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Abstract—This work proposes a novel resource allocation strat-
egy for anti-jamming in Cognitive Radio using Active Inference
(AIn), and a cognitive-UAV is employed as a case study. An
Active Generalized Dynamic Bayesian Network (Active-GDBN)
is proposed to represent the external environment that jointly
encodes the physical signal dynamics and the dynamic interaction
between UAV and jammer in the spectrum. We cast the action
and planning as a Bayesian inference problem that can be solved
by avoiding surprising states (minimizing abnormality) during
online learning. Simulation results verify the effectiveness of the
proposed AIn approach in minimizing abnormalities (maximizing
rewards) and has a high convergence speed by comparing it with
the conventional Frequency Hopping and Q-learning.

Index Terms—Active Inference, Resource Allocation, General-
ized Bayesian Filtering, Anti-jamming, Cognitive Radio.

I. INTRODUCTION

With the integration of Unmanned Aerial Vehicles (UAVs),
Wireless Communications (WCs) are more prone to terrestrial
jammers due to the high heterogeneity and dominant Line-
of-Sight (LoS) links [1]. Jammers cause damage to commu-
nication and degrade the system’s performance. Therefore, it
is crucial to develop an anti-jamming strategy to reach robust
connectivity and improve communication security.

Cognitive Radio is a key technology to accomplish in-
telligent resource management in jamming scenarios. In de-
tecting the existence of the jammers and avoiding jamming
attacks, conventional anti-jamming solutions that use fixed
transmission patterns can be used. However, they are unable
to deal with dynamic jamming patterns in complicated radio
environments with high uncertainty, and unpredictable jam-
ming behaviours [2]. Recently, Reinforcement Learning (RL)
has attracted much attention in WCs to design anti-jamming
solutions in complex environments. RL methods such as Q-
learning (QL) [3] are used to deal with different types of
jammers. However, they suffer from slow convergence if the
state and action spaces are large, which leads to anti-jamming
performance degradation. Deep-QL has been proposed in [4]
to overcome that issue and learn efficient defence policy.
RL methods are based on a reward signal coming from the
environment as a feedback to evaluate the performed action.
However, defining a proper reward function in complex and
dynamic environments is a big challenge [5]. Active Inference
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(AIn) [6] can overcome this challenging task by replacing
reward functions with prior beliefs about desired sensory
signals received from the environment. Thus, AIn agent can
learn to describe how it expects itself to behave without
getting a feedback from the environment. AIn is a promising
emerging theory from cognitive neuroscience; it provides a
theoretical Bayesian framework that supports how biological
agents perceive and act in the real world through the free-
energy principle and offers an alternative to RL.

This letter proposes an AIn framework as a novel resource
allocation strategy for anti-jamming and studies the Cognitive-
UAV based scenario. Under the AIn framework, the Cognitive-
UAV is endowed with a joint internal representation (genera-
tive model) of the external environment, encoding the physical
signal and the available physical resources jointly. This enables
encoding the dynamic interaction between the UAV and the
jammer in the spectrum. The objective is to learn the best
set of actions performed by the UAV as interaction with a
jammer that leads to the minimum surprise (positive reward).
Such a representation goes over the necessity of mapping
actions to signals’ states directly (unlike the RL approach)
and modelling them over a continuous state-space, which can
be a complicated task in RL. There are four main rationals to
use AIn approach over RL ([3], [4]): i) AIn operates in a pure
belief-based setting allowing one to seek information about
the environment and resolve uncertainty in a Bayesian-optimal
fashion. ii) AIn enables speeding up the learning process by
performing multiple updates simultaneously while adapting to
the dynamic changes in the spectrum. iii) There is a dynamic
balance between the exploration and exploitation due to the
pure belief-based mode, while RL is driven by a value function
that updates a single state action at each step. iv) In AIn
the reliance on an explicit reward signal coming from the
environment is not necessary; the reward is substituted by
Generalized Errors that can be treated as self-information to
avoid surprising states (i.e., states under attack) and reach the
equilibrium. To our best knowledge, this is the first work that
adopts AIn for anti-jamming in WCs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular-connected UAV communicating with its
respective Ground Base Station (GBS) to receive the tele-
commands during a given mission of duration T over the
Command and Control (C2) link which does not exceed a
data rate of 100 Kbps [7], while a malicious terrestrial jammer
transmits jamming signals with the intention of disturbing
the legitimate UAV communications. The jammer may adopt
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constant, random or sweep jamming patterns during a certain
experience. The UAV, GBS and jammer are denoted as 𝑢, 𝑔
and 𝑗 , respectively. The 3D coordinate of GBS and jammer are
fixed at 𝒐𝒈 = [𝑥𝑔, 𝑦𝑔, 𝑧𝑔] and 𝒑 𝒋 = [𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ], respectively,
while the time-varying coordinate of UAV at time instant 𝑡

is defined as 𝒒𝒖𝒕 = [𝑥𝑢𝑡 , 𝑦𝑢𝑡 , 𝑧𝑢𝑡 ]. The path-loss model from
the ground equipment (i.e., GBS or jammer) to UAV follows
the cellular to UAV path-loss model, which can be expressed
according to [8] as: PLe,u

t (𝑑𝑡 , 𝜃𝑡 ) = PLter (𝑑𝑡 ) + 𝜂(𝜃𝑡 ) + 𝜒(𝜃𝑡 ),
where 𝑒 ∈ {𝑔, 𝑗}, PLter

t (𝑑𝑡 ) = 10𝛼 log(𝑑𝑡 ) is the terrestrial
path-loss of the point beneath the UAV, 𝛼 is the terrestrial path-
loss exponent that depends on the propagation environment
and 𝑑𝑡 =

