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ABSTRACT In this paper, we focus on the problem of applying domain randomization to produce synthetic
datasets for training depth image segmentation models for the task of hand localization. We provide new
synthetic datasets for industrial environments suitable for various hand tracking applications, as well as
ready-to-use pre-trained models. The presented datasets are analyzed to evaluate the characteristics of these
datasets that affect the generalizability of the trained models, and recommendations are given for adapting the
simulation environment to achieve satisfactory results when creating datasets for specialized applications.
Our approach is not limited by the shortcomings of standard analytical methods, such as color, specific
gestures, or hand orientation. The models in this paper were trained solely on a synthetic dataset and were
never trained on real camera images; nevertheless, we demonstrate that our most diverse datasets allow the
models to achieve up to 90% accuracy. The proposed hand localization system is designed for industrial
applications where the operator shares the workspace with the robot.

INDEX TERMS Depth camera, hand tracking, hand localisation, image segmentation, synthetic dataset,

domain randomization.

I. INTRODUCTION

Safety is a key factor in collaborative robotics. With an
increasing tendency of working closer to the robot without
protective barriers, reactive systems based on collision detec-
tion became insufficient for fluent collaboration. Predictive
systems that use cameras, laser scanners, and other sensors to
detect the presence of the operator is one of the solution for
the future of human-robot cooperation. This paper focuses
on robot-assisted assembly conditions, where the operator
shares the workplace with the robot and collaborate in a close
proximity.

In human-machine interaction, hand gesture recognition
and processing is a key topic because they represent a nat-
ural way for humans to communicate non-verbally. Using
a recognized gesture, we can create a specific command to
control the robot; by knowing the position of the hand in the
workspace, we can guide the robot to a specific location;
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finally, information about the presence of the hand in the
workspace can be used for safety measures. Camera-based
safety systems often use detection and tracking, which are
utilized to localize the operator in the workspace and, poten-
tially, adapt the technological process [1], [2], [3] in order
to insure the safety of each operator. In our approach we
focus on localization of fingers, hands and whole arms in the
workplace from the top view camera. The output of the hand
recognition system can be used to control robotic applications
using various [4], [5], [6] gesture-based interfaces.

In this paper, we focus on the problem of semi-automatic
generation of synthetic datasets for training depth-image seg-
mentation models for the task of hand localization. Our work
contributes to the topic by providing new synthetic datasets
for industrial environments suitable for various hand track-
ing applications as well as ready-to-use pre-trained models.
We also provide a simulation scene that can be customized
and optimized for specific applications. We further elaborate
and analyze the characteristics of these datasets that affect
the resulting generalization ability of the trained models, and
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provide tips on how to adapt the used simulation environment
to achieve satisfactory results when creating datasets for cus-
tomized applications. The models in this paper were trained
exclusively on the synthetic dataset and were never trained
with real camera images, nevertheless, we demonstrate that
our most diverse dataset allows the models to achieve
90% accuracy.

Il. RELATED WORK

A. HAND LOCALIZATION

Over the years, approaches to dealing with the hand local-
ization problem have gradually improved. Initial color-based
methods analyze different components in the correspond-
ing color space (RGB, HSV) [7]. This approach usually
requires tuning the application for specific conditions and
environments, and therefore the results of these approaches
are strongly influenced by ambient lighting, background and
obstacles.

More sophisticated approaches are usually based on
machine learning models trained on a specific dataset. Modi-
fications and extensions to the dataset used allow the created
model to be generalized, making it less sensitive to changes
in the environment. Approaches with relatively limited gen-
eralization capability include methods such as support vector
machines [8], [9] and hidden Markov models [10]. With the
development and successful application of deep learning in
the field of image recognition, recent work in hand detection
has mainly focused on convolutional network models, which
have enabled to significantly increase the accuracy of image
segmentation methods [11]. Encoder-decoder networks and
their derivatives have been successful in solving the image
segmentation task in a wide range of conditions and environ-
ments. U-Net is an example of such a coder-decoder network
for image segmentation.

