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ABSTRACT In this paper, we focus on the problem of applying domain randomization to produce synthetic
datasets for training depth image segmentation models for the task of hand localization. We provide new
synthetic datasets for industrial environments suitable for various hand tracking applications, as well as
ready-to-use pre-trained models. The presented datasets are analyzed to evaluate the characteristics of these
datasets that affect the generalizability of the trainedmodels, and recommendations are given for adapting the
simulation environment to achieve satisfactory results when creating datasets for specialized applications.
Our approach is not limited by the shortcomings of standard analytical methods, such as color, specific
gestures, or hand orientation. The models in this paper were trained solely on a synthetic dataset and were
never trained on real camera images; nevertheless, we demonstrate that our most diverse datasets allow the
models to achieve up to 90% accuracy. The proposed hand localization system is designed for industrial
applications where the operator shares the workspace with the robot.
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INDEX TERMS Depth camera, hand tracking, hand localisation, image segmentation, synthetic dataset,
domain randomization.

I. INTRODUCTION14

Safety is a key factor in collaborative robotics. With an15

increasing tendency of working closer to the robot without16

protective barriers, reactive systems based on collision detec-17

tion became insufficient for fluent collaboration. Predictive18

systems that use cameras, laser scanners, and other sensors to19

detect the presence of the operator is one of the solution for20

the future of human-robot cooperation. This paper focuses21

on robot-assisted assembly conditions, where the operator22

shares the workplace with the robot and collaborate in a close23

proximity.24

In human-machine interaction, hand gesture recognition25

and processing is a key topic because they represent a nat-26

ural way for humans to communicate non-verbally. Using27

a recognized gesture, we can create a specific command to28

control the robot; by knowing the position of the hand in the29

workspace, we can guide the robot to a specific location;30

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

finally, information about the presence of the hand in the 31

workspace can be used for safety measures. Camera-based 32

safety systems often use detection and tracking, which are 33

utilized to localize the operator in the workspace and, poten- 34

tially, adapt the technological process [1], [2], [3] in order 35

to insure the safety of each operator. In our approach we 36

focus on localization of fingers, hands and whole arms in the 37

workplace from the top view camera. The output of the hand 38

recognition system can be used to control robotic applications 39

using various [4], [5], [6] gesture-based interfaces. 40

In this paper, we focus on the problem of semi-automatic 41

generation of synthetic datasets for training depth-image seg- 42

mentation models for the task of hand localization. Our work 43

contributes to the topic by providing new synthetic datasets 44

for industrial environments suitable for various hand track- 45

ing applications as well as ready-to-use pre-trained models. 46

We also provide a simulation scene that can be customized 47

and optimized for specific applications. We further elaborate 48

and analyze the characteristics of these datasets that affect 49

the resulting generalization ability of the trained models, and 50
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provide tips on how to adapt the used simulation environment51