√︁
(𝑥𝑢𝑡 − 𝑥𝑒)2 + (𝑦𝑢𝑡 − 𝑦𝑒)2 is the 2D distance between

𝑒 and 𝑢. In addition, 𝜂(𝜃𝑡 ) = 𝐶 (𝜃𝑡 − 𝜃0) exp
(
− 𝜃𝑡−𝜃0

𝐷

)
+ 𝜂0 is

the excess aerial path-loss and 𝜒(𝜃𝑡 ) is a zero-mean Gaussian
variable with an angle-dependent standard deviation describing
the shadowing effect such that 𝜒(𝜃𝑡 ) ∼ N (0, 𝜎(𝜃𝑡 )=𝑎𝜃𝑡 +𝜎0),
where 𝐶 is the excess path-loss scaler, 𝐷 is the angle scaler,
𝜃0 is the angle offset, 𝜂0 is the excess path-loss offset, 𝑎 is the
UAV shadowing slope, 𝜃𝑡 = arctan

( 𝑧𝑢𝑡 −𝑧𝑒𝑡
𝑑𝑡

)
is the depression

angle and 𝜎0 is the UAV shadowing offset. The GBS assigns
one Physical Resource Block (PRB) to the UAV each 𝑡 where
C2 data are transmitted [9]. The set of available links is
denoted as RB={ 𝑓1, . . . , 𝑓𝑛, . . . , 𝑓𝑁 }, 1 ≤ n ≤ 𝑁 , where
|RB|=𝑁 is the total number of available PRBs that depends
on the channel bandwidth 𝐵𝑊 . To cope with the malicious
jamming, the UAV aims to learn the best allocation strategy
online by selecting the proper PRBs that are not targeted by the
jammer while interacting with the environment and sending
updated information to GBS to adapt to the environmental
dynamic changes. Denote H0 and H1 as the hypotheses of
the absence (i.e., UAV and jammer selected different PRBs)
and presence (i.e., UAV and jammer selected the same PRB)
of the jammer, respectively. The complex signal that is re-
ceived at the UAV at time instant 𝑡 and over 𝑓𝑛 is given as
𝑟𝑡 , 𝑓𝑛 = ℎ

𝑔,𝑢

𝑡, 𝑓𝑛
𝑥𝑢
𝑡, 𝑓𝑛

+ 𝑣𝑡 and 𝑟𝑡 , 𝑓𝑛 = ℎ
𝑔,𝑢

𝑡, 𝑓𝑛
𝑥𝑢
𝑡, 𝑓𝑛

+ ℎ
𝑗 ,𝑢

𝑡 , 𝑓𝑛
𝑥
𝑗

𝑡 , 𝑓𝑛
+ 𝑣𝑡 at

hypotheses H0 and H1, respectively, where 𝑥𝑢
𝑡, 𝑓𝑛

denotes the
C2 signal, ℎ𝑔,𝑢

𝑡, 𝑓𝑛
= 1/PLt

𝑔,𝑢 is the channel gain from GBS to
UAV, 𝑥 𝑗

𝑡 , 𝑓𝑛
stands for the jammer’s signal, ℎ

𝑗 ,𝑢

𝑡 , 𝑓𝑛
= 1/PLt

𝑗 ,𝑢

is the channel gain from jammer to UAV and 𝑣𝑡 is the
random noise. The corresponding SINR at the UAV is given
by 𝛾𝑡 = 𝑃𝑢𝑡 ℎ

𝑔,𝑢

𝑡, 𝑓𝑛
/(𝛼𝑃 𝑗𝑡 ℎ

𝑗 ,𝑢

𝑡 , 𝑓𝑛
+ 𝜎2), where 𝑃𝑢𝑡 is the transmitted

power, 𝑃 𝑗𝑡 is the jammer power, whose presence is denoted by
𝛼 which is equal to 0 under H0 and equals to 1 under H1.

The anti-jamming defense problem can be formulated as
a partially observable Markov decision process (POMDP)
since the spectrum is only partially observable to the UAV.
A discrete-time POMDP that models the relationship between
the UAV and its environment can be described as 7-element
tuple (𝑺, 𝑿,A,P𝒖

𝝉 ,P
𝒋
𝝉 ,𝚷

𝒂𝒖
𝝉 , 𝒁̃𝒕 , 𝒇𝒏 ), where 𝑺 and 𝑿 are sets

of the environmental hidden states, A is a set of actions where
action is PRB selection (𝑎𝑡 ∈ RB), P𝒖

