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Abstract: This paper evaluates the various approaches to strength and stiffness analysis of fracture
osteosynthesis using a headless Herbert screw. The problem has been extensively addressed using
several scientific approaches, namely the analytical approach, stochastic approach, experimental
approach, and (marginally) using the finite elements method. The problem is illustrated on the use of
a prototype headless screw Ti: 4.0/1.4 × 30/7 (manufacturer: Medin, Czech Republic) and the surgical
treatment of the fifth metatarsal fracture. Mathematical equations for the analytical calculation of the
maximum stresses in the screw were established for tensile/compression loading. This problem is
also interesting because of its static indetermination in tension and compression; for this reason, it
was necessary to use the deformation condition, i.e., the relationship between screw extension and
bone contraction. The stochastic (probabilistic) approach, i.e., application of the Monte Carlo method,
takes advantage of the mathematical equations derived during the analytical solution by respecting of
the natural variabilities and uncertainties. The analytical and stochastic approaches were validated by
measurements on porcine bones and by the finite element method. The data measured experimentally
were also processed and used for deriving an equation, appropriately approximating the data. The
main part of the measurement was to determine the axial force generated during osteosynthesis
with a headless screw. The obtained compressional force was used to determine the maximal stress
in the screw and bone. Finally, the methods were compared. In this paper, comprehensive and
original approaches based on the authors’ experience with multiple methods are presented. Obtained
results are necessary for headless screw designers during optimalization of the implants and are also
useful for surgeons developing new surgical techniques. This biomechanical problem was solved in
cooperation with the engineering industry and physicians to improve the quality of care for patients
with trauma in orthopedics and surgery.

Keywords: headless screw; fifth metatarsal fracture; osteosynthesis; tensile and compression loading;
analytical solutions; probabilistic (stochastic) solutions; reliability; Monte Carlo method; experiments;
finite element method; orthopedics; traumatology; biomechanics
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1. Introduction

The presented paper focuses on an implant widely used in traumatology, namely a
headless (so-called Herbert) screw. This screw (implant) is designed for surgical treatment
of a fifth metatarsal bone using osteosynthesis. In general, osteosynthesis is a surgical
method of treating fractures involving the fixation of bone fragments using internal (screws,
splints, nails, wires, and combinations thereof) or external (external fixators) implants.
The application of screws is important in the surgical treatment of complicated human or
animal fractures and deformities in trauma or orthopedics. They serve both external and
internal fixation in osteosynthesis, etc. Osteosynthesis in trauma surgery is a recognized
and important medical method and an important topic of many studies [1–11].

Figure 1 shows an X-ray snapshot of the fixation of a fifth metatarsal fracture with a
headless screw. Metatarsal fractures are the most common fractures of the leg, the most
common among them being the fifth metatarsal fracture. Metatarsal fractures are mostly
caused by direct impact (car accident, fall, etc.) or during sports (typical injuries of football
players, etc.). There are multiple types of metatarsal fractures, such as the Jones fractures,
proximal diaphyseal, or fatigue fractures. Interested readers may find more information
in [5,6].
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Figure 1. Application of a headless screw to the fifth metatarsal bone.

Figure 2 indicates the basic anatomy of the fifth metatarsal bone and its surroundings.
In 1902, Sir Robert Jones described his own foot injury, which he suffered while

dancing. It was a transverse fracture of the fifth metatarsal, without substantial dislocation
in the junction of the diaphysis and metaphysis of that metatarsal; see Figure 2. This
fracture is characterized by injury development caused by relatively low stress, minimal
swelling, absence of hematoma, and prolonged healing. The classification of fractures
in the proximal part of the fifth metatarsus is not uniform and completely clear. Some
authors fundamentally differentiate the so-called true Jones fracture from stress fractures
(fatigue fractures) of the proximal diaphysis of the fifth metatarsal. In 1960, Stewart
reported that a large proportion of patients experienced prolonged healing or developed
pseudoarthroses after the conservative treatment of the Jones fracture. Their study group,
however, contained a large proportion of fatigue fractures of the body of the fifth metatarsal;
see [5,6] or [11–13].
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Figure 2. Anatomy of the 5th metatarsal bone: (1) head; (2) neck; (3) diaphysis; (4) base; (5) tuberosity.
(A) peroneus tertius (also fibularis tertius) muscle; (B) peroneus brevis (also fibularis brevis) muscle;
(C) plantar fascia.