to achieve satisfactory results when creating datasets for cus-52

tomized applications. The models in this paper were trained53

exclusively on the synthetic dataset and were never trained54

with real camera images, nevertheless, we demonstrate that55

our most diverse dataset allows the models to achieve56

90% accuracy.57

II. RELATED WORK58

A. HAND LOCALIZATION59

Over the years, approaches to dealing with the hand local-60

ization problem have gradually improved. Initial color-based61

methods analyze different components in the correspond-62

ing color space (RGB, HSV) [7]. This approach usually63

requires tuning the application for specific conditions and64

environments, and therefore the results of these approaches65

are strongly influenced by ambient lighting, background and66

obstacles.67

More sophisticated approaches are usually based on68

machine learning models trained on a specific dataset. Modi-69

fications and extensions to the dataset used allow the created70

model to be generalized, making it less sensitive to changes71

in the environment. Approaches with relatively limited gen-72

eralization capability include methods such as support vector73

machines [8], [9] and hidden Markov models [10]. With the74

development and successful application of deep learning in75

the field of image recognition, recent work in hand detection76

has mainly focused on convolutional network models, which77

have enabled to significantly increase the accuracy of image78

segmentation methods [11]. Encoder-decoder networks and79

their derivatives have been successful in solving the image80

segmentation task in a wide range of conditions and environ-81

ments. U-Net is an example of such a coder-decoder network82

for image segmentation.83

The majority localization methods generally use RGB84

camera images because these cameras are widely available.85

Specialized sensors such as Kinect and Leap Motion have86

been applied in a large number of human body tracking87

tasks as a source of information for human-machine interac-88

tion. However, while the default skeleton tracking in Kinect89

achieves high accuracy and can be even improved by correc-90

tion [12], it cannot track the hands without seeing the entire91

human body. On the other hand, the Leap Motion controller92

has various drawbacks that make it unsuitable for a relatively93

large workspace [13]. The use of depth camera can increase94

the robustness of the application in terms of less emphasis on95

color and more attention to the shape during detection. This96

is advantageous in low-light conditions or if the user wears97

protective gloves of different colors. In the vast majority of98

work, the actual search of the hand region is performed in a99

limited area that has been defined by a simple [14] heuristic100

that allows the camera image to be cropped to contain only101

the hand-related part of the depth image. Alternatively, some102

approaches make use of sliding window predictions over the103

entire image in order to localize the hand.104

B. DATASET COLLECTION 105

Themost important step in training a machine learning model 106

is to obtain a dataset sufficiently large to accurately represent 107

the real-world domain in a wide range of circumstances and 108

contexts. A typical approach for obtaining such a dataset is 109

to manually label hundreds of thousands of images to define 110

the ground truth for each image, or to use third-party labeled 111

datasets available on various platforms.While obtaining sam- 112

ple data can be relatively straightforward, the subsequent 113

labeling of the data can take an enormous amount of time, 114

depending on the complexity of the scene and the desired 115

diversity of labels. Melireddi et al. have demonstrated the use 116

of coloured gloves [15] to label hand regions in the created 117

dataset image. Another approach to the labelling automation 118

is the assumption that the hand is the closest object to the 119

camera [16] and can be found by applying a color threshold 120

to the image. An alternative approach [17] is to use tracking 121

sensors, or infrared markers [18] fastened to the hand and 122

fingers to automatically generate the labels. 123

Datasets obtained by collecting images from a real camera 124

have the advantage of being close to the real domain but at 125

the same time - possess problem of limited range of captured 126

conditions, since the environment arrangements which were 127

provided during acquisition is limited and usually cannot 128

cover the full range of scenarios (e.g. changing positions of 129

obstacles in the view, lighting, reflections, shadows). 130

Synthetic datasets provide an alternative to traditional 131

manual collection and labeling. These datasets are cre- 132

ated programmatically by simulating a domain, or by com- 133

bining real images with a known ground truth into new 134

ones [19], or by combining these methods and overlaying 135

labeled objects over a randomized simulated scene [20]. 136

Each method allows to produce arbitrary large fully-labeled 137

datasets [21]. Prepared simulated environment allows to gen- 138

erate extensive synthetic datasets by adjusting the conditions 139

and and applying augmentations to the generated images [22]. 140

Keskin et al. demonstrated synthetic dataset generation based 141

on a fully simulated scene [23]. They used a 3D skinned mesh 142

with a skeleton defining parts of the hand and links of the 143

fingers, which were used for both animating the mesh and 144

creating the ground truth labels. This solution reduces the 145

cost of preparing datasets while increasing data diversity and 146

labeling accuracy. 147

In general, approaches to generating synthetic datasets can 148

be divided into two main groups depending on their appear- 149

ances: realistic and randomized datasets. Realistic datasets 150

have an obvious advantage: they are very similar to the 151

real environment, which allows the model to learn important 152

realistic characteristics of the domain. However, the use of 153

synthetic data entails the so-called ‘‘reality gap’’, which is 154

the inability to fully reproduce real-world data for numerous 155

reasons, including textures, lighting, and complex domain 156

specifics. All appearances generated by realistic simulations 157

can only cover a user-defined scale of conditions, e.g. day- 158

lighting, programmed object position and interactions. Thus, 159
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these generated environments represent only a subset of all160