𝝉 and P
𝒋
𝝉 are the time-

varying transition models for UAV and jammer, respectively.
𝚷𝒂𝒖

𝝉 is the AIn-table that encodes the state-action couple and
𝒁̃𝒕 , 𝒇𝒏 are the observations received at each 𝑡 over 𝑓𝑛. During
the offline training, UAV learns a dynamic model M encoding
the dynamic rules that generate desired sensory signals (i.e.,

without jamming interference). During the active inference
process (i.e., online learning), UAV predicts the environmen-
tal hidden states characterized by the posterior distributions
P(𝑠∗𝑡 ∈𝑺 |𝑧𝑡∈𝒁̃𝒕 , 𝒇𝒏 ,M) and P(𝑥∗𝑡 ∈ 𝑿 |𝑧𝑡 ∈ 𝒁̃𝒕 , 𝒇𝒏 ,M) based on
a prior belief (encoded in M) and infers the actions most
likely to generate preferred sensory signals (i.e., clean sig-
nals without jamming interference). Then, UAV can evaluate
the situation after receiving the current observation 𝑧𝑡 and
calculate the similarity between predictions and observations
using a probabilistic distance D (i.e., abnormality indicator).
If the similarity is high (i.e., H0), UAV can understand that the
selected action has led to desired states and to the reception
of desired signals. If the similarity is low (i.e., H1), UAV
can understand that the selected action is a bad action and
updates 𝚷𝒂𝒖

𝝉 accordingly to avoid selecting actions that lead
to surprising states (i.e., high abnormality). Therefore, while
acting and sensing the spectrum, the UAV aims to minimise
the cumulative abnormality:

min
𝑎𝑡

T∑︁
𝑡=1

D
(
P(𝑠∗𝑡 |𝑧𝑡 ,M) , P(𝑧𝑡 |𝑠∗𝑡 ,M)

)
. (1)

It is to note that (1) is equivalent to maximize the SINR.

III. PROPOSED ANTI-JAMMING METHOD

A. Radio Environment Representation

We assume that the environment is described by a
Generalized-state-space model, comprised of:

𝑆̃𝑢𝑡, 𝑓𝑛
= F(𝑆̃𝑢𝑡−1, 𝑓𝑛 ) + 𝑤̃𝑡, 𝑓𝑛 , (2)

𝑋̃𝑢𝑡, 𝑓𝑛
= 𝐴𝑋̃𝑢𝑡−1, 𝑓𝑛 + 𝐵𝑈𝑆̃𝑢

𝑡, 𝑓𝑛
+ 𝑤̃𝑡, 𝑓𝑛 , (3)

𝑍̃𝑡, 𝑓𝑛 = 𝐻𝑋̃𝑢𝑡, 𝑓𝑛
+ 𝐻𝑋̃ 𝑗

𝑡, 𝑓𝑛
+ 𝜐̃𝑡, 𝑓𝑛 , (4)

In (2), 𝑆𝑢
𝑡, 𝑓𝑛

are discrete random variables (or Generalized
superstates GSS) describing the discrete clusters of the UAVs’
C2 signals that evolve according to (2) where F(.) is a non-
linear function describing the signals’ dynamic transitions
among the discrete variables and its evolution over time at a
specific PRB ( 𝑓𝑛) and 𝑤̃𝑡 , 𝑓𝑛 is a Generalized process noise
such that, 𝑤̃𝑡 , 𝑓𝑛∼N(0, Σ𝑤̃𝑡, 𝑓𝑛 ). The dynamic model in (3)
explains the dynamic evolution of the continuous random
variables 𝑋̃𝑡 , 𝑓𝑛 (or Generalized states GS) where 𝐴∈R2𝑑,2𝑑 ,
𝐵∈R2𝑑,2𝑑 are the dynamic model and control model matrices,
respectively, and 𝑈𝑆̃𝑢

𝑡, 𝑓𝑛

is the control vector. The observation

model is given in (4) where 𝑍̃𝑡 , 𝑓𝑛∈R2𝑑 is the generalized
observations including the signals’ features in terms of 𝐼

and 𝑄 components and the 1𝑠𝑡 -order temporal derivatives ( ¤𝐼,
¤𝑄) where 𝑑 is the space dimensionality. We assume that

each sensory signal is a linear combination of one hidden
GS (𝑋̃𝑢

𝑡, 𝑓𝑛
) affected by additive random noise in a normal

situation (i.e., under H0) and by additional interference (𝑋̃ 𝑗
𝑡 , 𝑓𝑛

)
caused by the jammer in an abnormal situation (i.e., under
H1). 𝑋̃𝑢

𝑡, 𝑓𝑛
and 𝑋̃

𝑗

𝑡 , 𝑓𝑛
are the UAV’s GS and the jammer’s GS

(that is caused by 𝑆
𝑗

𝑡 , 𝑓𝑛
), respectively. 𝐻∈R2𝑑,2𝑑 maps hidden

states to observations, 𝑓𝑛 is the 𝑛-th PRB where 𝑓𝑛∈RB and
𝜐̃𝑡 , 𝑓𝑛∼N(0, Σ𝜐̃𝑡, 𝑓𝑛 ).
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Fig. 1. Graphical representation of the proposed Active-GDBN. The top-
level of the hierarchy stands for the active states (𝑎𝑢

𝑡−1) representing the
actions that the UAV can perform. The UAV can predict the consequences
of the performed actions that affect the hidden environmental states (S̃t,fn ,
X̃t,fn ) causing sensory signals (Z̃𝑡, 𝑓𝑛 ). S̃t,fn are discrete variables representing
the clusters and X̃t,fn are continuous variables representing the dynamics of
the physical signal inside a certain cluster. Edges represent the conditional
dependencies among random variables at multiple levels. Each level of the
hierarchy holds beliefs about the variables of the level below. Beliefs are
signalled via predictive messages in a top-down manner and compared against
sensory signals, resulting in multi-level abnormality indicators and generalized
errors that are fed back via diagnostic messages in a bottom-up manner.

