit-based clustering method to identify simultaneous clusters of
both individuals and items in preference rankings.
Similarly to the task of clustering alternatives in preference rankings, González del
Pozo et al. (2017) focused on ordered qualitative scales and developed an agglom-
erative hierarchical clustering procedure based on the concept of ordinal proximity
measure. They clustered nine presidential candidates considering a similarity function
and a sequential similarity vector based on the degrees of consensus. The consensus is
measured through the degrees of proximity between all pairs of individual appraisals
over the evaluated alternatives.

In this work, we introduce a new family of pseudometrics on the set of alternatives tak-
ing into account voters’ opinions on these alternatives through preference-approvals.
To obtain clusters, we apply an order-invariant partitioning algorithm, known as Ranked
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k-medoids (RKM), see Zadegan et al. (2013), taking as input the similarities among
pairs of alternatives based on the proposed pseudometrics. Finally, clusters are repre-
sented in 2-dimensional space using non-metric multidimensional scaling.
The chapter is organized as follows. Section 6.2 contains our proposal for clustering
alternatives. Section 6.3 includes some case studies. Finally, Section 6.4 concludes the
chapter with some remarks.

6.1.1 A pseudometric on preferences

We introduce a pseudometric on the set of alternatives that measures the difference
between the positions of two alternatives in a weak order.

Proposition 4 Given R ∈W (Y ), the mapping dP : Y ×Y −→R defined as

dP(yi,y j) = |Pπ(yi)−Pπ(y j)| (6.1)

is a pseudometric on Y , i.e., it satisfies the following conditions for all yi,y j,yk ∈ Y :

1. dP(yi,y j)≥ 0.

2. dP(yi,yi) = 0.

3. dP(yi,y j) = dP(y j,yi).

4. dP(yi,y j)≤ dP(yi,yk)+dP(yk,y j).

Additionally, it is satisfied dP(yi,y j) = 0 ⇔ yi ∼ y j, for all yi,y j ∈ Y .

Obviously, if R ∈ L(Y ), then dP is a metric, i.e., dP(yi,y j) = 0 ⇔ yi = y j, for all
yi,y j ∈ Y .
Note that dP(yi,y j) ∈ {0,1, . . . ,m−1} for all yi,y j ∈ Y .

6.1.2 A pseudometric on approvals

Given A⊆Y , the indicator function (or characteristic function) of A, IA : Y −→{0,1},
is defined as

IA(yi) =

 1, if yi ∈ A,

0, if yi ∈ Y \A.
(6.2)

From Eq. (6.2), we now introduce a pseudometric on the set of alternatives that mea-
sures the difference between the membership of two alternatives in a set.
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Proposition 5 Given A⊆ Y , the mapping dA : Y ×Y −→R defined as

dA(yi,y j) = |IA(yi)− IA(y j)| (6.3)

is a pseudometric on Y , i.e., it satisfies the following conditions for all yi,y j,yk ∈ Y :

1. dA(yi,y j)≥ 0.

2. dA(yi,yi) = 0.

3. dA(yi,y j) = dA(y j,yi).

4. dA(yi,y j)≤ dA(yi,yk)+dA(yk,y j).

Additionally, it is satisfied dA(yi,y j)= 0 ⇔
(

yi,y j ∈A or yi,y j /∈A
)

, for all yi,y j ∈Y .

Note that dA(yi,y j) ∈ {0,1} for all yi,y j ∈ Y .

6.2 The proposal

Given a profile
(
(π1,A1), . . . ,(πm,Am)

)
∈R(Y )m and two alternatives yi,y j ∈ Y , we

now introduce two indices that measure the discordances between these alternatives
with respect to preference and approvals, respectively, for each voter vk ∈V . They are
based on the pseudometrics introduced in Eqs. (6.1) and (6.3).

6.2.1 Preference discordances

The individual preference-discordance between yi and y j for the voter vk ∈V is defined
as

ρ
(k)
i j =

1
m−1

· |Pπk(yi)−Pπk(y j)|. (6.4)

where ρ
(k)
i j ∈ [0,1].

Remark 6 Note that if a voter expresses a linear order π ∈ L(Y ), then: i) there will
not be any pair of alternatives whose individual preference-discordance is 0 and ii)
there will be only one pair of alternatives whose individual preference-discordance is
maximum, equal to 1:

π ∈ L(Y ) ⇒


ρ
(k)
i j ̸= 0 for all yi,y j ∈ Y

∃! yi,y j ∈ Y ρ
(k)
i j = 1.
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On the contrary, if a voter expresses a weak order that is not a linear order π ′ ∈
(

W (Y )\

L(Y )
)

, and indifference happens at the bottom or at the head of the weak order, then: i)
there will exist at least a pair of alternatives whose individual preference-discordance
is 0; ii) no pair of alternatives produces an individual preference-discordance equal to
1:

π
′ ∈
(

W (Y )\L(Y )
)
⇒


∃ yi,y j ∈ Y ρ

(k)
i j = 0

ρ
(k)
i j ̸= 1 for all yi,y j ∈ Y.

Remark 7 Note that, ρ
(k)
i j is decreasing as the total number of alternatives, m, in-

creases. Fig. 6.1 plots the individual preference-discordance ρ
(k)
i j (yi,yk) as a function

of m, where yi,y j are two adjacent alternatives for the k-th voter.
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Figure 6.1: Individual preference-discordance of two adjacent alternatives by m.

The total number of different alternatives, m, determines the expressivity of voters. Two
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alternatives yi,y j ∈Y that are adjacent are considered more similar in a large order than
in a small one. For example, consider the universe of weak orders for m = 4: yi and
y j are adjacent in 40 out of the 75 possible scenarios, about 53%. On the contrary,
when the number of alternatives doubles, m = 8, the number of weak orders in which
yi and y j are adjacent drops to 170440 out of 545835, approximately 31%. As m

increases, the percentage of scenarios in which yi and y j are adjacent decreases so
does the average distance between them.

Finally, the average preference-discordance, ρ̄i j, summarizes the average dissimilarity
between two alternatives according to the whole set of voters:

ρ̄i j =
1
n

n

∑
k=1

ρ
(k)
i j . (6.5)

6.2.2 Approval discordances

The individual approval-discordance between yi and y j for the voter vk ∈V is defined
as

α
(k)
i j = |IAk(yi)− IAk(y j)|, (6.6)

where α
(k)
i j ∈ {0,1}.

Unlike ρ
(k)
i j , the individual approval-discordance is not influenced by the number of

alternatives whose acceptability is established. Considering all possible approvals of
m alternatives, the percentage of approvals in which yi and y j receive the same rating
remains constant as m varies.
Finally, the average approval-discordance, ᾱi j, summarizes the average dissimilarity
between two alternatives according to the whole set of approvals:

ᾱi j =
1
n

n

∑
k=1

α
(k)
i j . (6.7)

It is worth noting that the individual discordances, ρ
(k)
i j andα

(k)
i j , are related to the pair-

wise discordances, pi j andai j, defined in the previous Chapter. In particular, the pair-
wise discordance compares the agreement of two voters on two alternatives. Thus,
the final distance between two voters is derived by summing over the possible pairs
of items. On the contrary, individual discordances consider the degree to which two
alternatives are considered different for each voter. Thus, the final distance between
two alternatives can be derived by summing voter-by-voter.
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6.2.3 Global discordances

In order to generate a global measure of discordance between each pair of alternatives,
we consider the family of weighted means, h : [0,1]× [0,1]−→ [0,1], defined as

h(x,y) = λ · x+(1−λ ) · y, (6.8)

where λ ∈ [0,1] .
Taking into account the preference and approval discordances introduced in Eqs. (6.4),
(6.5), (6.6) and (6.7), respectively, and the family of weighted means defined in Eq.
(6.8), we now introduce a global measure of discordance between pairs of alternatives.

Definition 4 Given a profile
(
(π1,A1), . . . ,(πm,Am)

)
∈ R(Y )m and λ ∈ [0,1], the

mapping δλ : Y ×Y −→ [0,1] is defined as

δλ (yi,y j) =
1
n
·

n

∑
k=1

(
λ ·ρ(k)

i j +(1−λ ) ·α(k)
i j

)
= λ · ρ̄i j +(1−λ ) · ᾱi j. (6.9)

Proposition 6 Given a profile
(
(π1,A1), . . . ,(πm,Am)

)
∈R(Y )m, the mapping δλ is a

pseudometric on Y for every λ ∈ [0,1]. We say that δλ is the pseudometric associated

with λ .

PROOF: Taking into account Propositions 4 and 5, it is obvious that δλ satisfies the
following conditions for all yi,y j ∈ Y : δλ (yi,y j) ≥ 0, δλ (yi,yi) = 0 and δλ (yi,y j) =

δλ (y j,yi). Finally, δλ satisfies the triangle inequality being a convex combination of
two pseudometrics.

Fig. 6.2 shows how δλ varies as a function of ρ̄i j and ᾱi j for λ = 0.1, 0.5, 0.9.
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Figure 6.2: Heatmaps δλ .

In Fig. 6.2b, λ is set to 0.5. Thus, ρ̄i j and ᾱi j have the same weight in determining
the final distance δλ (yi,y j). As a result, the corresponding heatmap is symmetrical
with respect to the secondary diagonal, and δλ increases diagonally from bottom to top
and from left to right.
On the contrary, λ = 0.1 (Fig. 6.2a) and λ = 0.9 (Fig. 6.2c) correspond to two
unbalanced settings. Giving much more importance to approvals, λ = 0.1 (Fig. 6.2a),
causes the bottom area of the graph to contain lower distances, δλ grows much more
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noticeably vertically rather than horizontally. Finally, in Fig. 6.2c, δλ is dominated by
the preference-discordance. The lesser distances are found on the left side of the graph,
and δλ expands horizontally significantly more than vertically.