The majority localization methods generally use RGB
camera images because these cameras are widely available.
Specialized sensors such as Kinect and Leap Motion have
been applied in a large number of human body tracking
tasks as a source of information for human-machine interac-
tion. However, while the default skeleton tracking in Kinect
achieves high accuracy and can be even improved by correc-
tion [12], it cannot track the hands without seeing the entire
human body. On the other hand, the Leap Motion controller
has various drawbacks that make it unsuitable for a relatively
large workspace [13]. The use of depth camera can increase
the robustness of the application in terms of less emphasis on
color and more attention to the shape during detection. This
is advantageous in low-light conditions or if the user wears
protective gloves of different colors. In the vast majority of
work, the actual search of the hand region is performed in a
limited area that has been defined by a simple [14] heuristic
that allows the camera image to be cropped to contain only
the hand-related part of the depth image. Alternatively, some
approaches make use of sliding window predictions over the
entire image in order to localize the hand.
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B. DATASET COLLECTION

The most important step in training a machine learning model
is to obtain a dataset sufficiently large to accurately represent
the real-world domain in a wide range of circumstances and
contexts. A typical approach for obtaining such a dataset is
to manually label hundreds of thousands of images to define
the ground truth for each image, or to use third-party labeled
datasets available on various platforms. While obtaining sam-
ple data can be relatively straightforward, the subsequent
labeling of the data can take an enormous amount of time,
depending on the complexity of the scene and the desired
diversity of labels. Melireddi et al. have demonstrated the use
of coloured gloves [15] to label hand regions in the created
dataset image. Another approach to the labelling automation
is the assumption that the hand is the closest object to the
camera [16] and can be found by applying a color threshold
to the image. An alternative approach [17] is to use tracking
sensors, or infrared markers [18] fastened to the hand and
fingers to automatically generate the labels.

Datasets obtained by collecting images from a real camera
have the advantage of being close to the real domain but at
the same time - possess problem of limited range of captured
conditions, since the environment arrangements which were
provided during acquisition is limited and usually cannot
cover the full range of scenarios (e.g. changing positions of
obstacles in the view, lighting, reflections, shadows).

Synthetic datasets provide an alternative to traditional
manual collection and labeling. These datasets are cre-
ated programmatically by simulating a domain, or by com-
bining real images with a known ground truth into new
ones [19], or by combining these methods and overlaying
labeled objects over a randomized simulated scene [20].
Each method allows to produce arbitrary large fully-labeled
datasets [21]. Prepared simulated environment allows to gen-
erate extensive synthetic datasets by adjusting the conditions
and and applying augmentations to the generated images [22].
Keskin et al. demonstrated synthetic dataset generation based
on a fully simulated scene [23]. They used a 3D skinned mesh
with a skeleton defining parts of the hand and links of the
fingers, which were used for both animating the mesh and
creating the ground truth labels. This solution reduces the
cost of preparing datasets while increasing data diversity and
labeling accuracy.

In general, approaches to generating synthetic datasets can
be divided into two main groups depending on their appear-
ances: realistic and randomized datasets. Realistic datasets
have an obvious advantage: they are very similar to the
real environment, which allows the model to learn important
realistic characteristics of the domain. However, the use of
synthetic data entails the so-called ‘“‘reality gap”, which is
the inability to fully reproduce real-world data for numerous
reasons, including textures, lighting, and complex domain
specifics. All appearances generated by realistic simulations
can only cover a user-defined scale of conditions, e.g. day-
lighting, programmed object position and interactions. Thus,
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these generated environments represent only a subset of all
the conditions that may occur in reality. Achieving higher
photo-realism with high fidelity rendering engines comes at
the cost of computational resources and rendering time.

In an attempt to mitigate the ‘“‘reality gap” the opposite
approach can be used, in which domain randomization is
introduced to simulate a sufficiently large number of varia-
tions of all relevant domain features. For camera images, this
may include randomization of viewing angles, camera and
shader effects, lighting, material textures, color, shape, scale,
and relative position of objects, while maintaining ““sensible”
invariants and constraints, forcing the model to learn the
most important characteristics describing the objects being
sought. This can further simplify the setup and speed up the
simulation process, as requirements to simulation accuracy,
model quality, and rendering accuracy are reduced, which
saves computational resources.