the conditions that may occur in reality. Achieving higher161

photo-realism with high fidelity rendering engines comes at162

the cost of computational resources and rendering time.163

In an attempt to mitigate the ‘‘reality gap’’ the opposite164

approach can be used, in which domain randomization is165

introduced to simulate a sufficiently large number of varia-166

tions of all relevant domain features. For camera images, this167

may include randomization of viewing angles, camera and168

shader effects, lighting, material textures, color, shape, scale,169

and relative position of objects, while maintaining ‘‘sensible’’170

invariants and constraints, forcing the model to learn the171

most important characteristics describing the objects being172

sought. This can further simplify the setup and speed up the173

simulation process, as requirements to simulation accuracy,174

model quality, and rendering accuracy are reduced, which175

saves computational resources.176

C. HANDS DATASETS177

Since datasets represent a crucial factor for successful imple-178

mentation of hand tracking, a large variety of datasets have179

been published recently. The EgoHands dataset [24] con-180

tains 15K manually annotated RGB images of two people’s181

first-person interactions. The annotations include semantic182

pixel-level segmentation masks for each hand. A. Bojja et al.183

in their work [25] presented an automatically labeled depth184

image dataset (HandSeg dataset) containing 150K recordings185

with random hand gestures in front of a depth camera. The186

data acquisition method was based on color gloves, which187

were used to create ground truth annotations using HSV color188

thresholding.189

As an alternative to real camera images, many research190

groups used fully synthetic images rendered in customized191

visualizers. The ObMan dataset [26] is an example of such a192

fully synthetic approach, where RGB-D images were created193

using realistic 3D models of the human body with one hand194

holding commonplace objects. During the creation of the195

dataset, the camera was randomly pointed at the hand holding196

the object. The generated images varied greatly in pose,197

background, texture, and lighting, and in total the dataset198

contains 150k fully annotated depth and color images, with199

hand keypoints, object and hand segmentation masks.200

A similar dataset was presented in Zimmermann et al.201

(RHD, Rendered Hand Pose dataset [27]) where an exten-202

sive RGB-D dataset was generated using 3D character mod-203

els matched with highly parameterizable hand 3D model204

MANO [28], allowing segmentation masks to be collected205

for each segment of each finger. In each frame, the selected206

character model was posed in a random keyframe of any of207

39 animated actions, and a new camera location was ran-208

domly selected from a spherical vicinity around the selected209

character hand. However, this limits the possible range in210

which the hand can appear in the image, so that it only appears211

in the centre of the image and never at the edges. The gener-212

ated scenes additionally had randomized backgrounds, global213

lighting, specular reflections, and directional light sources.214

An additional policy ensured that the camera was rotated so 215

that the hand was at least partially visible from the selected 216

viewpoint, and the random background image did not contain 217

a person. 218

Mueller et al. [29] presented pose and shape reconstruc- 219

tion of interacting hands, with model trained on synthetic 220

dataset containing depth images samples complemented 221

with RGB-encoded segmentation masks, where the color 222

represented correspondence to vertices of a MANO hand 223

model [28]. The model was additionally trained on a real 224

camera data to help model to generalize, since the generated 225

dataset did not contain any augmentation nor background 226

obstacles. 227

An extensive review of available depth-based hand datasets 228

is available in [30]. 229

However, each of the discussed publicly-available datasets 230

posses one or several following disadvantages: 231

• based solely on RGB information; 232

• assumption that the hand covers the majority of the 233

image area; 234

• assumption that the hand is the closest object to the 235

camera; 236

• absence of obstructions around the hand. 237

In addition, the available datasets assume a different place- 238

ment of the camera than in our specific industrial storage. 239

These factors served as a motivation for creating own cus- 240