B. Offline learning of desired observations

During training, we assume that the jammer is absent and
the UAV aims to learn the dynamics of the desired obser-
vations (i.e., C2 signals without jamming interference) while
sensing the spectrum. UAV starts perceiving the surroundings
by partially sensing the spectrum, supposing that no signals
are present and observations are subject to a stationary noise
process that evolves according to static rules. UAV relays
on (3) to predict the continuous signal’s state where the
force at sensing PRB ( 𝑓𝑛) is 𝑈𝑆̃𝑡, 𝑓𝑛

=0, as no rules have been
discovered yet. In case of active transmissions in 𝑓𝑛, UAV
detects abnormalities all the time and calculates the Gener-
alized Errors (GEs) projected on the GS space as follows:
ẼX̃u

t,fn
=
[
𝑋̃𝑢
𝑡, 𝑓𝑛

, P( ¤E𝑋̃𝑢
𝑡, 𝑓𝑛

)
]
=
[
𝑋̃𝑢
𝑡, 𝑓𝑛

, 𝐻−1Ẽ𝑍̃𝑡, 𝑓𝑛
]
, where ¤E𝑋̃𝑢

𝑡, 𝑓𝑛

is
the difference between predictions and observations that cap-
ture the dynamics of the signals present inside the spectrum
and should be applied to 𝑋̃𝑢

𝑡, 𝑓𝑛
and Ẽ𝑍̃𝑡, 𝑓𝑛=𝑍̃𝑡 , 𝑓𝑛 −𝐻𝑋̃𝑢

𝑡, 𝑓𝑛
. GEs

can be clustered in an unsupervised manner using the Growing
Neural Gas (GNG) to learn the top level of abstraction
(semantic level). GNG produces a set of GSS (or clusters) en-
coding the GEs into discrete regions described by the set 𝑺̃𝒖

𝒇𝒏
,

such that: 𝑺̃𝒖
𝒇𝒏

={𝑆𝑢1, 𝑓𝑛 , 𝑆
𝑢
2, 𝑓𝑛 , . . . , 𝑆

𝑢
𝑀, 𝑓𝑛

}, where 𝑀 is the total
number of clusters associated with a specific PRB. Analysing
the signal’s dynamic transitions among the GSS and how
they vary with time allows estimating the time-varying transi-
tion probabilities 𝜋𝑢

𝑖 𝑓𝑛 | 𝑗 𝑓𝑛 ,𝜏=P(𝑆𝑢
𝑡, 𝑓𝑛

=𝑖 |𝑆𝑢
𝑡−1, 𝑓𝑛= 𝑗 , 𝜏) which is

encoded in the time-varying transition matrix Π𝑢
𝑓𝑛 ,𝜏

where
𝑖, 𝑗∈𝑺̃𝒖

𝒇𝒏
. Moreover, each discrete variable 𝑆𝑢

𝑚, 𝑓𝑛
∈𝑺̃𝑢𝑓𝑛 is asso-

ciated with statistical proprieties as generalized mean 𝜇̃𝑆̃𝑢
𝑚, 𝑓𝑛

and covariance Σ𝑆̃𝑢
𝑚, 𝑓𝑛

. During offline learning, UAV has been
trained to learn and encode the dynamic rules that generate
desired sensory signals (i.e., without jamming attacks) using
multiple observations (over multiple RBs).

C. Active Inference stage (online learning)

The hierarchical dynamic models formulated in terms of
stochastic processes as defined in (2),(3),(4) are structured in
an Active Generalized Dynamic Bayesian Networks (Active-
GDBN) depicted in Fig.1. The Active-GDBN allows to solve
the POMDP to find the best set of actions by predicting the
situation the UAV could encounter in the future, conditioned
on the actions it executes. Thus, AIn provides a way, through
planning as inference, to form beliefs about the future and
describe the causal relationship among actions, hidden states
and outcomes at multiple levels.

1) Initialization: P𝒖
𝝉 and P

𝒋
𝝉 are the 𝑁×𝑁 time-varying

matrices encoding the possible transitions among the 𝑁 avail-
able resources performed by the UAV and encoding the UAV’s
belief about the possible actions that the jammer can perform,
respectively. Since there is no a priori information concerning
the jammer’s behaviour inside the spectrum, the probability
entries in both P𝒖

𝝉 and P
𝒋
𝝉 are initially assigned equal values:

P
𝒖
𝝉 =


P(Π𝑢

𝑓1 | 𝑓1 ,𝜏
) . . . P(Π𝑢

𝑓1 | 𝑓𝑁 ,𝜏
)

.

.

.

.
.
.

.

.

.

P(Π𝑢
𝑓𝑁 | 𝑓1 ,𝜏

) . . . P(Π𝑢
𝑓𝑁 | 𝑓𝑁 ,𝜏

)


,P

𝒋
𝝉 =



P(Π 𝑗
𝑓1 | 𝑓1 ,𝜏

) . . . P(Π 𝑗
𝑓1 | 𝑓𝑁 ,𝜏

)

.

.