C. HANDS DATASETS

Since datasets represent a crucial factor for successful imple-
mentation of hand tracking, a large variety of datasets have
been published recently. The EgoHands dataset [24] con-
tains 15K manually annotated RGB images of two people’s
first-person interactions. The annotations include semantic
pixel-level segmentation masks for each hand. A. Bojja et al.
in their work [25] presented an automatically labeled depth
image dataset (HandSeg dataset) containing 150K recordings
with random hand gestures in front of a depth camera. The
data acquisition method was based on color gloves, which
were used to create ground truth annotations using HSV color
thresholding.

As an alternative to real camera images, many research
groups used fully synthetic images rendered in customized
visualizers. The ObMan dataset [26] is an example of such a
fully synthetic approach, where RGB-D images were created
using realistic 3D models of the human body with one hand
holding commonplace objects. During the creation of the
dataset, the camera was randomly pointed at the hand holding
the object. The generated images varied greatly in pose,
background, texture, and lighting, and in total the dataset
contains 150k fully annotated depth and color images, with
hand keypoints, object and hand segmentation masks.

A similar dataset was presented in Zimmermann et al.
(RHD, Rendered Hand Pose dataset [27]) where an exten-
sive RGB-D dataset was generated using 3D character mod-
els matched with highly parameterizable hand 3D model
MANO [28], allowing segmentation masks to be collected
for each segment of each finger. In each frame, the selected
character model was posed in a random keyframe of any of
39 animated actions, and a new camera location was ran-
domly selected from a spherical vicinity around the selected
character hand. However, this limits the possible range in
which the hand can appear in the image, so that it only appears
in the centre of the image and never at the edges. The gener-
ated scenes additionally had randomized backgrounds, global
lighting, specular reflections, and directional light sources.
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An additional policy ensured that the camera was rotated so
that the hand was at least partially visible from the selected
viewpoint, and the random background image did not contain
a person.

Mueller et al. [29] presented pose and shape reconstruc-
tion of interacting hands, with model trained on synthetic
dataset containing depth images samples complemented
with RGB-encoded segmentation masks, where the color
represented correspondence to vertices of a MANO hand
model [28]. The model was additionally trained on a real
camera data to help model to generalize, since the generated
dataset did not contain any augmentation nor background
obstacles.

An extensive review of available depth-based hand datasets
is available in [30].

However, each of the discussed publicly-available datasets
posses one or several following disadvantages:

« based solely on RGB information;

« assumption that the hand covers the majority of the
image area;

« assumption that the hand is the closest object to the
camera;

« absence of obstructions around the hand.

In addition, the available datasets assume a different place-
ment of the camera than in our specific industrial storage.
These factors served as a motivation for creating own cus-
tomized dataset generator and subsequently training of the
network.

We focused on the depth image dataset because depth
capture is less sensitive to light, color, and texture, but rather
focuses on shape.

ill. METHODOLOGY

In order to localize the hand in the scene we propose a
method based on a convolutional neural network trained on
the synthetic dataset. The dataset is generated in the simulated
environment which is set according to the testing scenario on
real workspace. We compare the effects of different augmen-
tations and simulated scene settings on the resulting accuracy
of the trained neural network by evaluating the quality of the
segmentation on a testing dataset which comprises of images
obtained from a real sensor [31].

A. SYSTEM SETUP

Parameters and general appearance of the simulated scene
were set with respect to the presumed use in the industrial
application and in close correspondence to our experimental
workplace (Figure 1). In the workplace, a single depth camera
heading downwards is mounted 1 meter above the work table.
The initial experiments were carried out using setup with
a camera placed 1 m above the floor when no robot was
involved. We utilized RGB-D Intel RealSense D435 camera
as a sensor for capturing the depth images.

Specifications of the Intel RealSense D435 are:

¢ Outer dimensions: 90 x 25x25 mm.
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FIGURE 1. Experimental workplace with the robot (a) and simulation (b).