Both conservative and surgical treatment of the fracture of the proximal part of the fifth
metatarsal is possible. In conservative therapy, the application of a full, non-weight-bearing
cast or plastic fixation for 6–8 weeks is recommended. In surgical treatment, intramedullary
screw fixation or osteosynthesis with a tension loop wiring is used. Spongioplasty or
corticospongious graft application is often considered the method of choice for these
fractures [5,6,11–13].

In 1962, Timothy J. Herbert started to use a compression screw he designed for the sur-
gical treatment of scaphoid fractures. This screw was cannulated and threaded at both ends
with threads of a non-uniform angle, which ensured compression between the fragments
when the entire screw was inserted. The screw is not extracted after the fracture has healed.
The interfragmentary compression with the Herbert screw is approximately 2.5 times lower
than with the washer screw. Although Herbert designed the screw specifically to treat
scaphoideal fractures, indications for its use in osteosynthesis were, over time, expanded to
other fractures as well (olecranon, ankles, tibial heads, fifth metatarsus, etc.) [5,6,11–13].

Metatarsal fractures, see Figure 3, can be treated surgically or conservatively; this
paper focuses on the headless screw technique, in which the fracture is immobilized by the
screw thanks to the differential pitch of the threads at the threaded ends, which leads to
pulling the bone fragments together and, subsequently, to healing.

The application of the headless screw is shown graphically in Figure 4. The procedure
of osteosynthetic treatment of the fifth metatarsal fracture is described in more detail in [3].
It is divided into several steps. A Jones fracture and a fatigue fracture are priori fractures
without displacement, so in principle, it is not necessary to perform reposition. However,
at the beginning of the surgery it is necessary to check whether displacement has occurred
using an X-ray intensifier. Then, a (Kirschner) guide wire is drilled into the bone fragments
and used to guide the implementation of the cannulated headless screw. The headless crew
is introduced into the bone fragments to ensure that the bone fragments are connected in
the correct position; see Figure 4. The correct length of the screw is detected using a drill.
It is important that there is compression, that the screw is not too long, and that it is fully
immersed in the bone. The resulting position, compression ratio, and length of the screw
is checked with an X-ray intensifier in the operating room. The procedure is minimally
invasive, and it is performed through a minimal incision of approximately 10 mm. After
the procedure, a leg bandage is applied, and rigid fixation is not necessary. The load is
recommended according to tolerance.
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Figure 3. New classification of the proximal 5th metatarsal fractures, according to K. T. Lee: (A1) acute
complete fracture, (A2) chronic complete fracture, (B1) incomplete fracture below 1 mm, (B2) incom-
plete fracture of 1 mm or more.
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Figure 4. Procedure of the Herbert screw insertion.

Frequent complications of surgical treatment of fractures of the fifth metatarsal are the
failure of osteosynthesis, accompanied by necrosis of the surrounding tissue, nonunion,
irritation of soft tissues, or chronic pain. Less commonly, osteosynthesis is accompanied by
pseudoarthrosis, infectious complications, or thrombosis.

This paper is particularly focusing on the headless cannulated Herbert screw Ti: 4.0/
1.4 × 30/7 produced by the Czech company MEDIN a.s.; see [14]. This screw is depicted in
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Figure 5, and its basic dimensions are shown in Table 1. The diameters ØD1a [mm] and
ØD1b [mm] are the median diameters of the resective threads.
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screw.

Table 1. Definition of dimensions, see Figure 5.

Length [mm] Diameter [mm] Thread Pitch [mm]

L1 L1a L1b L1c D1a D1b D1c d1 PA PB
30 7 4 19 3.3 4.7 2.5 1.4 1.1 0.9

In this paper, strength and stiffness analysis of a headless screw is carried out using
analytical, stochastic, and experimental approaches. The study focuses on osteosynthesis
of the fifth metatarsal fractures, but the results can be used for other applications in
trauma and orthopedics too. An original analytical design was devised, and an experiment
was performed, in which the normal axial compressive forces acting on a headless screw
during the osteosynthesis of porcine bones under laboratory conditions were measured and
evaluated. The finite element method was also used to a minor degree. The information
provided in this study fills the gaps in the knowledge of the biomechanical information of
headless screws and serves as a basis for clinical applications for further improving patient
care and new designs of headless screws.

