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ABSTRACT

Context. After fundamental ground-based, balloon-born, and space experiments, and, in particular, after the COBE/FIRAS results,
confirming that only very small deviations from a Planckian shape can be present in the CMB spectrum, current and future CMB ab-
solute temperature experiments aim at discovering very small distortions such as those associated with the cosmological reionization
process or that could be generated by different kinds of earlier processes.

Aims. Interpretation of future data calls for a continuous improvement in the theoretical modeling of CMB spectrum. In this work we
describe the fundamental approach and, in particular, the update to recent NAG versions of a numerical code, KYPRIX, specifically
written to solve the Kompaneets equation in a cosmological context. It was first implemented in the years 1989—-1991 to accurately
compute the CMB spectral distortions under general assumptions.

Methods. Specifically, we describe the structure and the main subdivisions of the code and discuss the most relevant aspects of its
technical implementation. After a presentation of the equation formalism and of the boundary conditions added to the set of ordinary
differential equations derived from the original parabolic partial differential equation, we provide details on the adopted space variable
(i.e. dimensionless frequency) and space discretization, on time variables, on the output results, on the accuracy parameters, and on
the used auxiliary integration routines. The problem with introducing the time dependence of the ratio between electron and photon
temperatures and of the radiative Compton scattering term, both of them introducing integral terms into the Kompaneets equation, is
addressed in the specific context of the recent NAG versions. We describe the introduction of the cosmological constant in the terms
controlling the general expansion of the Universe in agreement with the current concordance model, of the relevant chemical abun-
dances, and on the ionization history, from recombination to cosmological reionization. The global computational time, the impact of
the various aspects of the code on it, and the accuracy of the numerical integration are also discussed.

Results. We present some of fundamental tests we carried out to verify the accuracy, reliability, and performance of the code. We
focus on some quantitative tests of energy conservation and the time behavior of electron temperature. A comparison of the results
obtained with the update and the original version of the code is presented for some representative cases. Finally, we focus on some
properties of the free-free distortions relevant for the long wavelength region of the CMB spectrum.

Conclusions. All the tests demonstrate the reliability and versatility of the new code version and its accuracy and applicability to the
scientific analysis of current CMB spectrum data and of much more precise measurements that will be available in the future. The
recipes and tests described in this work can also be useful for implementing accurate numerical codes for other scientific purposes
using the same or similar numerical libraries or for verifying the validity of different codes aimed at the same problem or similar ones.
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1. Introduction

The CMB spectrum emerges from the thermalization redshift,
Ztherm  ~ 10°=107, with a shape very close to Planckian,
owing to the tight coupling between radiation and matter
through Compton scattering and photon production/absorption
processes, radiative Compton, and bremsstrahlung. These pro-
cesses were extremely efficient at early times and able to re-
establish a blackbody (BB) spectrum from a perturbed one
on much shorter timescales than the expansion time (see e.g.
Danese & de Zotti 1977). The value of zjerm (Burigana et al.
1991a) depends on the baryon density parameter, €, and the
Hubble constant, Hy, through the product Q = Q,(Hy/50)* (Hy
expressed in kms™! Mpc™!).

On the other hand, physical processes occurring at redshifts
Z < Ztherm May leave imprints on the CMB spectrum. Therefore,

the CMB spectrum carries crucial information on physical pro-
cesses occurring during early cosmic epochs (see e.g. Danese &
Burigana 1994 and references therein), and the comparison be-
tween models of CMB spectral distortions and CMB absolute
temperature measures can constrain the physical parameters of
the considered dissipation processes (Burigana et al. 1991b).

The timescale for the achievement of kinetic equilibrium be-
tween radiation and matter (i.e. the relaxation time for the photon
spectrum), fc, is

2 —_
fo = rye”;e—Tc ~45% 108(To/27K) ¢ Q7 (1 +207%s, (1)
&

where t,. = 1/(ncorc) is the photon-electron collision time, T
and T, = Ty(1 + z) are respectively the electron and the CMB ra-
diation temperature, ¢ = (T./T;); kT, /mec? (with me the elec-
tron mass) is the mean fractional change of photon energy in a
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scattering of cool photons off hot electrons, i.e. T > T;; Ty is
the present radiation temperature related to the present radiation
energy density by €0 = aTg (here a = 8nl3k* /(he)?, I = ©*/15).
A primordial helium abundance of 25% in mass is assumed in
these numerical estimates. It is useful to introduce the dimen-
sionless time variable y.(z) defined by

© di "7 d(1 + 2) fex
o= [ S @
1 +2z Ic

where ¢ is the time, fy is the present time, and foxp, = 1/H =
1/[(da/df)/a] is the expansion time, and where a = 1/(1 + z) is
the cosmic scale factor normalized to the present time.

In particular, by neglecting the cosmological constant (or
dark energy) contribution, we have

T -2
fexp = 63><1019(27K) (14272
Q-1 1 + Zeq -2
X |k(1+2) + (1 + Zeq) — o T+- s, (3

where zeq = 1.0 X 10%(T/2.7K)™*Qy, is the redshift of equal
non relativistic matter and photon energy densities and xk =
1 + N,(7/8)(4/11)*/3 takes into account the contribution of rel-
ativistic neutrinos to the dynamics of the Universe'; here N,
is the number of relativistic, 2-component, neutrino species
(for 3 species of massless neutrinos, k ~ 1.68). While assum-
ing Qg = 0, Qx = 1 — Qu, and neglecting the radiation energy
density, as possible at relatively low redshifts, we have

3 -1/2
texp = (1/Ho) [Qm(l +2) +1-Qy s, 4)

where 1/Hy =~ 3.1 x 107h7!'s (h = Hy/100).

The time evolution of the photon occupation number, (v, t),
under the combined effect of Compton scattering and of pho-
ton production processes, namely radiative Compton (RC)
(Gould 1984), bremsstrahlung (B) (Karzas & Latter 1961;
Rybicki & Lightman 1979), plus other possible photon emis-
sion/absorption contributions (EM)?, is described well by the
complete Kompaneets equation (Kompaneets 1956; Burigana
et al. 1995):

on 111 0] ,|,0n
1 - - 1
ot ¢ic x*Ox [x [¢6x+n( )
+ on +[@} + @} . 5)
Ot [ge | 0t]g |01 |pm

This equation is coupled to the time differential equation govern-
ing the electron temperature evolution for an arbitrary radiation

! Strictly speaking the present ratio of neutrino to photon energy den-
sities, hence the value of «, is itself a function of the amount of energy
dissipated. The effect, however, is never very strong and is negligible
for very small distortions.

2 A process that should be included is the cyclotron emission. On the
other hand, for realistic values of cosmic magnetic field, the cyclotron
process never plays an important role for (global) CMB spectral distor-
tions when ordinary and stimulated emission and absorption are prop-
erly taken into account and CMB realistic distorted spectra are con-
sidered (Zizzo & Burigana 2005). In fact, the cyclotron term may be
significant in the case of deviations of n from the BB distribution at
the electron temperature, only at very long wavelengths, correspond-
ing to the cyclotron frequency, where, during the formation of a spec-
tral distortion, FF and RC are able to keep 7 extremely close to the
BB equilibrium.
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spectrum in the presence of Compton scattering, energy losses
due to radiative Compton and bremsstrahlung, adiabatic cooling,
plus possible external heating sources, ¢ = a~>(dQ/dz),

(32/27)q
3nck

dTe _ Teq,C -T. _ 2Te + [dTe] + (6)
RC,B

dt  (27/28)te,  texp dr
Here, Teqc = [h f (1 + pvtdv]/[4k f m3dy] is the Compton
equilibrium electron temperature (Peyraud 1968; Zeldovich &
Levich 1970), to, = 3mec/4or€,, € ~ €0(1 + 2)* with €9 = aT(‘)1
the radiation energy density today, and x = hvy/kTy = hvo(1l +
2)/kTo(1 + z) is a dimensionless, redshift-independent frequency
(vo being the present frequency).

2. Setting up the problem

Partial differential linear equations are divided into three classes:
elliptic, parabolic, and hyperbolic. The Kompaneets equation is a
parabolic partial differential equation (Tricomi 1957). Solutions
to this equation under general conditions have to be searched
numerically, because it is impossible to find analytical solutions
that accurately take the many kinds of cosmological scenarios
and the great number of relevant physical processes into account.
The numerical code KYPRIX was written to overcome the lim-
ited applicability of analytical solutions and to get a precise com-
putation of the evolution of the photon distribution function for
a wide range of cosmic epochs and for many cases of cosmolog-
ical interest (Burigana et al. 1991a). KYPRIX makes use of the
NAG libraries (NAG Ltd 2009).

