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Abstract 

Sorghum is a primary source of diet for millions of people living in the semi-arid regions 

of Sub-Saharan Africa and Asia. Due to its immense resilience, sorghum stands as the crop of 

choice in the face of climate change that has already been causing widespread crop failures. 

However, the low nutritional quality of sorghum has negatively impacted its use and marketability 

relative to other cereals. Given the vast untapped germplasm resources for the species, 

opportunities exist to exploit beneficial alleles that may be of value to tackle challenges related to 

sorghum production and utilization. The current work is focused on exploring germplasm 

resources from one of the most significant sources of diversity, Ethiopia, to lay the scientific basis 

for genetic improvement of sorghum nutritional traits with emphasis on protein and the role of 

grain physicochemical attributes on adaptation behavior of the species. The work is presented in 

four chapters. The first chapter deals with a review of background information on the nutritional 

attributes of cereals emphasizing on challenges and opportunities for improving protein content; 

the second part investigates the pattern of adaptation of sorghum across Ethiopia’s diverse 

agroecology in view of bioclimatic factors vis-a-vis grain physicochemical attributes and genomic 

profile; the third chapter explores the power of genomics for mining germplasm resources in gene 

banks; the last chapter focuses on the impact of grain pre-treatment on bio-availability of proteins 

from a fermented sorghum food product.  

In the second chapter, after the background review, the hypothesis that environmental 

factors shape sorghum grain attributes was tested using more than 1500 Ethiopian landraces. We 

utilized phenotype-environment and genome-environment associations to support the thesis. The 

phenotype-environment association supports the hypothesis that tannin presence, grain weight, 

kernel hardness, and panicle compactness are all associated with historic precipitation gradient. 

The correlation pattern revealed by principal component analysis fits the expectation that grain 

attributes that favor grain-related diseases, such as compact panicles, were mainly concentrated in 

drier areas. In contrast, traits like tannin presence and loose panicle dominate high precipitation 

areas. Moreover, landraces from low rainfall regions were susceptible to grain mold suggesting 

the need to incorporate resistance when materials from dry regions are used as breeding parent for 

developing varieties for high precipitation areas. Genome-environment association also revealed 



 

 

the importance of polyphenols for the adaptation of sorghum. Moreover, the genomic loci 

attributed to historical population structure were correlated with precipitation and temperature 

gradients. The study suggests that sorghum improvement endeavors targeting grain attributes 

should also consider the climatic condition of the target environments. Likewise, germplasm 

originating from high precipitation areas may be utilized as donors of resistance genes to various 

grain diseases  

The third section investigates the potential of genomic selection (GS) in germplasm 

improvement. The study utilized grain-related and phenological data from Ethiopian sorghum core 

collection. Low to moderate prediction and validation accuracies were observed for the traits and 

increasing training size increased prediction accuracy. The focused identification of germplasm 

sampling (FIGS) approach, which had been proved successful in increasing the success rate in 

identifying rare alleles from large germplasm collections, was also evaluated for its 

complementarity with GS. Grain weight was utilized as a proxy for assessing the approach. 

Sampling using the FIGS-based approach changed population parameters relative to the base 

population. Genomic prediction on a reference population sampled using FIGS based approach 

had smaller validation accuracy and selection differential than randomly reconstituted reference 

populations. Modifying the FIGS sampling strategy by incorporating a few individuals from the 

opposite end of the FIGS predicted environment improved the overall performance of the system.  

The last chapter investigated the importance of pre-processing method to improve protein 

digestibility, a critical constraint in sorghum. This was conducted using four preprocessing 

methods on four selected varieties of sorghum varying in grain quality attributes. The result 

showed significant pre-processing and variety interaction effects in protein digestibility of 

fermented and cooked sorghum food samples, implying that varietal selection should target a 

specific pre-processing method. Sprouting, one of the pre-treatment methods studied, improved 

overall grain protein digestibility. Genotypes with inherently improved protein content and in-vitro 

protein digestibility when subjected to appropriate milling and pre-processing treatment can 

significantly enhance protein availability from fermented sorghum foods. 

In conclusion, understanding the adaptation history and the target end-user application is 

crucial for improving sorghum grain quality and nutritional traits. The information generated on 



 

 

the grain attributes and the genomic selection pipeline for the FIGS approach has promising 

potential to accelerate the development of nutritionally improved and locally adapted varieties.  
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Abstract 

Sorghum is a primary source of diet for millions of people living in the semi-arid regions 

of Sub-Saharan Africa and Asia. Due to its immense resilience, sorghum stands as the crop of 

choice in the face of climate change that has already been causing widespread crop failures. 

However, the low nutritional quality of sorghum has negatively impacted its use and marketability 

relative to other cereals. Given the vast untapped germplasm resources for the species, 

opportunities exist to exploit beneficial alleles that may be of value to tackle challenges related to 

sorghum production and utilization. The current work is focused on exploring germplasm 

resources from one of the most significant sources of diversity, Ethiopia, to lay the scientific basis 

for genetic improvement of sorghum nutritional traits with emphasis on protein and the role of 

grain physicochemical attributes on adaptation behavior of the species. The work is presented in 

four chapters. The first chapter deals with a review of background information on the nutritional 

attributes of cereals emphasizing on challenges and opportunities for improving protein content; 

the second part investigates the pattern of adaptation of sorghum across Ethiopia’s diverse 

agroecology in view of bioclimatic factors vis-a-vis grain physicochemical attributes and genomic 

profile; the third chapter explores the power of genomics for mining germplasm resources in gene 

banks; the last chapter focuses on the impact of grain pre-treatment on bio-availability of proteins 

from a fermented sorghum food product.  

In the second chapter, after the background review, the hypothesis that environmental 

factors shape sorghum grain attributes was tested using more than 1500 Ethiopian landraces. We 

utilized phenotype-environment and genome-environment associations to support the thesis. The 

phenotype-environment association supports the hypothesis that tannin presence, grain weight, 

kernel hardness, and panicle compactness are all associated with historic precipitation gradient. 

The correlation pattern revealed by principal component analysis fits the expectation that grain 

attributes that favor grain-related diseases, such as compact panicles, were mainly concentrated in 

drier areas. In contrast, traits like tannin presence and loose panicle dominate high precipitation 

areas. Moreover, landraces from low rainfall regions were susceptible to grain mold suggesting 

the need to incorporate resistance when materials from dry regions are used as breeding parent for 

developing varieties for high precipitation areas. Genome-environment association also revealed 



 

 

the importance of polyphenols for the adaptation of sorghum. Moreover, the genomic loci 

attributed to historical population structure were correlated with precipitation and temperature 

gradients. The study suggests that sorghum improvement endeavors targeting grain attributes 

should also consider the climatic condition of the target environments. Likewise, germplasm 

originating from high precipitation areas may be utilized as donors of resistance genes to various 

grain diseases  

The third section investigates the potential of genomic selection (GS) in germplasm 

improvement. The study utilized grain-related and phenological data from Ethiopian sorghum core 

collection. Low to moderate prediction and validation accuracies were observed for the traits and 

increasing training size increased prediction accuracy. The focused identification of germplasm 

sampling (FIGS) approach, which had been proved successful in increasing the success rate in 

identifying rare alleles from large germplasm collections, was also evaluated for its 

complementarity with GS. Grain weight was utilized as a proxy for assessing the approach. 

Sampling using the FIGS-based approach changed population parameters relative to the base 

population. Genomic prediction on a reference population sampled using FIGS based approach 

had smaller validation accuracy and selection differential than randomly reconstituted reference 

populations. Modifying the FIGS sampling strategy by incorporating a few individuals from the 

opposite end of the FIGS predicted environment improved the overall performance of the system.  

The last chapter investigated the importance of pre-processing method to improve protein 

digestibility, a critical constraint in sorghum. This was conducted using four preprocessing 

methods on four selected varieties of sorghum varying in grain quality attributes. The result 

showed significant pre-processing and variety interaction effects in protein digestibility of 

fermented and cooked sorghum food samples, implying that varietal selection should target a 

specific pre-processing method. Sprouting, one of the pre-treatment methods studied, improved 

overall grain protein digestibility. Genotypes with inherently improved protein content and in-vitro 

protein digestibility when subjected to appropriate milling and pre-processing treatment can 

significantly enhance protein availability from fermented sorghum foods. 

