
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272754362

GaN HEMT noise modeling based on 50-Ω noise factor

Article  in  Microwave and Optical Technology Letters · April 2015

DOI: 10.1002/mop.28983

CITATIONS

24
READS

286

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Electrical Cryogenic Characterization of SAW resonators View project

High-power GaN HEMT characterization View project

Giovanni Crupi

Università degli Studi di Messina

156 PUBLICATIONS   1,866 CITATIONS   

SEE PROFILE

Antonio Raffo

University of Ferrara

176 PUBLICATIONS   1,590 CITATIONS   

SEE PROFILE

Giorgio Vannini

University of Ferrara

255 PUBLICATIONS   2,431 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Giorgio Vannini on 04 July 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/272754362_GaN_HEMT_noise_modeling_based_on_50-O_noise_factor?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/272754362_GaN_HEMT_noise_modeling_based_on_50-O_noise_factor?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Electrical-Cryogenic-Characterization-of-SAW-resonators?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/High-power-GaN-HEMT-characterization?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Crupi?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Crupi?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-degli-Studi-di-Messina?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Crupi?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Raffo-3?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Raffo-3?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Ferrara?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Raffo-3?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Vannini?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Vannini?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Ferrara?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Vannini?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Vannini?enrichId=rgreq-994563be4fdf61015a14ced110dc325d-XXX&enrichSource=Y292ZXJQYWdlOzI3Mjc1NDM2MjtBUzozODAwNzM1OTgzMDgzNTJAMTQ2NzYyODAxNTA5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


This is the peer reviewed version of the following article, which has been published in final form at 
http://dx.doi.org/10.1002/mop.28983. This article may be used for non-commercial purposes in accordance with Wiley 
Terms and Conditions http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms. 

 

1

 

GaN HEMT Noise Modeling based on 50-ohm Noise Factor 

Giovanni Crupi1*, Alina Caddemi1, Antonio Raffo2, 

Giuseppe Salvo1, Andrea Nalli2, and Giorgio Vannini2 

1 DICIEAMA, University of Messina, 98166 Messina, Italy. 

2 Department of Engineering, University of Ferrara, 44122 Ferrara, Italy. 

*Corresponding author: Tel: +39 090 3977327; Fax: +39 090 3977571; E-mail: crupig@unime.it 

 

 

Abstract— The extraction of a high-frequency equivalent circuit model plays a fundamental role for the 

development of any emerging transistor technology. Indeed, an equivalent circuit can provide a valuable 

support for microwave engineers to ensure a fast and reliable optimization of both device fabrication and 

circuit design. As far as Gallium Nitride (GaN) HEMTs are concerned, research efforts have been mostly 

focused on determining equivalent circuits able to reproduce their large-signal behaviour. Nevertheless, an 

increasing amount of interest is also being devoted to noise equivalent circuits, due to the interesting GaN 

technology noise performance. Within this context, the purpose of the present paper is to extract and fully 

validate an accurate noise model for GaN HEMTs based on a simple, fast, and reliable extraction 

procedure. The noise model is obtained by assigning an equivalent noise temperature to each resistor of the 

small-signal equivalent circuit. The accuracy of the extracted noise model is confirmed by the good 

agreement between measured and simulated high-frequency noise parameters. 

Keywords: equivalent circuit; GaN HEMT; microwave measurements; noise parameters; scattering 

parameters. 
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I. INTRODUCTION 

 

Nowadays, extensive attention is being paid to the HEMT based on GaN, primarily because of the 

outstanding physical properties of this wide-band-gap semiconductor for microwave high-power 

applications [1-11]. Although research studies have been mainly addressed to analyse the GaN HEMT in 

terms of power performance, a growing attention is being given also to its noise performance. Indeed GaN 

HEMTs achieve respectable microwave noise performance that is comparable to those of its Gallium 

Arsenide (GaAs) counterpart. Furthermore, the benefits of building high-power amplifiers (HPAs) and low-

noise amplifiers (LNAs) in the same epitaxial material and eliminating the receiver protection circuitry 

(typically a PIN diode limiter), due to the excellent robustness of GaN transistors, have stimulated a 

significant interest in the GaN technology for low-noise applications [12-16]. With the aim of fulfilling the 

need for reliable equivalent circuit noise models, a number of studies have been recently published on the 

noise modelling for the GaN technology [17-25]. The proposed methods differ essentially for the chosen 

topology of the noise equivalent circuit and for the parameter extraction technique. 

In the present paper, equivalent noise temperatures are assigned to each resistor of the GaN HEMT small-

signal equivalent circuit extracted from scattering (S-) parameter measurements. Thus, the extraction of the 

noise model is reduced to the determination of only the temperature associated to the intrinsic output 

resistance Tds [26], since the other resistance temperatures are selected to be equal to the ambient 

temperature, coherently with their physics-based contribution to thermal noise. The reported experimental 

results show that, in agreement with previously published studies for GaAs and Si transistors [27-30], the 

50-ohm noise factor F50 of the tested GaN HEMT exhibits a behaviour as a function of the squared 

frequency that can be approximated by a first order fitting. This observation is of great importance because 

the most appropriate value of Tds can be successfully determined in order to enable the noise model to 

mimic the detected behaviour of F50. The effectiveness of this modelling technique for the GaN technology 
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is fully confirmed by the good agreement between the measured and simulated four noise (N-) parameters, 

which allow describing how the noise factor F (or noise figure NF when expressed in dB) changes with the 

source reflection coefficient Γs. 