Besides these libraries, a lot of numerical algorithms are used
in the code: we used some of the routines available to the sci-
entific community, but often we wrote routines dedicated to a
specific task. Among the formers, the DO3PCF routine of the
current version of the NAG release has been used to reduce the
Kompaneets equation into a system of ordinary differential equa-
tions (Dew & Walsh 1981; Berzins et al. 1989; Berzins 1990;
Skeel & Berzins 1990). The DO3PGF routine used in the first
versions of KYPRIX is no longer available (see also Sect. 3.2).
The two codes work adopting the same numerical framework or,
in other words, the DO3PCF routine of the current NAG release
corresponds to the DO3PGF routine of the NAG release used in
the first versions of KYPRIX. On the other hand, they come from
different technical implementations and exibit remarkable dif-
ferences in several aspects. The main differences between the
two routines, their use, and the corresponding implications for
the code KYPRIX will be described in this work. To use the
DO3PCEF routine, we have to put the Kompaneets equation in the
form

NPDE

U.
P.._J+

—m 6 m
g+ 0= X a_X(X Ri); %)

J=1

where Y is the time variable and X the spatial variable. Here
i = 1 and NPDE = 1, and P;j, O;, R; depend on x,t, U,dU/dx,
the vector U is defined below. In our case, P;j; = 1 and m = 0
(Cartesian coordinates). Note that P;;, O;,R; do not depend
on dU/or.

The variables that enter in this equation are introduced and
used in logarithmic form to have a good and essentially uniform
accuracy of the solution in the whole frequency range under con-
sideration. They are X = log(x) and U = log(n). Hereafter,
we use the variables X, U, Y for what concerns the informatic
aspect of the problem, keeping the use of the variables x, 7,y
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for considerations directly linked to physical aspects. The func-
tion R; is determined only by the inverse Compton term, while
the other physical processes, i.e. at least Compton scattering,
bremsstrahlung, and radiative Compton, are included in the
function Q;. To reduce Eq. (7) into a system of ordinary differen-
tial equations, the DO3PCF routine uses the method of lines: the
right member of Eq. (7) is discretized, reducing the calculation
of partial derivatives in terms of finite values of the solution vec-
tor U on all the points of the X axis grid. Spatial discretization
is made by the method of finite differences (Mitchell & Griffiths
1980). The resulting system of ordinary differential equations is
solved using a differentiation formula method. The choice of the
time parameter was driven by the need to have a very simple
form of the Kompaneets equation. Finally, a “temperature inde-
pendent” (time) Comptonization parameter

d ! kT: .,
Y=y = f% = f neUTcﬁdI s (8)
ti

has been found to be particularly advantageous (Burigana et al.
1991a).

2.1. Boundary conditions

Integrating equations of the type of Eq. (7) means to calculate
the time evolution of the function U(X,Y), for a given initial
condition U(X, 0). In fact, the problem is also called “problem
at initial conditions”. Numerically, the derivatives of U are re-
placed by finite differences between values of U computed on a
grid of points (in X) and the differential equation is replaced by
a system of more simple equations. However, in the presence of
the only initial condition, this system is singular (Press et al.
1992). For this reason, resolving partial differential parabolic
equations needs boundary conditions. In general, boundary con-
ditions mean additional relations written to be joined to the sys-
tem derived from the discretization to finite differences.

Therefore, a good statement of the problem needs the def-
inition of appropriate boundary conditions. The capability of a
refresh of these conditions along the integration in time leads
more stability to the solution evolution because of the evolu-
tion of the radiation field. Thanks to the opportunity of hav-
ing the correct value of ¢ for each time step, the update of
the boundary conditions can be physically motivated (see also
Sect. 3.2.6). The limits of the frequency range considered are
Xmin = 102(Xmin) = —4.3 and Xyax = log(xmax) = 1.7. Of course,
we want a solution of the Kompaneets equation over all the fre-
quency range where it is possible to measure the CMB. Also, we
need to consider a frequency range wide enough to contain, in
practice, all the energy density of the cosmic radiation field. The
frequency range is so wide for the other two reasons described
below.

During the time evolution, some spurious oscillations of the
solution may appear at points close to the boundaries. These ef-
fects may be partially amplified if, for the computational reasons
discussed in the following, the necessary refreshing of the elec-
tronic temperature is not made for every time step (but they could
also occur independently of the need to refresh ¢ — for example
for cases at constant ¢). Fixing the frequency integration range
limits far from the interval where we are interested in computing
the photon distribution function allows prevention of the “con-
tamination” of these solution by possible spurious oscillations in
the frequency range of interest.

We can generally assume that a Planckian spectrum at X, is
formed before recombination on a shorter timescale than the ex-
pansion time and, in contrast, at xyax the shape of the spectrum
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is unknown. Thus, we implemented in the code the possibility
of adopting a particular case of Neumann boundary conditions,
i.e. the requirement that the current density, in the frequency
space, is null at the boundaries of the integration range (Chang
& Cooper 1970):

0
¢ (1 +7)

F =0. C))

X=XminsXmax

This choice of boundary conditions formally satisfies the re-
quirement of the problem when we integrate the Kompaneets
equation in the case of Bose-Einstein—like distortions (with a
frequency dependent chemical potential, u = wp(x), vanishing at
very low frequencies). In fact, such distorted spectra are indis-
tinguishable from a blackbody spectrum at sufficiently high and
at low frequencies.

Of course, it is possible to make a different choice of the
boundary conditions by selecting Dirichlet-like conditions. In
this case the photon occupation number at the boundaries of
the integration interval does not change for the whole integra-
tion time. (In general cases, keeping constant conditions at the
boundaries could be dangerous for the continuity of the solution.
Nevertheless, this condition can work for some specific prob-
lems — typically for problems with constant ¢).

3. A detailed view on KYPRIX

The code KYPRIX was written to solve the Kompaneets
equation in many kinds of situations. The physical processes
that can be considered in KYPRIX are: Compton scattering,
bremsstrahlung, radiative Compton scattering, sources of pho-
tons, energy injections without photon production, energy ex-
changes (heating or cooling processes) associated to ¢ # 1 atlow
redshifts, radiative decays of massive particles, and so on (see
e.g. Danese & Burigana 1994 for some applications). This code
could be easily implemented to consider other kinds of physi-
cal processes. Various kinds of initial conditions for the problem
can be considered, and many of them have already been imple-
mented in KYPRIX. The first obvious case is a pure Planckian
spectrum. Several ways to model an instantaneuos heating im-
plying deviations from the Planckian spectrum have been intro-
duced: a pure Bose-Einstein (BE) spectrum or a BE spectrum
modified to become Planckian at low frequencies (this option
could be exploited to integrate the Kompaneets equation with a
constant ¢ and constant boundary conditions); a grey-body spec-
trum; a superposition of blackbodies.
The data are saved in five files:

DATIL. This file contains the information about the specific
parameters of the problem with a general description
of its main aspects.

In this file we give the evolution of interesting quan-
tities, such time, redshift, ¢, and other quantities in-
herent to the physical and numerical aspects of the
problem (see also Sect. 5.1).

It contains the grid of points for the X axis used by
the main program (remember that we are using a di-
mensionless frequency), a Planckian spectrum at tem-
perature T, and the solution vector U (that is to say
log(n)) at y = 0 (starting time).

This is the fundamental output file, which gives the
solution of the Kompaneets equations at the desired
cosmic epochs.

DATIP.

DATIG.

DATIDE.
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DATIT. It is similar to the file DATIDE, but it contains the
solution in term of brightness temperature (i.e. equiv-
alent thermodynamic temperature; see Eq. (12) in
Sect. 3.2.2).

3.1. Main subdivisions

The code is divided into several sections and, from a general
point of view, is structured as described here.