2. Analytical Approach

In the analytical approach, mathematical equations required for the analytical calcu-
lation of the maximum stress in the headless screw and fragments of the fractured fifth
metatarsal are defined. Mathcad software was used for the actual analysis [15]. The ac-
quired results originated from constant input values, and our analytical approach was,
therefore, a deterministic approach. The follow-up stochastic (probabilistic) approach is
discussed in Section 3.

Only small deformations were assumed, inferring the validity of Hooke’s law. In
this calculation, the material was considered homogeneous and isotropic, which is a
standard and widely used simplification of the generally very complicated reality. These
simplifications are acceptable and typical in common engineering tasks.

The mutual closeness of fragments is a necessary condition for correct osteosynthesis.
The drawing of fragments together is mediated by the different pitches of the ends of the
headless screw. For this, the thread pitch PA [mm] must be greater than that of PB [mm]
(i.e., PA > PB); see Figure 5. If the bone fragments are close enough and the headless screw
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is implemented, the axial shifting (displacement) of the bone fragments ∆ depends on the
number of rotations of the headless screw (n) [1] and is defined as

∆ = n × (PA − PB) (1)

The displacement causes compression and preload in the headless screw. The dis-
placement ∆ is shown in Figure 6 as the required deformation condition (a special type of
boundary condition in mechanics).
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Figure 6. Deformation condition for solving the statically indeterminate issue (∆ = displacement
caused by headless screw tightening, ∆1 = extension of the screw, ∆2,3 = shortening of bone fragments
due to axial compression, and ∆s = displacement of the inner sensor cylinder in the measuring).

Explanation of displacements in headless screw and bone fragments are shown in
Figure 7.
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A sensor (i.e., axial force and displacement gauge) was also considered in the analytical
solution to allow comparison with the experiments performed in Section 4.

This task was solved as an interesting elasticity problem because it was a statically in-
determinate task of the first degree in tension and compression. It was, therefore, necessary
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to determine the deformation condition. The deformation condition describes the relation-
ship between the screw elongation (∆1 [mm]) and bone fragment shortening (∆2 [mm]
and ∆3 [mm]); see Figures 6 and 7 and Equation (2). To derive Equation (2), the basic
relationships of mechanics were used; namely, we used Hooke’s law, the relationship for
axial tension/compression stress, and the relationship for relative longitudinal strain under
tension/compression. Hence,

∆ = ∆1 + ∆2 + ∆3 + ∆s
= F Lk1

Ek ·Ak1
+ F 1

Ek

(
L1b
Ak3

+ Lk2−L1b
Ak2

)
+ F 1

E1

(
L1a
Aa

+ L1b
Ab

+ L1c
Ac

)
+ FaS

(2)

The internal normal force F is therefore described as:

F =
∆

Lk1
Ek · Ak1

+ 1
Ek

(
L1b
Ak3

+ Lk2−L1b
Ak2

)
+ 1

E1

(
L1a
Aa

+ L1b
Ab

+ L1c
Ac

)
+ aS

(3)

with the meaning of individual variables given in Table 2.

Table 2. Definition of deterministic input variables.

Quantity Definition of Quantity Quantity Definition of Quantity

Lk1, Lk2
Lengths of bone

fragments ∆
Mutual displacement of the bone
fragments (drawn to each other

by the screw tightening)

Ak1, Ak2, Ak3

Bone areas in the
individual parts of the

screw
Ek Modulus of elasticity of the bone

Aa, Ab, Ac
Screw areas in individual

parts E1
Modulus of elasticity of the

screw

L1a, L1b, L1c
Screw lengths in
individual parts aS

Measurement—effect of the force
sensor (correction to the real

osteosynthesis not containing
any sensor)

This calculation and way of derivation is exposed in more detail in [16]. The above-
described analytical approach was also used to establish the equations of the stochastic
approach (application of the Monte Carlo method), explained in the following section. The
measurements are described in more detail in Section 4 of this paper. The value of the
tensile modulus of the bone was adopted from [17].