tomized dataset generator and subsequently training of the 241

network. 242

We focused on the depth image dataset because depth 243

capture is less sensitive to light, color, and texture, but rather 244

focuses on shape. 245

III. METHODOLOGY 246

In order to localize the hand in the scene we propose a 247

method based on a convolutional neural network trained on 248

the synthetic dataset. The dataset is generated in the simulated 249

environment which is set according to the testing scenario on 250

real workspace. We compare the effects of different augmen- 251

tations and simulated scene settings on the resulting accuracy 252

of the trained neural network by evaluating the quality of the 253

segmentation on a testing dataset which comprises of images 254

obtained from a real sensor [31]. 255

A. SYSTEM SETUP 256

Parameters and general appearance of the simulated scene 257

were set with respect to the presumed use in the industrial 258

application and in close correspondence to our experimental 259

workplace (Figure 1). In the workplace, a single depth camera 260

heading downwards is mounted 1 meter above the work table. 261

The initial experiments were carried out using setup with 262

a camera placed 1 m above the floor when no robot was 263

involved. We utilized RGB-D Intel RealSense D435 camera 264

as a sensor for capturing the depth images. 265

Specifications of the Intel RealSense D435 are: 266

• Outer dimensions: 90× 25×25 mm. 267
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FIGURE 1. Experimental workplace with the robot (a) and simulation (b).

• Field of view: over 90◦ of depth diagonal field of view,268

from 0.2 m to over 10 m range depending on lighting269

conditions270

• Streams: Up to 1280 × 720 active stereo depth resolu-271

tion, up to 1920× 1080 RGB resolution272

In our experiment, we use a depth stream of 640 × 480,273

which is processed using a modified Intel RealSense libre-274

alsense library. In the pre-processing stage, we use a col-275

orization filter that scales the depth information to an 8-bit276

value with a minimum range of 0.2 m, which corresponds277

to the minimum distance for proper camera operation, and278

a maximum distance of 1 m, which is the distance between279

the camera and the table. A customized hole-filling filter is280

used to remove shadows from the depth image caused by the281

stereoscopic camera technology. To fill in depth information282

where it is missing, we use a static, unobstructed image of283

the scene captured at the workstation. Image pre-processing284

is completed by scaling to a resolution of 320×240, which285

corresponds to the image size in the generated dataset.286

B. DATASET GENERATION287

For our application in an industrial environment with a spe-288

cific camera orientation, we needed to create a custom dataset289

with features appropriate to the intended working environ-290

ment. To be able to create large datasets for a specific envi-291

ronment, we developed a simulation-based dataset generator292

that creates an image of the dataset as well as a ground293

truth (labelled image). The simulation is implemented in the294

CoppeliaSim simulation platform (Figure 2).295

In the simulation environment, the real camera is simulated296

by a vision sensor which is set according to the field of view297

of the real camera. During generation of the dataset, hand298

models are dragged through the field of view of the camera299

(Figure 3) - this allows to generate images with the most of300

the possible positions of the hand in the monitored space.301

Vision sensor captures depth image of the scene, where pixel302

values are scaled to 8-bit range and stored as a gray-scale303

image. In addition to the hand object, we can place to the304

scene different objects (geometric primitives) or noise. By our305

definition, random background objects can be both closer306

and further away from the camera than the hand, because in307

FIGURE 2. Simple dataset generator in CoppeliaSim.

FIGURE 3. Flowchart of dataset generation.

industrial conditions it is not possible to ensure that the hand 308

is always the closest object to the camera. Positions and ori- 309

entations of these objects are random, but they are governed 310

by the policy, which ensures that the created object never 311

overlaps the hand (considering fingertip and palm centre 312

point) in the camera view. If an overlay is found, the object is 313
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TABLE 1. Dataset conditions.