.

.
.
.

.

.

.

P(Π 𝑗
𝑓𝑁 | 𝑓1 ,𝜏

) . . . P(Π 𝑗
𝑓𝑁 | 𝑓𝑁 ,𝜏

)


,

(5)

where P(Π𝑢
𝑓𝑟 | 𝑓𝑞 ,𝜏)=

1
𝑁

, P(Π 𝑗

𝑓𝑟 | 𝑓𝑞 ,𝜏)=
1
𝑁

∀𝑟, 𝑞∈RB. 𝚷𝒂𝒖
𝝉 ∈R𝑁,𝑁

is a time-varying matrix encoding the probabilistic de-
pendencies between states and actions representing the
link 𝑎𝑢

𝑡−1→𝑆𝑢
𝑡−1, 𝑓𝑛 in the Active-GDBN that describes

P(𝑎𝑢
𝑡−1= 𝑓𝑖 |𝑆𝑢𝑡−1, 𝑓𝑘 ) and defined as:

𝚷𝒂𝒖
𝝉 =


P(𝑎1 = 𝑓1 |𝑆̃𝑢𝑡−1, 𝑓1

) . . . P(𝑎𝑁 = 𝑓𝑁 |𝑆̃𝑢
𝑡−1, 𝑓1

)

.

.

.

.
.
.

.

.

.

P(𝑎1 = 𝑓1 |𝑆̃𝑢𝑡−1, 𝑓𝑁
) . . . P(𝑎𝑁 = 𝑓𝑁 |𝑆̃𝑢

𝑡−1, 𝑓𝑁
)


, (6)

where P(𝑎𝑢
𝑡−1= 𝑓𝑖 |𝑆𝑢𝑡−1, 𝑓𝑘 )=

1
𝑁
∀𝑖, 𝑘∈RB. UAV’s action depends

on the state-action couple encoded in Π𝑎
𝑢

𝜏 and on its belief
about the presence of the jammer in the radio spectrum
encoded in P 𝑗

𝜏 .
2) Action selection process: Initially, UAV performs ran-

dom sampling to select the actions during the 1𝑠𝑡 iteration
as every possible action has the same probability ( 1

𝑁
) of

being chosen. The selected action 𝑎𝑢
𝑡−1 indicates what will be

the next hidden state 𝑆𝑢
𝑡, 𝑓𝑛

according to P(𝑆𝑢
𝑡, 𝑓𝑛

|𝑆𝑢
𝑡−1, 𝑓𝑛 , 𝑎

𝑢
𝑡−1).

𝑆𝑢
𝑡, 𝑓𝑛

encodes the predicted cluster of the model and the
activated PRB ( 𝑓𝑛).

In the successive iterations, first, UAV predicts the future
activity of the jammer implicitly according to P𝑢𝜏 . Then, it can
adjust the action selection step by skipping the risky resources
(i.e., resources expected with high probability to be targeted by
the jammer in the near future). The action selection procedure
depends on a certain policy adopted by the UAV according to:

𝑎𝑢∗𝑡−1 = argmax𝑆̃𝑢
𝑡−1, 𝑓𝑘

,P𝑢𝜏 (𝑆̃𝑢𝑡−1, 𝑓𝑘
) 𝜋(𝑎𝑢𝑡−1), (7)

where 𝜋(𝑎𝑢
𝑡−1)=P(𝑎𝑢

𝑡−1 |𝑆
𝑢
𝑡−1, 𝑓𝑘 ) is a specific row in Π𝑎

𝑢

𝜏 and
P𝑢𝜏 (𝑆𝑢𝑡−1, 𝑓𝑘 ) is a specific row selected from (P𝑢𝜏 ) represent-
ing the dynamic model associated with (𝑆𝑢

𝑡−1, 𝑓𝑘 ) where the
jammer’s transitions are implicitly encoded. The model has
prior belief about how a certain state (𝑆𝑢

𝑡−1, 𝑓𝑘 ) will evolve
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into another (𝑆𝑢∗
𝑡 , 𝑓𝑘

) depending on the chosen action (𝑎𝑢∗
𝑡−1)

according to: P(𝑆𝑢∗
𝑡 , 𝑓𝑘

|𝑎𝑢∗
𝑡−1, 𝑆

𝑢
𝑡−1, 𝑓𝑘 ), where 𝑆𝑢∗

𝑡 , 𝑓𝑘
is the expected

state associated with the selected action.
3) Perception and joint state-prediction: After selecting

the action that indicates the chosen PRB, UAV can rely
on the corresponding transition matrix (Π𝑢

𝑓𝑟 | 𝑓𝑞 ,𝜏) to per-
form the predictions by employing the Modified Markov
Jump Particle Filter (M-MJPF) [9], that uses a combina-
tion of Particle Filter (PF) and a bank of Kalman Fil-
ters (KFs). PF starts by propagating 𝐿 particles equally
weighted based on the proposal density encoded in Π𝑢