In conclusion, understanding the adaptation history and the target end-user application is 

crucial for improving sorghum grain quality and nutritional traits. The information generated on 



 

 

the grain attributes and the genomic selection pipeline for the FIGS approach has promising 

potential to accelerate the development of nutritionally improved and locally adapted varieties.  
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Chapter 1 - Breeding for improved grain protein concentration in 

cereals: challenges and opportunities 

 Introduction 

Cereals, including wheat, maize, rice, barley, and sorghum, are among the major food/feed 

grains throughout the world. They are particularly rich in starch and serve as the primary source 

of calories in both animal feed and human food. In 2020, 736 million ha of land was estimated to 

be dedicated to cereal crop production worldwide, and 2.99 billion tons of grain were produced. 

Pulses, the major protein crops, covered 93 million hectares and produced 89 million tons of grains 

(FAOSTAT, 2020). The dominance of cereals over other crops appears to be due to their wide 

agroclimatic adaptability that ranges from the hot, dry tropical environment to cold zones of the 

world and their efficiency in dry biomass production. Wheat and rice are mainly consumed as 

food, where wheat is mainly used for baked products such as bread and pasta, while rice is 

consumed directly wet cooked. In the developing world, coarse cereals such as sorghum and maize 

are primarily utilized as human food, while they are mainly grown as animal feed in the developed 

world (Zhou, 2009). Besides their direct use food and feed grain, cereals are also essential raw 

materials in processed foods and chemical industries. Maize starch is used as raw material for 

making various industrial products, including corn syrup, bioethanol production, biodegradable 

packaging material, and adhesives. The wet and dry milling by-products such as oil and protein 

concentrate are also essential economic products. Barley malt is another critical industrial product 

used in the brewery industry. The by-product of malting, brewer’s spent grain, is rich in protein 

and other nutrients and is used as a good source of protein in animal feeding (Papageorgiou and 

Skendi, 2018). 

 Cereals as dietary protein sources  

Protein is the second major component of cereal grains. Cereal protein is the major dietary 

source of protein among smallholder communities in developing countries where access to animal 

protein is limited. There are marked differences in protein content both between and within cereal 
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species (Table 1-1). According to FAO (2020) estimates, the world protein supply from cereals 

(39%) was almost equal to the supply from animal protein sources (also 39%), while the share of 

pulses was only around 5% FAOSTAT (2020). The importance of cereals as a protein source 

becomes even more evident in the developing world, where cereals account for 51% of the total 

protein supply in the diets of the people (FAOSTAT, 2020) (Figure 1-1). Cereal protein utilization 

is not uniform across societies either, with populations at the bottom of the socio-economic ladder 

increasingly relying on cereal proteins (Haileselassie et al., 2020).  

The demand for protein is projected to increase due to population growth and socio-

economic changes favoring extra protein consumption. Moreover, the boom in income status of 

the developing world’s middle-class community is expected to boost animal protein consumption, 

despite the fact that animal protein production is less efficient and requires more land and energy 

(Henchion et al., 2017). Thus, crops will continue to be the ultimate source of protein for direct or 

indirect consumption through animal products or other processed products. As an example, the 

global market for wheat protein in the form of gluten, protein isolate, and protein hydrolysate is 

estimated at $1.11 billion in 2018 and is projected to increase by 12% by the year 2026 (Verified 

Market Research, 2019). The alcohol-soluble prolamins of wheat, sorghum, maize, and barley 

have potential industrial and pharmaceutical use as biodegradable plastics, biofilms, and drug 

delivery capsules (Taylor et al., 2013) that their global demand is on the rise. 

The grain protein content is often used as a proxy to determine the food product quality 

and pricing of grains (Dexter et al., 1994). In wheat, gluten proteins, the major storage proteins 

contributing more than 80% of the grain protein, are important determinants of the overall bread-

making quality. The grain protein content is directly correlated with the quantity of gluten protein 

as the increment of protein content usually disproportionately increases gluten fraction than other 

non-gluten fractions (Arendt et al., 2008). However, the quantity of high molecular polymeric 

glutens- glutenin polypeptides and the relative proportions of gliadins-gluten monomers determine 

different attributes of dough and the overall bread-making quality of wheat cultivars (Dhaka and 

Khatkar, 2015; Li et al., 2020). While molecular markers linked to the trait are proposed to better 

explain the quality differences among bread wheat (Cato and Mullan, 2020), elevators across North 

America use grain protein content as a practical proxy for determining premiums and discounts 

(Bekkerman, 2021). Similarly, protein content is positively correlated to pasta cooking quality of 
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durum wheat which include firmness, resistance to overcooking, and reduced stickiness (Sissons 

et al., 2021). In malting barley, protein has mixed importance as barley harvest incurs a penalty 

for protein content above and below a certain maximum and minimum thresholds (Dykha et al., 

2021).  

Grain crops like sorghum may also benefit from increased grain protein content to expand 

their niche market in the developed world. There is increasing acceptability of sorghum as a non-

gluten (Fenster, 2003) food alternative rich in health-promoting phytochemicals (Awika and 

Rooney, 2004). Moreover, increased grain protein content means higher protein intake to 

consumers of the grain, be it in the feedlot in the developed world or as food for subsistence 

farmers in impoverished countries. As grain protein plays a vital role in health and food security, 

it is important to review and determine grain protein content, challenges faced in improving grain 

protein, and opportunities as solutions to the challenges. 

 Methods for evaluating grain protein content 

The grain protein content is often expressed as the percentage of protein to grain 

constituents, expressed on a weight-by-weight basis. The building blocks of proteins, amino acids, 

are composed of nitrogen, oxygen, and hydrogen. Two of the twenty amino acids are also sulfur-

containing. The primary techniques used for estimating protein aim to quantify the concentration 

of these building blocks in a sample. 

 N Based techniques 

Crude protein in grains is mainly estimated indirectly from grain N content. Two methods, 

i.e., Kjeldahl and Dumas, are widely used for protein estimation. The Kjeldahl technique (and its 

modification) is widely used in grain analysis and involves two steps: the first step is strong acid-

mediated digestion of the sample to convert sample N to ammonia salt, and the second step is 

distilling ammonia and quantifying the released ammonia (Miller and Houghton, 1945). The 

Dumas method involves three steps: first, the complete combustion of organic N to different N 

oxides, reducing the N oxides to molecular N (N2), and quantifying N using thermal conductivity. 

These two methods are standard protein determination in cereals (Simonne et al., 1997; Moore et 

al., 2010). The N quantified in a sample is converted to protein using a factor assumed to represent 
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the N percentage in proteins. The default conversion factor is 6.25. This constant implies that the 

N quantified is exclusively from amino-N of proteins, and the contribution of non-protein organic 

or inorganic N from the sample is considered negligible (Moore et al., 2010). The other assumption 

is a uniform amino-acid composition of sample proteins. Many reports had used 6.25 as a 

conversion factor based on the 16% average percentage of N in the twenty amino acids by mass 

(Crook and Casady, 1974). However, these assumptions are violated while quantifying grain 

samples (Mariotti et al., 2008). For instance, seven percent of the total N in cereals has been 

reported as non-protein (Fujihara et al., 2008). Moreover, the 16% N is not constant and may 

change depending on the amino acid composition of the proteins. Different authors have attempted 

to determine the conversion factor for various foodstuffs. For example, for sorghum, different 

values were reported as specific conversion factors: 5.93 (Sosulski and Imafidon, 1990), 5.65 

(Mosse, 1990), 5.61 (Fujihara et al., 2008), and 6.25 ((Jones and others, 1941) cited in Mariotti et 

al., 2008). The uncertainty in the conversion factor and, as a result, the lack of precision in 

estimating true grain protein content has adverse health and economic implications (Moore et al., 

2010). Moreover, it adds a challenge dissecting genetic factors controlling grain protein content. 