moved to a different position until the requirement is satisfied.314

By adding random objects at random positions to the scene315

we attempt to decrease the sensitivity of the system to irrel-316

evant items, which otherwise may be incorrectly detected as317

fingers.318

This experiment was conducted on four datasets with vary-319

ing level of complexity. Figure 4 shows example images320

taken from the generated datasets. Datasets differ by added321

random background noise, blur and obstacles in the scene,322

see Table 1. The post-processing applied to the images was323

adjusted according to the real camera image: the added Perlin324

noise was simulating the actual noise from the real sensor.325

The images with random obstacles were additionally blurred326

with a blur filter with kernel size 7. The hand model was327

iteratively shifted with an increment in each direction to328

cover the entire field of view of the sensor. The size of the329

position increment relates to the size of the final dataset: we330

use the increment of 5 mm which gives us 2346 images,331

2 mm for 34166 images and 1 mm for 270106 images.332

Orientation of the hand is semi-random and defined by the333

rules which ensure that the hand and fingers are within the334

field of view of the vision sensor: the fingertip point and335

the centre point of the palm are ensured to be within the336

truncated pyramid corresponding to the field of view of the337

camera. Roll and pitch of the palm are constrained to ±15◦338

and ±30◦ respectively. The simulation scene utilizes two 3D339

meshes of the right hand for dataset generation: an open hand340

gesture and a gesture - pointing with index finger. In our341

case we considered it sufficient, because the rules of scene342

simulation ensured that each hand gesture could be observed343

frommultiple perspectives. Furthermore, our goal was only to344

perform segmentation the hand pixels from the input image,345

and we did not aim to classify the gestures (which otherwise346

would have required us to provide sufficient samples for each347

possible variation of each gesture in question).348

The simulation also includes the second vision sensor,349

which is set to only capture pixels pertaining to the hand and350

the arm. This second sensor is placed at the same location as351

the first sensor and its output image is binarized (see Figure 5)352

and is considered as ground truth for the image segmentation353

task. The pixel values of the binary image are represented354

by 2 classes: hand-related pixels (1) and background-related355

pixels (0).356

FIGURE 4. Dataset images generated with different setup: (a) Dataset A -
only the hand is captured, (b) Dataset B - the hand with background
noise, (c) Dataset C - obstacles with random position incorporated to the
image, (d) Dataset D - apart from obstacles, blur and additional noise is
added during post-processing phase.

FIGURE 5. Dataset image (a) and corresponding binary ground truth (b).

C. NEURAL NETWORK TRAINING 357

The neural network used in the experiment is implemented 358

using TensorFlow. The architecture is based on U-Net [32] 359

which is a fast convolutional network for accurate image 360

segmentation. It has a contracting part consisting of convolu- 361

tional layers and max pooling operations (see Figure 6). This 362

part is responsible for capturing the context. The symmetrical 363

expanding part of the network provides precise localisation. 364

Our network contracting part consists of 5 convolutional 365

layers with increasing number of filters which are multiples 366

of 16. Convolutional layers are followed by pooling layers 367

with the size 2 × 2. Expanding side is a set of upsampling 368

deconvolution blocks. 369

We trained and validated models using the generated 370

datasets (A, B, C, D, CD) of different sizes (2346, 34166, 371

270106). The fifth dataset (CD) was generated by randomly 372

combining the C and D datasets. 373

All models were trained for 8 epochs with an initial learn- 374

ing rate of 0.001 with a total of 32 images per mini-batch. 375

20% of each corresponding dataset was used for validation. 376

For better sensitivity for both hand sides, we used horizontal 377
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FIGURE 6. U-Net architecture [32] (Created using [33]).

and vertical flip image augmentations during the training378

stage because the datasets were generated only with the379

model of the right hand.380

Soft dice loss was used as the loss function. This loss381

function is often used in segmentation tasks to assess the382

similarity between two samples. For binary case, the loss is383

based on the ratio of the number of correctly predicted pixels384

to the total number of pixel of both prediction and the ground385

truth and calculated based on the equation 1.386

Loss = 1−

2
∑
pixels

ytrue ypred∑
pixels

y2true +
∑
pixels

y2pred
(1)387

where ytrue is the ground truth and ypred represents the net-388

work output - prediction.389

The training was performed on the laptop with 16 GB390

of RAM, Intel Core i7-6700HQ CPU and with NVIDIA391

GeForce GTX 1070 (8GB VRAM) graphic card.392

Prediction of a single image takes around 1 ms, which we393

consider a sufficient speed for processing of a video stream394

of the camera.395

Figures 7 and 8 depict the training and validation processes396

for each 34k dataset. From both training and validation plots,397

it may seem that the simplest dataset A was able to achieve398

the best accuracy (in terms ofmIoUmetric). However, in real-399

ity this only means that this dataset is the simplest for the400

adaptation of the network, because the simpler the dataset,401

the higher the accuracy the network will achieve not only on402

the training dataset but also on the validation dataset (because,403

as mentioned above, the training and validation datasets are404

composed of subsets of the original dataset generated in405

the simulation with the same conditions). At the same time406

the opposite result will be evident for the most demanding407

datasets, which require the network to learn more important408

features of the images. Only evaluation of the trained models409

on the test dataset (which will be the same for all evaluated410

models and will include the samples corresponding to the411

real application) can serve as a real accuracy evaluation. This412

evaluation will be done in the next section.413

FIGURE 7. Mean intersection over union of different models during
training process performed using training dataset.