« Field of view: over 90° of depth diagonal field of view,
from 0.2 m to over 10 m range depending on lighting
conditions

o Streams: Up to 1280 x 720 active stereo depth resolu-
tion, up to 1920 x 1080 RGB resolution

In our experiment, we use a depth stream of 640 x 480,

which is processed using a modified Intel RealSense libre-
alsense library. In the pre-processing stage, we use a col-
orization filter that scales the depth information to an 8-bit
value with a minimum range of 0.2 m, which corresponds
to the minimum distance for proper camera operation, and
a maximum distance of 1 m, which is the distance between
the camera and the table. A customized hole-filling filter is
used to remove shadows from the depth image caused by the
stereoscopic camera technology. To fill in depth information
where it is missing, we use a static, unobstructed image of
the scene captured at the workstation. Image pre-processing
is completed by scaling to a resolution of 320x240, which
corresponds to the image size in the generated dataset.

B. DATASET GENERATION

For our application in an industrial environment with a spe-
cific camera orientation, we needed to create a custom dataset
with features appropriate to the intended working environ-
ment. To be able to create large datasets for a specific envi-
ronment, we developed a simulation-based dataset generator
that creates an image of the dataset as well as a ground
truth (labelled image). The simulation is implemented in the
CoppeliaSim simulation platform (Figure 2).

In the simulation environment, the real camera is simulated
by a vision sensor which is set according to the field of view
of the real camera. During generation of the dataset, hand
models are dragged through the field of view of the camera
(Figure 3) - this allows to generate images with the most of
the possible positions of the hand in the monitored space.
Vision sensor captures depth image of the scene, where pixel
values are scaled to 8-bit range and stored as a gray-scale
image. In addition to the hand object, we can place to the
scene different objects (geometric primitives) or noise. By our
definition, random background objects can be both closer
and further away from the camera than the hand, because in
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FIGURE 2. Simple dataset generator in CoppeliaSim.
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industrial conditions it is not possible to ensure that the hand
is always the closest object to the camera. Positions and ori-
entations of these objects are random, but they are governed
by the policy, which ensures that the created object never
overlaps the hand (considering fingertip and palm centre
point) in the camera view. If an overlay is found, the object is
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TABLE 1. Dataset conditions.

Dataset | Background Objects Post-processing
A R - -
B Low frequency i i
Perlin noise
c Low frequency | Geometric i

Perlin noise primitives

.| Blur with kernel size 7
Low frequency | Geometric .
D . . Lo and transparent high
Perlin noise primitives . .
frequency Perlin noise

moved to a different position until the requirement is satisfied.
By adding random objects at random positions to the scene
we attempt to decrease the sensitivity of the system to irrel-
evant items, which otherwise may be incorrectly detected as
fingers.

This experiment was conducted on four datasets with vary-
ing level of complexity. Figure 4 shows example images
taken from the generated datasets. Datasets differ by added
random background noise, blur and obstacles in the scene,
see Table 1. The post-processing applied to the images was
adjusted according to the real camera image: the added Perlin
noise was simulating the actual noise from the real sensor.
The images with random obstacles were additionally blurred
with a blur filter with kernel size 7. The hand model was
iteratively shifted with an increment in each direction to
cover the entire field of view of the sensor. The size of the
position increment relates to the size of the final dataset: we
use the increment of 5 mm which gives us 2346 images,
2 mm for 34166 images and 1 mm for 270106 images.
Orientation of the hand is semi-random and defined by the
rules which ensure that the hand and fingers are within the
field of view of the vision sensor: the fingertip point and
the centre point of the palm are ensured to be within the
truncated pyramid corresponding to the field of view of the
camera. Roll and pitch of the palm are constrained to £15°
and £30° respectively. The simulation scene utilizes two 3D
meshes of the right hand for dataset generation: an open hand
gesture and a gesture - pointing with index finger. In our
case we considered it sufficient, because the rules of scene
simulation ensured that each hand gesture could be observed
from multiple perspectives. Furthermore, our goal was only to
perform segmentation the hand pixels from the input image,
and we did not aim to classify the gestures (which otherwise
would have required us to provide sufficient samples for each
possible variation of each gesture in question).