1. the main program, where many actions can be carried out:
choice of the physical processes, choice of the cosmological
parameters, initial conditions, characteristics of the numeri-
cal integration (accuracy, number of points of the grid), time
interval of interest, choice of the boundary conditions, chem-
ical abundances, ionization history;

2. subroutine PDEDEF is the subprogram where the problem is
numerically defined. This subroutine is also divided in sub-
sections to allow modifications in a simple and practical way;

3. subroutine BNDARY. Here the boundary conditions are nu-
merically specified;

4. Subroutines and auxiliary functions perform specific
calculations.

3.2. Technical specifications and code implementation

The first version® of KYPRIX worked with the Mark 8 version
of the NAG numerical library and were based on the rou-
tine DO3PGF. The version of the NAG numerical library cur-
rently distributed is the Mark 21, so an update of the code
KYPRIX is necessary to adapt it to this new package.

When KYPRIX starts running, it asks for all the input data:
from the declarations of the output files’ names to the integra-
tion accuracy and features. In the following sections we give a
description of the various aspects of the code (and of its update),
trying to give relevant hints about computational aspects of the
code.

3.2.1. Grid

The frequency integration interval is divided into a grid of points
(the mesh points): the larger the number of points, the smaller the
adopted frequency step. We adopted an equispaced grid in X. It
is possible to use a very dense grid (for example 36 001 mesh
points corresponding to 36 000 frequency steps). In general, it is
necessary to use at least 3001 mesh points to have an accurate
enough solution.

We find a big difference between the two NAG versions, not
reported in the documentation of the routine DO3PCEF. In the first
version (DO3PGF), the subroutine where the partial differential
equation is defined adopted the same mesh points defined in the
main program. In the Mark 21 version the calculation is carried
out in a different manner: the mesh points used in the subrou-
tine PDEDEEF is shifted of half spatial step with respect to the
mesh defined in the main program. In this way, the mesh points
in the PDEDEF subroutine will be exactly in the middle of the
steps defined in the grid of the main program. For this reason, the
limits of the integration interval are not considered in the mesh
points in the subroutine PDEDEF, and they are used only for the
boundary conditions.

The effect of this feature implies the definition of new pa-
rameters that play a fundamental role in the subroutine PDEDEF.

3 Written in 1989 by C. Burigana.
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The integral quantities in the Kompaneets equation (necessary to
define the radiative Compton term in the kinetic equations and
the electron temperature) are computed once for any time step,
inside the PDEDEF subroutine. For this computation, arrays of
dimension equal to the number of mesh points of the x variable
as defined in the PDEDEF subroutine are used. Therefore, a par-
ticular care must be taken in the definition of the dimension of
the arrays defined in KYPRIX. Those used in the main program
have dimensions equal to the number of points of the mesh de-
fined in the main program. The same dimension is given for the
arrays defined for the boundary conditions. On the other hand,
the major number of arrays are used in the PDEDEF subroutine
to compute the integral quantities. The “inner” grid adopted in
the PDEDEF subroutine is based on mesh points in the middle of
the spatial steps of the main program grid, so the two grids can
not work with the same point number; in fact, the arrays used in
the PDEDEF subroutine have dimension NPTS — 1. Therefore,
in the main program and in the subroutine BNDARY we have to
work with arrays based on the formula:

(B-A)

XD =A+T-DX NEs—1

(10)

with 1 < X < NPTS,

to define the correspondence between the grid of NPTS points
and the X position, while we need another expression able to
shift the grid in the PDEDEF subroutine by a half step and based
on NPTS — 1 mesh points:

(B-A) (B-A) 1
(NPTS— D)) " |2NPTS = 1) | (1

X(D)=[A+UT-1)x

with 1 <X < NPTS - 1.

For continuity reasons, we need to define (according to the
choices made in the main program) the solution vector, contain-
ing the photon initial distribution function, at the beginning of
the integration also according to this grid definition. This vec-
tor is used by the PDEDEF subroutine as the initial spectrum
adopted for the computation of the rates of the physical pro-
cesses, and, of course, it is then renewed at every time step in-
crementation.

3.2.2. Output

Concerning the output files, the updated version of KYPRIX
stores a new vector containing the “inner” X grid used by the
PDEDEEF subroutine, XXGR (XGR refers to the main program
X grid).

In addition, we preferred to have the possibility of perform-
ing the conversion of the solution into equivalent thermody-
namic temperatures directly into the code and save it in a new
output file (DATIT). The conversion relation is

)CTO
In(1 + 1/n)

(we remember that in the code X = log,,(x) and U = log;(1)).
The fundamental reason for performing this conversion di-
rectly in the code is associated to the extreme accuracy required
for the solution in the case of very small distortions, of particular
interest given the FIRAS results (Fixsen et al. 1996). During the
first tests, the conversion of the solution in brightness tempera-
ture was performed at the same time as the solution visualiza-
tion, through the IDL visualization program. Saving the solution

12)

Tterm,equiv =
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into files is typically performed, not for all the points of the grid,
but for a reduced grid of, for example, 300 equidistant points
along the original grid to avoid to store files of large size, use-
less for our scope, given the interest for the CMB continuous
spectrum (by definition, the Kompaneets equation is not appro-
priate to treating recombination lines). If the considered distor-
tions were very small, then the solution at each specific “inner”
grid point could be affected by a numerical uncertainty that is not
negligible in comparison with the very small deviations from a
Planckian spectrum relevant in these cases. This numerical error
is greatly reduced (becoming negligible for our purposes) by the
averaging over a suitable number of grid points. Of course, the
storing of the solution directly on a limited number of grid points
makes this averaging no longer possible on the stored data. It is
then necessary to average the solution values in intervals cor-
responding to the output x grid directly into the code. In many
circumstances, the diagram shape derived by applying the con-
version to brightness temperature only on the stored averaged
solution still deviates at high frequencies from the effectively
computed solution displayed by considering all the “inner” grid
points because of the high gradients in the photon distribution
function and/or in the brightness temperature that makes it diffi-
cult, or impossible, to find a general rule for the solution binning
that simultaneously works properly for the two solution repre-
sentations. This problem is avoided by converting the solution
vector in equivalent thermodynamic temperature before the bin-
ning of its values and then applying the binning to the equivalent
thermodynamic temperature. The result is then a very clean and
precise brightness temperature diagram, even for very small dis-
tortions.

Other minor changes we made in the output data, where we
pass from real to double precision, and in the frequency of stor-
ing results into the output files.

3.2.3. Equation formalism

A necessary update of the code was performed to adapt it to
the different formalism adopted by the new version of the NAG
routine. This regards the expression of the Kompaneets equa-
tion in the PDEDEF subroutine. In particular, the DO3PGF rou-
tine adopted the following expression of the partial differential
equation:

NPDE

ou;
Cigy =X Z

9 | om
sleo

oU;
Y ox

+ F, (13)

J=1
where i = 1,2,..., NPDE (number of partial differential equa-
tions); C;, F; depends on X, Y, U,0U/0X; G; j depends on X, Y, U
and U is the set of solutions values (Uj, U, ..., Unppge). The
expression now adopted by the DO3PCF routine is represented
by Eq. (7).

It is simple to translate the code from the old to the new
formalism. In the case NPDE = 1. In this case, we have simply
that R, contains both the function G; and the vector solution
derivative with respect to X according to

oU,
Ri = =L 14
1 =G X X (14)

At this point, it is necessary to apply only the following
substitutions:

Q]=—F1 and P]]ZC]. (]5)
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With respect to this formalism, it is not difficult to adapt the var-
ious terms of the Kompaneets equation to the DO3PCF routine.
The terms that describe radiative Compton, bremsstrahlung, (op-
tional) electromagnetic processes, and part of the contribution of
the Compton scattering are counted in the function Q;. Instead,
the second derivative of the solution vector with respect to X,
which represents part of the inverse Compton rate, is counted in
the function Ry, so, according to these settings, we can write:

0 = FC + FBREM + FRAD + FDEC, (16)

where FC stands for the contribution of the Compton scattering,
FBREM the bremsstrahlung one, FRAD the radiative Compton
one, and FDEC represents the contribution of the radiative de-
caying of particles. These terms are written in the form

au (U . (0U
ouU 1
2x10%10Y [ — +2 1
+2x 10 O(E)X+)ln(10) a7
and
GRS .
_ a0
FBREM + FRAD =~ x{ o7 [(e ) 1]}

D
X (FFO x W x 1.5¢7'° x FGAUNT + %11 X GDC), (18)

where FFO and DCO are the coefficients for the rates
of bremsstrahlung and radiative Compton, respectively;
FGAUNT and GDC represent the Gaunt factor corrections
for bremsstrahlung and radiative Compton, respectively; I
is an integral quantity refreshed at every time step (see also
Sect. 3.2.7).