IV. EVALUATION 414

In order to compare the impact of datasets, we propose an 415

evaluation dataset captured on a real sensor as a benchmark 416

and use it to measure the quality of the predictions generated 417

by the trained neural network models. This benchmark has a 418

quantitative evaluation using the metric of mean intersection 419

over union (IoU), which is represented by the ratio between 420

the overlap area and union area of the predicted and baseline 421

regions. In addition, we perform a qualitative evaluation of 422

the obtained results, where we examine the predictions and 423

explain the reason for the quantitative result. 424

Table 2 shows precision and recall values of the benchmark 425

dataset containing 100 manually-labelled camera images. 426

Rows of the table represent the models trained on differ- 427

ent datasets, while columns represent different sizes of the 428

dataset. For the benchmark test, we used a cluttered environ- 429

ment with various obstacles that had several characteristics, 430

such as sharp edges, rounded shape, glossy material, trans- 431

parent material, multiple oblong objects resembling arm and 432

finger. The reference scene was illuminated by both indirect 433
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FIGURE 8. Mean intersection over union (mIoU) of different models after
validation performed on validation dataset.

TABLE 2. Mean IoU for different models and number of samples.

and direct sunlight, and can generally be considered more434

complex than we would expect for industrial use.435

The data in Table 2 show that predictions based on the436

model A do not provide sufficient accuracy and the result437

does not significantly improve with an increasing amount of438

samples. The best results are obtained with models based on439

dataset C and the combined dataset C+D. With the increasing440

dataset size the accuracy of predictions increases. Additional441

test with the unified datasets C and D (dataset CD) with the442

total number of 540212 samples did not further improve the443

accuracy.444

The fast convergence observed in Figure 7,8 could have445

been a result of over-fitting and, indeed, the results of446

test subset evaluation (see Table 2) showed that the sim-447

plest datasets (A, B) did have difficulty generalizing, which448

apparently caused their over-fitting; however, more complex449

datasets allowed the networks to successfully generalize and450

over-fitting did not occur. We also assume that the observed451

fast convergence is partially due to the fact that the utilized452

U-Net architecture is rather simple, the inputs are small, and453

the training domain contains only one target class.454

The second evaluation is qualitative, in which we review455

the predicted images and inspect the meaning of quantitative456

result along with the influences caused by the differences457

in datasets. Figure 9 shows the scene as captured by the458

RGB camera, along with the corresponding depth image and459

TABLE 3. Experimental comparison with other datasets.