The simulation also includes the second vision sensor,
which is set to only capture pixels pertaining to the hand and
the arm. This second sensor is placed at the same location as
the first sensor and its output image is binarized (see Figure 5)
and is considered as ground truth for the image segmentation
task. The pixel values of the binary image are represented
by 2 classes: hand-related pixels (1) and background-related
pixels (0).
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FIGURE 4. Dataset images generated with different setup: (a) Dataset A -
only the hand is captured, (b) Dataset B - the hand with background
noise, (c) Dataset C - obstacles with random position incorporated to the
image, (d) Dataset D - apart from obstacles, blur and additional noise is
added during post-processing phase.

(a) (b)

FIGURE 5. Dataset image (a) and corresponding binary ground truth (b).

C. NEURAL NETWORK TRAINING

The neural network used in the experiment is implemented
using TensorFlow. The architecture is based on U-Net [32]
which is a fast convolutional network for accurate image
segmentation. It has a contracting part consisting of convolu-
tional layers and max pooling operations (see Figure 6). This
part is responsible for capturing the context. The symmetrical
expanding part of the network provides precise localisation.
Our network contracting part consists of 5 convolutional
layers with increasing number of filters which are multiples
of 16. Convolutional layers are followed by pooling layers
with the size 2 x 2. Expanding side is a set of upsampling
deconvolution blocks.

We trained and validated models using the generated
datasets (A, B, C, D, CD) of different sizes (2346, 34166,
270106). The fifth dataset (CD) was generated by randomly
combining the C and D datasets.

All models were trained for 8 epochs with an initial learn-
ing rate of 0.001 with a total of 32 images per mini-batch.
20% of each corresponding dataset was used for validation.
For better sensitivity for both hand sides, we used horizontal
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FIGURE 6. U-Net architecture [32] (Created using [33]).

and vertical flip image augmentations during the training
stage because the datasets were generated only with the
model of the right hand.

Soft dice loss was used as the loss function. This loss
function is often used in segmentation tasks to assess the
similarity between two samples. For binary case, the loss is
based on the ratio of the number of correctly predicted pixels
to the total number of pixel of both prediction and the ground
truth and calculated based on the equation 1.

2 Z YVtrue Ypred
pixels

Loss =1 — (D
Z ytzrue + Z yiz;red

pixels pixels

where yye is the ground truth and ypq represents the net-
work output - prediction.

The training was performed on the laptop with 16 GB
of RAM, Intel Core i7-6700HQ CPU and with NVIDIA
GeForce GTX 1070 (8GB VRAM) graphic card.

Prediction of a single image takes around 1 ms, which we
consider a sufficient speed for processing of a video stream
of the camera.

Figures 7 and 8 depict the training and validation processes
for each 34k dataset. From both training and validation plots,
it may seem that the simplest dataset A was able to achieve
the best accuracy (in terms of mloU metric). However, in real-
ity this only means that this dataset is the simplest for the
adaptation of the network, because the simpler the dataset,
the higher the accuracy the network will achieve not only on
the training dataset but also on the validation dataset (because,
as mentioned above, the training and validation datasets are
composed of subsets of the original dataset generated in
the simulation with the same conditions). At the same time
the opposite result will be evident for the most demanding
datasets, which require the network to learn more important
features of the images. Only evaluation of the trained models
on the test dataset (which will be the same for all evaluated
models and will include the samples corresponding to the
real application) can serve as a real accuracy evaluation. This
evaluation will be done in the next section.

VOLUME 10, 2022

! Upsampling

Training Progress

96.0% 1
94.0% 4
92.0% 1
90.0% 1
e
[=]
E 88.0% 1
86.0%
— A 34k
84.0% —— B_34k
— C 34k
82.0% | —— D_34k
—— CD_34k
1 2 3 4 5 6 7 8

Epochs

FIGURE 7. Mean intersection over union of different models during
training process performed using training dataset.