6.2.4 Clustering procedure and visualization

In this chapter, we use the algorithm Ranked k-medoids (RKM) (see Zadegan et al.
(2013)) to find clusters, but we highlight that our pseudometrics can be used jointly
with any distance-based clustering algorithm.
The RKM method introduces a function that ranks alternatives according to their sim-
ilarities. With this function, the more similar alternative gets a lower rank. In other
words, rank(yi,y j) = l shows that y j is the l-th similar alternative to yi among m al-
ternatives in the dataset. The ranks of the remaining objects according to an object
like yi can be computed by sorting the similarity values between yi and other ob-
jects in the dataset. The rank function also expresses a rank matrix K = [ki j], where
rank(yi,y j) = ki j for all yi,y j ∈ Y .
Note that K is not necessarily a symmetric matrix since two objects are not always at the
same rank as each other. Thus, K is a m×m matrix that shows the hostility relationship
among alternatives in the dataset. In order to find the medoids, the hostility value (hv)
of an object in a group of objects is introduced. The hostility value, hvi, of an object yi

in a set of objects G is defined as follows:

hvi = ∑
yi∈G

ki j. (6.10)

Starting from the similarities among pairs of objects based on δλ (yi,y j), the RKM
algorithm firstly calculates K matrix and selects the medoids randomly. Then, for each
medoid, select the group of the most similar objects to each medoid, using the sorted
index matrix, and calculate the hostility values of every object in those groups using
Eq. (6.10). Afterwards, select the object with the highest hostility value as the new
medoid and move one of the medoids placed in the same group. Finally, iterate the
process and assign each object to the most similar medoid.
The RKM method is particularly suitable in our case since it analyzes a rank ordering of
dissimilarities, which makes the results order-invariant, meaning that order-preserving
transformations of the data have no effect.
In order to represent the resulting clusters in a 2-dimensional space, multidimensional
scaling (MDS) is employed. This class of methods attempts to express an observable
proximity or distance matrix by a simple geometrical model or map so that the greater
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the perceived distance between two alternatives, the more apart the points representing
them in the final geometrical model are.
Such models estimate q-dimensional coordinate values to represent m alternatives of a
distance matrix. They optimize a chosen goodness of fit index, which measures how
well the fitted distances match the observed proximities. A number of optimization
strategies, when combined with a variety of goodness of fit indices, result in various
MDS algorithms (Hothorn and Everitt, 2006).
In this chapter, given the nature of the objects, the Non-metric Multidimensional Scal-
ing is employed. This method constructs fitted distances in the same rank order as the
original distance, thus preserving the rank order of the proximities. Algorithms for
accomplishing this are described in Kruskal (1964). The required coordinates for a
given set of disparities are found by minimizing a function of the squared differences
between the observed proximities and the derived disparities, known as Stress. The
procedure then iterates until a properly selected convergence criterion is met.

6.3 Case studies

This section shows how the proposed metric can be used to perform cluster analysis on
real data.

6.3.1 Eurobarometer dataset

The data utilized in these analyses come from the EuroBarometer website, specifically,
from question QA7 of the survey titled “Public opinion in the European Union”1. A
group of voters, divided by countries, were asked to indicate which of the values in-
cluded in Tab. 6.1 the EU mean to them.

1https://europa.eu/eurobarometer/surveys/detail/2553.
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Alternatives Names
y1 Peace
y2 Economic prosperity
y3 Democracy
y4 Social protection
y5 Freedom to travel, study and work anywhere in the EU
y6 Cultural diversity
y7 Stronger say in the world
y8 Euro
y9 Unemployment
y10 Bureaucracy
y11 Waste of money
y12 Loss of our cultural identity
y13 More crime
y14 Not enough control at external borders
y15 Quality of life of future generations

Table 6.1: Values in the EU.

As a result, data are stored in Tab. 6.5, with 27 rows (one row for each EU member
country) and 15 columns (each column representing an alternative of Y = {y1, . . . ,y15}).
The total number of votes cast by the i-th country in favour of the j-th alternative is
shown in the table’s generic cell i j.
In order to transform the original table into a set of preference-approvals, preferences
and approvals need to be derived. Following Albano et al. (2022a), the alternatives
are ranked in order of popularity, from the most to the least voted, and approvals are
derived by considering those alternatives that received more votes than the national
average as acceptable. For example, in Tab. 6.2 we show the votes expressed in Italy
(the votes of all countries are included in Tab. 6.5).

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15
Italy 24 13 19 11 43 15 27 32 13 12 12 10 9 16 22

Table 6.2: Votes in Italy.

Since the votes’ average is 18.53, the votes in Italy are transformed into a preference-
approval codification (see Eq.(5.3)) as

(4, 9.5, 6, 13, 1, 8, 3, 2, 9.5, 11.5, 11.5, 14, 15, 7, 5)&(1,0,1,0,1,0,1,1,0,0,0,0,0,0,1)
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that can be visualized as follows

y5

y8

y7

y1

y15

y3

y14

y6

y2 y9

y10 y11

y4

y12

y13

In Fig. 6.3, the 15 alternatives are arranged on the preference-approval plane. The
location of each alternative in this 2-dimensional space is identified by its expected
rank (i.e., the average rank over the whole set of voters) and by its relative approval,
i.e., the relative frequency of voters who considered it acceptable.
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Figure 6.3: Preference-approval plane, Eurobarometer.

The preference-approval plane provides a summary of the evaluations of voters on
average. In particular, it reveals that all voters consider “Freedom of movement” the
best alternative: it is unanimously approved and always placed first in the preference-
approvals; its RelativeApproval and its ExpectedRank are both equal to 1. The other
alternatives tend to lie on a straight line with a negative angular coefficient. The further
we move away from the point (1,1), the worse the corresponding alternatives obtained
average ratings.
Note that the preference-approval plane aids the interpretation of clusters once they
have been estimated. However, it should not be considered a tool to identify clusters
since the distance between points in the preference-approval plane does not necessar-
ily reflect the pseudometric in Eq.(6.9). Alternatives having similar average ranking
positions and approvals may show discordance over the voters.

Example 3 To further clarify this concept, let us consider (π1,A1), (π2,A2)∈R({y1,y2,y3,y4})
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the following preference-approvals:

(π1,A1)≡

y1

y2

y3

y4

(π2,A2)≡

y4

y2

y3

y1

For each alternative yi ∈ Y , the expected rank, expected approval and δ0.5 distance
matrix are reported in Tables 6.3 and 6.4.

Alternative ExpectedRank RelativeApproval
y1 2.5 0.5
y2 2 1
y3 3 0
y4 2.5 0.5

Table 6.3: ExpectedRank and RelativeAp-
proval.

y1 y2 y3 y4
y1 0
y2 0.5 0
y3 0.5 0.67 0
y4 1 0.5 0.5 0

Table 6.4: Distances δ0.5.

Note that y1 and y4 have the same relative approval and expected rank, thus identical
coordinates in the preference-approval plane, but show maximum discordance over the
voters, i.e. δ0.5(y1,y4) = 1. In fact, they are placed at the opposite extremes in both
preference-approvals. Therefore, the preference-approval plane is intended to be an
interpretative tool to visualize average judgments and interpret clusters once they have
been estimated. At the same time, it is not appropriate to identify clusters since it does
not reflect similarities among elements.

Fig. 6.4 shows the clusters estimated by the RKM algorithm, where the central medoid
for each cluster is highlighted through the dimension of the point. We investigate the
effect of the λ parameter on the output, by setting λ = 0.1, 0.5, 0.9. In this way,
we are able to study three scenarios: λ = 0.5, which corresponds to giving the same
importance to approvals and preferences, and λ = 0.1, 0.9, which corresponds to the
opposite unbalanced situations.
We also show the Stress values in each scenario to assess the goodness of the graph-
ical representation obtained with the MDS. Note that the position of the points in the
new space found by MDS depends on the value of λ . If the parameter, λ varies, the
graphical representation does as well.
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Figure 6.4: Graphical representation of RKM clusters.

In general, the Stress coefficient varies between 6.88 and 6.43, showing a good adap-
tation that tends to improve slightly as λ increases. The optimal number of clusters,
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chosen through the Silhouette criterion, turns out to be two independently from the λ

value.
When λ = 0.1, 0.5, the clusters found are the same, but the degree of separation be-
tween them clearly changes. In fact, the two clusters exhibit a higher separation index2

under λ = 0.1, i.e. assigning much more weight to the approvals than under λ = 0.5.
Thus, a clear division is obtained between frequently accepted alternatives and fre-
quently not accepted alternatives. The two clusters become closer as λ reaches 0.5.
In this example, there are clearly two different types of alternatives: those referring to
negative aspects (“Bureaucracy”, “Unemployment”, “Money waste”, etc.) and those
referring to positive aspects (“Freedom”, “Democracy”, etc.). For this reason, a voter
with a bad opinion about the EU will prefer the former and vice versa. Indeed, the two
clusters are robust and remain unchanged for small and moderate values of λ .
Note that the proximity between points in the two-dimensional space discovered by
the MDS (Figures 6.4a, 6.4b and 6.4c) reflects the similarities based on δλ , between
the alternatives over the voters. Thus, the position of the elements in this new space
addresses the cluster interpretation.
Indeed, although in the preference-approval plane (see Fig. 6.3), “Money waste” is
closer to the alternatives belonging to Cluster 1, its position in the MDS space reveals
that actually, it is part of Cluster 2.
Fig. 6.4c displays clusters under λ = 0.9, i.e., unbalanced towards preferences. In this
case, Cluster 1 isolates the three alternatives frequently placed in the first positions (see
the preference-approval plane Fig. 6.3), namely: “Freedom”, “Peace” and “Euro”.

2Based on the distances for every point to the closest point not in the same cluster.
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y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

Belgium 32 22 23 14 52 24 27 42 7 18 25 12 11 19 20
Bulgaria 17 15 17 10 57 20 18 11 7 14 14 17 9 12 24

Czech Republic 33 30 31 8 66 18 32 17 2 37 28 18 7 20 30
Denmark 50 31 35 15 56 27 32 15 4 32 13 11 10 20 22
Germany 51 25 37 12 61 36 31 46 7 33 29 11 20 26 21
Estonia 30 19 28 13 76 29 18 50 2 34 19 19 4 19 22
Ireland 30 28 22 15 57 25 26 35 4 12 5 7 5 8 25
Greece 45 14 25 18 66 35 45 48 30 17 20 28 23 36 19
Spain 16 22 18 14 47 24 20 27 6 16 11 3 3 9 15
France 37 10 19 12 46 31 20 37 9 18 30 14 8 24 15
Croatia 26 27 23 20 55 24 26 23 4 11 12 18 9 13 39

Italy 24 13 19 11 43 15 27 32 13 12 12 10 9 16 22
Cyprus 38 20 26 24 67 36 26 45 31 21 22 24 35 36 25
Latvia 24 22 16 15 60 20 10 31 6 19 17 14 4 12 25

Lithuania 33 17 20 18 75 32 25 18 3 18 20 13 4 17 31
Luxembourg 46 23 34 17 61 36 22 51 6 26 27 12 18 26 22

Hungary 21 18 23 13 48 24 20 15 6 15 8 10 10 20 26
Malta 22 29 27 21 56 24 34 31 3 16 10 16 5 17 32

Netherlands 53 41 28 10 67 30 37 47 3 31 17 11 9 17 33
Austria 39 25 30 25 58 26 32 50 24 34 37 25 31 38 26
Poland 26 19 29 10 47 16 23 10 5 12 12 11 7 11 29

Portugal 19 27 24 18 57 27 32 44 6 6 7 7 6 16 22
Romania 23 19 21 14 45 16 16 23 9 15 14 18 15 16 21
Slovenia 36 25 27 16 54 27 20 47 5 18 15 13 15 16 24
Slovakia 28 20 16 10 64 21 28 44 12 28 33 20 22 38 19
Finland 32 18 24 6 67 27 21 54 3 35 24 11 11 22 18
Sweden 46 19 34 12 67 25 44 14 4 40 29 10 17 23 19

Table 6.5: Votes in the EU.