 Spectroscopic techniques 

Several types of spectroscopic techniques have been utilized to evaluate the total protein 

content and the protein fractions of grain crops. Grain protein content measurement using this 

technique is usually employed to obtain a rough estimate of protein content in a purified sample. 

However, variation in the composition of aromatic amino acids among proteins and the presence 

of other components that may absorb UV light in the same range as tryptophan and tyrosine biases 

measurements. Since grain samples contain complex mixtures of proteins and other compounds, 

it is not a standard method of estimation.  

Several colorimetric approaches for quantifying protein have been developed based on the 

reaction of cupric cations with peptide bonds. The Biuret, Lowry, and BCA methods employ this 

approach. The Biuret method is a one-step method involving the reduction of cupric (Cu2+) ions 

to cuprous (Cu+) by peptide bonds present in the protein. This reduction of copper results in the 

characteristic color, which has an absorption peak at 540 nm. A rapid Biuret method for grain 

protein content in grain samples has been utilized in crops (Itzhaki and Gill, 1964; Johnson and 
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Craney, 1971). Lowry and (bicinchoninic acid) BCA methods have increased sensitivity due to 

the addition of Folin Cicoaltteau reagent and bicinchoninic acid, respectively. Folin Cicoalteau is 

an antioxidant assay and is mainly used for the estimation of phenolic compounds, including 

tyrosine and tryptophan. Both the Folin Cicoalteau reagent and bicinchoninic acid form complexes 

with the reduced Cu + ions. The Folin Cicoalteau and BCA complexes have absorption peaks at 

725 to 765 nm and 562 nm (Brenner and Harris, 1995). The incorporation of Folin Cicoalteau and 

BCA increases Lowry and BCA’s sensitivity more than 100-fold, making them ideal for estimating 

proteins at the micro-level (Afify et al., 2012). BCA has been mainly used in many micro-level 

estimation protein contents. For example, in sorghum, both Lowry and BCA were employed in the 

microlevel estimation of soluble proteins (Afify et al., 2012; Sullivan et al., 2018). In maize, BCA 

was utilized to estimate the protein-level gradient across vitreous and non-vitreous layers (Gayral 

et al., 2016). The Bradford method is another colorimetric method that uses Coomassie Brilliant 

Blue to form a protein-dye complex with the advantage of a sample requirement that is 10 to 100 

less than BCA, Lowry, and Biuret assays (Chutipongtanate et al., 2012). The assay was used for 

protein content determination (Steiner et al., 2012). Due to its sensitivity, it was also utilized for 

assaying protein fraction samples in cereal grains (Geisslitz et al., 2019). 

A limitation of colorimetric methods is that proteins to be analyzed must first be extracted. 

However, other colorimetric methods have been used directly on grain materials (Chan and 

Wasserman, 1993). The acid orange-dye method is importantly studied mainly in milk but also in 

grain crops like wheat and soybean (Hymowitz et al., 1969). The procedure used is to bind the 

acid-orange dye with proteins in the flour. The excess of the dye in washed solution is inversely 

related to the protein content of the target material (McDonald, 1977). The direct estimation 

minimizes the workload required for the assay especially in screening numerous samples. 

Near-infrared spectroscopy (NIRS) is a non-destructive spectroscopic method routinely 

used for protein quantification. NIRS measurement is based on the absorption of C-H, O-H, and 

S-H bonds (Sandorfy et al., 2007). The absorbance at a wide range of spectral frequency (700 nm 

to 2500 nm) is calibrated using chemometrics methods with a known set of reference samples. For 

cereal grains and other crops, NIRS can measure grain protein content with higher accuracy and is 

routinely used (Figueiredo et al., 2006; Alander et al., 2013; Peiris et al., 2019, 2020). However, 

confounding factors that can influence NIRS results, such as pericarp thickness, moisture, grain 
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weathering, etc., need to be considered, and calibrations developed accordingly (Guindo et al., 

2016). Continued effort to optimize the method to add accuracies, such as the use of large 

representative samples for calibration, including confounding factors in calibration development 

and sample sets and proper maintenance of calibrations led to improved accuracy. The fact that 

NIRS is non-destructive and has a very high throughput compared to other methods makes it very 

attractive for use in screening large samples. 

 Factors affecting grain protein content 

 Environmental factors 

The concentration of protein in the grain is the function of three significant elements: N, 

water, and energy. Both N and energy-rich hydrocarbons are critical for the structural components 

of amino acids. Moreover, the nitrate uptake and protein synthesis are energy-intensive (Bloom et 

al., 1992; Cao et al., 2022). The N in plant tissues is a function of N uptake from soil. Apart from 

N, sulfur is also an essential component of methionine and cysteine, two of the 20 amino acids. 

Environmental factors such as sulfur fertilization or sulfur availability also dictate grain protein 

content.  

Soil type is one of the environmental factors which determine the availability of soil N. 

There are two crucial plant nitrogen sources, nitrate and ammonia, and the property of the soil 

affects their availability and uptake. Nitrate is vulnerable to leaching and surface runoff (Wang 

and Li, 2019), while ammonia is liable to N loss through denitrification and volatilization (Wang 

and Li, 2019). Under anaerobic conditions, nitrate also becomes prone to denitrification (Zhu et 

al., 2013). Moreover, soil texture and pH determine the forms of nitrogen sources and their 

availability. Coarser, well-aerated soils usually favor nitrification, where the immobile ammonia 

is oxidized to highly mobile nitrate (Gasser, 1964; Wang and Li, 2019). Ammonium thrives better 

in clay soils as the high cation exchange capacity and its buffering capacity would limit 

volatilization. N-recovery directly impacts grain protein, grain yield, and profitability as farmers 

need to adjust the fertilization to achieve their yield target.  

Heat and moisture stress are common environmental factors which commonly coincide 

with the grain filling stage. Heat stress was associated with increased grain protein content in rice 
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(Zhen et al., 2019), barley (Ni et al., 2020), and maize (Yang et al., 2018). In maize, post-silking 

heat stress resulted in reduced activity of enzymes involved in starch synthesis leading to reduced 

accumulation of starch in the grain (Singletary et al., 1994) and increased grain protein content 

(Yang et al., 2018). While heat stress does not favor protein synthesis, reduced starch accumulation 

under heat stress resulted in a higher proportion of protein in the grain (Yang et al., 2018). A 

detailed study in heat-stressed wheat revealed that the elevated grain protein content was due to 

the diversion of energy and other metabolic resources to the synthesis of heat shock proteins, while 

the synthesis of storage proteins, similar to starch synthesis, was hampered by the stress (Wang et 

al., 2018a).  

Drought stress is another environmental condition that influences grain protein content. 

Moisture is important for several aspects of plant growth, including photosynthesis, and for driving 

root-mediated absorption of important nutrients from the soil, including nitrogen. Drought stress 

during grain filling has its own consequence on grain protein. In wheat, drought increases grain 

protein content (Barutcular et al., 2016; Bana et al., 2018), while it had no impact on rice (Yang et 

al., 2019b). Increased protein under drought is believed to be due to dilution effect (Rharrabti et 

al., 2001); however, higher protein under drought and drought-induced senescence may also be 

achieved through increased remobilization of nitrogen (Yang et al., 2019a). In an experiment that 

consisted of multiple levels of nitrogen, moisture, and temperature, Campbell et al. (1981) reported 

that temperature had the highest impact grain protein content in wheat. In that study, the highest 

protein content was observed under high heat, high N, and moisture-stressed conditions imposed 

at boot stage. Conditions that favored ample N supply, but low yield resulted in high grain protein 

content, and the treatment combination that promoted high grain yield resulted in the lowest grain 

protein content. 

Fertilizer management  

Studies have shown that grain protein content increases with nitrogen application (Johnson 

et al., 1973; Bulman and Smith, 1993). Nitrogen fertilizer management that allows better uptake 

and utilization tends to enhance grain protein content. Split nitrogen application is effective in 

reducing nitrogen loss and meeting yield targets (Yadav et al., 2017). This practice also improved 

grain protein percentage in wheat, barley, and sorghum (Bulman and Smith, 1993; Bishnoi et al., 
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1995; Blandino et al., 2015; Xue et al., 2016). Likewise, sulfur fertilization along with N has been 

reported to have a synergistic effect on grain protein content (Järvan et al., 2008; Rossini et al., 

2018).  