The paper is structured as follows. Section II consists of a brief description of the experimental set-up and 

the tested device. Next, Section III is aimed at presenting the modeling technique and discussing the 

experimental results. Finally, the main conclusive remarks of this study are given in the last section. 

 

II. EXPERIMENTAL MICROWAVE SET-UP AND TESTED DEVICE 

 

The photo of the experimental set-up for measuring both S- and N-parameters is reported in Fig. 1. The 

upper frequency limits of the used instrumentations for S- and N- parameter measurements are, 

respectively, 50 GHz and 26.5 GHz. The main components of the set-up are: the vector network analyzer 

(Agilent E8364A PNA, 0.045 GHz : 50 GHz), the smart noise source (Agilent N4002A SNS, 10 MHz : 

26.5 GHz), the input tuner (Maury MT-983BU01, 2 : 26.5 GHz), the noise figure analyzer (Agilent 

N8975A NFA, 10 MHz : 26.5 GHz), the low-noise amplifier (LNA Miteq JS4-02002600-33-10P, 2 GHz : 

26.5 GHz), and two source-measure units (Keithley SMUs 2635A and 2611A) used for the DC biasing of 

the input and output ports [31]. 

The N-parameters are determined using the ATS Maury software according to a standard source-pull 

procedure, which is based on measuring the noise factor for different source impedances synthesized by the 

tuner. This procedure is based on expressing F as a function of the source reflection coefficient. The 

mathematical representation of this dependence requires four real quantities, known as noise parameters, 

and different sets of the noise parameters can be defined depending on the chosen formulation. However, 

these noise parameter sets represent equivalent ways of describing the same dependence and then well-

known conversion formulae allow passing from one set to another. One typical representation of F(Γs) is 
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given in terms of the minimum noise factor Fmin, magnitude and phase of the optimum source reflection 

coefficient Γopt, and the equivalent noise resistance Rn [32]-[36]: 
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where the reference impedance Z0 is usually 50 Ω. As can be easily seen from eq. (1), Fmin is the minimum 

value of F, which is achieved when Γs equals Γopt, and Rn represents how fast F increases as Γs departs from 

its optimum. 

The investigated device is an AlGaN/GaN HEMT on Silicon Carbide (SiC) substrate with a gate length of 

0.25 µm and a gate width of 400 µm. Its interdigitated layout is based on eight fingers each with a length of 

50 µm. A key benefit of using a multi-finger layout is given by the reduction of Rg, which allows obtaining 

an improvement of the noise performance. The DC output characteristics of the tested transistor are 

illustrated in Fig. 2 (-3.5 V ≤ VGS ≤ 0 V with a constant step of 0.5). The analysis of S- and N- parameters 

has been carried out at the bias condition corresponding to VDS = 10 V and IDS = 40 mA. The S-parameters 

have been measured from 0.1 GHz to 50 GHz with a step of 0.1 GHz, while the N-parameters have been 

measured from 5 GHz to 25 GHz with a step of 1 GHz. 

 

III. MODEL EXTRACTION 

 

Fig. 3 presents the small-signal equivalent circuit that can be split into two main sections: intrinsic and 

extrinsic parts. The intrinsic section consists of seven elements (Cgs, Cgd, Cds, Rgs, Rds, gm, and τ), which are 
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bias dependent. The extrinsic section is composed by eight elements (Cpg, Cpd, Lg, Ls, Ld, Rg, Rs, and Rd), 

which are assumed to be bias-independent. 

As illustrated in Fig. 4, the tested device exhibits a positive derivative of Re(Zij) versus the frequency 

(PDRZ) under “cold” pinch-off condition [37], due to the extrinsic capacitance contributions. Therefore, the 

extrinsic capacitances have been obtained by increasing their values from zero until the PDRZ effect 

disappeared from the de-embedded data, as proposed in [37], [38]. After removing the extrinsic capacitance 

contributions, the extrinsic resistances and inductances have been obtained from the slopes of the straight 

lines approximating ω2Re(Zij) and ωIm(Zij) versus ω2, respectively (see Fig. 5) [38], [39]. Subsequently, the 

intrinsic elements have been calculated from the intrinsic admittance (Y-) parameters at the bias point of 

interest. The extracted values of the equivalent circuit elements are reported in Table I. 

To obtain the corresponding noise model, equivalent noise temperatures have been assigned to the 

resistors of the circuit. All of these temperatures have been selected to be equal to the ambient temperature, 

with the exception of Tds. Successively, by using a commercial circuit simulator, the value of Tds is easily 

searched for in order to reproduce accurately F50 versus the square of the frequency, as illustrated in Fig. 6. 