IV. EVALUATION

In order to compare the impact of datasets, we propose an
evaluation dataset captured on a real sensor as a benchmark
and use it to measure the quality of the predictions generated
by the trained neural network models. This benchmark has a
quantitative evaluation using the metric of mean intersection
over union (IoU), which is represented by the ratio between
the overlap area and union area of the predicted and baseline
regions. In addition, we perform a qualitative evaluation of
the obtained results, where we examine the predictions and
explain the reason for the quantitative result.

Table 2 shows precision and recall values of the benchmark
dataset containing 100 manually-labelled camera images.
Rows of the table represent the models trained on differ-
ent datasets, while columns represent different sizes of the
dataset. For the benchmark test, we used a cluttered environ-
ment with various obstacles that had several characteristics,
such as sharp edges, rounded shape, glossy material, trans-
parent material, multiple oblong objects resembling arm and
finger. The reference scene was illuminated by both indirect
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Validation after epochs
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: : : : : :
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Epochs

FIGURE 8. Mean intersection over union (mloU) of different models after
validation performed on validation dataset.

TABLE 2. Mean loU for different models and number of samples.

IoU Precision Recall
2.3k | 34k [ 270k | 2.3k | 34k | 270k | 2.3k | 34k |270k
48% | 9% - 19% | 7% - 199%|100% | -

69% | 80% | 82% | 46% | 63% | 64% | 86% | 95% | 97%
68% | 88% | 90% | 78% | 89% | 96% | 55% | 88% | 89%
1% | 73% | 74% | 79% | 52% | 50% | 66% | 93% | 95%
CD|61% |87% | 89% | 42% | 86% | 89% | 69% | 89% | 90%

=R NoRN--RIFNIE

and direct sunlight, and can generally be considered more
complex than we would expect for industrial use.

The data in Table 2 show that predictions based on the
model A do not provide sufficient accuracy and the result
does not significantly improve with an increasing amount of
samples. The best results are obtained with models based on
dataset C and the combined dataset C+D. With the increasing
dataset size the accuracy of predictions increases. Additional
test with the unified datasets C and D (dataset CD) with the
total number of 540212 samples did not further improve the
accuracy.

The fast convergence observed in Figure 7,8 could have
been a result of over-fitting and, indeed, the results of
test subset evaluation (see Table 2) showed that the sim-
plest datasets (A, B) did have difficulty generalizing, which
apparently caused their over-fitting; however, more complex
datasets allowed the networks to successfully generalize and
over-fitting did not occur. We also assume that the observed
fast convergence is partially due to the fact that the utilized
U-Net architecture is rather simple, the inputs are small, and
the training domain contains only one target class.

The second evaluation is qualitative, in which we review
the predicted images and inspect the meaning of quantitative
result along with the influences caused by the differences
in datasets. Figure 9 shows the scene as captured by the
RGB camera, along with the corresponding depth image and
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TABLE 3. Experimental comparison with other datasets.

Dataset Size |Objects | Labelling method | mIoU |mAP | mAR
Ours (CD) 270k Yes Synthetic 89% | 89% | 90%
RHD [27] 44k No Synthetic 68% | 65% | 59%

HandSeg [15] 150k No Markers (gloves) | 59% | 54% | 32%
ObMan [26] 148k Yes Synthetic 47% | 72% | 44%

DenseHands [29] | 85k No Synthetic 57% | 9% | 92%

prediction. The figure does not cover the dataset A because it
did not provide satisfactory results. All images correspond to
predictions of the models trained on 270106 samples. It can
be observed that the predictions of model B contain false pos-
itives associated with the obstacles. Dataset B did not include
obstacles and apart from the hand the network also incorrectly
marks large objects in the scene. The results of dataset C
show the best agreement with the manually labelled result.
However, the predictions are less sensitive to the details such
as fingers of the open hand when the hand is more distant
from the camera. Results of the predictions generated by
model D are the most detail-sensitive, this results in false
positive errors which include regions pertaining to the objects
adjacent to the hand. Predictions of the CD model show
the similar results as the C model, but are more sensitive
to details. Generally it can be considered as an advantage,
however, it is worth noting that the forth sample contains a
large false positive region.