 Plant factors 

 Grain structural somponents and compositional attributes 

The major kernel structural components, the bran, the endosperm, and the embryo (germ) 

of cereals, have varying degrees of protein concentrations. The bran consists of the pericarp, seed 

coat (testa), and nucellar tissue. The endosperm encompasses the aleurone cell layer and the 

endosperm cells. The embryo contains the next generation of the plant which grows when 

sprouted. The embryo has the highest concentration of protein (Ma, 1975; Somavat et al., 2017), 

followed by the endosperm. Taylor and Schussler (1986) reported the protein percentage of the 

germ, the endosperm, and the pericarp of two sorghum genotypes to be 17.1 to 18.5%, 7.3 to 10.1 

%, and 4.5 to 5.9%, respectively. However, since the endosperm is the largest component of the 

grain (more than 85% of the grain by weight), the germ’s overall protein contribution is smaller 

compared to the endosperm. In maize, the embryo’s share of protein ranged from 8.6 to 20.1% and 

up to 35.1% in opaque2 mutants (Landry and Moureaux, 1980; Uribelarrea et al., 2007). The germ 

in Illinois high protein strains had a greater proportion of kernels by weight than the low protein 

strains (P < 0.05) (Uribelarrea et al., 2004). There is evidence that embryo proportion is under the 

control of genetic factors in wheat (Golan et al., 2015), maize (Zhang et al., 2012), and rice (Lee 

et al., 2019). As the embryo is attributed to high grain protein content and overall nutritional 

quality, such genetic factors need to be investigated to shed light on the possible applicability of 

the parameter in quality improvement through breeding. The endosperm is often divided into a 

vitreous or corneous part on the outer section of the endosperm and the inner starchy or floury 

section. The vitreous portion has a higher protein proportion than the starchy section in maize 

(Zhang and Xu, 2019), durum wheat (Fu et al., 2018), and sorghum (Ioerger et al., 2007).  

The grain protein content, like any concentration parameter, is vulnerable to the dilution 

effect. Any factor which changes the relative concentration of any of the components would 

influence grain protein content. This dilution factor is reported as one of the primary sources of 
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negative correlation between grain yield and grain protein content in wheat (Kibite and Evans, 

1984). In an explorative study that compared durum wheat varieties released in different eras, a 

relative grain protein content decline was reported and was attributed to the dilution effect, not due 

to a decline in nitrogen uptake or nitrogen harvest index (Motzo et al., 2004). In wheat, Triboi et 

al. (2006), showed the negative correlation between nitrogen and yield exists irrespective of the 

environmental effect. 

Grain nitrogen is highly impacted by soil nitrogen content and the capacity of plants to 

extract, assimilate, and transport nitrogen to the grain, which altogether affects grain protein 

content. At the vegetative stage, root uptake is the primary source of nitrogen to the vegetative 

sink organs: the growing shoot, stem, leaves, and leaf sheaths. For nitrogen to be used as a 

structural and functional component, it needs to be assimilated into organic compounds, which is 

termed nitrogen utilization. As the plant develops, some of the nitrogen is recycled from the older 

tissue to the younger tissues. The developing reproductive tissue begins to become the sink at 

flowering, while the vegetative sink starts to serve as an emergent nitrogen supplier. Nitrogen 

remobilization recycles vegetative nitrogen from the shoot to the developing grain. However, 

remobilization is not the sole supplier of nitrogen for the grain. For crops like sorghum and maize, 

post-anthesis nitrogen uptake is also responsible for a significant portion of grain nitrogen. The 

available nitrogen determines grain nitrogen, and the efficiencies of each of the processes would 

determine grain nitrogen content. Thus, grain nitrogen content is determined by grain nitrogen and 

the relative proportion of other grain constituents, including carbohydrate content. Below is a 

description of major plant structures and functions affecting grain nitrogen content. 

 Root architecture 

Plant root architecture is one of the elements affecting nitrogen and moisture uptake. The 

architecture determines the volume of soil explored for both nitrogen and moisture. The optimum 

root architecture for higher nitrogen uptake varies depending on the soil properties, nitrogen status, 

and moisture conditions. In coarse-textured soils where N is liable to loss through leaching, nitrate 

tends to regress to the lower soil profile. In such soils, deep-rooted genotypes perform better as 

they can forage nitrogen from the deeper soil profile (Sullivan et al., 2000; Kristensen and Thorup-

Kristensen, 2004; Ehdaie et al., 2010). Deep-rooted winter wheat varieties have been shown to 
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have better nitrate acquisition from a deeper soil layer (Zhou et al., 2008). Genotypes with dense 

root architecture at the topsoil and growing deep roots at a later stage may reduce nitrate wastage 

in well-aerated soils (Dunbabin et al., 2003). Moreover, fewer crown roots in a root system grow 

deeper and seek more nitrate from a deeper layer (Saengwilai et al., 2014). In maize, deeper crown 

roots were more active in nitrate transport than the other root types (Dechorgnat et al., 2018). In 

finer-textured clay soils, leaching is not a detrimental factor for nitrate loss. In such soils, nitrogen 

occurs mainly as ammonium which is adsorbed to the soil particles and does not leach to deeper 

soil profiles. Hence, the use of deep-rooted varieties may not have an economic or agronomic 

advantage in these situations. As a result, investing in a deeper root layer is metabolically costly 

and with minimal marginal return (Lynch, 2013). A detailed study was conducted on nitrogen 

source preferences in two maize genotypes selected in two environments. The first line, F44, was 

adapted to nitrate-leaching prone sandy soil in Florida, and the other, B73, was selected in Iowa 

on rich Mollisol soil. The root architecture of the two genotypes mirrored the soil properties to 

which the two genotypes were adapted. Genotype B73 had a deeper root architecture dominated 

by deeper crown roots with larger volume and surface area compared to F44. Moreover, 

biochemical, and enzymatic evidence suggested that F44 is well suited for nitrate uptake, whereas 

B73 was more suited for ammonia uptake (Dechorgnat et al., 2018). In maize, dimorphic 

phenotypes with shallow seminal roots and deep crown roots determined by axial root angle had 

consistently higher performance in varying soil and moisture conditions (Dathe et al., 2016). 

Genotypes with such architecture may perform in a wide range of environments. In sorghum, 

deeper root structure was correlated with the stay green trait, which renders post-anthesis moisture 

tolerance and increased nitrogen uptake (Sintayehu et al., 2018). In dry areas, at the later stages of 

the crop, moisture level and nitrogen (nitrate) regress to deeper layers and deeper root architecture 

has the ability to forage the resources. The stay green trait in sorghum has been associated with 

positive nitrogen balance during grain filling (Borrell et al., 2001) 

 Nitrogen uptake 

Nitrogen uptake is mediated mainly by nitrate or ammonia transporters (reviewed in 

(Forde, 2000; Hao et al., 2020; Tsay et al., 2007; Wang et al., 2018). There are multiple nitrate 

transporters which function as sensers, transporters and regulators of nitrogen transport from the 

soil to plants and to different part of the plant organs including leaves and grain (Remans et al., 
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2006; Maghiaoui et al., 2020). Plants are capable of foraging nitrate at varying soil nitrate 

conditions. Plants recruit high-affinity nitrate transports to take up N under low nitrate conditions 

and low-affinity nitrate transport systems for nitrate uptake under high nitrate conditions. In 

Arabidopsis, most of the genes in the gene family NRT1 are low-affinity nitrate transporters. Low-

affinity transporters are involved in nitrate uptake under high nitrate concentration, above 500 µM. 

NRT1.1 is an exception from the NRT1 family and has a dual function nitrate affinity through 

phosphorylation of a specific amino acid, 101th AA, to switch it to a high-affinity transporter. 