 

IV. MODEL VALIDATION 

 

Fig. 7 shows the comparison between measured and simulated S-parameters for the tested GaN HEMT at 

VDS = 10 V and IDS = 40 mA. The model reproduces very well the measurements over the full frequency 

range up to 50 GHz. 

Likewise the case of the S-parameters, a good agreement between measurements and model simulations 

is achieved in terms of N-parameters over the broad frequency range from 5 GHz to 25 GHz (see Fig. 8). 

This result clearly confirms the validity of the equivalent circuit representation for the GaN HEMT noise 

modeling. 
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In addition, Fig. 9 illustrates the good agreement between the measured and simulated 3D elliptic 

paraboloid, which represents NF(Γs). This representation, being based on a single plot, has the advantage of 

allowing a more straightforward and compact validation of the N-parameter model at the frequency of 

interest. In the present case, to validate the model at high frequency, the analysis has been performed at 20 

GHz. Analogously to the case of the noise figure, a 3D representation of the available gain Gav as a function 

of the complex Γs can be defined in terms of S-parameters [35] or their corresponding gain parameters [40], 

[41] (see Fig. 10): 
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It is worth noticing that since the noise model extraction is based on F50, the experimental data can be 

accurately measured by avoiding the presence of an expensive automatic broadband tuner with its 

sophisticated and time-consuming calibration, which strongly impacts the measurement accuracy at 

microwave frequencies especially when high reflection-coefficients have to be synthesized. 

 

V. CONCLUSIONS 

 

An equivalent circuit noise model has been extracted for a HEMT in GaN technology. The small-signal 

equivalent circuit has been used as the keystone for developing the noise model by assigning an equivalent 

noise temperature to each intrinsic and extrinsic resistor. The temperature associated to the intrinsic output 

resistance has been obtained by minimizing the difference between simulated and measured 50 Ω noise 
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factor, while the other temperatures have been set to the ambient temperature. The achieved good 

agreement between measured and simulated N-parameters has confirmed the effectiveness of the described 

modeling approach for the GaN HEMT technology. 
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FIGURE CAPTIONS 

 

Figure 1  Photo of the experimental set-up for S- and N- parameter measurements. 

 

Figure 2  Output characteristics for a GaN HEMT with VGS from -3.5 V to 0 V with 0.5 V step. 

 

Figure 3  Equivalent circuit noise model. 

 

Figure 4  Behavior of Re(Zij) before (a) and after (b) removing the extrinsic capacitance contributions as a 

function of the frequency from 500 MHz to 50 GHz for a GaN HEMT at VDS = 0 V and VGS = -4 V. 

 

Figure 5  Extraction of the extrinsic resistances (a) and inductances (b) from the Z-parameters in the 

frequency range from 30 GHz to 50 GHz for a GaN HEMT at VDS = 0 V and VGS = -4 V. 

 

Figure 6  Measured (blue solid line) and simulated (red dashed line) F50 versus the square of the frequency 

from 5 GHz to 25 GHz for a GaN HEMT at VDS = 10 V and IDS = 40 mA. 

 

Figure 7  Measured (blue solid lines) and simulated (red dashed lines) S-parameters from 0.1 GHz to 50 

GHz for a GaN HEMT at VDS = 10 V and IDS = 40 mA. 

 

Figure 8  Measured (blue solid lines) and simulated (red dashed lines) N-parameters from 5 GHz to 25 

GHz for a GaN HEMT at VDS = 10 V and IDS = 40 mA: minimum noise figure (a), equivalent noise 

resistance (b), and optimum reflection coefficient (c). 
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Figure 9  Measured (blue) and simulated (red) noise paraboloid at 20 GHz for a GaN HEMT at VDS = 10 V 

and IDS = 40 mA. 

 

Figure 10  Measured (blue) and simulated (red) gain paraboloid at 20 GHz for a GaN HEMT at VDS = 10 V 

and IDS = 40 mA. 
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FIGURES 
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Fig. 2 
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Fig. 4 

 



This is the peer reviewed version of the following article, which has been published in final form at 
http://dx.doi.org/10.1002/mop.28983. This article may be used for non-commercial purposes in accordance with Wiley 
Terms and Conditions http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms. 

 

19

 

 (a) 

 (b) 

 

Fig. 5 
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Fig. 7 
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TABLES 

TABLE I 

VALUES OF THE EQUIVALENT CIRCUIT ELEMENTS 

Cpg (fF) 20 

Cpd (fF) 35 

Lg (pH) 170.1 

Ls (pH) 23.3 

Ld (pH) 117.6 

Rg (Ω) 1.8 

Rs (Ω) 0.3 

Rd (Ω) 2.1 

Cgs (fF) 549.2 

Cgd (fF) 87.4 

Cds (fF) 174.3 

Rds (Ω) 213.5 

Rgs (Ω) 0.5 

gm (mS) 90.3 

τ (ps) 2.3 
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