prediction. The figure does not cover the dataset A because it 460

did not provide satisfactory results. All images correspond to 461

predictions of the models trained on 270106 samples. It can 462

be observed that the predictions of model B contain false pos- 463

itives associated with the obstacles. Dataset B did not include 464

obstacles and apart from the hand the network also incorrectly 465

marks large objects in the scene. The results of dataset C 466

show the best agreement with the manually labelled result. 467

However, the predictions are less sensitive to the details such 468

as fingers of the open hand when the hand is more distant 469

from the camera. Results of the predictions generated by 470

model D are the most detail-sensitive, this results in false 471

positive errors which include regions pertaining to the objects 472

adjacent to the hand. Predictions of the CD model show 473

the similar results as the C model, but are more sensitive 474

to details. Generally it can be considered as an advantage, 475

however, it is worth noting that the forth sample contains a 476

large false positive region. 477

Comparing the results from the Table 2 and Figure 9 it 478

can be observed that when the dataset without obstacles, the 479

number of false positive predictions is high. Random back- 480

ground objects added to the dataset increase the accuracy of 481

the predictions. Additional noise may increase the sensitivity 482

to the shape details, nonetheless it has to be balanced to avoid 483

type I errors. 484

To compare our dataset with existing work in this area, 485

we adapted several well-known publicly available RGB-D 486

and depth-based hand datasets (see Table 3); their descrip- 487

tions were presented in section II.C. The following modifica- 488

tions were applied to adapt the labeled inputs of the datasets: 489

• Single class masks: (HandSeg - merging both hands’ 490

masks; DenseHands - binarized dense correspondence 491

was used as hand masks; RHD - all masks except hands 492

were filtered, ObMan - all masks except hands were 493

filtered). 494

• The 0-1 m depth range was mapped to the 0-255 byte 495

range according to the settings in the test environment. 496

The remaining range was truncated to the 1 m boundary. 497

The dataset adaptation code is available in the GitHub repos- 498

itory [31]. Our dataset input pipeline automatically adapted 499

all images to 320 × 240 resolution. We then trained the 500

U-Net model using adapted datasets with an 80% / 20% 501

training-validation split and the equivalent training settings. 502

The trained models were evaluated on a set of real camera 503

data representing the expected environment. Because Dense- 504

Hands, RHD, and HandSeg contained only hand masks, the 505
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FIGURE 9. Prediction of five sample images using different models: (a) RGB image of the scene, (b) corresponding depth image, (c) prediction of the
model B, (d) prediction of the model C, (e) prediction of the model D, (f) prediction of the model CD. White pixels represent the regions where the
prediction matches the ground truth (true positives), red pixels represent false positive errors, blue pixels represent false negative errors.

test dataset was prepared with two sets of masks (entire arms506

and hands only). Although the compared datasets contained507

different numbers of samples, we assume that with the same508

number of samples, no large difference would be observed509

because Table 2 shows that the difference in performance510

between 34k and 270k is not significant.511

As already mentioned, most work on related topics relies512

on some or all of the following assumptions: the hands are513

the closest object to the camera, the hand is in the center514

of the image, and there are no other objects in the camera515

image besides the hands. The results presented in Table 3516

are partially due to these assumptions and the fact that the517

environment for use varies. For our task these assumptions518

cannot be guaranteed, therefore when creating our dataset519

we tried to avoid these shortcomings by making the mod-520

elled scene contain random obstacles that force the net-521

work to learn the important features corresponding to the522

hands. In addition, the applied post-processing, which incor-523

porates blur, ensures a higher similarity of the generated524

images with the real ones. These conditions were necessary525

for our intended environment of use (industrial workspace),526

in which obstacles of undefined shapes can be found in the527

workspace.528

The results in the Table 3 correspond to the input data 529

for the trained network. The DenseHands dataset has high 530

similarity to our dataset A, where no objects and noise are 531

present in the scene and the training process tends to over- 532

fit. The images of this dataset feature low variability in hand 533

position and orientation. A slight improvement in results can 534

be observed in the Obman dataset, which includes several 535

objects in the surroundings. Yet the position of the hand is 536

mostly in the middle of the image and at approximately the 537

same depth. Better results are shown by the Handseg dataset, 538

which is not synthetic and has a natural representation of the 539

images acquired by the camera. However, the low variability 540

of the dataset features causes the trained model to perform 541

significantly worse than our presented dataset under specified 542

environmental conditions. The high variability of the images 543

in the RHD dataset makes the results better, but the absence 544

of noise that could make the synthetic dataset look similar to 545

the actual camera images limits the quality of the predictions 546

compared to a network trained on our dataset. 547

V. DISCUSSION 548

The initial experiment with the camera mounted above the 549

groundwith common items serving as obstacles was extended 550
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FIGURE 10. Real workplace prediction: (a) Depth camera image,
(b) prediction.