Dephosphorylating the amino acid turns the system into a low-affinity transporter. This protein-

level regulation enables plants to rapidly respond to varying external nitrate conditions. In addition, 

NRT1.1 regulates the high-affinity transporter gene NRT2.1 at the transcription stage by 

repressing its transcription at high external nitrate conditions (Muños et al., 2004). Both NRT1.1 

and NRT2.1 are also involved in lateral root development. NRT1.1 has an additional function of 

auxin transport. This transport is inhibited by higher nitrate conditions leading to the accumulation 

of auxin in the root. Auxin stimulates lateral root development. NRT1.1 suppresses lateral root 

development under low nitrate conditions by allowing basipetal auxin transport and avoiding auxin 

accumulation (Remans et al., 2006; Maghiaoui et al., 2020). This control of root architecture 

enables the root system to explore and extract nitrate from soil patches rich in nitrate and avoids 

expensive resource allocation to low nitrate patches of the soil. In grass species, there are at least 

two copies of the NRT1.1 gene (Plett et al., 2010).  In rice, the OsNRT1.1A and OsNRT1.1B had 

functionally diverged. OsNRT1.1A had been reported to be expressed in the tonoplast, whereas 

OsNRT1.1B is localized at the plasma membrane, like the Arabidopsis AtNRT1.1. Unlike 

AtNRT1.1, NRT1.1A is upregulated by ammonia, an important source of nitrogen in rice, and its 

over-expression resulted in increased yield and shortened maturity date while its mutant had lower 

yield and longer maturity (Wang et al., 2018b). There are some natural variants which vary for 

nitrate uptake activity of NRT1. Comparison of natural variants of one of the nitrate transporters 

NRT1.1B in the rice subspecies indica  and japonica showed that the indica variant has enhanced 

nitrogen uptake and transport of nitrogen relative to the indica and subsequently resulted in higher 

nitrogen uptake efficiency and nitrogen use efficiency(Hu et al., 2015). 

In Arabidopsis, the ammonium transporter AMT1 is directly involved in root ammonia 

uptake. Within this family, AtAMT1;1, AtAMT1;2, and AtAMT1;3 explain most of the 

ammonium transport at the high-affinity range - <1 mM (Hao et al., 2020). Another ammonium 



12 

 

transporter family, AMT2, is involved in the further transport of ammonium to the shoot via xylem 

loading (Giehl et al., 2017). Ammonium is toxic in plants, and there are multiple venues for 

ammonium build-up in plant cells, including direct ammonium uptake from the soil, downstream 

reduction of nitrate, and catabolic pathways of different amino acids. As a result, ammonium 

uptake and downstream storage and assimilation are strictly regulated. At the transcript level, the 

three primary ammonium transporters’ response to ammonium availability is different. AtAMT1;1 

is induced by ammonium availability, AtAMT1;3 has slight upregulation, whereas AtAMT1;2 has 

constitutive expression. AMT1;3 is also positively regulated by sugar availability (Gazzarrini et 

al., 1999). Most Ammonium transporters are also post-translationally controlled via – 

(de)phosphorylation to swiftly respond to ammonium status. Phosphorylation of AtAMT1;1 

because of ammonium accumulation results in the feedback inhibition of ammonium uptake 

(Lanquar et al., 2009). AtAMT1;3 is also post-translationally regulated by (de-) phosphorylation 

at multiple A.A. positions based on ammonium and nitrate levels (Wu et al., 2019). In the presence 

of ammonium, the ammonium transporters are also involved in the inhibition of nitrate-dependent 

lateral root growth (Kumar et al., 2020).  

 Nitrogen utilization 

Nitrate can be stored in the root vacuoles, translocated to the shoot to be stored in the 

vacuoles of aerial organs, or assimilated. Vacuolar sequestration in roots of Brassica napus had 

been associated with reduced nitrogen utilization as it reduces nitrate reductase activity by 

lowering nitrate flux (Han et al., 2016). Vacuolar nitrate needs to be remobilized back to cytosol 

before it is loaded to the xylem for transport. Efficient regulation of influx and efflux transporters 

is significant for maintaining the steady state of nitrate and nitrogen use efficiency. Two proton 

pumps, vacuolar-type H+-ATPase (V-ATPase), AtCLCa, and vacuolar proton-translocating 

inorganic pyrophosphatases, are attributed to nitrogen import into the tonoplast (De Angeli et al., 

2006; Krebs et al., 2010; Han et al., 2016). Whereas NPF5.11, NPF5.12, and NPF5.16 are vacuolar 

nitrate efflux transporters. Mutants for these proton pumps showed increased NUE, increased 

xylem nitrate, and reduced tissue nitrate than their wild-type counterparts (He et al., 2017). 

Increased nitrate flux and assimilation seem to contribute to larger photosynthetic capacity, which 

led to higher biomass yield than those genotypes storing their nitrogen pool as inert nitrate in their 

vacuoles. In rice, a knock-down of tonoplast localized nitrate transporter OsNPF7.2 drastically 
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reduced growth under high nitrate conditions (10 mM) but not at low nitrate (1 mM) conditions. 

OsNPF7.2 is expressed during high nitrate conditions and is expressed at the tonoplast membrane 

of small and large vacuoles (Hu et al., 2016). OsNPF7.2 did not show any tissue nitrate differences 

suggesting further evidence is needed to qualify it as an efflux or influx transporter (Hu et al., 

2016). Tissue nitrate storage capacity becomes essential in field conditions where the demand for 

nitrate fluctuates depending on the growth stage and the environment. Two rice varieties 

contrasting nitrogen use differed in their shoot nitrogen storage. The nitrate reductase activity for 

both types was similar when 10 mM nitrate was supplied. However, when the nitrogen supply was 

withdrawn, the nitrate reductase activity of the low nitrate storage variety declined to 80%, while 

the high storage line maintained its activity (Fan et al., 2007).  

 Inorganic nitrogen assimilation to organic N 

The enzyme nitrate reductase is the first step in the nitrate assimilation and has been 

postulated to be associated with the nitrogen use efficiency (NUE) of plants. The enzyme’s 

importance was debated in the 1980s and 90s when there was an effort to associate nitrate/nitrite 

reductase activity to biomass production and grain nitrogen. In a study involving seven diverse 

sorghum genotypes, Traore and Maranville, (1999) found no association between nitrogen use 

efficiency at biomass level and grain level with nitrate reductase activity. However, they reported 

a positive (but not statistically significant) correlation between nitrate reductase activity and grain 

protein concentration. A similar correlation between grain protein yield and nitrate reductase 

activity was found in wheat (Eilrich and Hageman, 1973). Another study involving maize hybrids 

reported a correlation between leaf nitrate reductase activity during ear development and grain 

protein yield (Deckard et al., 1973).  

Internal plant nitrogen status regulates the root nitrate reductase activity by controlling the 

nitrate flux (Oaks et al., 1977). The nitrate reductase activity increased with increasing nitrate flux 

(Shaner and Boyer, 1976). Nitrate upregulates the transcription of nitrate reductase (Hoff et al., 

1992). An essential role of nitrate reductase in improving nitrate use efficiency and grain yield was 

recently reported in the indica and japonica subspecies. They have naturally occurred variants 

where the indica NR2 variant resulted in increased reductase activity (Gao et al., 2019). The 

increased activity of OsNR2 enhanced nitrate uptake by triggering feedforward transcriptional 
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upregulation of the indica OsNRT1.1B gene. Similarly, the upregulation of the indica OsNRT1.1B 

resulted in the upregulation of NR2 gene improving the flux of nitrogen (Gao et al., 2019). Near 

isogenic lines harboring both variants in japonica background showed increased shoot N, panicle 

N and grain yield (Gao et al., 2019). 