𝑓𝑟 | 𝑓𝑞 ,𝜏 ,

such that: <𝑆
𝑢,𝑙

𝑡 , 𝑓𝑛
,𝑊 𝑙

𝑡>∼<𝜋𝑢𝑖 𝑓𝑛 | 𝑗 𝑓𝑛 ,𝜏 ,
1
𝐿
>. For each particle

𝑆
𝑢,𝑙

𝑡 , 𝑓𝑛
, a KF is employed to predict 𝑋̃𝑢

𝑡, 𝑓𝑛
. The prediction

at this level is driven by the higher level as pointed out
in (3) (where 𝑈𝑆̃𝑢

𝑡, 𝑓𝑛

=𝜇̃
𝑆̃
𝑢,𝑙

𝑡, 𝑓𝑛

) which can be expressed as

P( 𝑋̃𝑢
𝑡, 𝑓𝑛

| 𝑋̃𝑢
𝑡−1, 𝑓𝑛 , 𝑆

𝑢
𝑡, 𝑓𝑛

). The posterior probability associated
with 𝑋̃𝑢

𝑡, 𝑓𝑛
is given by: 𝜋( 𝑋̃𝑢

𝑡, 𝑓𝑛
)=P( 𝑋̃𝑢

𝑡, 𝑓𝑛
, 𝑆𝑢
𝑡, 𝑓𝑛

|𝑍̃𝑡−1, 𝑓𝑛 ).
Once a new sensory signal is received, diagnostic messages

propagate in bottom-up to adjust the expectations and update
belief in hidden variables. Thus, the posterior can be updated
using: P( 𝑋̃𝑢

𝑡, 𝑓𝑛
, 𝑆𝑢
𝑡, 𝑓𝑛

|𝑍̃𝑡 , 𝑓𝑛 )=𝜋( 𝑋̃𝑢𝑡, 𝑓𝑛 )𝜆( 𝑋̃
𝑢
𝑡, 𝑓𝑛

). In addition,
the likelihood message 𝜆(𝑆𝑢

𝑡, 𝑓𝑛
) can be used to update the

particles’ weights according to: 𝑊 𝑙
𝑡=𝑊

𝑙
𝑡𝜆(𝑆𝑢𝑡, 𝑓𝑛 ), where:

𝜆(𝑆𝑢
𝑡, 𝑓𝑛

)=𝜆( 𝑋̃𝑢
𝑡, 𝑓𝑛

)P( 𝑋̃𝑢
𝑡, 𝑓𝑛

|𝑆𝑢
𝑡, 𝑓𝑛

)=P(𝑍̃𝑢
𝑡, 𝑓𝑛

| 𝑋̃𝑢
𝑡, 𝑓𝑛

)P( 𝑋̃𝑢
𝑡, 𝑓𝑛

|𝑆𝑢
𝑡, 𝑓𝑛

),
and P( 𝑋̃𝑢

𝑡, 𝑓𝑛
|𝑆𝑢
𝑡, 𝑓𝑛

)∼N (𝜇𝑆̃𝑢
𝑚, 𝑓𝑛

, Σ𝑆̃𝑢
𝑚, 𝑓𝑛

) denotes a multivariate

Gaussian distribution. Also, GE (Ẽ𝑆̃𝑢
𝑡, 𝑓𝑛

) at the superstate

level conditioned on transiting from 𝑆𝑢
𝑡−1, 𝑓𝑛 can be expressed

as: ẼS̃u
t,fn

=
[
𝑆𝑢
𝑡−1, 𝑓𝑘 ,

¤E𝑆̃𝑢
𝑡, 𝑓𝑛

]
, where ¤E𝑆̃𝑢

𝑡, 𝑓𝑛

is an aleatory
variable whose probability density function is given by
P( ¤E𝑆̃𝑢

𝑡, 𝑓𝑛

)=𝜆(𝑆𝑢
𝑡, 𝑓𝑛

) − 𝜋(𝑆𝑢
𝑡, 𝑓𝑛

) representing the new force that
can be used to update P𝑢𝜏 and thus improve future predictions.

4) Abnormality measurements: In order to evaluate to
what extent the current signal’s evolution at the discrete
level matches the predicted one based on the learned and
encoded dynamics in the model, we used an abnormality
indicator (𝚼𝑺̃𝒖

𝒕, 𝒇𝒏
) based on the Symmetric Kullback-Leibler

(SKL) Divergence (𝐷𝐾𝐿) [9]. 𝚼𝑺̃𝒖
𝒕, 𝒇𝒏

calculates the similarity
between the two messages that represent discrete probability
distributions entering to node 𝑆𝑢

𝑡, 𝑓𝑛
, namely, 𝜋(𝑆𝑢

𝑡, 𝑓𝑛
) and

𝜆(𝑆𝑢
𝑡, 𝑓𝑛

), it is associated with ẼS̃u
t,fn

and formulated as:

𝚼𝑺̃𝒖
𝒕, 𝒇𝒏

=
∑︁
𝑖∈S

P𝑟 (𝑆̃𝑢𝑡, 𝑓𝑛 = 𝑖)𝐷𝐾𝐿
(
𝜋 (𝑆̃𝑢𝑡, 𝑓𝑛 ) | |𝜆(𝑆̃

𝑢
𝑡, 𝑓𝑛

)
)
+∑︁

𝑖∈S
P𝑟 (𝑆̃𝑢𝑡, 𝑓𝑛 = 𝑖)𝐷𝐾𝐿

(
𝜆(𝑆̃𝑢𝑡, 𝑓𝑛 ) | |𝜋 (𝑆̃

𝑢
𝑡, 𝑓𝑛

)
)
,

(8)

where P𝑟 (𝑆𝑢𝑡, 𝑓𝑛 ) is the probability of occurrence of each super-
state picked from the histogram at time instant 𝑡 and calculated

as follows: P𝑟 (𝑆𝑢𝑡, 𝑓𝑛 )=
𝑓 𝑟 (𝑆̃𝑢

𝑡, 𝑓𝑛
=𝑖)

𝑁
, where 𝑓 𝑟 (.) is the frequency

of occurrence of a specific superstate 𝑖, 𝑁 is the total number
of particles propagated by PF, and S is the set consisting of all
winning particles, such that: S =

{
𝑖 |P𝑟 (𝑆𝑢𝑡, 𝑓𝑛 ) > 0

}
, 𝑖 ∈ 𝑺𝒖

𝒇𝒏
.