6.3.2 Pew Research Center dataset

Pew Research Center is a research institute that conducts public opinion polling, de-
mographic research, content analysis and other data-driven social science research.
In this analysis, the survey “American Trends Panel Wave 33”3 is considered. Data in
this report is drawn from the panel wave conducted from March 27 to April 9, 2018, to
collect the opinions of United States citizens regarding the space agency NASA.
In this analysis, we focus specifically on a query in which a total of 2541 respondents
were asked to assess how much priority NASA should give to a list of nine lines of

3https://www.pewresearch.org/science/dataset/american-trends-panel-wave-33/.
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action, listed in Tab. 6.6. Individuals employed the linguistic terms from the qualitative
scale in Tab. 6.7 to accomplish this.

Alternatives Names
y1 Searching for life and planets that could support life
y2 Searching for raw materials and natural resources that could be used on Earth
y3 Conducting basic scientific research to increase knowledge and understanding of space
y4 Developing technologies that could be adapted for uses other than space exploration
y5 Monitoring asteroids and other objects that could potentially hit the Earth
y6 Monitoring key parts of the Earth’s climate system
y7 Sending human astronauts to explore the moon
y8 Sending human astronauts to explore Mars
y9 Conducting scientific research on how space travel affects human health

Table 6.6: Lines of action.

Linguistic term
l1 Top priority
l2 Important but lower priority
l3 Not too important
l4 Should not be done
l5 No answer

Table 6.7: Linguistic terms.

In order to remove neutral answers, the respondents giving at least a “No answer”
response were excluded, i.e., about 3% of the total sample size. Furthermore, for each
respondent, alternatives were arranged into a preference-approval. The two linguistic
terms l1 and l2 were used to indicate an acceptable alternative. An example is provided
in Tab. 6.8.

Respondent y1 y2 y3 y4 y5 y6 y7 y8 y9
v10 l4 l2 l1 l1 l4 l3 l4 l4 l2

Table 6.8: Pew Research Center example.

The respondent v10 preference-approval (see Eq.(5.3)) is

(7.5, 3.5, 1.5, 1.5, 7.5, 5, 7.5, 7.5, 3.5)&(0,1,1,1,0,0,0,0,1)
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that can be visualized as follows
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y2 y9

y6

y1 y5 y7 y8

In contrast to the previous example, approvals are generated directly by the voters
through linguistic terms so that each voter can define all items as acceptable or vice
versa.
Fig. 6.5 shows the nine alternatives on the preference-approval plane.
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Figure 6.5: Preference-approval plane, Pew Research Center.

In this example, the relative approval of each item ranges between 55% and 95%,
meaning that each alternative has been considered acceptable by more than half of
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the individuals. Therefore, although the alternatives may be regarded as acceptable
by voters on average, less urgent alternatives, such as exploration of other planets and
satellites (Moon and Mars), and more urgent alternatives, such as earth monitoring
(Climate and Asteroids) can be identified.
The clusters estimated by the RKM algorithm are shown in Fig 6.6. As in the previous
example, three different values of λ = 0.1, 0.5, 0.9 are used. For each scenario, the
clusters, medoids and Stress values reached by the MDS are illustrated for graphical
representation.
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Figure 6.6: Graphical representation of RKM clusters.

In general, the stress coefficient varies between 2.43 and 1.8, showing an excellent
adaptation that tends to improve as λ increases. The optimal number of clusters, chosen
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through the Silhouette criterion, turns out to be two independently from the λ value.
The effect of the parameter λ on cluster building is visible. Setting λ = 0.1 results in
Cluster 1, including only the two alternatives related to space exploration (Moon and
Mars), which have the lowest relative approval (see Fig. 6.5). Voters strongly tend to
attribute the same approvals to these two alternatives.
Increasing the value of λ = 0.5 causes Cluster 1 to enlarge by including the alternative
“Searching life”. Finally, giving much more weight to the rankings, i.e. λ = 0.9,
results in Cluster 1 also including the alternative Searching natural resources. In this
way, Cluster 1 contains the four alternatives most frequently placed in the last positions
in voters’ preference-approvals.

6.4 Concluding remarks

Preference-approvals structures are gaining increasing attention in social choice as they
allow decision makers to describe their preferences using more flexible and intuitive or-
dinal information. In this chapter, we propose a new method for clustering alternatives
in preference-approvals. First, we introduce a family of pseudometrics, δλ , able to
quantify the distance between alternatives based on two main components: the indi-

vidual preference-discordance ρi j and the individual approval-discordance αi j, and on
the λ parameter, which regulates the weight to give to each component.
To obtain clusters, we apply the Ranked k-medoids partitioning algorithm, taking as
input the similarities among pairs of alternatives based on the proposed pseudometrics.
Finally, clusters are represented in 2-dimensional space using Non-Metric Multidimen-
sional Scaling.
Through two applications to real data, we demonstrate how our algorithm allows di-
viding a heterogeneous population of alternatives into homogeneous groups, reducing
the complexity of the preference-approval space and providing a more accessible inter-
pretation of data. We also show the effect of the λ parameter on cluster identification
and visualization.
Future research should consider using the proposed clustering method to collapse cate-
gories in the context of multiple-choice models. Moreover, it will be important that fu-
ture research investigate a method to identify simultaneous clusters of both individuals
and alternatives in the preference-approval framework, extracting helpful information
in a low-dimensional subspace.
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Chapter 7

Ranking coherence in Topic
Models using Statistically
Validated Networks

7.1 Introduction

The task of ranking alternatives is useful in a variety of scientific fields. Indeed, ranking
methods are especially well suited to solving textual analysis problems. The scientific
interest in automatic textual analysis has grown dramatically over the last decade due
to the increase in available digital textual data. Indeed, researchers from several disci-
plines have become increasingly interested in incorporating textual data in their works.
Text Mining or Knowledge Discovery from Text (KDT) was first introduced by Feld-
man and Dagan (1995) and refers to the process of extracting high-quality information
from text. One of the most critical goals of text mining is the clustering task (Allahyari
et al., 2017), studied in different research domains such as data mining (Berkhin, 2006),
machine learning (McGregor et al., 2004), and information retrieval (Wu et al., 2003).
Topic modeling (Blei et al., 2003) is one of the most popular probabilistic clustering
algorithms, since it aims to process extensive collections of texts that are useful for
tasks such as classification, novelty detection, summarisation, similarity and relevance
judgments.
These models learn topics automatically, from unlabeled documents in an unsupervised
way. These topics are called hidden thematic structures or latent topics and are typically
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represented as sets of essential words. Documents are considered as a mixture of top-
ics, where each topic is represented by a probability distribution of words (Blei, 2012).
Thus, these models build latent topics as multinomial distributions of words, and the
models assume that each document can be described as a mixture of these topics. Each
topic’s essential words frequently tend to appear together and (hopefully) are related to
the same common theme. Once the models are trained, they provide a framework for
humans to understand document collections both directly by “reading” models or indi-
rectly by using topics as input variables for further analysis (Boyd-Graber et al., 2017).
The Latent Dirichlet Allocation (LDA) is one of the most popular topic models and the
state-of-the-art unsupervised machine learning technique for extracting thematic infor-
mation (topics) from a collection of documents.
Indeed as highlighted by Boyd-Graber et al. (2017), LDA plays an essential role in
the analysis of historical documents, scientific documents, fiction, poetry and litera-
ture. The main obstacle in topic detection models is that not all the estimated topics
are equally important, and not all correspond to genuine domain themes. Some of the
topics can be a collection of irrelevant words or unchained words representing insignif-
icant themes.
Often, in qualitative studies, the goal is to find meaningful and interpretable topics. Re-
searchers usually use top-N words with the highest probability given a topic (Lau et al.,
2014; Newman et al., 2010; Aletras and Stevenson, 2013; Ramrakhiyani et al., 2017),
and employ humans to obtain an interpretability score. Indeed, topic discovering al-
gorithms do not automatically provide a way to interpret their output. For instance,
Chang et al. (2009) state that “Although there appears to be a longstanding assumption
that the latent space discovered by topic models is meaningful and useful, evaluating
such assumptions is difficult because discovering topics is an unsupervised process”.
Moreover, Hoyle et al. (2021) highlight that automated evaluation metrics often suf-
fer from inconsistency. Therefore, it would be desirable to fully automize the process
by introducing a metric that automatically ranks learned topics closely matching hu-
man judgments. This challenge motivated recent research on topic quality metrics that
closely match human judgement. Within this framework, quantifying the coherence of
a set of words plays a central role (AlSumait et al., 2009; Lau et al., 2014; Newman
et al., 2010; Aletras and Stevenson, 2013; Nikolenko et al., 2017; Ramrakhiyani et al.,
2017; Röder et al., 2015) .
In topic models, a topic can be viewed as a set of words that frequently co-occur in the
same documents, which is very similar to latent word groups (or communities) (Zuo
et al., 2016) in the word network. Since words that frequently co-occur in the same
sentences are closely connected in the semantic space, they tend to appear in the same
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document.
This chapter proposes a new ranking method to explore topic coherence based on the
construction and analysis of Statistically Validated Networks (SVNs) of words (Tum-
minello et al., 2011). Specifically, the method builds a co-occurrence network for each
topic whose most probable words are the nodes. We set a link between two nodes
(words) in each network if their co-occurrence in sentences is statistically significant.
We claim that these links carry relevant information about the structure of the topic,
i.e., the more connected the network, the more semantically coherent the correspond-
ing topic. Therefore, we propose to use connectivity measures on the SVN of words to
build a metric of topic coherence.
The main contributions of this chapter are: i) to define a new coherence measure
(CohSV N) based on a rigorous statistical model that approximates human ratings bet-
ter than state-of-the-art methods; ii) to filter out marginal associations of words and to
facilitate the graphical representation and interpretation of the obtained topics through
Statistically Validated Networks (SVNs) (Tumminello et al., 2011).
The chapter is organized as follows: Section 7.2 describes the background and reviews
related works. In Section 7.3, we describe the proposed coherence model, while we
report a real-world application of the method in Section 7.4. Finally, in Section 7.5, we
draw our conclusions and propose ideas for future development.

7.2 Background and related works

The main idea of topic modeling is to create a probabilistic generative model for a
corpus of text documents. A probabilistic topic model is a type of generative model
that aims to learn the latent semantic structure of a corpus. Probabilistic topic models
reduce the complex process of document generation to a small number of probabilis-
tic steps by assuming exchangeability, because only word occurrence information (i.e.,
frequencies) is considered.
The first probabilistic topic model was the Probabilistic Latent Semantic Analysis
(pLSA), introduced by Hofmann (1999); unfortunately, the model does not provide
any probabilistic model at the document level. Then, Blei et al. (2003) proposed the
The Latent Dirichlet Allocation (LDA) model as an extension of the pLSA, introducing
a Dirichlet prior on mixture weights of topics per document. The name of the model
incorporates its main features. Specifically, the term Latent indicates that the model
involves probabilistic inferences for extrapolating missing probabilistic pieces of the
generative story from texts. The term Dirichlet recalls that the model uses Dirichlet
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parameters to encode sparsity. Finally, the name includes the word Allocation since the
Dirichlet distribution encodes the prior probability for each document’s allocation of
the topics (Boyd-Graber et al., 2017). In these models, documents are described as ran-
dom mixtures over latent topics, where a distribution of words characterizes each topic
(Blei et al., 2003). The words of the documents are the observed variables, whereas
the topic structures are the hidden variables. The problem of inferring the hidden topic
structure from the documents consists in computing the posterior distribution of topic
structures, that is, the conditional distribution of the hidden variables given the docu-
ments (Blei, 2012).