 Nitrogen remobilization and post flowering nitrogen uptake 

In the vegetative tissue, nitrogen is mainly stored as photosynthetic machinery, Rubisco, 

the pivotal enzyme in the fixation of carbon during photosynthesis. Rubisco accounts for a quarter 

of leaf nitrogen and more than half of soluble protein (Mae et al., 1983). Under high nitrogen 

conditions, plants also store nitrogen in their leaf sheaths, stem, and root. Sorghum plants grown 

in high nitrate conditions accumulated more than 3-fold of nitrate in their leaf sheathes compared 

to leaf nitrogen (Worland et al., 2017). During post-anthesis development, these vegetative 

nitrogen sources are remobilized to fill grain. During grain filling, the high nitrogen demand of the 

grain cannot be satisfied by the nitrogen uptake only. As a result, plants trigger senescence to 

retrieve and remobilize nitrogen to the reproductive organ. The resulting stress from nitrogen 

storage triggers senescence (Pommel et al., 2006). During senescence, the photosynthetic 

machinery is catabolized by different proteolytic enzymes. Enzymes and transcription factors 

responsible for senescence have been identified. Cys proteases are reported to be prominent 

proteolytic enzymes involved in the senescence of leaves. One such protease, HvPAP1, was 

studied in barley. Over expressing this gene accelerated senescence while silencing it delayed post 

anthesis senescence (Velasco-Arroyo et al., 2016). The upregulation of these proteases under 

abiotic stresses also shades light on how different stresses induce senescence. Remobilization in 

major cereals: rice, wheat, and maize, explains more than half of grain nitrogen (Masclaux et al., 

2001). Another proteolytic enzyme associated with senescence is SAG12. In Arabidopsis, SAG12 

knock-out lines had a lower nitrogen harvest index (James et al., 2018). Senescence-related 

transcription factor GPC-B1 has been found to control grain protein content. In wheat, grain 

protein content-B1 locus encoding for senescence-related transcription factor was found to 

increase grain protein. Its introgression into wheat lines caused a significant increase in grain 

protein content (Tabbita et al., 2017). Catabolized amides, ammonium, and other nitrogen sources 

are recycled through the action of GS1 (Masclaux-Daubresse et al., 2010). In durum wheat, high 

grain protein content lines showed high GS1 activity (Nigro et al., 2016).  
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The recycled or de novo synthesized amino acids are translocated to the reproductive sink 

organs through Amino acid permeases. Amino acid permeases play an essential role in the 

transport of amino acids through phloem loading and later importing them to the seeds. The 

Arabidopsis AtAAP8 is localized at the phloem's plasma membrane and is involved in the phloem 

loading of amino acids from source leaves. aap8 mutants showed decreased amino acid loading 

and reduced seed numbers while maintaining grain protein content. The authors suggested that 

AAP8 functions as sink development (Santiago and Tegeder, 2016). AtAAP2 works as an amino 

acid transporter between xylem and phloem (Zhang et al., 2010). In the grain, the Arabidopsis 

AtAAP1 is involved in amino acid uptake to the embryo, and its dysfunction resulted in lowering 

protein content (Sanders et al., 2009).  

Post-anthesis/flowering nitrogen uptake contributes significantly to the total grain nitrogen 

content. In sorghum, split application of high and low levels of nitrogen fertilizer showed that grain 

protein is mainly dependent on post-anthesis nitrogen supply (Worland et al., 2017). In winter 

wheat, using radiolabeled 15N showed that a third of grain nitrogen originates from post-anthesis 

nitrogen uptake (Zhou et al., 2018). In maize, more than half of the grain nitrogen comes from 

post-silking nitrogen uptake (Coque and Gallais, 2007). Even though post-flowering nitrogen 

uptake is an important trait for grain protein content, its negative correlation with remobilization 

efficiency resulted in lower nitrogen harvest index and lower grain nitrogen (Pask, 2009). In 

sorghum, stay green genotypes have larger post-harvest nitrogen uptake than their senescent 

counterparts. A study involving 17 sorghum genotypes showed that stay-green genotypes had 

higher post-anthesis nitrogen uptake compared to senescent types. The senescent types had higher 

nitrogen remobilized during grain filling (Borrell and Hammer, 2000). Stay-green genotypes, as 

the name implies, have delayed senescence and hence have a lower nitrogen remobilization rate. 

Post-harvest nitrate uptake and remobilization rate are negatively correlated (Pask, 2009). A study 

that evaluated maize genotypes for different nitrogen uptake and remobilization-related traits 

reported antagonistic QTL clusters for nitrogen uptake and nitrogen remobilization (Coque et al., 

2008). One of the drawbacks of remobilization is the degradation of the photosynthetic machinery. 

As a result, under senescence, nitrogen uptake is severely limited or absent because of the absence 

of essential input photosynthates. One strategy proposed to increase grain nitrogen is. by utilizing 

both post-harvest nitrogen uptake and remobilized nitrogen is to delay leaf senescence by 

increasing stem and leaf sheath nitrogen storage capacity, targeting leaf sheath and true stem for 
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early remobilization, and inducing leaf remobilization at the later stage of grain filling (Ciampitti 

and Prasad, 2016; Worland et al., 2017). Zhang et al. (2020) reported that such an approach, 

together with split nitrogen fertilizer application, resulted in simultaneous improvement of protein 

concentration and grain yield. This would enable leaves to be photosynthetically active and 

provide inputs for the roots and the grain. Uribelarrea et al. (2007) reported that 100 years of 

selection for high protein content in maize resulted in the indirect selection of strains with 

extensive remobilization and higher pre-and post-flowering nitrate uptake capacities. In wheat, the 

high-affinity NRT2.1 was associated with post-flowering nitrate uptake (Taulemesse et al., 2015).  

 Approaches for improving grain protein content  

Improving a trait requires genetic variation and selection strategy. The source of genetic 

variation can either be natural or artificial. Breeders utilize genetic variation to make genetic 

advances. In maize, long-term divergent selection from a single open-pollinated cultivar in ‘Burr’s 

White’ was conducted. Continued selection with sizable genetic advances for more than 50 

generations created a 14% gap between high and low-grain protein content strains (Dudley, 2007). 

Wild relatives can also be used to introduce variation in the genetic pool. In wheat, the high grain 

protein content grain protein content-B1 locus linked to grain protein was sourced mainly from a 

wild relative var.dicoccoides (Blanco et al., 2006; Tabbita et al., 2017). Genome editing, discussed 

in the last section of this chapter, also provided new tool to modify targeted genome sequences to 

alter its expression towards specific purpose.  

 Phenotypic selection 

Protein content as a selection criterion has improved grain protein content in many crops. 

The Illinois selection for high grain protein through direct selection for high grain protein content 

has made it possible to identify strains with higher protein (Uribelarrea et al., 2007). In sorghum, 

a four-cycle mass selection increased grain protein by 0.5 percentage points, while negative 

selection reduced 1.06 percentage points (Ross et al., 1985). In rice, selection in a back cross-

population for higher grain protein content and yield resulted in an elite genotype high in grain 

protein without sacrificing yield (Chattopadhyay et al., 2019). Non-destructive NIR methods have 

facilitated selection for grain protein. In soybean, it was possible to make early generation selection 
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on F2 seeds using specialized single seed NIR spectroscopy (Lee et al., 2010). There are at least 

two drawbacks in using protein content as a selection criterion: its negative correlation with yield 

and the confounding dilution effect. Selecting merely on protein content usually results in lower 

grain yield (Ross et al., 1985; Gebre-Mariam and Larter, 1996; Iqbal et al., 2007; Oury and Godin, 

2007). Consideration to yield data is important to maintain the agronomic threshold while selecting 

for high protein.  

In addition to grain protein content, the total protein yield, which is the amount of protein 

produced per unit area, may be of interest. It is computed by the product of average protein 

concentration with grain yield. Grain protein yield is positively correlated with both grain yield 

and grain protein content (Kumar et al., 2011; Rhodes et al., 2017). An oat experiment aimed to 

determine the response to selection for protein yield showed that selection for protein yield-

maintained protein content while increasing yield. Selection for high grain yield, on the other hand, 

raised the non-protein component. But selection for grain protein content leads to a decrease in 

non-protein grain components (McFerson and Frey, 1992). In another study, selection for protein 

yield slightly reduced grain protein content (Moser and Frey, 1994). One significant drawback of 

using protein yield is that most of the variation in protein yield is explained by grain yield, and as 

a result, high protein content genotypes tend to have less protein yield (McFerson and Frey, 1992). 