3. Stochastic Approach

The probabilistic calculation was performed in the Anthill software, in which the
analysis was performed using the SBRA (simulation-based reliability assessment) method.
The SBRA method applies the probability theory and statistics to stochastic inputs. The
output variables affecting the safety of a structure or machined part are usually expressed
as truncated histograms. Due to the random nature of the input variables, the resulting
output variables also possess a random character. This allows a probabilistic assessment of
the engineering problem [18,19].

The method is based on the direct Monte Carlo approach, which analyzes the reliability
function using sequences of pseudo-random simulations (realizations). The simulation
works with a large number of pseudo-random samples (in our case, 106 random simula-
tions), and the input and output values are defined using bounded histograms [18–21].

In our calculation, input stochastic variables used screw and bone dimensions and
their mechanical properties. Thanks to this, possible inaccuracies in production, different
bone anatomy, and their mechanical properties could be included in the calculation. Output
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variables were axial normal force, maximal stress in the screw, and reliability function.
Figure 8 shows histogram of the axial normal force.
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Reliability function Fs is defined as

Fs = Re − σmax, (4)

where Re is the yield stress of a screw and σmax is the maximal stress in the screw.
The situation where Fs ≤ 0 expresses the probability of a condition where the thread

cut in the bone fragment is sheared. The calculated reliability function Fs is shown in
Figure 9. Thread shearing and thus, plastic deformation, occurred in the bone with a
probability of only 0.0493 (i.e., of 4.93%). If thread is sheared during surgery, the headless
screw can be replaced with a larger diameter headless screw, and the surgical procedure
can subsequently be completed, which further reduces the risk to the patient.
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Figure 10 shows the 2D distribution of the reliability function Fs. Towards the center,
the frequency of the reliability function values increased, with higher frequencies of occur-
rence shown in red. The green color indicates the limit line, which divides the reliability
function into negative and positive parts. If the reliability function is negative (i.e., Fs < 0),
the headless screw is in the region of permanent plastic deformation and thread shearing
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will occur. Conversely, if the reliability function is positive, it is in the region of elastic
deformations, and no limit state causing thread shearing in the bone can occur.
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4. Experimental Section

The experiment aimed to obtain information about the dependency between the
tightening of the headless screw and to determine the normal force acting on the headless,
self-tapping cannulated screw (same as in the calculation, i.e., Ti: 4.0/1.4 × 30/7 mm by
MEDIN a.s.; see Figure 5 and Table 1). The acquired results can then be compared with
analytical, numerical, and stochastic calculations.

The knowledge of axial forces acting during osteosynthesis is important when design-
ing headless screws and their threads. In real-life fractures, bending stress is also present,
but compression and tension are the dominant stresses on the bone fragments and screw
during screw introduction (insertion). Moreover, this type of information is missing in
literatures. The experiment was performed on a headless screw introduced into porcine leg
bones purchased from a conventional butcher shop. The porcine bones are commonly used
as a readily available substitute for human bones, including metatarsals [22]. The use of
porcine bones was in accordance with ethical standards and did not require approval from
an ethics committee.

Tightening the screw inside the bone fragments elicited a compressive force measured
by a holed strain gauge transducer. First, the porcine bone fragments were pre-drilled,
then a tensometric sensor (LC 8150-375-500, Tensometric Messtechnik GmbH, Wuppertal,
Germany) was placed between the bone fragments, and a headless screw was inserted. In
accordance with the operating procedures, the headless screw was tightened to a tightening
torque of 2.5 Nm. This value was experimentally verified by previous measurements to
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ensure that the screw threads were not stripped while driving the screw into the examined
bone fragments. The force was measured in quarter-turn increments, i.e., 90◦, until the
headless screw was tightened to 3.5 turns; this also included the moment of the thread shear
(i.e., the maximum moment) in the bone. (Thread shear will cause the osteosynthesis to fail
but will not destroy the implant.) The principle of the measurement is shown schematically
in Figure 11.
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Figure 12 shows the real measurement of the compressive axial force acting on the
headless screw. It depicts two fragments of a cleaned pork bone, joined with a screw, and a
holed compression force sensor inserted between them.