The inverse Compton contributes to R in this way:

ou -
R, = X X ¢ x In(10)72.
Finally, we can put Py = 1.

Furthermore, it is possible to add other source terms
in Eq. (16).

19)

4

3.2.4. Boundary conditions

Also notable are the differences between the input expressions
defining the boundary conditions. The DO3PGF routine adopted
an expression of the form

ou;
PNU; + Qi(Y)a—X = Ri(Y, U), (20)
where i = 1,2, ...,NPDE and P;(Y), R;(Y, U), Q,(Y) are functions

to be defined. A quite different notation is used to provide the
boundary conditions in the DO3PCF routine
BiX, NRi(X, Y, U, Ux) = yi(X, Y, U, Ux), (21

where i = 1,2,..,NPDE and Bi(X,Y)R(X,Y,U,Uyx) and
vi(X, Y, U, Uyx) are functions to be defined (Ux = dU/dX). As

4 For example, an already implemented subroutine models a term,
called FDEC here, to be added in Eq. (16), which acconts for contribu-
tions of possible radiative decays of massive particles in the primordial
Universe.
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a consequence of this notation, Neumann like boundary condi-
tions can be now specified according to the expression

sy =1
y(1) = =XVA x (10YD + 1) x In1072,

(22)
(23)

where XVA is the vector related to the X position computed in
A, and the dimension of both the equations corresponds to the
differential equation number. Similar conditions are defined for
the other extreme of the integration interval [A, B].

3.2.5. Accuracy parameters

Another considerable difference between the two library ver-
sions regards the definition of the integration accuracy param-
eter. DO3PGF used three parameters for monitoring the local er-
ror estimate in the time direction, supplying a good versatility.
RELERR and ABSERR were respectively the quantity for the
relative and absolute components to be used in the error test.
The third parameter, INORM, was used to define the error test.
If E(i, j) is the estimated error for U; (the vector solution) at the
Jjth point of the X grid, then the error test was

— INORM = 0 = |E(i, j)| < ABSERR + RELERR x |U(i, j)|

- INORM = 1 = |E(,j)l < ABSERR + RELERR x
max, UG, j)

— INORM = 2 = ||E(i, j)ll < ABSERR +RELERR X ||U(i, j)lI.

Instead, according to the new library version we have to define
only one parameter ACC, a positive quantity that monitors the
local error in the time integration. If E(i, j) is defined as above,
then the error test is

|Ei, I = ACCX (1 + UG, jD. (24)

This is equivalent to the error test implemented in the
DO3PGF routine in the case INORM = 0 and ABSERR =
RELERR(=ACC).

3.2.6. Electron temperature

During the numerical integration, some subprograms use the dis-
tribution function calculated at that time to compute ¢. The in-
tegrals to be computed are those that we find in the expression
for geq,c:

T, Jy 0+ Datdx

T

= (25)
Y 4 fo nx3dx

¢eq,C =

In this calculation, the integration range is obviously the inte-
gration interval considered for the problem: A < X < B (that,
in terms of mesh ordering, corresponds to the range between 1
and NPTS or NPTS — 1). All the points of the grid are used to
compute these integrals. The integration is based on the NAG
DO1GAF routine, suitable for tabulated functions. The update
value of ¢ is also used in the boundary conditions.

In the previous version of the code KYPRIX, integral quan-
tities were computed through a specific modification of the NAG
package implemented by the KYPRIX code author that allowed
recovery of the whole vector solution at each time step in the
subroutines (and in particular in PDEDEF), while the original
package made the solution only available in PDEDEF separately
at each grid point (the package originally designed for “pure”
partial differential equation, without terms involving integrals of
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the solution). This modification, possible thanks to the availabil-
ity of the NAG sources (and, in practice, thanks to the relative
simplicity of the early library versions), permitted updating the
integral quantities perfectly according to the “implicit” scheme
adopted by the code for the integration in time. This is no longer
feasible. Therefore, the update of the integral quantities must
now be performed with a “backward” scheme, saving the so-
lution at the previous time step in a proper vector and using it in
the computation at the given time step. As is well known, “back-
ward” schemes are typically less stable than implicit schemes.
And, in fact, we verified in some cases the difficulty of the
DO3PCF routine to work implementing the update of the quanti-
ties corresponding to the integral terms in the Kompaneets equa-
tion (and in particular of ¢) for each time step. This was likely
caused by numerical instabilities.

We then introduced a new integer control parameter into the
code: STEPFI. It determines the frequency for the update of
the dimensionless electron temperature ¢, relevant, of course,
in case we want to perform an integration with a variable ¢. We
have checked that updating the integral terms in the Kompaneets
equation not at every time step, but after a suitable number of
time steps does not affect the accuracy of the solution. This
is because the time increasing in the code is performed with
very small steps, while the physical variation of ¢ occurs on
longer timescales’. See Sect. 5.2.2 for tests regarding the impli-
cations of this new implementation of the electron temperature
evolution.

3.2.7. Radiative Compton

In computing of the radiative Compton term there is an integral
term, /;, given by the numerator of the right member of Eq. (25)
(see Eq. (16) in Burigana et al. 1995), so it is necessary to harmo-
nize its update according to the parameter STEPFI discussed in
the previous subsection. In fact, a possible asynchronous update
of it and ¢ could create numerical instabilities and the crash of
the code run, as physically evident from the strong relevance of
both radiative Compton term (at least at high redshifts) and elec-
tron temperature for the evolution of the low-frequency region
of the spectrum.

3.2.8. Integration routines

The global accuracy of the code KYPRIX depends on the ac-
curacy of the solver for the partial differential equation, as well
as on the accuracy of all the other routines dedicated to differ-
ent specific computations. In this section we focus on the rou-
tines of numerical integration used in the KYPRIX. As discussed
in the previous sections, the DO1GAF routine has been used
for tabulated functions. On the other hand, KYPRIX involves
computing the integrals of various functions defined by analyt-
ical expressions, namely the parameters characterizing differ-
ent types of initial conditions for the distorted spectra, such as
the amount of fractional injected energy, the electron tempera-
ture, and the relationship between the different time variables
entering into the code (see also Sect. 4.1). Ultimately, the better
accuracy in these specific computations implies a better global
accuray for KYPRIX. In the early release of the code KYPRIX,
the NAG DO1BDF routine was used to calculate integrals of a

5> Of course, for physical processes with a stronger variation in the
electron temperature, the accuracy parameter (see previous subsection)
should be good enough to force the code to adopt sufficiently small time
steps.
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function over a finite interval. The same task can be carried out
by the DO1AIJF routine. This code offers a better accuracy than
DO1BDF (DO1AJF is in fact suitable also to integrating functions
with singularities, both algebraic and logarithmic). After the rou-
tines substitution, the results show a strong increase in accuracy.
In particular, this improvement offers the possibility of also in-
vestigating very small distortions that require a very precise de-
termination of all the relevant quantities because the absolute
numerical error of the integration must be much smaller than the
(very small quantities) of interest in these cases. In particular,
the quantity Ae,/€; (Where €, is the actual density energy and ¢;
the energy density corresponding to the unperturbed distribution
function just before the energy injection) must be constant dur-
ing all the integration process in the absence of energy injection
terms, according to the energy conservation. The increase in pre-
cision on the computation of this quantity was noteworthy, now
always keeping inside a few percent of the physical value (and
its possible physical variation; see Sect. 5.1) of the same quan-
tity independently of the magnitude of the considered distortion,
at the same time allowing an accurate check of the global ac-
curacy of the code, improved thanks to better computation of all
the integral terms appearing in the Kompaneets equation. The re-
markable improvement in energy conservation, even in the case
of very small distortions, is an important feature of the new ver-
sion of KYPRIX that makes is applicable to a wider set of cases.

4. New physical options
4.1. Cosmological constant

About ten years ago, the relevance of the cosmological con-
stant term (or of dark energy contribution) was probed by
a wide set of astronomical observations of type la super-
novae (Perlmutter et al. 1999; Riess et al. 1998). We then
updated the numerical integration code KYPRIX to include
the cosmological constant in the terms controlling the gen-
eral expansion of the Universe. In particular the input back-
ground cosmological parameters considered in the code are
now T, k, A[=Hy/(100 km s~ Mpc™H]1, Qur, Qp, Q. Qk, i.e. the
present CMB temperature, the contribution of massless neutri-
nos, the Hubble constant, the (non relativistic) matter and baryon
energy density, the energy densities corresponding to cosmolog-
ical constant and curvature terms.