to a real-world scenario. We used existing workplace with551

industrial collaborative robot UR3e to test the trained mod-552

els. Figure 1a represents the real workplace with the robot,553

Figure 1b depicts the corresponding simulation model in554

CoppeliaSim. The improved simulation model utilized a555

mannequin with a modified hand mesh to capture the work-556

place images making the image more realistic. The obstacle557

was represented by the robot which was moved to random558

positions. An example of the generated dataset image and the559

prediction is shown in the Figure 1b (the dataset image is in560

the upper right corner and the ground truth image is located561

below). A new dataset consisting of 270k images was gener-562

ated in the above described scene with the same parameters563

as in the initial experiment above. Figure 10 depicts the depth564

image from the real camera and the corresponding output of565

the neural network, where the hand pixels are found and the566

robot is correctly filtered out.567

The proposed system of hand localisation represents the568

first stage for human-robot cooperation using gestures. The569

second stage is gesture recognition and localization of the570

hand key points (such as fingertips). This could be done with571

another neural network, which would utilize the determined572

hand location as an input. For the task of hand key points573

localization we applied an open-source RGB-based solution574

OpenPose which requires specification of a square area of575

the image, where the hand is present (region of the interest).576

The specification of the region of the interest was provided577

by our system - the result is illustrated in Figure 11. The hand578

region localized by our model is marked by the blue square579

and the extension of this region (marked by white square)580

was used as an input for OpenPose. OpenPose uses only the581

colour channel to localize the key points of the hand. The582

implemented system works as an alternative to the default583

OpenPose hand localization, which requires that at least the584

torso to bewithin the camera field of view in order to correctly585

detect the hand key points.586

Generating a representative dataset and avoiding ‘‘reality587

gap’’ in a simulation often requires highly detailed mod-588

eling of the target environment, which is time-consuming589

and requires extensive manual tuning of the simulated scene,590

since the generated scenes must represent a wide range of591

circumstances that may occur in reality. For this reason,592

we opted for the Doman Randomization technique because593

it does not require the simulated scene to be an exact594

representation of the real workspace, and can provide a wide595

FIGURE 11. Hand key points localization using OpenPose network.

range of conditions that allows the model to generalize. 596

In terms of labor required to prepare and acquire the dataset, 597

the synthetic dataset in our case remains an advantageous 598

option, since the simulation can easily be extended and 599

adapted to any specific workspace. For synthetic datasets, 600

the most time-consuming operation is the preparation of the 601

simulation, the collision rules for the obstacles and selecting 602

augmentations, which, however, need only be set once; after 603

that the process of data set creation is simple and generating 604

an arbitrary number of images takes little time compared to 605

manual arrangement and labelling of images. 606

The conventional approach of collecting a dataset from 607

images from real cameras requires manual compositing of the 608

workspace to create a sufficiently large and diverse dataset 609

and subsequent manual labeling, which is much more labor- 610

intensive. Repeatedly manually rearranging elements in the 611

workspace to provide enough diversity in the dataset needed 612

to generalize the trained network is tedious, time-consuming, 613

and still cannot come close to the diversity of scenes created 614

with Domain Randomization. 615

In terms of performance, a sufficiently complex scene 616

with an arbitrary number of added obstacle objects (which 617

represent objects present in the real environment) will not 618

affect the performance of the simulation, since it uses neither 619

complex rendering nor physical simulation. The simulation 620

can be further optimized to achieve even better performance. 621

VI. CONCLUSION 622

In this paper, we focused on generating synthetic datasets 623

for training depth image segmentation models for the hand 624

localization task. The use of a domain randomization tech- 625

nique enabled the rapid generation of an arbitrarily large 626

synthetic dataset that included a wide range of samples with 627

features important for accurate hand localization. The evalu- 628

ations performed on the trained models allowed us to analyze 629

the effects of the complexity of the dataset and the addi- 630

tional post-processing augmentations on the resulting image 631

segmentation accuracy. Moreover, these benchmarks allowed 632

us to identify the version of the dataset with the highest 633
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accuracy of over 90%. We provide new synthetic datasets634

for industrial environments suitable for various hand track-635

ing applications, as well as ready-to-use pre-trained models636

and simulation scenes that can be used to create custom637

datasets.638

In the future, we plan to extend the dataset generator to639

enable a simpler and more user-friendly solution for adapting640

the simulation to the requirements of the real workspace.641

The use of a specialized parameterized hand model allows642

the generation of an arbitrary number of gestures, which is643

necessary to further classify the gestures. We also plan to644

investigate the effects of image augmentations applied to645

the RGB-D synthetic datasets to improve the generalization646

capabilities of the trained models.647
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