The investigated screw was made of titanium alloy Ti6Al4V, the properties of which
are specified by ISO 5832-3 (material for surgical implants). This alloy, together with the
stainless steel 316L, are two of the most commonly used materials for the manufacture
of implants [23]. The screw material was considered biocompatible, isotropic, and ho-
mogeneous, and its basic mechanical properties are shown in Table 3. The screws were
manufactured by conventional machining methods.

Table 3. Basic information on the material of the applied screws.

Material Modulus of Elasticity E [Pa] Yield Limit [MPa] Strength Limit [MPa]

Ti6Al4V 1.06 × 1011 920 1000

The measurements took place at the laboratory at the VSB—Technical University of
Ostrava, Faculty of Mechanical Engineering, Department of Applied Mechanics (Ostrava,
Czech Republic).

In all, 10 measurements were performed. Figure 13 shows the dependence of the axial
compressive force F on the number of turns n (in quarter-turns) of the headless bolt. Table 4
shows the maximum force F, number of turns for each measurement, and the values of
arithmetic mean, median, and standard deviation.
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After 2–2.5 turns, the curves reached their maximum, at which point the Herbert screw
thread in the bone failed (bone damage), and the compressive force started to decline.
The maximum force was reached in measurement 1—tightening to 2.5 turns generated
a compressive axial force of 266 N. The region from 1.75 to 3 turns of the screw can be
perceived as a risk area of 180 to 266 N. Exceeding the strength limit of the bone fragment
led to the plastic deformation in the area of the thread cut in the bone and the thread
was sheared.
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Table 4. Maximum values of the measured axial force in individual measurements.

Measurement Fmax [N] n [1]

1 266 2.5
2 233 2
3 237 2.75
4 250 2.5
5 212 2.25
6 246 2
7 265 2.5
8 196 2.25
9 224 2
10 180 2.5

Min 180 2
Mean 204 2.25

Median 220 2
Standard deviation 28.37 0.26

Max 266 2.75

Once the thread in the bone was sheared, a sharp decline in the force was expected.
This was not confirmed, which can be explained by the existence of frictional forces
observed on the contact surfaces between the bone and the screw and by the development
of elastoplasticity in the area of interest.

The statistical evaluation of the results is shown in Figure 14. The maximum average
compression force was 230.9 N and acted on the screw at 2.25 turns; after that, the thread
in the bone was sheared off, and the compression force began to decrease. The highest
median value of the normal compressive force (220 N) acted on the screw at 2 tightening
turns. The maximum and minimum measured values of the force F formed the envelope of
the course of the compressive force dependence.
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We also looked for a function suitably approximating the measured data, as finding
such an approximation function is advantageous for their further processing. The exper-
imental data obtained in our experiment showed similar behavior of the compressional
force as the data obtained when measuring the dependence of the force on the screw dis-
placement when the screw was being pulled out of the bone [24], which studied the effect
of elastic foundation on tearing a screw out of the bone. Based on the similarity between
data reported in [24] and our findings, we can conclude that the compression forces are
also influenced by elastic foundation in the case of Herbert screws. More information about
the elastic foundation can be found in [21,24].

Hence, the search for an approximation function was based on the findings in that
previous study and used a similar mathematical model. The measured data were approxi-
mated by a cosine power function F = A [1 − cos(Bn) ]m, where A, B, and m are constants.
which interpolated the values very well.

The approximation function must satisfy the following boundary conditions:

1. Boundary conditions for the initial point:

(a) n(0) = 0
(b) F(0) = 0

2. Boundary conditions for the extreme point:

(a) The function passes through the extreme point [nE; FE];
(b) For extreme point, the derivation dF

dn = 0

Mentioned boundary conditions are shown in Figure 15.
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Figure 15. Boundary conditions of approximations.

After the introduction of boundary conditions, the solution for the following equation
was calculated:

F =
FE

2m [1 − cos (
πn
nE

) ]
m

(5)

From Equation (5), it is clear that only the parameter m was unknown. This parameter
can be found by regression, for example, using the Matlab software, version R 2019b
(Toolbox Curve Fitting), created by The MathWorks, Inc. (Natick, MA, USA) [25]. Values
from all measurements were interpolated using this function. For clarity, Figure 16 shows
the interpolation of the experimentally measured points (from measurement number 2) by
the calculated approximation curve.
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The coefficient of determination R2 was evaluated for each approximation curve. As
known from statistics, this coefficient determines the quality of the regression model. The
values of the coefficient of determination were in the interval <0; 1>, where 1 means an ideal
prediction of values, and 0 means that the values are independent. If the determination
coefficient is greater than 0.9, the result is considered very good. Table 5 shows the required
parameters for all measurements.

