# An Enhanced Yield Potential Spatial Clustering Method, accounting for Seasonality, Heterogeneous Morphology and Climate Variability. An application in the Umbria Region (Central Italy) for the SMARTAGRI PROJECT



# Francesco Reyes<sup>1</sup>, Nada Mzid<sup>1</sup>, Raffaele Casa<sup>1</sup>, S. Pascucci<sup>2</sup>, S. Pignatti<sup>2</sup>, G. Chiodini<sup>3</sup>

<sup>1</sup> Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy <sup>2</sup>Consiglio Nazionale delle Ricerche, Rome, Italy <sup>3</sup>Consorzio Agrario e Progetto SMARTAGRI, Perugia, Italy Email: freyes@unitus.it



## Introduction

#### State of the Art

Homogeneous management of heterogeneous fields:

• Inefficiencies and environmental risks (e.g. use excess of resources; N leaching)

## Use of clustering:

- recognize spatial patterns in crop fields
- identify of homogeneous zones for management (e.g. fertility)
- understand causes of spatial and temporal variability in crop yields
- bulk clustering incorporates contrasting & confounding factors

Vegetation responds to weather and soil conditions

• seasonal climatic conditions may improve our understanding of spatio-temporal yield patterns

#### **Objectives**

The SMARTAGRI platform is created based on a Regional Development Plan of the Umbria region in order to assist farmers in the agricultural management practices

#### This research project aims at:

• improving clustering method by accounting for crop seasonality, climatic variability, heterogeneous morphology for applications in the context of the SMARTAGRI platform

# **Data Set Description**

#### Study area:

- Farms in hilly area (Umbria region), Central Italy
- Vector files of agricultural fields

## Imagery (5 years EO)

- Landsat8-8 : 30m resolution, 10 days frequency, 2013-2015
- Sentinel-2 : 10m resolution, 5 days frequency, 2015-2019

## Meteorological data:

• Daily precipitation, 2013-2019



## Results



NDVI classified according to climatic year

## Discussion

> Clustering results clearly differenciate seasonality-based from bulk clustering > Both clustering methods in some cases failed to correctly classify high/low yielding field areas.

#### Pros

• Considering separate years improved understanding of spatio-temporal variability and identification of different yield areas in some cases.

Cons



- Need larger number of images from different climatic years for sound classification
- Sentinel-2 time series was too short (<5 years) so it was intergrated with Landsat (30 m)
- Wrong classification of climatic years risks to increase the error in respect to bulk clustering

#### **Future works**

- Include topography in the clustering
- Identify climatic indexes suitable to better represent interannual crop response to climate (e.g. SPEI)
- Use longer and more homogeneous S2 time series
- Consider multitemporal yield maps and soil properties maps for validation
- Possibly select images based on proxy of phenological stage
- Often clusters near borders (mixed pixels)  $\rightarrow$  remove edge pixels

# Acknowledgements

We acknowledge the farmers Tamburini and Biavati for providing yield map data and useful discussions.