Comparing the results from the Table 2 and Figure 9 it
can be observed that when the dataset without obstacles, the
number of false positive predictions is high. Random back-
ground objects added to the dataset increase the accuracy of
the predictions. Additional noise may increase the sensitivity
to the shape details, nonetheless it has to be balanced to avoid
type I errors.

To compare our dataset with existing work in this area,
we adapted several well-known publicly available RGB-D
and depth-based hand datasets (see Table 3); their descrip-
tions were presented in section II.C. The following modifica-
tions were applied to adapt the labeled inputs of the datasets:

o Single class masks: (HandSeg - merging both hands’

masks; DenseHands - binarized dense correspondence
was used as hand masks; RHD - all masks except hands
were filtered, ObMan - all masks except hands were
filtered).

o The 0-1 m depth range was mapped to the 0-255 byte

range according to the settings in the test environment.

The remaining range was truncated to the 1 m boundary.
The dataset adaptation code is available in the GitHub repos-
itory [31]. Our dataset input pipeline automatically adapted
all images to 320 x 240 resolution. We then trained the
U-Net model using adapted datasets with an 80% / 20%
training-validation split and the equivalent training settings.
The trained models were evaluated on a set of real camera
data representing the expected environment. Because Dense-
Hands, RHD, and HandSeg contained only hand masks, the
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FIGURE 9. Prediction of five sample images using different models: (a) RGB image of the scene, (b) corresponding depth image, (c) prediction of the
model B, (d) prediction of the model C, (e) prediction of the model D, (f) prediction of the model CD. White pixels represent the regions where the
prediction matches the ground truth (true positives), red pixels represent false positive errors, blue pixels represent false negative errors.

test dataset was prepared with two sets of masks (entire arms
and hands only). Although the compared datasets contained
different numbers of samples, we assume that with the same
number of samples, no large difference would be observed
because Table 2 shows that the difference in performance
between 34k and 270k is not significant.

As already mentioned, most work on related topics relies
on some or all of the following assumptions: the hands are
the closest object to the camera, the hand is in the center
of the image, and there are no other objects in the camera
image besides the hands. The results presented in Table 3
are partially due to these assumptions and the fact that the
environment for use varies. For our task these assumptions
cannot be guaranteed, therefore when creating our dataset
we tried to avoid these shortcomings by making the mod-
elled scene contain random obstacles that force the net-
work to learn the important features corresponding to the
hands. In addition, the applied post-processing, which incor-
porates blur, ensures a higher similarity of the generated
images with the real ones. These conditions were necessary
for our intended environment of use (industrial workspace),
in which obstacles of undefined shapes can be found in the
workspace.

VOLUME 10, 2022

The results in the Table 3 correspond to the input data
for the trained network. The DenseHands dataset has high
similarity to our dataset A, where no objects and noise are
present in the scene and the training process tends to over-
fit. The images of this dataset feature low variability in hand
position and orientation. A slight improvement in results can
be observed in the Obman dataset, which includes several
objects in the surroundings. Yet the position of the hand is
mostly in the middle of the image and at approximately the
same depth. Better results are shown by the Handseg dataset,
which is not synthetic and has a natural representation of the
images acquired by the camera. However, the low variability
of the dataset features causes the trained model to perform
significantly worse than our presented dataset under specified
environmental conditions. The high variability of the images
in the RHD dataset makes the results better, but the absence
of noise that could make the synthetic dataset look similar to
the actual camera images limits the quality of the predictions
compared to a network trained on our dataset.