Recently, many other probabilistic topic models that consider topic correlations were
proposed, such as the correlated topic model (CTM–see Blei and Lafferty (2006)),
the Pachinko allocation model (see Li and McCallum (2006)). Other works extend
probabilistic topic models focusing on the evolution of topics over time, such as the
dynamic topic model (DTM) (Dieng et al., 2019), or introducing word embedding
representation–the embedded topic model (ETM) by Dieng et al. (2020).
Finally, neural topic models represent a broader set of related models. These mainly
focus on improving topic modeling inference through deep neural networks (see Sri-
vastava and Sutton (2017)).
Finally, Blei (2012) and Boyd-Graber et al. (2017) provide comprehensive reviews of
probabilistic topic models.
Among these models, we applied our coherence measure to the LDA model, since it
represents a benchmark in the topic modelling community, for comparison with its var-
ious extensions. However, it is worth highlighting that the proposed measure applies to
any topic model.

7.2.1 Literature review

Evaluating the quality of the latent spaces provided by topic models is a difficult chal-
lenge because discovering topics is an unsupervised process that gives no guarantees
on the interpretability of its output. In text mining, the problem of semantic evalua-
tion has attracted much interest breaking down the research into coherence measures
(Röder et al., 2015). There is no gold-standard list of topics to compare against for
every corpus. Thus, a technique for evaluating the outputs of topic models could be
employed to gather exogenous data. In this section, we discuss previous work on the
topic evaluation.
For many years, the primary way to evaluate the quality of a topic model was to mea-
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sure the log-likelihood of a held-out test set (Blei et al., 2003; Wallach et al., 2009).
The held-out likelihood consists of density estimation on a collection of unseen docu-
ments given a training set. The most commonly used measure based on the held-out
method is the perplexity, a monotonically decreasing function of likelihood:

perplexity(D) = exp
{
− ∑

M
d=1 log p(wd)

∑
M
d=1 Nd

}
,

where D is the collection of documents, Nd is the number of words in document d,
and p(wd) is the marginal distribution of document d, following the notation used in
previous section. A lower perplexity score indicates better generalization performance.
However, Chang et al. (2009) showed that the perplexity on the held-out test set em-
phasizes complexity rather than interpretability, which is the property users are mostly
interested in. In their work, they fit three different topic models to two corpora and
demonstrated that the perplexity scores are negatively correlated with human ratings.
In other words, such measure is useful for evaluating the predictive performance of the
model, but it does not address the more explanatory goals of topic modeling. Indeed,
topic models are mainly used to organize, summarize and help users to explore large
corpora, while evaluating the predictive performance of the model is a completely dif-
ferent task. Therefore, there is no technical reason to suppose that held-out accuracy
corresponds to a better organization or easier interpretation. In recent years, many
methods have been proposed for assessing topic coherence. The approaches can be
split into two categories: qualitative methods and quantitative methods. Qualitative
methods are less common than quantitative since they require the use of human re-
sources for topic assessment, and are time-consuming. Quantitative approaches, on the
other hand, seek to automate the whole evaluation process by trying to replicate human
judgment.

7.2.2 Qualitative methods

Chang et al. (2009) proposed the task of word intrusion to create a formal setting where
humans can evaluate the latent space of a topic model. This task allows for an evalua-
tion of whether a topic has human-identifiable semantic coherence or not. In the word

intrusion task, the subject is presented with six randomly ordered words, and the task
of the user is to find the word which is out of place or which does not belong with the
others, i.e., the intruder.
Later, Morstatter and Liu (2018) proposed a modified version of the word intrusion
task, named Model Precision Choose Two. As in the word intrusion task, they propose
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to form a list with the top (most likely) five words from a topic and to inject one low-
probability word from the same topic into the list. The critical difference with word
intrusion is that they ask the annotators to select two intruded words from the six. The
intuition behind this experiment is that the annotators’ first choice will be the intruded
word, just as in Chang et al. (2009). However, their second choice is what makes the
topic’s quality clear. In a coherent topic, the annotator will not be able to distinguish a
second word as all of the words will appear similarly coherent.

7.2.3 Quantitative methods

The qualitative methods are time-consuming since they require the manual annotations
of humans. In the last decade, researchers have proposed fully automating the process
by introducing a metric that automatically ranks learned topics. One of the first auto-
mated measures was proposed by AlSumait et al. (2009). They introduced an approach
to automatically rank the LDA topics based on their semantic importance and, even-
tually, to identify junk and insignificant topics. Their idea is to measure the amount
of “insignificance” that an inferred topic carries in its distribution by measuring how
“different” the topic distribution is from a “junk” distribution. In the same work, Al-
Sumait et al. proposed three definitions of Junk and Insignificant (J/I) topic distribution,
namely: i) the Uniform Distribution Over Words (W-Uniform), ii) the Vacuous Seman-
tic Distribution (W-Vacuous) and iii) the Background Distribution (D-BGround). Fi-
nally, to quantify the difference between an estimated topic and a J/I distribution, three
different distance measures are employed, namely: Kullback-Leibler (KL) Divergence;
Cosine Dissimilarity; and Correlation Coefficient.
Later, Wang et al. (2011) proposed a re-ranking algorithm to select “significant” topics
by topic similarity calculation. Specifically, each topic is represented as a probability
distribution p(wi|z j) over words. To compute the distance between word-topic distri-
butions they employed the Jensen-Shannon distance (a symmetrised extension of the
KL divergence) :

Dist(zi,z j) =
1
2
[KL(zi||z j)+KL(z j||zi)].

Finally, for each topic i, they computed the average distance between i and all the other
topics, and they sorted the average distance for each topic in a queue. The last element
in the queue is ranked the highest.
In the framework of topic quality evaluation, many relevant works make use of the top-
N most probable words (rather than using the entire word-topic distribution), and they

127



assess pairwise semantic cohesion among them through their co-occurrences provided
by the dataset or external sources.
The general idea is to compute the mean of the sum of the pairwise scores of the top-N
words that most contribute to describing the topic:

Coherence =
2

N · (N−1)

N

∑
i=2

i−1

∑
j=1

score(wi,w j).

One of the best-known topic quality measures based on the top-N words was proposed
by Newman et al. (2009). They introduced for the first time, a model that uses external
text data sources, such as Wikipedia and Google hits, to predict human judgements.
Specifically, Newman et al. (2009) measured co-occurrence of word pairs, taken from
the list of the ten most probable words in a given topic, using two huge external text
datasets: all articles from English Wikipedia and the Google n-grams data set. Specif-
ically, they identify a co-occurrence of words wi and w j if they occurred together in a
10-word window of any Wikipedia article. Similarly, they identify a co-occurrence of
the two words according to Google n-grams if they both appear in any of the existing
5-grams. Finally, they measure the score of association between word pairs through
the Pointwise Mutual Information (PMI) (Bouma, 2009):

PMI(wi,w j) = log
p(wi,w j)+ ε

p(wi)p(w j)
, (7.1)

where p(·) is the relative frequency of a word and p(·, ·) is the relative frequency of the
co-occurrence of two words, while ε is a smoothing term. This measure is also called
UCI.
Mimno et al. (2011) pointed out that “bad” topics can be categorized into three defini-
tions:

• Chained: every word is connected to every other word through some pairwise
word chain, but not all word pairs make sense.

• Intruded: either two or more unrelated sets of related words, joined arbitrarily,
or an otherwise good topic with a few “intruder” words.

• Random: no clear, reasonable connections between more than a few pairs of
words.

In their work, the authors suggest that these poor-quality topics could be detected using
metrics based on word co-occurrences within the documents.
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They proposed to use an asymmetrical confirmation measure, UMass, between top
word pairs (smoothed conditional probability), where the estimations of word probabil-
ities are based on their frequencies in the original documents used to train the algorithm
on the topics:

UMass(wi,w j) = log
D(wi,w j)+1

D(w j)
, (7.2)

where D(wi) is the document frequency of word, (i.e., the number of documents that
contains wi, and D(wi,w j) is co-document frequency (i.e., the number of documents
containing both words). Note that Eq. 7.2 is equal to the empirical conditional log-
probability log p(wi|w j) = log p(wi,w j)

p(w j)
smoothed by adding one to D(wi,w j), where

p(wi) =
D(wi)

M . Therefore, the score function is not symmetric as it is an increasing
function of the empirical probability p(w j|wi), where the probability of wi is higher
than the word w j, given a topic. Therefore, this score measures how much (within the
words used to describe a topic) a common word, wi, is, on average a good predictor for
a less common word, w j.
Another important contribution was given by Lau et al. (2014) who proposed to use
the Normalized Pointwise Mutual Information (NPMI) (Bouma, 2009) of word pairs
in the automated methods of word intrusion and observed coherence:

NPMI(wi,w j) =
PMI(wi,w j)

− log
[
p(wi,w j)+ ε

] , (7.3)

where p(·) and p(·, ·) are defined as for PMI. The NPMI ranges between (-1,+1) re-
sulting in -1 (in the limit) for never occurring together, 0 when they are distributed as
expected under independence, and +1 (in the limit) for complete co-occurrence.
Aletras and Stevenson (2013) proposed a method for determining topic coherence using
the distributional similarity between the n most likely words of the topic. Representing
each word as a vector, let −→w1,−→w2,..., −→w n denote the vectors of the top n most probable
words in a topic. The authors also assume that each vector consists of N elements (the
size of the Vocabulary) and −→w i j is the jth element of vector −→wi . The semantic space
was created using Wikipedia as a reference corpus and a window of ±5 words. Then
they compute the similarity between words using three measures:

• Cosine similarity:

Cos(−→wi ,
−→w j) =

−→wi ·−→w j

∥−→wi∥∥−→w j∥
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• Dice coefficient:

Dice(−→wi ,
−→w j) =

2∑
N
k=1 min(−→wik,

−→w jk)

∑
N
k=1(
−→wik +

−→w jk)

• Jaccard coefficient:

Jaccard(−→wi ,
−→w j) =

∑
N
k=1 min(−→wik,

−→w jk)

∑
N
k=1 max(−→wik +

−→w jk)
.