Table 5. Resulting parameters of the approximation curve.

Measurement m R2 FE nE

1 0.8845 0.9817 268.8105 2.57

2 1.417 0.9969 232.868 1.98

3 1.631 0.934 236.9959 2.74

4 0.9146 0.975 252.8947 2.44

5 1.224 0.9399 211.88 2.25

6 0.7684 0.8875 246.3244 1.99

7 1.156 0.9617 267.5367 2.44

8 1.677 0.7484 198.9446 2.31

9 0.778 0.9292 226.2703 1.96

10 0.9052 0.9481 183.1951 2.44

The approximation always coincides perfectly in the vicinity of the point [nE, FE],
which represents the limit state, and therefore, its accurate capture and description are of
utmost importance.

5. Comparison of Results

Results obtained analytically (deterministic—Section 2 and stochastic—Section 3—
solution) and experimentally (Section 4) were compared.

The comparison of the analytically calculated and measured axial force is shown in
Figure 17. From the graph, it is evident that in the linear elastic region of up to 1.75 turns of
the Herbert screw, where the thread is not sheared, the agreement between the analytical
solution and measurement is very good. For this reason, the probabilistic solution is also
performed for this number of turns.
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6. Results and Discussion

Several modifications and extensions can be made in the future to further develop this
work. Additional measurements can be made to determine the torque and frictional forces
applied when screwing the Herbert screw into the bone. Performing measurements on
other types of screws would also be interesting. Herbert headless screws can vary in size or
in the thread pitch; there are also screws with variable thread pitches [14].

In this work, solely porcine bones were used for the experiments. Further study
could focus on the modification of the experiment in the sense of using human cadav-
erous metatarsal or even other bones; this is, however, ethically more problematic and
costly. Bones from other animals (e.g., bovine, calf, mutton, etc.), as well as artificial
composite bones (e.g., products by Sawbones) or wooden bones, could be used for the
experimental solution.

Performing an experiment focusing on other ways of loading the screw (such as
bending or fatigue testing) could also be interesting. The effect of bending or major
deformations (true stress or logarithmic strain) or elastic/non-linear foundation could also
be introduced in the experiments, as well as computational solutions. This is likely to lead
to an improvement in accuracy, but the nonlinear solution will be much more complicated,
and the advantage of the original simple linear solution will be lost.

We can also build on our extensive experience in the field of interaction between exter-
nal/internal fixators with bones [26–28] (finite element method, deterministic approaches,
stochastic approaches, and experiments).

Aside from that, we can use the finite elements method (FEM) for comparing the
results. Using the Mimics software, X-rays (i.e., computed tomography) of the bones can
be used for creating a CAD and finite element model of the fifth metatarsal and assigning
material properties to its individual parts. Figure 18 shows a distribution of the elasticity
modulus in the fifth metatarsal, ranging from 93.5 to 18548.3 MPa [29].



Appl. Sci. 2022, 12, 9615 16 of 19
Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20 
 

 

Figure 18. Elasticity modulus distribution in the 5th metatarsal bone—top: medial view; bottom: 

sagittal cutting with a headless screw. 

According to [29], simulation revealed that the critical equivalent von Mises stress 

can be detected at the notch of the screw; see Figures 19 and 20. 

 

Figure 19. Critical von Mises stress in a headless screw in the 5th metatarsal. 

Figure 18. Elasticity modulus distribution in the 5th metatarsal bone—top: medial view; bottom:
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The calculation using the FEM method gives results similar to the solutions presented
in this paper; nevertheless, it is not the main focus of this publication, just complementary
information. A deeper look at the FEM solution, which is more complex and more difficult
to relate to stochastic approaches, will be a subject of future publications. However, the
author team feels that it is appropriate to mention the FEM method here, as well as the
fact that FEM calculations have confirmed the facts obtained from other computational
approaches and experiments performed in this study.