Monaghan et al., (2001) suggested utilizing grain protein deviations (GPD) - residuals from 

the regression of grain protein content on grain yield, as a selection criterion for concurrent 

improvement of grain yield and grain protein content. Cultivars with positive residuals would have 

higher grain protein content than otherwise predicted from the regression. The heritability of GPD 

involving more than 70 genotypes from different European countries is moderate (0.44). A larger 

portion of the GPD variation is explained by genetic components (Mosleth et al., 2020). As the 

environment confounds grain protein content relationships through GXE, multi-environment data 

is required to reliably establish the relationship (Oury and Godin, 2007). This parameter has been 

mainly used in bread and durum wheat (Monaghan et al., 2001). In wheat, post-anthesis nitrogen 

uptake is positively correlated with GPD (Bogard et al., 2010). Genotypes that have a stable 

performance for both yield and protein content can be selected using GPD. In an experiment that 

involved eleven wheat cultivars, GPD was able to identify a cultivar that had relatively stable 

performance across diverse environments (Marinciu et al., 2018). Contrary to the negative 
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heterosis for grain protein content, high GPD hybrids had higher grain yield for protein content 

than line cultivars (Thorwarth et al., 2018). Moreover, QTL mapping using GPD identified QTLs 

independent of Grain Yield. These QTLs were stable across environments and are colocalized with 

grain protein content (Nigro et al., 2019). 

Nitrogen harvest index (NHI) is the ratio between total grain nitrogen and the total nitrogen 

in the shoot. Fageria (2014) reviewed the NHI and its relationship with different crop attributes. 

NHI has positive and significant correlations between yield and grain protein content and can be 

used as a proxy for selecting genotypes with both high grain yield and grain protein content. 

However, this correlation does not seem to be global. In durum wheat cultivars, the nitrogen 

harvest index was not correlated with grain protein content (Desai and Bhatia, 1978). The nitrogen 

harvest index was positively correlated with yield but not correlated with grain protein content 

(Löffler and Busch, 1982). It is important to understand which physiological conditions control 

NHI in the population screened. From its definition, NHI is more likely to be impacted by nitrogen 

remobilization efficiency (Fageria, 2014) and contrasting nitrogen uptake capacity and 

remobilization, in theory, may reduce the correlation between NHI and grain protein content. 

Moreover, the nitrogen status of cultivars impacts nitrogen remobilization efficiency, where 

genotypes with high nitrogen status have reduced nitrogen remobilization efficiency. The nitrogen 

Harvest index of two isogenic lines for high protein content locus Gpc-B1 was positively 

correlated with the presence of the high allele and negatively correlated with straw nitrogen 

(Tabbita et al., 2013). However, the parameter is cumbersome to be practically used to screen large 

populations. 

To generalize, it is imperative that one must have a good understanding of the architecture 

of genetic factors controlling grain protein content in order to decide on a given selection strategy. 

Depending on the species and population, the genetic architecture of grain protein content may be 

different. In the Illinois long-term selection, the continuous genetic advance from over 50 cycles 

of selection suggests that polygenic architecture with minor effect is the major contributor to grain 

protein content (Uribelarrea et al., 2007). Phenotypic selection based on the mean performance of 

progenies was successful in securing genetic gain. There are also major effect genes controlling 

grain protein content, with one example being the Gpc-B1 locus in wheat which marker-assisted 

selection for grain protein content had been successful (Tabbita et al., 2017).  
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 Genomic selection 

Genomic selection utilizes genome-wide markers to estimate the additive effect of all loci 

to predict the genomic estimated breeding value. The applicability of genomic selection for grain 

protein content was evaluated in wheat. Prediction accuracy estimated as correlation, r, between 

the observed and predicted values, of r=0.769 was obtained using genomic selection for grain 

protein. The authors also reported that genomic selection using selection indices enables 

concurrent selection of grain yield with a minimal penalty in grain protein (Michel et al., 2019). 

For soybeans, the genomic selection model has improved prediction accuracy (Duhnen et al., 

2017). Since phenotyping for grain protein is a significant hurdle, especially in large breeding 

populations, breeding programs would benefit from optimized genomic selection platforms and 

improved computational capacity. Integrating genomic selection with the NIR system for 

phenotyping may further revolutionize breeding for protein content and quality. 

 Genetic modification 

With the advent of molecular technology, it is now possible to make targeted genetic 

modifications. Overexpression under strong promoters, copy number modification, knock out 

through T-DNA insertion, and knock-down using RNAi technology had been used to bring 

phenotypic change. The CRISPR/Cas9 technology now enables selectively editing and modifying 

genes or regulatory sequences. The technology is widely used in many crop species (Zhang et al., 

2018b). Moreover, gene editing had been used to improve grain protein content. In wheat, 

CRISPR/Cas9 mediated editing of the B and D homeologs of locus TaGW2 increased grain protein 

content while reducing seed weight (Zhang et al., 2018a). The advantage of the transgenic 

approach is that beneficial genes discovered can be applied across the taxonomic barriers. This 

would prove valuable as knowledge from model crops would be transferred to other economically 

important but underfunded crops.  

From the point of improving grain protein content, the primary challenge is to identify 

target genes that fit the pipeline for improving grain protein. As it is shown in this review, grain 

protein concentration cannot be seen separate from the background physiological processes which 

regulate it. For example, high vegetative nitrogen uptake and utilization do not correlate well with 
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high grain nitrogen. As a result, increasing nitrogen uptake capacity without the sink strength to 

derive higher remobilization may be a futile exercise. Strategies that strengthen both vegetative 

and, more importantly, reproductive sink seem to promise to increase grain protein potential 

(Tegeder and Masclaux-Daubresse, 2018). Vegetative sink strength arises from vigorous 

vegetative growth and nitrogen storage. Robust vegetative growth was shown to derive nitrogen 

uptake in maize (Tian et al., 2006). Nitrogen uptake under high nitrogen supply is more associated 

with the vegetative sink (Peng et al., 2010). Increasing vegetative sink strength through nitrate 

storage in leaves was suggested to have contributed to nitrate use efficiency in maize RIL lines 

(Hirel et al., 2001; Tegeder and Masclaux-Daubresse, 2018). Attempts to overexpress nitrate 

transporters through transgenic approach have shown to increase overall nitrate uptake and 

nitrogen use efficiency. We saw in the previous sections that the overexpression of nitrogen 

transporters may trigger higher nitrogen uptake utilization efficiencies. The resulting vigor in 

photosynthetic capacity may result in enhanced biological performance. The reproductive sink can 

be strengthened through improved nitrate and amino acid transport capacities to the grain and 

higher grain biosynthesis activities. In maize, a comparison of two genotypes contrasting for 

nitrogen use efficiency were found to have a contrasting expression of enzyme coding genes 

involved in amino acid biosynthesis and interconversion. Increased transport of nitrogen to the 

grain improved the sink strength (Cañas et al., 2009). In legumes, upregulating pea amino acid 

transporter amino acid permease gene AAP1 allocated more nitrogen to the shoot and then to the 

seeds resulting in higher grain protein and grain yield. Nitrogen uptake efficiency and nitrogen use 

efficiency were improved independently of nitrogen supply level (Perchlik and Tegeder, 2017). In 

Vicia faba, the AAP1 gene's ectopic expression resulted in 10 to 25% increment in grain protein 

content, 20 to 30% increment in seed size while maintaining starch content. Moreover, radio 

labeling nitrogen supply from root showed higher labeled nitrogen in the seeds implying sink 

strength derived the increased nitrogen uptake. The investigators suggested that nitrogen transport 

into seed is rate-limiting stage and determined seed sink strength (Rolletschek et al., 2005). In 

wheat, the allelic difference in the gene TaAAP6 explained grain protein content differences (Jin 

et al., 2018). In rice, overexpression of the amino acid transporter OsAAP6 elevated grain protein 

content as compared to its near-isogenic line facilitating amino-acids import to seed endosperm 

(Peng et al., 2014). Using CRISPR/Cas9 system, Wang et al. (2020b) showed that targeted 

mutagenesis and silencing of OsAAP6 gene reduced grain protein content in rice. These result 
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show that genetic modifications can target specific genes to further modify grain protein content 

as needed. 