Then, the coherence of topics is constructed by the mean of all pairwise scores. Each
of these measures estimates the distance between a pair of words in a topic and produce
a topic cohesion measure based on distributional semantics. Röder et al. (2015) pro-
posed a framework that allows for the construction of existing word-based coherence
measures as well as new ones, by combining elementary components. They conducted
a systematic search of the space of coherence measures for the evaluation and they
identified a complex combinations (named CV ) as the best performers on their test cor-
pora.
Omar et al. (2015) quantitatively describe topics via normalized mean values of pair-
wise word similarities. They used two types of word similarities, namely, thesaurus
and local corpus-based as the descriptive features of a topic, and performed topic clas-
sification by using the represented topics as input and a binary 0-1 human ratings.
Some of the latest work in the field was produced by Nikolenko et al. (2017): they
highlighted that the topic coherence defined by Mimno et al. (2011) is able to consis-
tently identify bad topics (i.e., topics with poor coherence) but does not perform well in
identifying good ones (i.e., topics with a high degree of coherence). To cope with this
problem, Nikolenko et al. (2017) proposed t f -id f (term frequency - inverse document
frequency) coherence as a modification of Mimno’s coherence metric that accounts for
the informative content of the topics.
Their idea is to introduce t f -id f scores instead of the number of co-occurrences in
order to construct their measure. The t f -id f value, as defined by Salton and Buckley
(1988), increases proportionally to the number of times a word appears in a document
and is inversely proportional to the number of documents in the corpus that contain that
word. This measure privileges the words that not only frequently occur in a given text,
but that also occur rarely in other texts. Thus, a coherence metric with t f -id f scores
penalizes co-occurrence of common words that have low discriminative power. The
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measure for a given topic is defined as follow:

Ct f -id f (wi,w j) = log

∑
d:wi,w j∈d

t f -id f (wi,d)t f -id f (w j,d)+ ε

∑
d:wi∈d

t f -id f (wi,d)
,

where ε is a smoothing count usually set to either 1 or 0.01, while the t f -id f metric is
computed with augmented frequency:

t f -id f = t f (w,d) · id f (w,d),

where

t f (w,d) =
(

1
2
+

f (w,d)
maxw∗∈d f (w∗,d)

)
,

id f (w,d) = log
|D|

|{d∗ ∈ D : w ∈ d∗}|
.

7.3 Methods

In this section, we propose a new coherence measure to evaluate the interpretability of
the top words of a topic. Our method consists in building a co-occurrence network for
each topic whose most probable words (according to the estimated topic model) are
the nodes. The weights of links are calculated as the number of sentences in which
the connected words co-occur. In each network, we identify the links whose weight
is statistically significant, i.e., those that cannot be explained in terms of random co-
occurrences of words in the sentences. Although several measures in the literature have
already considered co-occurrence between words as a measure of association, none has
undertaken a statistical approach based on hypotheses testing to assess whether the co-
occurrence obtained between two words can be attributed to chance or whether these
links carry relevant information about the structure of topics. To do this, we exploit
Statistically Validated Networks.
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7.3.1 Statistically Validated Networks

In recent years, many complex systems have been represented by bipartite networks
(Genova et al., 2019; Puccio et al., 2019; Kaya, 2020). The Statistically Validated
Network, introduced by Tumminello et al. (2011), is an unsupervised method to sta-
tistically test the significance of each link of a projected weighted network as obtained
from a multipartite network. It is an unsupervised method that introduces a system of
hypotheses for link testing when a multipartite network is projected into a set of nodes.
The idea is to represent text data as a bipartite network, Fig7.1, in which the set of
nodes S is made by the sentences of corpus and the other set of nodes W is made by
a list of words associated with a given topic. A link is set between a word and a sen-
tence if the word belongs to that sentence. Therefore, projecting the set of words, the
resulting network is a word-co-occurrence network (Zuo et al., 2016; Paranyushkin,
2011).

w1

w2

w3

w4

w5

s1

s2

s3

s4

s5

W S

Figure 7.1: Bipartite network where S is the set of corpus sentences and W is the set of
topic words.

To take into account the heterogeneity of the set of sentences, a suitable system of
hypotheses is introduced. The hypothesis test is constructed as follows. Let us consider
a corpus made of N sentences, then consider two words, say, wi and w j, and indicate
with Xi j the times they appear in the same sentences. We are interested in validating the
co-occurrences of the words wi and w j statistically against a null hypothesis of random
co-occurrence that accounts for the heterogeneity of the considered words, that is, the
total number of times they appear individually in the text, Ni and N j, respectively. The
probability distribution that describes the random co-occurrence is the hypergeometric
distribution, according to which, the probability of observing Xi j co-occurrences is
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word word

number of sentences

Figure 7.2: Venn Diagram showing the overlap of two words

given by

pmfH(Xi j|N,Ni,N j) =

(Ni
Xi j

)( N−Ni
N j−Xi j

)(N
N j

)
where parameters Ni and N j naturally allow for the incorporation of the aforementioned
heterogeneity of words in the null hypothesis.

The Hypergeometric distribution describes the probability mass function under the
null hypothesis in which the probability of co-occurrence between words is condi-
tioned by their marginals, i.e., their individual occurrences.
The distribution introduced can be used to test the presence of an excess of co-occurrence
between any pair of words, wi and w j. Indeed, assuming that the actual co-occurrences
of these words is Ni j, then the probability that a value larger than or equal to Ni j is
observed by chance, according to the null hypothesis, is:

pv(Ni j|Ni,N j,N) =
min(Ni,N j)

∑
X=Ni j

(Ni
X

)(N−Ni
N j−X

)(N
N j

) . (7.4)

To claim that the number of co-occurrences, Ni j, between words is too large to be
consistent with the null hypothesis of random co-occurrences, we shall set a threshold
α of statistical significance. However, since we are facing multiple and dependent
comparisons, errors of the first kind are a real issue. Therefore, we use the conservative
Bonferroni correction (Miller, 1981) for multiple hypothesis testing. The correction
states that given a univariate threshold of statistical significance, α , then the threshold
corrected for multiple hypothesis testing is αT = α

T , where T is the total number of
performed tests, be they dependent or otherwise. The advantage of the Bonferroni
correction is that it provides a very strict control of the Family Wise Error Rate even
when tests are dependent, as in this case since the same word appears in many tests.
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7.3.2 Coherence based on SVNs

In this section, we describe how to construct the new coherence measure, CohSV N ,
which makes use of Statistically Validated Networks as combined with different word
similarity indices. Specifically, our algorithm can be summarised in the following 5
steps, also sketched in the diagram reported in Fig. 7.3:

(A) Estimate a topic model, and extract the top-m words from each estimated topic;

(B) Represent each topic as a Statistically Validated Network of words;

(C) Evaluate each link’s importance, Imp(wi,w j|zk) by considering the strength of
the association between word pairs and the relative relevance of each word in the
topic;

(D) Compute a global measure of coherence, CohSV N , for each topic network;

(E) Produce the final ranked list of topics, by sorting them in decreasing order of
coherence.

Figure 7.3: Diagram describing the 5 steps of the algorithm.

134



Regarding the first step, the specific topic model used, the parameter tuning and the
choice of the optimal number of topics lay outside the scope of this chapter. Relevant
insights on these subjects can be found in references (Arun et al., 2010; Krasnov and
Sen, 2019; Sbalchiero and Eder, 2020; Chuang et al., 2013). The estimation of the
LDA model provides a list of K latent topics, each one described by an ordered list of
words. So, to conclude the first step, we select the m most probable words1.
To build the SVN of a given topic, m(m−1)

2 statistical tests (against the null hypothesis
of random co-occurrence) are performed, one for each pair of words.
The results are K weighted Statistically Validated Networks with m nodes and a num-
ber of links equal to the number tests that rejects the null hypothesis of random co-
occurrence at a given level, α , of statistical significance, after the Bonferroni correction
for multiple hypothesis testing. An example is shown in Figure 7.4.

message

space

glove

train

representation

embeddings

fasttext

text

vector

word

Figure 7.4: Statistically Validated Network of an artificial topic.

The size of each node i in Figure 7.4 is proportional to the probability P(wi|zk) that
the corresponding word wi appears in the topic zk, while the opacity of each link is
proportional to the strength of the association between the linked words.
To compute the strength of each validated link, we use corpus-based word similarities
within distributional contexts. Specifically, let N denote the total number of sentences
in the corpus, Ni and N j the occurrences of words wi and w j, respectively, in the sen-
tences of the corpus, and Ni j their co-occurrence. To calculate word similarities we use
four metrics already used in other studies. Specifically:

1In the present application, we follow the standard approach of setting m = 10.
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• S1: Jaccard similarity index (Real and Vargas, 1996)

J(wi,w j) =
Ni j

Ni +N j−Ni j
(7.5)

• S2: Dice-Sorensen coefficient (Dice, 1945) 2

Dc(wi,w j) =
2Ni j

Ni +N j
(7.6)

• S3: Sokal and Sneath coefficient (Sokal et al., 1963)

SS(wi,w j) =
Ni j

2Ni +2N j−3Ni j
(7.7)

• S4: Fowlkes–Mallows index (Fowlkes and Mallows, 1983)

FM(wi,w j) =

√
N2

i, j

Ni ·N j
. (7.8)

Furthermore, we also consider three metrics that are tightly related to the SVN method.
These metrics are:

• S5: Similarity based on the Pearson’s correlation coefficient ρ(wi,w j):

Dρ(wi,w j) =
1
2
[
1+ρ(wi,w j)

]
(7.9)

where

ρ(wi,w j) =
Ni j−

NiN j
N√

Ni(1− Ni
N )N j(1−

N j
N )

.

Since the expected value of the Hypergeometric distribution H(X |N,Ni,N j) is
NiN j

N and the variance V[X ] = σ2
H =

NiN j
N

N−Ni
N

N−N j
N , it turns out that ρ(wi,w j) is

proportional to the Z-score of Ni j under the null hypothesis3.

• S6: Normalized logarithmic robustness R̃

R̃(wi,w j) =
log10(N)− log10(N

∗|wi,w j)

log10(N)− log10(n∗|wi,w j)
, (7.10)

2Notice that it is equivalent to F1 score.
3The constant of proportionality is N−

1
2 .
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where
N∗ = min{N : pv(Ni j)<

α

T
},

is defined as the minimum number of sentences needed in the corpus to validate
the co-occurrence between wi and w j. While,

n∗ = min{N : pv(N∗i j)<
α

T
}

is the minimum value of sentences needed to validate the co-occurrence between
wi and w j assuming a perfect co-occurrence, N∗i j = min(Ni,N j).

• S7: Similarity based on the normalized p-value p̃v

p̃v(wi,w j) = 1−
pv(Ni j|Ni,N j,N)

α/T
, (7.11)

where pv(Ni j|Ni,N j,N) is computed following Eq.7.4.

All of the proposed similarity measures, {S1, . . . ,S7}, take values in the range [0,1]
where 0 indicates two totally unrelated words, while 1 indicates two perfectly associ-
ated words.
Given a validated link between two words, say wi and w j, belonging to the topic zk, we
define the link’s importance Imp(wi,w j|zk):

Imp(wi,w j|zk) =
√

P(wi|zk)P(w j|zk) Sh(wi,w j), (7.12)

where Sh is one of the similarity function described above: {Dρ , R̃, p̃v, J, Dc, SS, FM}.
The importance of a validated link (Eq. 7.12), between wi and w j give a topic zk, takes
into account two components:

• the relative relevance of wi and w j within zk:√
P(wi|zk)P(w j|zk);

• the strength of the association between wi and w j:

Sh(wi,w j), h = 1, . . . ,7.