To compute the proper cosmic evolution of the various
terms, a scale factor parameter w (increasing with time) (Silk
& Stebbins 1983), defined by

a _ mec? 1 9 _1
w= o= Ko 14z 1.98 x10°0(1 +2),
has been adopted (here ® = T/3° K, and the index 1 refers to
a particular epoch, when the CMB energy density was equal to
the electron mass®: kr(a;) = mec?). To write a suitable expres-
sion for its time evolution we have to introduce two new key
parameters

(26)

Pmi

Pri

h2
B= =3.5x% 10—65 Qo (27)

which is the initial ratio between matter energy density and ra-
diation energy density, and

1 8 1z 81 _a [mec? 12
— =(=6Gp| =|=G= =0.0765"" 28
Tg1 ( 3 p ]) [ 3 Cz( k ) ] ° 8

6 The parameter w is analogous to the scale factor a, but normalized at

the epoch in which a = a,, that is to say when kT = mec>.
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defined as a initial gravitational time scale. The quantities with
the index 1 refer to the epoch when a = a;, with the index 0
when ¢ = 1y (today); p,1 and p,,; are related to p; and p,, by

w,\! 1 wo 3 1
Pr = POr(_D) =Pri—75 Pm= pOm(_) =Pml 3> (29)
w w w W’
respectively.
Now we can define an equation for the evolution of w:
1/2
W 8
— = [—Gp(w)}
w 3
8m _|prik  pm1 PkKI
= —G + — + — + N 30

where we have included the contribution of massless relativistic
neutrinos in the term « (see also footnote 1. The term « should be
properly evaluated considering also possible energy injections
after neutrino decoupling). After some calculations, we can fi-
nally write the completed and updated expression of d¢/dw:

1 T,1 W
L 9! 31

2
Qg/m W Qpjm @
1+p ‘“(1 * TTeaxio0 T 2 16axi07

where Q,/, = Q./Q,.

The equation for @ has to be inserted in the expression giv-
ing dy = a.dt, which is inside the integral used to compute the
time variable y(w) = fw N dy because we set y = 0 when the in-
tegration starts at w = wS:r:m (or equivalently at 7 = zy). Finally,
the expression for the time evolution of w and y are related by
the variable change:

dy=adi=a. L dw=a. 2L aw. (32)
dw O w
where a. = ¢/(te1w*) (Te1 = 2.638 X 1077 @3 /(h*Qy)).
Implementation of the cosmological constant and curvature
terms makes the code KYPRIX suitable to being applied to in-
teresting cases at late ages, including cosmic epochs at z < 1
when A supplies the greatest contribution to the expansion rate
of the Universe. Remarkable examples are spectral distortions
associated to the re-ionization of the Universe, which starts at
relatively low redshifts (z < 10-20) in typical astrophysical sce-
narios. For the sake of completeness, a few words are needed
about the computation of the time evolution in the code. The
subroutine called WDIYO is the core of the time evolution in
KYPRIX: it computes the value of w given a value of y. This
process takes advantage of the definition of y as the integral of
dy and, of course, it happens at each time step. To do this, we
make use of a double precision version of the function ZBRENT,
from “Numerical Recipes” (Press et al. 1992).

4.2. Chemical abundances

In this new version of the code, it is possible to choose the pri-
mordial abundances of H and He. We have consistently com-
puted the electron number density, 7., involved in the different
physical processes. In the previous implementation, it was as-
sumed a fixed abundance of H and He (and full ionization). The
electron number density was then given by

v 7
nfree = pot »~ B2 °

- (33)

(& (S
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where pp is the baryon density and my the mean mass of a
baryon. Now, denoting by fy the fraction in mass of primor-
dial H and considering that n, = ny + 2ny., we have

free_ntol_ 1+pr_b'

B B 2 nmy, (34)

€ (&

This obviously affects the physical processes involved
in the code. Compton scattering, radiative Compton, and
bremsstrahlung depend linearly’ on nf™.

4.3. lonization history

In the past years, CMB observations are achieving a very high
accuracy, in particular regarding the angular power spectrum of
temperature anisotropies, but also for that of E mode polariza-
tion and cross-correlation (see e.g. Nolta et al. 2009). A detailed
understanding of the cosmological reionization process is crucial
for precisely modeling the power spectrum of CMB anisotropies
in comparison with current data, while a better treatment of re-
combination is very relevant in view of the data expected by the
forthcoming ESA Planck satellite® (The Planck Collaboration
2006).

Accurate modeling of the ionization history is also crucial
for precisely computing of CMB spectral distortions in view
of the comparison with data from a future generation of high—
sensitivity experiments. We then included these aspects in the
current implementation of KYPRIX. In particular, the fraction
of each state of ionization of the relevant elements (H and He)
has been implemented.

The effects of this implementation is negligible’ in prac-
tice for the radiative Compton, because this process is impor-
tant at high redshifts when the medium is fully ionized. Instead,
Compton scattering and bremsstrahlung rates are significantly
influenced by this implementation. Once introduced, the elec-
tron ionization fraction in the code, y., which gives the num-
ber of electrons that takes part in the physical processes, we can
choose different ways the active fractions of elements can play
their roles in the phenomena.

Given y., from the charge conservation law, we have a con-
straint on the number of the free ions in the considered plasma.
The simplest way to account for them in the code is to assume
an equal fraction of ionization for H and He. Of course, this is
a toy model, but this parametrization was very useful for testing
the code.

A somewhat more accurate treatment of the physics of reion-
ization/recombination processes implemented in the code is
based on the Saha equation:

Misile _ 2 gi1 Sl

ni Ay |

(35)

where n; is the density of atoms in the ith state of ionization,
ne the electron density, g; the degeneracy of states for the i-
ions, € the energy required to remove i electrons from a neutral

7 For bremsstrahlung, the dependence on the densities of nuclei is now
explicit.

8 http://www.rssd.esa.int/planck

° For example, for z $ 107 and Ae./e; = 107> we find that, for both
BE and Comptonization like distortions, the rate of radiative Compton
is less than 1/1000 of the rate of bremsstrahlung at each frequency of
the grid.
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atom, and A the thermal de Broglie wavelength of an electron,
defined by

2
Ao P
ZﬂmekBT

(36)
Providing the electron ionization fraction defined as'’
B niree
Xe = S (37)

we can compute the unknowns yy, Yu+, XHe» XHe*» XHe » defined
as the relative abundances of the different ionization states of
each element with respect to the global number density of the
element. The Saha equation provides the ratio between two state
of ionization of a single specie, once given the electron density

and the temperature:
ny+ NHe*
- 9 - 9

ny NHe

O (38)
Nye*

To recover all the unknowns we need other relations. These addi-
tional conditions are provided by the charge conservation and the
nuclei conservation. From charge conservation it is possible to
recover the contribution of the electrons related to a single specie
to the total number of free electrons. The latter is of course re-
lated to the ionization fraction of all the involved species and can
be written as:

1 _
o = 2 2 (52
s

4

where fy is the fraction of primordial H described in the previ-
ous section. In Eq. (39) it is possible to identify the number of
electrons coming from H and from He.

The nuclei conservation law separately for H and He is ex-
pressed by

) (et + X )} , (39)

S = 22 [y Ot + )] (40)
my
1 —
”t}(l)é Sl [( fH)(XHe + XHet + XHet) | - (41)
niy, 4

Providing the electron ionization fraction and the temperature,
it is possible to build two separate systems (one for H and one
for He) in order to recover the considered ionization fractions.
The code can ingest a table with the desired evolution of y. and,
as needed for a physical modeling of cosmological reionization,
of the electron temperature.

The best way to perform the exact calculation of the
rates of considered processes in scenarios involving reioniza-
tion/recombination uses a co-running code, coupled to KYPRIX,
able to supply the ionization fraction for all the species. For the
recombination process, we developed an interface that allows the
code to call an external program, in our case RECFAST (Seager
et al. 1999), and run it with the same cosmological parameters
selected for KYPRIX. Then KYPRIX will read the output table
from RECFAST and use the ionization fractions for the calcula-
tion of the rates of the processes, allowing a more detailed es-
timation of the spectral distortion arising during the recombina-
tion process (Wong et al. 2008). If we are interested in standard
recombination, we adopt the equilibrium electron temperature
(Eq. (25)). A consistent modeling of a modified recombination
should provide the evolution of both electron temperature and
ionization fractions (at least y.).