7. Conclusions

The main objective of this study was to perform stress–strain computational analyses
and an experimental analysis for the determination of the axial force generated during
osteosynthesis with a headless Herbert screw (Ti: 4.0/1.4 × 30/7 mm, Medin a.s., Czech
Republic). This screw is intended for the osteosynthesis of fragments of the fifth metatarsal
fracture. Such implants are commonly used in medical practice. Due to the different pitches
of the threads on both ends of the screw, the bone fragments are drawn to each other and
compressed at the fracture site, which facilitates the process of fracture healing.

The analytical (deterministic) calculation was defined as a tension–compression prob-
lem. This problem was statically indeterminate to the first degree, which required the use
of an additional deformation boundary condition.

The relationships derived from the analytical calculation were used for the stochastic
(probabilistic) approach, which, through pseudo-random values generation from defined
histograms, allows us to respect the real variability of the input and output data and to
perform a probabilistic reliability assessment. Here, the Monte Carlo method was used for
the solution and evaluation of 106 pseudo-random simulations.

In addition, an experiment (10 measurements) aimed at determining the compressive
normal forces acting on the Herbert screw during tightening was performed. This experi-
ment revealed the average force required to shear the thread in the bone to be 204 N. This
is an important finding for headless screw designers and for surgeons developing new
surgical techniques.

Next, a suitable function sufficiently approximating the measured values from the
experiments was searched for. The excellent quality of the fit of the regression model to the
experimental data was demonstrated using the coefficient of determination R2.

Finally, the results of all approaches were compared. As the approximation of the ex-
periment using a cosine power function (F = FE

2m [1 − cos (πn
nE

) ]m) is suitable and provided
sufficient accuracy, it is obvious that the task can be solved analytically as a second-order
differential equation, which subsequently leads to a significantly simpler and computation-
ally less demanding solution than the use of the FEM approaches. Our model also enables
a relatively simple application of the probabilistic approach, which is advantageous, as it
allows respecting the real variability of input and output variables, which is typical of the
real world.

This paper also briefly mentions the numerical solution based on FEM.
The results of all four approaches to the solution (i.e., deterministic, stochastic, ex-

perimental, and numerical) are in sufficient agreement and confirm the suitability of the
examined screw for clinical use.

This combined algorithm can be used as a basis for implant certification or recom-
mendations for clinical testing of various types/applications of headless Herbert screws in
medical or veterinary practice, as well as for the modification or change of screw design.

The acquired data on axial forces in osteosynthesis of the fifth metatarsal were de-
termined in an original and novel way in this study. From this perspective, the paper
significantly contributes to the field of fracture biomechanics.

The applications and conclusions obtained in this paper can be used in other fields as
well—even in the construction industry in the analysis of joints in wooden structures [24,30,31].
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4. Čada, R.; Frydryšek, K.; Sejda, F.; Demel, J.; Pleva, L. Analysis of Locking Self-Taping Bone Screws for Angularly Stable Plates. J.

Med. Biol. Eng. 2017, 37, 612–625. [CrossRef] [PubMed]
5. Haspl, M.; Starcevic, D.; Medancic, M.; Pecina, M. Multiple Surgical Treatment of Recurrent Fifth Metatarsal Stress Fracture. Clin.

Surg. 2018, 3, 1925. Available online: http://www.clinicsinsurgery.com/pdfs_folder/cis-v3-id1925.pdf (accessed on 26 March
2022).

6. Chuckpaiwong, B.; Queen, R.; Easley, M.; Nunley, J. Distinguishing Jones and Proximal Diaphyseal Fractures of the Fifth
Metatarsal. Clin. Orthop. Relat. Res. 2008, 466, 1966–1970. [CrossRef] [PubMed]

7. Catapano, S.; Ferrari, M.; Mobilio, N.; Montanari, M.; Corsalini, M.; Grande, F. Comparative Analysis of the Stability of Prosthetic
Screws under Cyclic Loading in Implant Prosthodontics: An In Vitro Study. Appl. Sci. 2021, 11, 622. [CrossRef]

8. Perry, C.; Gilula, L. Basic principles and clinical uses of screws and bolts. Orthop. Rev. 1992, 21, 709–716.
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Ph.D. Thesis, VSB–Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Applied Mechanics,
Ostrava, Czech Republic, 2017; pp. 1–170.

25. Available online: https://www.mathworks.com/products/matlab.html (accessed on 1 May 2022).
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