The conditional probabilities P(wi|zk) and P(w j|zk) reflect the relevance of words wi
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and w j, respectively, within the topic zk. That is, words with a higher probability are
more relevant within a topic. Therefore, the more relevant the two terms, the more
important the validated link between them. We decided to use the geometric mean of
P(wi|zk) and P(w j|zk) as aggregating function to reduce the impact of the distribution’s
tails. As regards to Sh(wi,w j), it measures the association between wi and w j. Intu-
itively, the higher the association between two words, the greater the importance of the
link between them.
Note that, if wi and w j exhibit a “perfect” co-occurence, i.e., Ni = N j = Ni j, then
Sh(wi,w j)= 1 and the link’s importance reduces to Imp(wi,w j|zk)=

√
P(wi|zk)P(w j|zk),

that is, the geometric mean of the words probabilities, given the topic, provided by the
model.
Finally, we define the global coherence measure of a topic, zk, as:

CohSV N(zk) =

∑
wi ̸=w j ,∈L

Imp(wi,w j|zk)

∑
wi ̸=w j ,∈Ωk

√
P(wi|zk)P(w j|zk)

, (7.13)

where L is the set of word pairs linked in the SVN, while Ωk is the set of all possible
m · (m−1)/2 word pairs for topic zk.
In Eq.7.13, the denominator represents the coherence of a perfectly coherent topic, that
is, a fully connected network where all the pairwise word similarities are maximized,
i.e. Sh(wi,w j) = 1 ∀wi,w j ∈ Ωk. Thus, CohSV N(zk) ranges in the set [0,1], where the
minimum value indicates a totally incoherent and unintelligible topic, while a value of
1 represents a perfectly coherent topic.
Measure CohSV N(zk) allows us to rank topics in decreasing order of coherence, which
completes the fifth (and final) step of the procedure presented in this section.

7.4 Experimental evaluation

7.4.1 Dataset and pre-processing

We evaluated our estimator of topic quality on a dataset of articles extracted from the
New York Times, which was already analysed by Xing et al. (2019). The dataset (NYTd
from now on) consists of 8,764 articles of the New York Times, which appeared between
April and July 20164.
In particular, we decided to consider a reduced version of this dataset, obtained by

4https://www.kaggle.com/nzalake52/new-york-times-articles
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removing all the articles with fewer than 20 total words (Hong and Davison (2010)
discuss how short documents can confuse topic modeling algorithms), and taking a
random sample of size 1,000 out of those remaining.
The following step is to perform data preprocessing in order to reduce noise from
the data. The preprocessing usually consists of tasks such as tokenization, filtering,
and either lemmatization or stemming. Tokenization means transforming sentences in
a list of words, called token, and the filtering step implies removing all punctuation
and numbers. Lemmatization and stemming are two text normalization techniques for
Natural Language Processing. The first one is the process of finding the base or dictio-
nary form of a word, called lemma, with the aim to remove only inflectional endings
considering morphological analysis as meaning and context. Instead, stemming is a
method to convert words into their root form by cutting the suffix or prefix from the
word. Comparing the lemmatization and stemming methods, we opted for the lemma-
tization. Stemmed words, in general, are very complicated to interpret, since roots
of words were insufficient to discriminate among alternative meanings (Schütze et al.,
2008). For instance, the word better has good as its lemma, but this link is missed by
stemming. We removed urls, mails, punctuation and numbers from the texts through
the Python regex function. Then, we transformed uppercase letters into lowercase
letters and removed accents. Furthermore, we used the gensim library to construct
compound words, such as United States or North Korea, and spaCY, an open-source
natural language processing library for Python, to split up sentences. Finally, we re-
moved i) infrequently used words (i.e. appearing only once per document); and ii)
redundant words (a rule of thumb is to remove terms appearing in more than 80% of
the documents). As a matter of facts, infrequently used terms will not contribute much
information about topics, while discovery and removing them may greatly reduce the
size of the vocabulary (Denny and Spirling, 2018). Equally, it has been shown that re-
dundant words appearing frequently do not convey any meaningful message for topic
modeling (Bastani et al., 2019).
The original corpus dictionary, as directly obtained from the 1,000 articles, consisted
of 28,104 tokens, whereas the final corpus (after data preprocessing) included 8,770
tokens.
The LDA model was trained in R setting 50 topics (Waldherr et al., 2015), then we
randomly extracted 30 of them for human judgment evaluation.
We have chosen to use only part of the group of estimated topics due to time con-
straints. Indeed, we structured the questionnaire so that each annotator took, on aver-
age, 15 minutes to complete their task, assuming an average response time of about
30 seconds per topic. This issue is crucial for maximising the quality of the answers
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obtained; in fact, a questionnaire which takes too long to be completed entails the risk
of receiving unreliable answers as the respondent’s focus drops.
Finally, we prepared graphical representations of the networks of topics using Cytoscape
software.5

7.4.2 Coherence-based topic annotations

To obtain high-quality ratings, the survey was structured in two steps. During the first
step, which we call “pilot”, 23 PhD students from the Department of Economics, Busi-
ness and Statistics at the University of Palermo, Italy, were brought in. We provided
them with 32 topics (consisting of 10 words each) to be evaluated on a 5-point scale
where 5=“coherent” and 1=“not coherent”. Among topics, 30 were genuine topics ac-
cording to the LDA model applied to the New York Times dataset, and the remaining
two were synthetic (control) topics. The first synthetic topic included a group of unre-
lated words that formed a meaningless and incoherent topic, z31 = {Lasagna; Finance;
Jeans; Buddhist; Pokemon; Drive; Molecule; Sound; Chess; Revolver}. Instead, the
second synthetic topic included perfectly coherent words that formed a strongly co-
herent topic, z32 = {Black; White; Red; Green; Pink; Purple; Brown; Yellow; Grey;
Blue}.
We also provided textual guidelines on how to judge whether a topic was coherent or
incoherent. In addition to showing several examples of such topics we provided the
following preliminary instructions to the respondents.

Guidelines

Topic modeling consists of the automatic extraction of groups of words, called
topics, from a collection of texts. For a topic to be “coherent”, it must make
sense and be interpretable. This means that the topic’s words must:

1. be related to each other

2. belong to the same theme

An automatic procedure for the identification and evaluation of topics is reliable
if the topics identified are coherent and interpretable for humans. This is why
we are asking you to be part of a benchmark sample of individuals to test the
effectiveness of a new topic modeling algorithm we are working on. Therefore,
we ask you to rate the coherence of specific topics on a scale of 1 to 5. For ex-

5https://cytoscape.org
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ample, you can give a topic a low mark if you find few links between the words
in it, the mark increases as the number of linked words increases.
It is not always easy to evaluate a list of words, especially if some of them are
unfamiliar or belong to a language other than yours (in this case, English). We
ask you, PLEASE, we ask you to translate any words or nouns you do not know
to give as informed a mark as possible.
You will notice that some topics share one or more words; this is not a problem!
The topics are not related to each other, so each topic must be evaluated individ-
ually. There is no right or wrong answer since we aim to collect your subjective
opinion.

The role of the pilot was to assess the topic annotators’ ability in understanding their
assigned task. We also investigated which improvements were necessary in letting an-
notators deepen their comprehension of the meaning of “coherence”.
The most critical issue in the pilot was to investigate whether an odd scale was appro-
priate. Thus, we studied the relationship between the percentage of neutral answers
given by an annotator (i.e. providing a grade of 3) and their probability of failing at
least one control topic evaluation.

Table 7.1: Relationship between giving neutral answers and failing at least one control
topic evaluation

Fail control
Neutral responses No Yes Total

≤ 30% 14 1 15
> 30% 2 6 8
Total 16 7 23

Table (7.1) shows that these two features are strongly related since the odds ratio
(Schmidt and Kohlmann, 2008) is equal to 14×6

2×1 = 42. As a matter of fact, many
studies (Pornel and Saldaña, 2013; Taherdoost, 2019) showed that some respondents
quickly select the midpoint on the 5-point scale as a dumping ground (Chyung et al.,
2017). Such attitude can be explained in psychological terms:“choosing a minimally

acceptable response as soon as it is found, instead of putting effort to find an optimal

response”(Chyung et al., 2017). Therefore, we could easily identify “unreliable an-
notators” that do not produce reliable judgments, by looking at the respondents who
fail the control topics. The results of the pilot survey informed our decision to provide
the final survey annotators with the same guidelines, but we asked them to evaluate the
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coherence of topics on a scale from 1 to 4 to discourage annotators from expressing
neutral responses.
The final survey was designed to obtain human judgments to be used as ground truth
for comparing our method with state-of-the-art coherence measures.
The annotators of the final survey were 222 PhD students from various departments
of the University of Palermo; in this way, we employed highly educated judges with
heterogeneous knowledge within the sample.
The 222 judges were asked to assess the coherence of 32 topics (30 genuine and 2 ar-
tificial topics) on a Google Form6.
Table 7.2 reports the control topics’ scores manual assigned by the 222 annotators.
Overall, about 90% of the total (202 out of 222 annotators) succeeded in evaluating
both control topics. In the case of the highly coherent topic z32, we considered the
ratings equal to 4 to “be successful” since a group of words containing only colours
should receive the maximum rating. At the same time, we regarded ratings of 1 or 2 as
a success for the incoherent coherent topic z31.

Table 7.2: Control topics’ scores assigned by annotators, reliable annotators are high-
lighted in red.

Topic z32 scores

1 2 3 4 Tot

1 1 1 2 192 196
Topic z31 2 0 1 4 10 15
scores 3 0 0 2 4 6

4 0 2 0 3 5

Tot 1 4 8 209 222

Fig 7.5 reports the frequency distributions of the scores assigned by the annotators to
the 30 genuine topics, removing the annotators who failed at least one control topic
evaluation.

6https://docs.google.com/forms/d/e/1FAIpQLSdoWQsO3MLMcQZDatkCkrSWaThuuj2D-
Wm7sR18cy3x8XiRhw/viewform
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Figure 7.5: Annotators’ coherence evaluations

The final dataset contains: i) the list of the most probable words, ii) the coherence
ratings given by evaluators, and iii) the document term matrix used in our study. It is
available upon request from the authors.

7.4.3 Data analysis and results

To compare the effectiveness of the proposed method in replicating human judgment
with respect to the other coherence measures proposed in the literature, we collected the
results of the survey and re-arranged them in the form of rankings. Thus, conditioning
to a specific coherence metric, the topic with the highest coherence score will be ranked
1 and the topic with the lowest coherence score will be ranked 30.
Therefore, we build two matrices:

• the matrix of scores S30×13, where the generic si j element represent the coher-
ence score of the z j-topic assigned by the ith metric. As regards the last column,
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i.e. human judgment, the z j-topic is given the average coherence score assigned
by human evaluators. (see Tab. 7.3 for a reduced version of the matrix, and Tab.
D.2 for the full matrix);

• the matrix of rankings R30×13, where the generic ri j element represent the rela-
tive rank of the z j-topic assigned by the ith metric. In this matrix, the estimated
topic coherences are compared with each other, in order to establish a preference
ordering: from the most coherent to the least coherent topic. (see Tab. 7.4 for a
reduced version of the matrix, and Tab. D.3 for the full matrix).