10 It is common to find y. normalized to the H number density in the
literature. Obviously, the code can switch between the two conventions.
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5. Tests on code performance, reliability,
and accuracy

Once terminated the updating of the numeric integration code,
we carried out many accuracy and performance tests. Obviously,
we checked the physical meaning of the numerical solutions
provided by the code comparing them with the existing ana-
lytical solutions that in some cases can be considered as good
approximations of exact solutions. In general, a code of good
quality must have high numerical precision compared to the
knowledge, both theoretical and observational, of the problem.
Various routines, mainly from the NAG package, but also from
the “Numerical Recipes” (Press et al. 1992) package, we used
for several specific computations. Since different routines can
solve the same mathematical problems using different numerical
methods and/or implementations with different settings and in-
put parameters, we verified that the adopted routines allow the
appropriate accuracy and efficiency. In the following we report
on some specific quality tests of the numerical solutions. We
comment now briefly on the code computational time.

To evaluate the global CPU time of the code, we performed
many runs with very different settings. These times we carried
out testing the code on a machine with 4 Alpha CPUs, but effec-
tively using only one CPU (now we are running the code on IBM
Power5 Processors). The code’s global CPU time ranges from a
few minutes, for cases in which the integration starts at low red-
shifts, to about 5 h for some cases starting at very high redshifts
(y(z) = 5). There are many variables that play a role in determin-
ing the global CPU time. The complete Kompaneets equation in
fact involves several terms. In the code KYPRIX we can select
the physical processes to be considered in the numerical inte-
gration, and the global CPU time increases with the number of
activated processes.

Of course, the global CPU time depends on the parameters
related to the numerical integration characteristics. The number
of points adopted for the X grid (see Sect. 3.2.1) has a strong in-
fluence on the global CPU time. Clearly, the integration accuracy
improves with NPTS, and in many cases it must be set to a very
high value. We find that the global CPU time is approximately
proportional to NPTS (#cpy o« NPTS).

The parameter that plays the most relevant role in determin-
ing the global CPU time is the accuracy required for the time
integration. The final solution precision depends on the value of
the corresponding parameter ACC. Only for very high accuracy
(ACC < 107'2-10'%) does the CPU time reach the duration of
some hours while keeping ACC ~ 1073 the integration is car-
ried out in a few minutes. The limits imposed by CMB spectrum
observations drive us to investigate the small distortions in par-
ticular. It is then necessary to work with low values of ACC (in
general, S107%).

After assessing of the better choice for using of the param-
eters of the various numerical routines and the definition of the
accuracy of the integration in time, we carried out several tests
to verify the physical validity of the code results.

5.1. Energy conservation

In the code output file DATIP, we stored values of several pa-
rameters of interest. Two of them provided very useful informa-
tion on the goodness of the numerical integration. The first one
is the ratio, €,/€;, between the radiation energy density at each
time and the energy density corresponding to the unperturbed
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Fig. 1. Error in the energy conservation expressed in terms of rela-
tive (%) deviation from its input value of the quantity Ae, /€; = 1073. The
accuracy of the integration in time is set to ACC = 107!2 (see also the
text for further details on computation). Solid, dot-dashed, and dashed
lines refer to an energy injection occurred respectively at y,(z) ~ 1.5,
0.25, 0.01. Obviously, this error further decreases improving the accu-
racy parameter adopted in the numerical integration.

distribution function before the distortion'" in the absence of dis-
sipation processes. The exact energy conservation is represented
by the constance of this ratio during the integration. To quan-
tify the accuracy supplied by KYPRIX, the values of €,/¢; we
stored at the start of the integration and at many times thereafter.
In order to estimate the precision of the energy conservation, we
define the quantity:

ERR, = I(e-/ Ei)t:tsmn - (&/ 5i)z>zm,.|’
(e/ fi)z:zm,. -1

(42)

which gives the relative induced error in the energy conservation
with respect to the initial value of Ae, /€ or, more formally, the
relative error induced by numerical uncertainty on the amount of
fractional injected energy. Typical results obtained starting from
a superposition of blackbodies are reported in Fig. 1.

Since the same absolute numerical integration error corre-
sponds to a larger relative error for a smaller distortion, i.e.
for smaller Ae,./¢; in these models, we could in principle ex-
pect a relative degradation of the energy conservation for de-
creasing distortion amplitudes. Our tests in fact indicate an in-
crease in the relative degradation of the energy conservation for
decreasing distortions when the same accuracy parameters are
adopted. On the other hand, one can select them according the
specific problem. For example, considering an energy injection
of A€, /& = 107 occurred at z ~ few x 10%, an accuracy equal to
ACC = 1078 is fully satisfactory for a very precise calculation
of the photon distribution function; while for earlier processes,
such as for z 2 few x 10°, and for the same injected fractional
energy, the accuracy parameter needs to be set to ACC < 10712
to assure a calculation with ERR, less than 1%. We find that for
suitable choices of the integration accuracy parameters, ERR,
can always be kept below ~0.05% without requiring too a long
computational time. Finally, we note that in some circumstances

' For example, for a Bose-Einstein distorted spectrum with a dimen-
sionless chemical potential 1, produced by an energy dissipation with
negligible photon production /€ = f(uo)/¢**(up) (see e.g. Sunyaev
& Zeldovich (1970); Danese & de Zotti (1977) and also Egs. (8) and (9)
in Burigana et al. (1991a) for the definition of f(uo) and ¢(ug) for
arbitrary values of po; for py < 1, f(up) =~ 1-1.11uo and @) =~
1-1.368u).
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Fig.2. Comparison between the present time solution for the
CMB spectrum obtained from the old version of the numerical code
(top panel; adapted from panel a of Fig. 1 in Burigana et al. 1995)
and the current one (bottom panel). See the text for further details on
computation parameters. Dashed (dot-dashed) line refers to an energy
injection occurred at y,(z) =~ 0.01 (yp(z) ~ 0.25). In the case of the old
version of the code we report also the analytical approximation (dotted
line) described by a Comptonization spectrum plus a free-free distortion
(see Eq. 50).

the scheme for the electron temperature evolution in the new ver-
sion of KYPRIX (backward differences), different from that used
in the original one (implicit scheme), could imply some small
discontinuities in the evolution of the electron temperature and
of A€, /€. On the other hand, we have verified that this does not
affect the accuracy of the solution, because of the very small am-
plitude of these discontinuities (together with their localization
to a very limited number of time steps) and of the corresponding
energy conservation violation.

5.2. Comparative tests
5.2.1. Comparing solutions

The first kind of test is a simple comparison between the re-
sults obtained with the updated version of KYPRIX and those
obtained with the original version for the same set of input
parameters.

To do this, we have considered some interesting cases car-
ried out in the past. In particular we used the input parameters
adopted in (Burigana et al. 1995) where semi-analytical descrip-
tions of the numerical solutions of the Kompaneets equation
were also reported. We report here cases characterized by a spe-
cific amount of exchanged fractional energy Ae, /e = 107*. We
started the integration from a redshift corresponding to yn(z) =~
0.25 in one case and to yn(z) =~ 0.01 in another. The input cos-
mological parameters are Hy = 50, Q, = 0.03, k = 1.68, Ty =
2.726 K. The results given by the update version of KYPRIX are
fully consistent with those reported in Burigana et al. (1995) (see
Fig. 2 and note the excellent agreement between the results of the
two codes). Moreover, since that paper also provided a semina-
lytical description of the solution of the Kompaneets equation, it
is clear that the good agreement of the numerical results obtained
with the original and update code represents further confirmation
of the validity of the analytical description.
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5.2.2. Electron temperature behavior

While the energy exchange between matter and radiation is led
by Compton scattering (in the absence of external energy dissi-
pation processes), electrons reach the equilibrium Compton tem-
perature (Peyraud 1968; Zeldovich & Levich 1970), T¢q, in a
shorter time than the expansion time. For y, < 1, (late heat-
ing processes) Compton scattering is no longer able to signifi-
cantly modify the shape of the perturbed spectrum, and the final
electronic temperature ¢¢ (remember that ¢ = T./T;) immedi-
ately after the decoupling is very close to ¢eq = Teeq/Tr. On the
other hand, for energy injections at redshifts corresponding to
yn = 5, Compton scattering can establish kinetic equilibrium be-
tween matter and radiation. This corresponds to a Bose-Einstein
spectrum, with a final electron temperature given by (Sunyaev &
Zeldovich 1970; Danese & de Zotti 1977)

Gr(yn 2 5) = ¢pEe = (1-1.119) "4,

where (<) is the usual dimensionless chemical potential.
Moreover, in this case the evolution of the chemical potential,
1(2), the relation between it and the amount of fractional energy
injected, A€/¢;, depends on the energy injection epoch.