V. DISCUSSION

The initial experiment with the camera mounted above the
ground with common items serving as obstacles was extended
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(@) (b)

FIGURE 10. Real workplace prediction: (a) Depth camera image,
(b) prediction.

to a real-world scenario. We used existing workplace with
industrial collaborative robot UR3e to test the trained mod-
els. Figure la represents the real workplace with the robot,
Figure 1b depicts the corresponding simulation model in
CoppeliaSim. The improved simulation model utilized a
mannequin with a modified hand mesh to capture the work-
place images making the image more realistic. The obstacle
was represented by the robot which was moved to random
positions. An example of the generated dataset image and the
prediction is shown in the Figure 1b (the dataset image is in
the upper right corner and the ground truth image is located
below). A new dataset consisting of 270k images was gener-
ated in the above described scene with the same parameters
as in the initial experiment above. Figure 10 depicts the depth
image from the real camera and the corresponding output of
the neural network, where the hand pixels are found and the
robot is correctly filtered out.

The proposed system of hand localisation represents the
first stage for human-robot cooperation using gestures. The
second stage is gesture recognition and localization of the
hand key points (such as fingertips). This could be done with
another neural network, which would utilize the determined
hand location as an input. For the task of hand key points
localization we applied an open-source RGB-based solution
OpenPose which requires specification of a square area of
the image, where the hand is present (region of the interest).
The specification of the region of the interest was provided
by our system - the result is illustrated in Figure 11. The hand
region localized by our model is marked by the blue square
and the extension of this region (marked by white square)
was used as an input for OpenPose. OpenPose uses only the
colour channel to localize the key points of the hand. The
implemented system works as an alternative to the default
OpenPose hand localization, which requires that at least the
torso to be within the camera field of view in order to correctly
detect the hand key points.

Generating a representative dataset and avoiding ‘‘reality
gap” in a simulation often requires highly detailed mod-
eling of the target environment, which is time-consuming
and requires extensive manual tuning of the simulated scene,
since the generated scenes must represent a wide range of
circumstances that may occur in reality. For this reason,
we opted for the Doman Randomization technique because
it does not require the simulated scene to be an exact
representation of the real workspace, and can provide a wide
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FIGURE 11. Hand key points localization using OpenPose network.

range of conditions that allows the model to generalize.
In terms of labor required to prepare and acquire the dataset,
the synthetic dataset in our case remains an advantageous
option, since the simulation can easily be extended and
adapted to any specific workspace. For synthetic datasets,
the most time-consuming operation is the preparation of the
simulation, the collision rules for the obstacles and selecting
augmentations, which, however, need only be set once; after
that the process of data set creation is simple and generating
an arbitrary number of images takes little time compared to
manual arrangement and labelling of images.

The conventional approach of collecting a dataset from
images from real cameras requires manual compositing of the
workspace to create a sufficiently large and diverse dataset
and subsequent manual labeling, which is much more labor-
intensive. Repeatedly manually rearranging elements in the
workspace to provide enough diversity in the dataset needed
to generalize the trained network is tedious, time-consuming,
and still cannot come close to the diversity of scenes created
with Domain Randomization.

In terms of performance, a sufficiently complex scene
with an arbitrary number of added obstacle objects (which
represent objects present in the real environment) will not
affect the performance of the simulation, since it uses neither
complex rendering nor physical simulation. The simulation
can be further optimized to achieve even better performance.

VI. CONCLUSION

In this paper, we focused on generating synthetic datasets
for training depth image segmentation models for the hand
localization task. The use of a domain randomization tech-
nique enabled the rapid generation of an arbitrarily large
synthetic dataset that included a wide range of samples with
features important for accurate hand localization. The evalu-
ations performed on the trained models allowed us to analyze
the effects of the complexity of the dataset and the addi-
tional post-processing augmentations on the resulting image
segmentation accuracy. Moreover, these benchmarks allowed
us to identify the version of the dataset with the highest
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accuracy of over 90%. We provide new synthetic datasets
for industrial environments suitable for various hand track-
ing applications, as well as ready-to-use pre-trained models
and simulation scenes that can be used to create custom
datasets.

In the future, we plan to extend the dataset generator to
enable a simpler and more user-friendly solution for adapting

the

simulation to the requirements of the real workspace.

The use of a specialized parameterized hand model allows
the generation of an arbitrary number of gestures, which is
necessary to further classify the gestures. We also plan to
investigate the effects of image augmentations applied to
the RGB-D synthetic datasets to improve the generalization
capabilities of the trained models.
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