Table 7.3: Coherence scores: the S matrix

Topic Dρ p̃v · · · HumanJ

z1 0.076 0.133 · · · 2.332
z2 0.049 0.084 · · · 1.391
z3 0.159 0.265 · · · 3.743
· · · · · · · · · · · · · · ·
z30 0.100 0.150 · · · 1.837

Table 7.4: Ranking coherence scores: the R matrix

Topic Dρ p̃v · · · HumanJ

z1 26 26 25 23
z2 29 29 30 30
z3 18 18 20 2
· · · · · · · · · · · · · · ·
z30 22 23 28 26

To evaluate the correlation between human judgments and the topic quality scores pre-
dicted by all the automatic metrics, we use the Emond and Mason’s rank correlation
coefficient, τx (Emond and Mason, 2002). The higher the τx, the better the metric is at
measuring topic quality.
In addition, to conforming our comparison procedure to the literature standard, we also
computed the Pearson’s linear correlation coefficient (Lau et al., 2014; Röder et al.,
2015) and the Spearman’s rank correlation coefficient (Newman et al., 2010; Aletras
and Stevenson, 2013; Morstatter and Liu, 2018), see Tab. D.1 in the appendix. Al-
though these two measures have been frequently used in the literature, we argue that
they are not particularly suitable in this framework. On the one hand, the Pearson’s cor-
relation coefficient only considers the linear correlation between two vectors, which is
undoubtedly restrictive for our purpose, and its value may be seriously affected by only
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one outlier (Croux and Dehon, 2010). On the other hand, as highlighted in Chapter 1,
the Spearman rank correlation suffers from the sensitivity to irrelevant alternatives.
Moreover, Croux and Dehon (2010) highlighted that the Spearman rank correlation
has a smaller gross error sensitivity (GES) (low robustness) and a greater asymptotic
variance (AV) (low efficiency) compared to the Kendall τb and τx. These features make
Spearman coefficient a less preferable measure from both perspectives.
Table 7.5 reports the τx rank correlation between human judgments and all the consid-
ered metrics. We compared the correlations obtained either by keeping (“with noise”
column of Tab 7.5) or removing (“without noise” column of Tab 7.5) the unreliable
annotators. The results show that the proposed SVN Coherence measure, based on Dρ ,
outperforms all the baselines.

Table 7.5: Emond and Mason τx rank correlation coefficient with human judgments for
metrics.

Correlation with human judgement
Method τx with noise τx without noise

CohSV N
J 0.621 0.632

Dc 0.616 0.627
SS 0.616 0.627

FM 0.708 0.714
Dρ 0.721 0.728
R̃ 0.579 0.586
p̃v 0.698 0.705

State-of-the-art
PMI (Newman et al., 2009) 0.616 0.618
UMass (Mimno et al., 2011) 0.565 0.563

NPMI (Lau et al., 2014) 0.685 0.687
CV (Röder et al., 2015) 0.570 0.572

t f -id f (Nikolenko et al., 2017) 0.629 0.636

7.4.4 Interpretation of the resulting topics

In this section, we report a comparison between CohSV N and human judgment in eval-
uating the coherence of some estimated topics. In Fig. 7.6, topics for which there is
high concordance between human judgement and CohSV N are reported.
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Figure 7.6: SVN representation of Topic z2 and Topic z6

In particular, Fig.7.6(a) represents topic z6, which is the most coherent topic. It has
been assigned an average score equal to 3.84 (first in the rank) by the annotators. Like-
wise, CohSV N scores it 0.545, which make it the most coherent in the final ranking.
As a matter of fact, topic z6 can be considered a genuine theme of the domain, i.e., a
politically themed topic where all the top words can be associated with US politics.
Therefore, the annotators quickly recognized that the words are strongly related, and
the co-occurrences in the corpus reflect their solid semantic association.
Topic z2, in fig. 7.6(b), is one of the least coherent topics. Annotators rated it with an
average score of 1.37 (last position in the ranking). Besides, the topic’s CohSV N score
is equal to 0.049, which corresponds to the second-to-last position in the ranking.
The SVN constructed on topic z2 reveals that the words composing it are mostly unre-
lated; therefore, there are few statistically validated links.
Fig. 7.7 report topics whose scores (and, consequently, the ranking) assigned by the
annotators are not consistent with our coherence measure.
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Figure 7.7: SVN representation of Topic z3 and Topic z28

Topic z3 (fig. 7.7(a)) has been positively evaluated by the annotators; the average score
is equal to 3.74 (second in the ranking). Instead, CohSV N places it 18th in the ranking,
with a score equal to 0.159
The annotators considered the words in topic z3 to be related to each other, but the
semantic associations detected by humans are not reflected by the co-occurrences in
the reference corpus. For example, the words Facebook and company are not linked in
the resulting Statistically Validated Network. This issue could be due to the structure of
the corpus used in the analysis. As a matter of fact, the statistical significance of word
pairs’ co-occurrences can also be validated including external text data sources, such
as Wikipedia or Google hits, rather than using only the corpus sentences. Alternatively,
one could use paragraphs instead of sentences to count co-occurrences, but if the text
is not properly formatted it might prove difficult to identify the paragraphs.
Finally, topic z28 is reported in fig. 7.7(b). The corresponding CohSV N score is equal
to 0.264, the 7th in ranking. While, according to the survey, it has an average score
equal to 3.22, and it is 12th in ranking. In this case, the topic is considered to be more
coherent by CohSV N than by humans; however, the discrepancy between the automatic
measure and the human judgement is less relevant than in the previous case. Overall,
about 20% of the annotators did not recognise a central theme and rated it with a low
score (1 or 2). This issue could be since topic z28 refers to a specific political event that
took place in Brazil between 2015 and 2016. Moreover, it contains “hard-to-interpret”
terms such as Rousseff, a little-known proper name, and impeachment, a technical term
referring to the political sphere. Indeed, the evaluation of the topic is more complex
than the other ones and requires respondents to carry out in-depth research.
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7.4.5 Summary of main findings

In summary, according to the presented analysis, CohSV N represents a new topic coher-
ence measure that:

• follows a rigorous statistical model of co-occurrence based on multiple hypothe-
ses testing, while state-of-the-art measures pass over the randomness of co-
occurrence;

• ranges between [0,1], providing a more readable framework for evaluating the
coherence of the topics;

• approximates human ratings better than state-of-the-art methods (see Tab. 7.5);

• allows the graphical representation and interpretation of the obtained topics through
Statistically Validated Networks (SVNs)(Tumminello et al., 2011);

• is less sensitive to the text preparation since it considers co-occurrences of word
pairs in sentences. Instead, most of the measures proposed in the literature, as
summarised in the chapter by Röder et al. (2015), use a sliding window to cal-
culate the co-occurrences, which makes these methods very sensitive to the pre-
processing steps.

7.5 Concluding remarks

One of the fundamental challenges in topic detection models is assessing the semantic
coherence of estimated topics in terms of human interpretability. State-of-the-art co-
herence measures focus on the marginal probabilities of words and their co-occurrence.
However, none of them takes into account the randomness of co-occurrences. In this
work, we undertake a rigorous statistical approach based on hypotheses testing to de-
velop a new topic-coherence measure, CohSV N .
To automatically evaluate how semantically close the top words of the topics are, we
represent each topic as a weighted network of its most probable words. The presence of
a link between two words indicates that their co-occurrence in sentences is statistically
significant against the null hypothesis of random co-occurrence.
The proposed global measure of coherence, CohSV N , is derived by considering the num-
ber of statistically validated links, the strength of the association between word pairs,
and the relative relevance of each word in the topic. To prove the effectiveness of our
method, we administered a survey on 222 PhD students from University of Palermo,
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Italy, and construct a benchmark dataset of human judgements. These judgments were
taken as ground truth, and it was shown that the proposed measure reproduces human
judgment more closely than the state-of-the-art (Table 7.5). As for future research, the
results reported in this chapter suggest to explore the possibility to develop a topic sim-
ilarity index based on Statistically Validated Networks and including NLP tools, e.g.,
entity recognition and part-of-speech tagging. Finally, the development of a rigorous
statistical method for validating the similarity between two topics could prove benefi-
cial, following the theory of recommendation systems (Zhou et al., 2010), to promote
diversity in the final ranking of topics. Indeed, the ordered list of topics could be deter-
mined by considering both the point-wise quality score (CohSV N) and the correlations
between topics.
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Chapter 8

Conclusions

The thesis has focused on developing distance-based methods for preference rankings
and preference approvals and on the definition of a new ranking method for textual
analysis. After a brief review of rankings, the following two chapters addressed two im-
portant issues concerning preference rankings, such as aggregation and prediction, by
considering the weight of items in a ranking and the similarity between them. Specif-
ically, Chapter 3 has provided an element weighted rank correlation coefficient τx,e

for linear, weak, and incomplete orderings. The correspondence between τx,e and the
corresponding weighted Kemeny distance dK,e was analytically proved. Additionally,
we have demonstrated that, when all items are given equal weights, the weighted rank
distance, denoted by dK,e, is proportional to the well-known Kemeny distance, denoted
by dK , while the correlation coefficient, denoted by τx,e, is equal to the Emond and
Mason’s τx. Then, we have built an algorithm to perform weighted aggregation of
preferences using the proposed weighted measures. From the simulation study and
the real data examples, we have demonstrated that the algorithm allows us to find the
true consensus and to show how the weighting vector affects the representativity of the
median ranking. The weighted consensus algorithm’s computational effort was inves-
tigated by considering some simulations.
Chapter 4 has proposed an item-weighted algorithm to perform weighted ranking pre-
diction. Specifically, three item-weighted versions (AdaBoost.R.M1, AdaBoost.R.M2,
and AdaBoost.R.M3) of the boosting algorithm AdaBoost for Label Ranking have been
defined. The algorithms combine many weighted distance-based trees for ranking data
to obtain a flexible, strong learner. The three methods were compared, investigating
their performance through real and simulated data applications. In particular, we have
demonstrated that AdaBoost.R.M3 performs best in many scenarios, having the lowest
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prediction errors even at a high noise level. Chapters 5 and 6 have shifted the attention
on preference-approvals, an extension of the classical preference model. Preference-
approvals are complex structures that combine preference rankings and approval voting
for declaring opinions over a set of alternatives. Chapter 5 has introduced a new dis-
tance for preference-approvals, Dr

λ
, following the Kemeny approach. In order to define

a new distance given two preference-approvals, we introduced two indices that quantify
the disagreement between two voters for each pair of alternatives as well as an aggre-
gation function belonging to the class of weighted power means. The new distance
depends on two parameters. The effect of these parameters on the distance was ana-
lyzed and described through some heatmaps. The proposed distance was used to study
the universe of preference-approvals and determine clusters of voters. Some dendro-
grams and cophenetic correlations were used to demonstrate how the two parameters
characterizing the distance affect the clustering process. In addition, we have shown
that the new distance family offers some advantages compared to the existing distance
function. Specifically, through a simulation study and the adjusted Rand index, we
have proved that Dr

λ
with r ̸= 1 allows the true clustered structure of data to be found

more accurately. Similarly, through a cluster-wise stability index, we have shown that
Dr

λ
with r ̸= 1 produces more stable clusters on the real data example.