For the intermediate energy injection epochs, corresponding
to yp S 5, the final value of ¢ (a function depending on yy) is
between the values of ¢pg and ¢.q, because the Compton scat-
tering works to produce a Bose-Einstein like spectrum anyway
(Burigana et al. 1991a). At these epochs the relation between the
chemical potential and the amount of fractional injected energy
injected is simply given by (Sunyaev & Zeldovich 1970; Danese
& de Zotti 1977):

A
o~ 1425

1

(43)

(44)

By exploiting the numerical results, a simple formula for ¢ can
be found (Burigana et al. 1995):

k5 —yn
. = - — — + 5 45
dt(yn) Skt (Peq — #BE) + ¢BE (45)
here k = 0.146 is a constant derived from the fit. Moreover, this
expression represents an accurate description of the evolution of
¢ for any value of yy. In fact, for a value of y (y < yy) they find

&Y, yn) = dr(yn — y). (46)

In these cases, as in many situations of interest, the perturbed
spectrum of the radiation (immediately after the heating process)
is described by a superposition of blackbodies and the equi-
librium temperature is given by (Zeldovich & Sunyaev 1969;
Zeldovich et al. 1972; Burigana et al. 1995)

Geq = (1 +5.4u)p;,

where ¢; = T;/T, = (1 + Ae/e)™* =~ 1 — u and the
Comptonization parameter u could be related to the amount of
fractional energy exchanged by (Zeldovich & Sunyaev 1969;
Zeldovich et al. 1972; Burigana et al. 1995):

u=~(1/4)A€/s.

(47)

(48)

Equations (45) and (46) can be used to test the behavior of
the electron temperature during the numerical integration of
the Kompaneets equation carried out with the new code ver-
sion. With the increase in the time variable, the values of ¢
are saved into the file DATIP, from the initial time step to the
final one. The upper panel of Fig. 3 shows the two behaviors
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Fig. 3. Top panel: evolution of ¢ as derived from the numerical code.
The parameters adopted for the computation are the same as in Fig. 1,
as well as the adopted kinds of lines. We also report for comparison
the analytical results obtained from Eq. (45) (thin solid lines). Bottom
panel: relative differences between the analytical results and the numer-
ical results expressed in terms of (¢analytica] - ¢numcrical)/(¢numcrical - 1)
In absolute value they are 1% at each time. The lines are the same as
in Fig. 1, but a solid line is replaced by dots when the above relative
difference is negative.

of ¢ (the numerical one and the analytical expression given by
Egs. (45) and (46)), while the bottom panel displays their relative
difference.

This test is of particular importance for checking the validity
of the results because of the crucial role of ¢ in the Kompaneets
equation. As remembered in the previous section, in the new ver-
sion of the code a different scheme is used than implemented
in the original version. Verifying of the very good agreement
of these behaviors of ¢ further supports the equivalence of the
two code versions and their reliability. In particular, it confirms
that the new adopted numerical scheme for the evolution of ¢, in
principle less stable than the implicit scheme implemented in the
code original version, does not affect the validity of the solution.

5.3. Free-free distortion

As already discussed in Sunyaev & Zeldovich (1970), accurate
measures of the CMB spectrum in the Rayleigh-Jeans region
could provide quantitative informations about the thermal his-
tory of the Universe at primordial cosmic epochs. On the other
hand, photon production processes (mainly radiative Compton
at earlier epochs and bremsstrahlung at later epochs) work to
reduce the CMB spectrum depression at long wavelengths (see
Danese & de Zotti 1980) since they try to establish a true
(Planckian) equilibrium. For z < z, (Danese & de Zotti 1980;
Burigana et al. 1991a) with

1/2 1/4

Ty k =_1p

~2.14x10* — oY
& X (2.7K) (1.68) b

low-frequency photons are absorbed before Compton scattering
moves them to higher frequencies.

(49)

1253

In the case of small and late distortions (zn < zp),
a good approximation of the whole spectrum is given
by (Burigana et al. 1995)

1

/
e _ 1

T
n(x,7) = me—(f—fh) + e_(T_Th)f ™=

x/¢ie/% x/ ¢
u (@9 — 1)

tanh(x/2¢;) 4)’ (50)

where the index i denotes the initial value of the corresponding
quantity and u is the Comptonization parameter. This expression
provides also an exhaustive description of continuum spectral
distortion generated in various scenarios of (standard or late)
recombination or associated to the cosmological reionization.
For an initial blackbody spectrum at dimensionless frequencies
X < x < 1, the above equation can be simplified to (Burigana
et al. 1995)

2
0~ e + (51)

T

Here, yg, an optical depth of the Universe for bremsstrahlung
absorption (radiative Compton can be neglected at late epochs),
is analogous to the Comptonization parameter, and it is given by

v = f (6 — 66 gp(x, §)Kopdr

Lo _ d(1 +2)
= f (¢ = 008~ g5(x. ) Koplexy ——— (52)
l+z +z
where xp is the frequency at which y,sg = 1 (Zeldovich

et al. 1972; de Zotti 1986). The dependence of the Gaunt fac-
tor (Karzas & Latter 1961; Rybicki & Lightman 1979; Burigana
et al. 1991a) on x and ¢ at very long wavelengths is weak:
gp o< In(x/).

In terms of brightness temperature, the distortions at low fre-
quencies (at any redshift) can be written as

To —Ti¢;  ys
B A

(33)
where T, = To(1 + z). This approximation holds at low frequen-
cies but not at too low frequencies, where the brightness tem-
perature obviously approaches the electron temperature because
of the extremely high efficiency of bremsstrahlung, still able to
generate a Planckian spectrum at electron temperature.

To show that our numerical solution follows the behavior
described by the above equation, we can compute yg from the
brightness temperature derived from the numerical solution:

Toe — Trhi
YB = xz(quj + 2M¢i).

T

(54)

The reported numerical result (see Fig. 4) refers to a heating pro-
cess corresponding to a full reionization starting at z ~ 20 with
¢ = 10 x 10* K, producing a final Comptonization parameter
u ~ 4 x 107° compatible with FIRAS upper limits. As shown in
Fig. 4, yg approaches an almost constant value at low frequen-
cies. This is only correct for 4 > 200—-300 cm, while at higher
frequencies yg is no longer almost constant (see again Fig. 4)
because of the dependence of the Gaunt factor on x and ¢ as ex-
pressed in the definition of yz. We can also write an expression
describing the brightness temperature through a constant param-
eter yp, derived from Eq. (54) (see Fig. 4) averaged over the
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Fig. 4. Top panel: yg as derived from Eq. (54). Bottom panel: compar-
ison between the numerical (long dashes) solution and the analytical
approximation represented by Eq. (55). See the text for further details.

range at very long frequencies before the yg declining shown in
Fig. 4, to verify the accuracy of the below expression

Torys = (fc—‘j — Dug; + ¢,») T (55)

in comparison with the numerical results. Where the Gaunt fac-
tor dependence on x and ¢ produces a significantly varying yp
(see Fig. 4), the Comptonization decrement is more relevant
than the free-free excess in determining the brightness tempera-
ture, as is evident from the good agreement of the two curves
in Fig. 4. Clearly, the brightness temperature derived in this
way works only up to frequencies (~100 GHz) approaching
where the excess in the brightness temperature produced by the
Comptonization begins (at ~220 GHz, see Fig. 4).

The use of yp in Eq. (55) implies a slight excess (~(yg —
7s)7T:/x%) with respect to the accurate numerical results since
yp decreases with the frequency (see Fig. 4). In this represen-
tative test, the excess is ~0.1 mK, but obviously its value de-
pends on the amplitude of free-free distortion (other than on the
frequency). This error is clearly negligible for analysis of cur-
rent data (see e.g. Salvaterra & Burigana 2000, 2002; Zannoni
et al. 2008; Singal et al. 2009). It is likely not so relevant for
analyzing future measures at 4 * 1 cm with accuracy compa-
rable to what is proposed for DIMES (Kogut 1996; Burigana &
Salvaterra 2003). On the contrary, it could be relevant for a very
accurate analysis of future measures with precision comparable
to what is proposed for FIRAS I 4 < 1 cm (Fixsen & Mather
2002; Burigana et al. 2004; Mather 2009) or conceived for pos-
sible future long wavelength experiments from the Moon!>!3
(Burigana et al. 2007). This calls for a complete frequency and
thermal history-dependent treatment of the free-free distortion
in the accurate analysis of future data of extreme accuracy.