Likewise, it is possible to understand how much the obser-
vation supports the predictions at the GS level using:

𝚼𝑿̃𝒖
𝒕, 𝒇𝒏

= − ln
(
BC

(
𝜋( 𝑋̃𝑢𝑡, 𝑓𝑛 ), 𝜆( 𝑋̃

𝑢
𝑡, 𝑓𝑛

)
) )
, (9)

where BC(.) =
∫ √︃

𝜋( 𝑋̃𝑢
𝑡, 𝑓𝑛

)𝜆( 𝑋̃𝑢
𝑡, 𝑓𝑛

)𝑑𝑋̃𝑢
𝑡, 𝑓𝑛

is the Bhat-

tacharyya coefficient and 𝚼𝑿̃𝒖
𝒕, 𝒇𝒏

is associated with ẼX̃u
t,fn

.

5) Updating of action selection process: After acting in the
environment, UAV can save the consequence of the chosen
action (i.e., the transition from 𝑆𝑢

𝑡−1, 𝑓𝑘 to 𝑆𝑢∗
𝑡 , 𝑓𝑘

) in P𝑢𝜏 and
evaluate how much the sensory outcomes support predictions
and thus evaluate if the performed action was good or bad by
using the abnormality measurements defined in (8) and (9). In
addition, it is possible to calculate the GE (Ẽ𝑎𝑢

𝑡−1
) during ab-

normal situations to adapt UAV’s strategy in selecting actions
and understand how it should behave in the future to avoid the
jammer. Ẽ𝑎𝑢

𝑡−1
is the difference between observation and expec-

tation which can be expressed as: Ẽ𝑎𝑢
𝑡−1
=
[
𝑎𝑢∗
𝑡−1,

¤E𝑎𝑢
𝑡−1

]
, where

¤E𝑎𝑢
𝑡−1

depicts an aleatory variable representing the new force
that should be applied to update 𝝅(𝑎𝑢

𝑡−1) and its probability
density function is given by P( ¤E𝑎𝑢

𝑡−1
)=𝜆(𝑎𝑢

𝑡−1) − 𝝅(𝑎𝑢
𝑡−1) that

can be used as a metric alternative to the reward in RL. 𝜆(𝑎𝑢
𝑡−1)

is the diagnostic message travelling from 𝑆𝑢
𝑡, 𝑓𝑛

towards 𝑎𝑢
𝑡−1

and defined as: 𝜆(𝑎𝑢
𝑡−1)=𝜆(𝑆

𝑢
𝑡, 𝑓𝑛

)P(𝑆𝑢
𝑡, 𝑓𝑛

|𝑎𝑢
𝑡−1) representing a

discrete probability distribution that holds information about
the observed sensory signal and encoding the probabilities
about how the states 𝑆𝑢

𝑡, 𝑓𝑛
belonging to the available frequen-

cies change based on the evidence, it is given by:

𝜆(𝑎𝑢𝑡−1) =
{
P𝜏−1 (𝑆𝑢𝑡−1, 𝑓𝑛 ) − 𝛾∗, if 𝑎𝑢

𝑡−1 = 𝑎𝑢∗
𝑡−1,

P𝜏−1 (𝑆𝑢𝑡−1, 𝑓𝑛 ) +
𝛾∗

𝑁−1 , if 𝑎𝑢
𝑡−1 ≠ 𝑎𝑢∗

𝑡−1,
(10)

where 𝛾 depends on the GE (ẼS̃u
t,fn

), that is: 𝛾=𝛾∗ if Ẽ𝑆̃𝑡, 𝑓𝑘 ≥th,

and 𝛾=0 if Ẽ𝑆̃𝑡, 𝑓𝑘 <th, where th is the threshold indicating
whether the radio situation is normal or abnormal and the
value of 𝛾∗ depends on the abnormality indicators defined in
(8) and (9). Hence, GE (Ẽ𝑎𝑢

𝑡−1
) is proportional to ẼS̃u

t,fn
due to

the messages propagated from lower level towards the higher
levels, such that Ẽ𝑎𝑢

𝑡−1
= 𝑓 (Ẽ𝑆̃𝑢

𝑡, 𝑓𝑛

). When the UAV get surprised
by the sensory outcomes after performing a certain action, it
can use the prediction error signal to update its belief about
the jammer’s transition model to improve future actions. The
core idea is that the user occupying a piece of the spectrum
should minimize the abnormality (surprise) associated with
finding itself in unlikely states (states under attack). Jammer’s
dynamic model (P 𝑗

𝜏 ) can be updated following:

P 𝑗
𝜏 (. , 𝑆 𝑗𝑡 , 𝑓𝑛 ) = P 𝑗

𝜏−1 (. , 𝑆
𝑗

𝑡 , 𝑓𝑛
) − P( ¤E𝑢𝑎𝑡−1 ), (11)

In an abnormal situation, the user and jammer share the same
RB, which means they performed the same action. Thus,
the user should update Π𝑎

𝑢

𝜏 by decreasing the probability of
selecting that action as follows:

𝜋∗ (𝑎𝑢𝑡−1) = 𝜋(𝑎𝑢𝑡−1) + P( ¤E𝑢𝑎𝑡−1 ), (12)

and update P𝑢𝜏 by decreasing the probability of transiting to
𝑆𝑢
𝑡, 𝑓𝑘

from 𝑆𝑢
𝑡−1, 𝑓𝑘 after choosing action 𝑎𝑢∗

𝑡−1 using the GE
(ẼS̃u

t,fn
) following:

P𝑢𝜏 (𝑆𝑢𝑡−1, 𝑓𝑘 , 𝑆
𝑢
𝑡, 𝑓𝑛

) = P𝑢𝜏−1 (𝑆
𝑢
𝑡−1, 𝑓𝑘 , 𝑆

𝑢
𝑡, 𝑓𝑛

) + P( ¤E𝑆̃𝑢
𝑡, 𝑓𝑛

). (13)
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Fig. 2. Performance comparison of cumulative reward and abnormality (SKL) with the proposed AIn, FH and QL under different jamming strategies.
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Fig. 3. Performance comparison of cumulative SINR with the proposed AIn, FH and QL under different jamming strategies.

IV. RESULTS AND DISCUSSION
To evaluate the performance of the proposed AIn approach

for anti-jamming, following three types of jammers are con-
sidered in the simulation: 1) Constant jammer that acts on
statistically pre-configured channels; 2) Sweep jammer that
attacks by sweeping among the available PRBs at each time
slot; and 3) Random jammer that selects uniformly random
actions to attack the available PRBs. The simulation settings
are as: BW=10MHz; FDD; sub-carrier spacing of 15 KHz;
number of PRBs per BW is 50; sampling frequency of 1.92
MHz; 𝑁𝐹𝐹𝑇 of 128; 7 OFDM symbols per slot; normal CP;
SNR of 15𝑑𝐵; QPSK for C2 and jamming signal; jamming
to signal power ratio (JSR) of 6dB; and a total of 200 radio
frames. In addition, the propagation environment is a typical
suburban, mean aerial speed is 4.8m/s, BS height is 30m,
UAV height is 60m and the channel model parameters [8] are
𝛼=3.04, 𝜎0=8.52, 𝐶=−23.29, 𝜂0=20.70, 𝜃0=−3.61, 𝐷=4.14,
𝑎= − 0.41, 𝜎0=5.86, where a perfect CSI is assumed. Also,
we consider a jamming hit rate (JHR) of JHR=40%. C2 data,
jamming signals and UAV trajectory are generated as in [9].

Let us compare the performance of AIn in terms of cu-
mulative abnormality (defined in (8)) and cumulative reward
with that of random Frequency Hopping (FH-random) and Q-
Learning (QL), as illustrated in Fig. 2. Here, the objective
of AIn is to minimize abnormality while that of QL is to
maximize reward. Thus, the reward is considered in AIn
approach just for the sake of comparison with QL. We consider
a binary reward which is equal to −1 under H1 and +1 under
H0. Nevertheless, the relationship of these metrics is opposites
to one another. For a fair comparison with QL, we use
time-varying q-tables to deal with the dynamic environmental
changes. The exploration process in QL follows the 𝜖-greedy
policy with 𝜖 = 1 decaying to 0. It can be seen from the
figure that AIn outperforms QL and FH-random under different
jamming strategies while AIn converges faster than QL due to
its capability in discovering jammer’s policy and performing
multiple updates. Fig. 3 depicts the cumulative SINR under
different jamming patterns achieved by the proposed AIn and
compared it with FH-random and QL. By observing Fig. 2
and Fig. 3, we can notice that minimizing the abnormality
(or maximizing the reward) leads to maximizing the SINR
where the time needed to reach the convergence is equivalent
to that in Fig. 2 and AIn beats both the FH-random and QL.
This means that avoiding surprising states minimizes the ab-

normality and maximises reward and SINR. AIn outperforms
FH and QL due to its ability to characterize the jammer
and discover its attacking strategy, explaining how the UAV
should act in the environment. Since AIn operates in a pure
belief-based setting. It can evaluate whether the action was
correct or wrong and also understand how to correct those
actions using the errors by performing multiple updates to
the AIn-table, which speeds up the learning process and reach
convergence faster. In contrast, QL performs single updates to
the q-table without being able to explain how to correct the
wrong actions, hindering the learning process. While FH can
not reach convergence as it is always selecting random actions.

V. CONCLUSION
This letter has proposed a novel resource allocation strategy

using Active Inference for anti-jamming in a Cognitive-UAV
scenario. Simulated results have indicated that the proposed
method outperforms conventional Frequency Hopping and Q-
Learning in terms of learning speed (convergence). Further
research will explore performance improvements by facing
smart reactive jammers in fully-observable environments.
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