Chapter 6 has proposed a new method for clustering alternatives in preference-approvals.
First, we have introduced a family of pseudometrics, δλ , able to quantify the dis-
tance between alternatives based on two main components: the individual preference-

discordance ρi j and the individual approval-discordance αi j, and on the λ parameter,
which regulates the weight to give to each component. To obtain clusters, we have
applied the Ranked k-medoids partitioning algorithm, taking the similarities among
pairs of alternatives as input based on the proposed pseudometrics. Finally, clusters
were represented in 2-dimensional space using Non-Metric Multidimensional Scaling.
Through two applications to real data, we have demonstrated how our algorithm allows
dividing a heterogeneous population of alternatives into homogeneous groups, reduc-
ing the complexity of the preference-approval space and providing a more accessible
interpretation of data. The impact of the λ parameter on cluster identification and vi-
sualization has also been demonstrated.
To conclude the thesis, Chapter 7 has developed a ranking method that can be applied
in the framework of textual analysis to rank learned topics closely matching human
judgments automatically. The ranking method proposed was based on a new topic-
coherence measure, CohSV N , employing Statistically Validated Networks. To prove the
effectiveness of our approach, we have administered a survey among 222 PhD students
from the University of Palermo, Italy, and constructed a benchmark dataset of human
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judgements. These judgments were taken as ground truth, and it was shown that the
proposed measure reproduces human judgment more closely than the state-of-the-art.
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Garcı́a-Lapresta, J. L. and Pérez-Román, D. (2017). A consensus reaching process
in the context of non-uniform ordered qualitative scales. Fuzzy Optimization and

Decision Making, 16(4):449–461.

159



Genova, V. G., Tumminello, M., Enea, M., Aiello, F., and Attanasio, M. (2019). Stu-
dent mobility in higher education: Sicilian outflow network and chain migrations.
Electronic Journal of Applied Statistical Analysis, 12(4):774–800.
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Appendix A

Additional material Chapter 2

A.1 A comparison of the weighted and unweighted Quick-
Cons algorithms’ computation times
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Figure A.1: Computation times comparison: item-weighted QuickCons vs unweighted
QuickCons.
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Appendix B

Additional material Chapter 3

B.1 Variable importance in the boosting procedure, datasets:
German2005, German2009 and Top7Movies
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Figure B.1: Variable Importance at final step for 2005-2009 German Elections dataset
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Variable Importance

Longitude 0.53
Latitude 0.46

Age 0.01

Table B.1: Variable Importance at final step for Top7Movies dataset
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Appendix C

Proofs of formulas in Chapter 4

C.1 Proof of Proposition 1

1. Positivity holds since h(pi j,ai j)≥ 0 for all i, j ∈ {1, . . . ,m}.

2. Symmetry holds since pi j = p ji (see Eq. (5.5)) and ai j = a ji (see Eq. (5.6)) for
all i, j ∈ {1, . . . ,m}.

3. Identity of indiscernibles: Obviously, Dr
λ

(
(π1,A1),(π1,A1)

)
= 0. If Dr

λ

(
(π1,A1),(π2,A2)

)
=

0, then (λ · pr
i j+(1−λ ) ·ar

i j)
1
r = 0 for all i, j∈{1, . . . ,m}. Since pi j,ai j ≥ 0 and

λ ∈ (0,1), we have pi j = ai j = 0 for all i, j ∈ {1, . . . ,m}. Then, Oπ1(yi,y j) =

Oπ2(yi,y j), IA1(yi) = IA1(yi) and IA1(y j) = IA2(y j) for all i, j ∈ {1, . . . ,m}. Con-
sequently, (π1,A1) = (π2,A2).

4. Triangle inequality: If we define

p′i j =
1
2
· |Oπ1(yi,y j)−Oπ2(yi,y j)|,

p′′i j =
1
2
· |Oπ2(yi,y j)−Oπ3(yi,y j)|,

p′′′i j =
1
2
· |Oπ1(yi,y j)−Oπ3(yi,y j)|,

then, we have
p′′′i j ≤ p′i j + p′′i j. (C.1)
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Similarly, if we define

a′i j =
1
2
·
(
|IA1(yi)− IA2(yi)|+ |IA1(y j)− IA2(y j)|

)
,

a′′i j =
1
2
·
(
|IA2(yi)− IA3(yi)|+ |IA2(y j)− IA3(y j)|

)
,

a′′′i j =
1
2
·
(
|IA1(yi)− IA3(yi)|+ |IA1(y j)− IA3(y j)|

)
,

then, we have
a′′′i j ≤ a′i j +a′′i j. (C.2)

From Eqs. (C.1) and (C.2) it follows

p′′′i j +a′′′i j ≤ p′i j + p′′i j +a′i j +a′′i j. (C.3)

To prove the triangle inequality we need to show

h(p′′′i j ,a
′′′
i j )≤ h(p′i j,a

′
i j)+h(p′′i j,a

′′
i j),

i.e.,

(
λ · (p′′′i j )

r +(1−λ ) · (a′′′i j )
r
) 1

r ≤(
λ · (p′i j)

r +(1−λ ) · (a′i j)
r
) 1

r
+
(

λ · (p′′i j)
r +(1−λ ) · (a′′i j)

r
) 1

r
(C.4)

Raising the two members of the inequality by r, Eq. (C.4) is equivalent to

λ · (p′′′i j )
r +(1−λ ) · (a′′′i j )

r ≤ (C.5)((
λ · (p′i j)

r +(1−λ ) · (a′i j)
r
) 1

r
+
(

λ · (p′′i j)
r +(1−λ ) · (a′′i j)

r
) 1

r
)r

.

Taking into account that for all a,b ≥ 0 and r ≥ 1, (see Hardy et al. (1952, p.
32) for more details) it holds:

(a+b)r ≥ ar +br,
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we have((
λ · (p′i j)

r +(1−λ ) · (a′i j)
r
) 1

r
+
(

λ · (p′′i j)
r +(1−λ ) · (a′′i j)

r
) 1

r
)r

≥(
λ · (p′i j)

r +(1−λ ) · (a′i j)
r
)
+
(

λ · (p′′i j)
r +(1−λ ) · (a′′i j)

r
)
=

λ ·
(
(p′i j)

r +(p′′i j)
r
)
+(1−λ ) ·

(
(a′i j)

r +(a′′i j)
r
)
. (C.6)

Because of Eqs. (C.1) and (C.2), we have

λ ·
(
(p′i j)

r +(p′′i j)
r
)
+(1−λ ) ·

(
(a′i j)

r +(a′′i j)
r
)
≥

λ · (p′′′i j )
r +(1−λ ) · (a′′′i j )

r. (C.7)

Therefore, following Eqs. (C.6) and (C.7), we can write:

λ · (p′′′i j )
r +(1−λ ) · (a′′′i j )

r ≤

λ ·
(
(p′i j)

r +(p′′i j)
r
)
+(1−λ ) ·

(
(a′i j)

r +(a′′i j)
r
)
≤((

λ · (p′i j)
r +(1−λ ) · (a′i j)

r
) 1

r
+
(

λ · (p′′i j)
r +(1−λ ) · (a′′i j)

r
) 1

r
)r

.

for all i, j ∈ {1, . . . ,n}.

Hence,

Dr
λ

(
(π1,A1),(π3,A3)

)
≤ Dr

λ

(
(π1,A1),(π2,A2)

)
+Dr

λ

(
(π2,A2),(π3,A3)

)
for all (π1,A1),(π2,A2),(π3,A3) ∈R(X).
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C.2 Proof of Proposition 2

The first distance can be expressed in the following way:

D1
λ

(
(π1,A1),(π2,A2)

)
=

2
n · (n−1)

·
n

∑
i, j=1
i< j

h(pi j,ai j) =

2
n · (n−1)

·
n

∑
i, j=1
i< j

(
λ · p1

i j +(1−λ ) ·a1
i j

)
=

2 ·λ
n · (n−1)

·
n

∑
i, j=1
i< j

|Oπ1(yi,y j)−Oπ2(yi,y j)|
2

+

2 · (1−λ )

n · (n−1)
·

n

∑
i, j=1
i< j

|IA1(yi)− IA2(yi)|+ |IA1(y j)− IA2(y j)|
2

.

Taking into account Eq. (5.12), the equality between D1
λ

(
(π1,A1),(π2,A2)

)
and

dλ

(
(π1,A1),(π2,A2)

)
holds if and only if

1−λ

n · (n−1)
·

n

∑
i, j=1
i< j

|IA1(yi)− IA2(yi)|+ |IA1(y j)− IA2(y j)|=

1−λ

n
·

n

∑
i=1
|IA1(yi)− IA2(yi)|. (C.8)

Let us define Ii = |IA1(yi)− IA2(yi)|. Then,

•
n

∑
i, j=1
i< j

(
|IA1(yi)− IA2(yi)|+ |IA1(y j)− IA2(y j)|

)
=

n

∑
i, j=1
i< j

(Ii + I j),

•
n

∑
i=1
|IA1(yi)− IA2(yi)|=

n

∑
i=1

Ii.

Therefore, the equality in Eq. (C.8) can be re-written as:

D1
λ

(
(π1,A1),(π2,A2)

)
= dλ

(
(π1,A1),(π2,A2)

)
⇔

1−λ

n · (n−1)
·

n

∑
i, j=1
i< j

(Ii + I j) =
1−λ

n
·

n

∑
i=1

Ii. (C.9)
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To prove Eq. (C.9):

1−λ

n · (n−1)
·

n

∑
i, j=1
i< j

(Ii + I j) =

1−λ

n · (n−1)
· (I1 + I2 + I1 + I3 + · · ·+ I2 + I3 + · · ·+ In−1 + In) =

1−λ

n · (n−1)
(n−1) · (I1 + I2 + · · ·+ In) =

1−λ

n
·

n

∑
i=1

Ii.

The equality Eq. (C.9) is a necessary and sufficient condition to show that D1
λ
= dλ ,

for every λ ∈ [0,1].
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Appendix D

Additional material Chapter 6
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Table D.1: Spearman rank correlation coefficient and Pearson correlation coefficient
with human judgments for metrics without noise

Correlation coefficient without noise

Method Spearman Pearson

J 0.81 0.67
Dc 0.81 0.68
SS 0.81 0.67

FM 0.86 0.78
Dρ 0.87 0.77
R̃ 0.79 0.66
p̃v 0.86 0.77

PMI Newman et al. (2009) 0.80 0.84
UMass Mimno et al. (2011) 0.75 0.81

NPMI Lau et al. (2014) 0.88 0.87
CV Röder et al. (2015) 0.77 0.76

t f -id f Nikolenko et al. (2017) 0.81 0.85
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