2 http://www.1lnf.infn.it/conference/moon®7/Program.
html

3 http://sci.esa.int/science-e/www/object/index.cfm?
fobjectid=40925
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6. Discussion and conclusion

We have described the fundamental numerical approach and, in
particular, the recent update to recent NAG versions of a numeri-
cal code, KYPRIX, specifically written to solve the Kompaneets
equation in a cosmological context, aimed at very accurate com-
putation of the CMB spectral distortions under quite general as-
sumptions. The recipes and tests described in this work can be
useful for implementing accurate numerical codes for other sci-
entific purposes using the same or similar numerical libraries or
for verifying the validity of different codes aimed at the same or
similar problems.

Specifically, we discussed the main subdivisions of the code
and the most relevant aspects about technical specifications and
code implementation. After presenting the equation formalism
and the boundary conditions added to the set of ordinary dif-
ferential equations derived from the original parabolic partial
differential equation, we gave details on the adopted space (i.e.
dimensionless frequency) grid, on the output results, on the ac-
curacy parameters, and on the integration routines. The time de-
pendence of the ratio between electron and photon temperatures
and of the radiative Compton scattering term, both introducing
integral terms into the Kompaneets equation, was addressed in
the specific context of the recent NAG versions by discussing the
solution adopted to solve the various related technical problems.

Some of the tests carried out to verify the reliability, accu-
racy, and performance of the code are presented. We compared
the results of the update version of the code with those obtained
with the original one, reporting some representative cases, and
we find an excellent agreement.

Some specific quantitative tests we reported. They indi-
cate very good accuracy in energy conservation: for appropriate
choices of the code accuracy parameters, the fractional injected
energy is conserved within an accuracy better than 0.05%, or, in
other words, possible energy conservation violations are negli-
gible in practice for theoretical predictions and for comparison
with current and future data. The time behavior of the electron
temperature is in excellent agreement with the results obtained
with the original code version, in spite of the different schemes
adopted to update the evolving electron temperature. These are
important verifications that probe that the current implementa-
tion of the code KYPRIX circumvents the problem represented
by the lost possibility of internally adapting the solver of partial
differential equation to make it directly able to include integrals
of the solution vector exactly at the current time step. Also, set-
ting the accuracy parameters of the solver is now less flexible.
Of course, these features imply a certain increased complexity
in the code implementation, use, and in settings of code param-
eters. In spite of these difficulties, and thanks to better treatment
of various computational steps involving integrals of functions
over finite intervals, the new version of KYPRIX achieves good
accuracy even in treating very small distortions.

We also described the introduction of the cosmological con-
stant in the terms controlling the general expansion of the
Universe in agreement with the current concordance model, of
the relevant chemical abundances, and on the ionization history,
from recombination to cosmological reionization. While an ex-
tensive discussion of various possible applications of these new
features of the code, the object of future work, is not within
the scope of this paper, we report here a few representative
examples.

In Fig. 5 we show the effect of different treatments of
the computation of the hydrogen and helium ionization frac-
tions during the recombination epoch in the case of a relatively


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912061&pdf_id=4
http://www.lnf.infn.it/conference/moon07/Program.html
http://www.lnf.infn.it/conference/moon07/Program.html
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=40925
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=40925

P. Procopio and C. Burigana: A code for the Kompaneets equation in cosmology

272515 T P
2.72510F
E/k 2.72505 F
5 5
E‘ -
2.72500 F
272495 g o
:
E 2x107f ]
o o o
= L 4
< - -
0- \MN\‘V\:
154 L0 Bl I P T TP
100.0 10.0 1.0 0.1
Acm)

Fig.5. Final (i.e. at z = 1090) distorted spectra for different treat-
ments of the recombination process. We assume as initial condition a
Comptonization spectrum at z = 10* characterized by Ae./e; = 107,
Top panel: initial condition (dashes), final spectrum in the case of in-
stantaneous recombination at z = 1090 following the fully ionized
phase (three dots-dashes), final spectrum in the case of gradual, more
realistic modelizations of the recombination process (the two different
treatments give results indistinguishable in these plots). Bottom panel:
difference between the final solution found in the case of instantaneous
recombination and of gradual, more modelizations. See the text for fur-
ther details.

late spectral distortion. We exploited three different treatments
of the recombination history: an instantaneous recombination
following the fully ionized phase and two gradual, more realis-
tic modelizations of the recombination process characterized by
different evolutions of ionization fractions. In one of these two
cases, only the evolution of the electron ionization fraction, y.,
was taken from the code RECFAST, while the H and He ioniza-
tion fractions were computed solving the system of Saha equa-
tions; in the other case we directly use the complete output of the
code RECFAST (see Sect. 4.3 and the caption of Fig. 5 for more
details). The results in these two cases are identical in practice,
while the assumption of full ionization up to z = 1090 in the in-
stantaneous recombination case produces a certain overestimate
(~10%) of the long wavelength excess due to (essentially free-
free) photon production, as well as a small amplification (~1%)
of the relaxation of the initial Comptonization spectrum towards
a Bose-Einstein like spectrum (obviously ineffecient, at the con-
sidered redshifts). With the adopted numerical accuracy (ACC =
107'2) and grid points (NPTS = 30001), the required CPU time
on the chosen IBM platform is about 40 min, with less than 20%
differences between the three different cases.

Figure 6 reports the results derived for a particular as-
trophysical scenario of cosmological reionization. We adopt
here the evolution of the electron ionization fraction y. (the H
and He ionization fractions were then computed to solve the sys-
tem of Saha equations) and of electron temperature predicted in
the suppression model presented in Schneider et al. (2008) and
Burigana et al. (2008), which implies a Thomson optical depth,
7 =~ (0.1017, almost in agreement with recent WMAP data. (For
consistency, we adopt in these computations the same cosmo-
logical parameters used in the quoted works.) For comparison,
we exploited a simple case with full ionization and a constant
ratio, ¢, between the electron temperature and the radiation tem-
perature that is chosen to have the same amount of energy in-
jected into the plasma (A€, /€ ~ 7.6x1077) obtained in the above
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Fig. 6. Distorted spectra predicted for the considered reionization mod-
els: initial blackbody spectrum (dots) at z = 20, almost corresponding
to the beginning of the heating phase in the model, final (at z = 0)
spectrum in the case of constant ¢ (=147) (dashes), and for the realistic
implementation of the ionization and thermal history in the suppression
model (solid line). See the text for further details.

realistic model. As expected by construction, the two very differ-
ent histories produce the same high frequency (Comptonization
like) distortion, but the long wavelength region is very different
because of the contribution of free-free emission'*. The differ-
ence in this term in the two cases is mainly characterized by
the evolution of the product ¢~!/2y? and by the free-free being
more efficient at higher redshifts in the simple case than in the
realistic one (see the caption of Fig. 6 for more details). With
the adopted numerical accuracy (ACC = 107'?) and grid points
(NPTS = 30001), the required CPU time on this IBM platform
is a few hours for the realistic model and about one hour in the
simple model with a constant ¢.

Finally, we focused on some properties of the free-free
distortions, relevant for the long wavelength region of the
CMB spectrum, by checking that the new code version, such as
the original one, very accurately recovers the existing analytical
approximations in their limit of validity. We also discussed the
relevance of accurate computations able to improve the simple
treatment based on the approximation with a frequency indepen-
dent, free-free distortion parameter.

All the tests demonstrate the reliability and versatility of the
new code version and its very good accuracy and applicability to
scientific analysis of current CMB spectrum data and of those
data, much more precise, that will be available in the future.
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!4 In both cases, the density contrast in the intergalactic medium as-
sociated to the formation of cosmic structures has been not included.
The excess at low frequencies due to the free-free distortion should be
then considered as lower limit in both cases, since the computation has
been performed in the “averaged density” approximation. Therefore, a
correction factor ~(n?)/(n.)*> > 1, coming from a proper inclusion of
the treatment of density contrast in the intergalactic medium, should be
applied to the free-free term.
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