 Conclusion 

The major challenge with improving grain protein content is its negative association with 

grain yield and the lack of incentive for farmers to risk the yield penalty for increasing grain protein 

content. Physiological mechanisms such as nitrogen remobilization and the relatively higher 

energy requirement of protein transport and synthesis make the relationship between overall grain 

yield and grain protein content negative. However, there are opportunities for improving grain 

protein content while limiting the penalty on grain yield. The role of environment in grain protein 

content, and thus, breeding strategies should be a critical consideration. Piece-mill approach using 

different sources of beneficial traits at each stage of nitrogen metabolism, and overall 

photosynthetic efficiency and fine-tuning the combinations through successive selection can yield 

elite lines which satisfy both yield and protein targets.  
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Table 1-1 Grain protein composition of some cereal crops.  

Crop Number grain protein content Range (%) Reference 

  Min Max  

 5 9.7 17.3 (Sterna et al., 2016) 

Oat 8 13.81 19.29 (Redaelli et al., 2015) 

 26 15.3 23.1 (Ahola et al., 2020) 

 35 6.67 11.34 (Ünlü et al., 2018) 

Maize 92 12.16 14.95 (Vancetovic et al., 2015) 

 332 4.7 17 (Deosthale et al., 1970) 

Sorghum 390 8.1 18.81 (Rhodes et al., 2017) 

 92 3.5 12.6 (Badigannavar et al., 2016) 

Durum Wheat 140 12.22 18.11 (Kendal et al., 2019) 

Bread Wheat 60 7.39 13.97 (Pronin et al., 2020) 

 225 10.43 14.48 (Akcura et al., 2016) 

Rice 6 7.44 9.67 (Kaur et al., 2018) 

 10 Populations 8.45 9.93 (Eizenga et al., 2014) 

Barley 8 10.8 12.3 (Wang et al., 2003) 

 158 8.02 13.5 (Cai et al., 2013) 
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Figure 1-1 Economic status based disaggregated contribution of cereals to the protein supply 

of the world.  

LIFD and LD stand for Low Income Food Deficient Countries and Least Developed Countries, 

respectively. (Data from FAOSTAT 2020) 
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Chapter 2 - Adaptation to agroclimatic conditions fashioned some 

grain physicochemical attributes of sorghum in Ethiopia 

 Abstract 

Sorghum is a significant source of nutrients for people living in drought-affected areas of 

the world. Unlike other major cereals, sorghum grains develop naked directly exposed to climatic 

conditions and hence may be vulnerable to climate induced biotic and abiotic stresses. This study 

was based on the hypothesis that the physicochemical characteristics of sorghum grain may confer 

fitness to bioclimatic induced stressors. The objective of this study was to assess the association 

of grain physicochemical parameters and bioclimatic conditions of their collection region. The 

study utilized Ethiopian sorghum landraces, evaluated them for different grain characteristics and 

attempted to determine the association between them. Spearman correlation between tannin and 

various other plant features found negative and significant (P< 0.001) correlations including 

hundred-kernel-weight, virtuousness, and head compactness. Significant associations (P< 0.01) 

were also observed between precipitation gradient and grain attributes. Tannin presence and loose 

panicle architecture tend to dominate the high precipitation agro-ecologies. This seems to fit the 

expectation that tannin and looser panicle architecture offer an adaptive advantage in humid areas 

where grain mold and other fungal pathogens tend to prevail. Grain dimension traits and hundred 

kernel weight also showed significant correlations with climatic conditions. Membership in any of 

the five botanical races had an important role in the adaptation and grain characteristics of the 

landraces. The PCs from the genomic data are also correlated with both climatic variables and 

grain parameters. Genes in control or directly taking part in the synthesis of polyphenolic 

compounds had association with the overall adaptation of sorghum landraces. Overall, grain 

attributes in sorghum have an adaptive role, and careful analysis of target areas is crucial in efforts 

aimed at improving sorghum grain quality attributes. 
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 Introduction 

Ethiopia is located in the North-Eastern Africa region, recognized as the center of diversity 

of sorghum, where the major cultivated races of the crop have been grown for millennia (Doggett, 

1970). Owing to the diverse agroecologies of the country, farmers in Ethiopia had selectively 

domesticated diverse sets of genotypes suited to their culture, utilization and production practices, 

and their specific agroecology. Studies on the diversity of Ethiopian sorghum landraces based on 

morphological attributes (Teshome et al., 1997) and molecular markers (Cuevas and Prom, 2013; 

Girma et al., 2019; Mengistu et al., 2020) showed the richness of the Ethiopian sorghum gene pool. 

This pool harbors various beneficial agronomic traits such as high lysine (Singh and Axtell, 1973), 

high protein content (Rhodes et al., 2017), post-flowering drought tolerance, stay-green 

(Haussmann et al., 2002), grain mold resistance (Pugh et al., 2017; Nida et al., 2019), sugar cane 

aphid resistance (Muleta et al., 2021), and resistance to the parasitic weed Striga (Abate et al., 

2017).  

Adaptability to a wide range of environmental conditions is an important factor for the 

survival of species. The scope of the utilization of a crop is also based on the degree to which it is 

adapted to a diverse set of agroecology. Under climate change scenarios where weather 

uncertainty, population pressure, and reduction in per capita land area result in an expansion of 

crop agriculture to marginal lands, adaptability and ecological plasticity of species are of 

paramount importance to sustain livelihoods.  

Several factors may come into play to influence the adaptability of species and varieties to 

a given environment. Kernel physico-chemical attributes are particularly important for the 

adaptation of sorghum. As the genetic material is carried from one generation to the next via a 

seed, crops have evolved various adaptation mechanisms to maintain this natural cycling of 

generations. The presence of tannin in sorghum grain is one of the adaptation mechanisms (Morris 

et al., 2013; Lasky et al., 2015). Tannin has been associated with grain mold resistance in maturing 

kernels (Melake-Berhan et al., 1996; Nida et al., 2021) and chilling tolerance, especially during 

germination and emergence (Marla et al., 2019). Moreover, the presence of tannin is often 

correlated with environmental factors. However, the distribution of tannin sorghums across 

different agroecology in Ethiopia and its association with other characters is not documented.  
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Another layer of protection that sorghum kernels have evolved is through alienating 

pathogens by denying them access to nutrients. The way sorghum protein bodies and starch 

granules are organized in the endosperm renders sorghum nutrients inaccessible to intruding 

microbes and insect pests. Even though these characteristics of the crop are detrimental to the 

overall nutritional quality of sorghum (Duodu et al., 2003), it is an important characteristic for its 

adaptability and survival. These scenarios need to be addressed in crop improvement approaches. 

Panicle architecture itself also imparts another barrier to invasion by grain mold pathogens 

(Sharma et al., 2010) and bird attack (Bullard, 1988). Loose and dropping panicles with extensive 

glume coverage, such as that of the guinea race, tend to drain moisture quickly and maintain low 

humidity in the panicle limiting invasion by grain mold pathogens. Thus, it is a crucial adaptation 

trait in humid regions where panicle and leaf diseases are critical. The sturdy stalk structure of 

durra sorghums that serves as a sink source during vegetative growth has been hypothesized to 

serve as a mode of survival under dry conditions through nutrient remobilization during later 

growth stages (Blum, 2004).  

In addition to the morpho-agronomic characteristics, several studies have looked at 

adaptation signatures at the genome level across the global sorghum collections (Jordan et al., 

1979; Morris et al., 2013; Lasky et al., 2015) as well as collections from specific countries (Maina 

et al., 2018; Faye et al., 2019; Girma et al., 2020). Genomic factors related to maturity (Lasky et 

al., 2015), tannin (Lasky et al., 2015), inflorescence architecture (Olatoye et al., 2018), drought 

tolerance (Olatoye et al., 2018; Girma et al., 2020), seed size (Tao et al., 2017; Wang et al., 2020a) 

and recently sugar cane aphid resistance (Muleta et al., 2021) have been discovered. Ethiopian 

sorghum landraces provide a unique opportunity for understanding the adaptive role of grain 

physico-chemical characteristics. The diverse gene pool for the crop, wide-range of agroecology 

and the long history of cultivation and utilization of the crop may provide a great deal of 

information about artificial and natural selection pressures and their effects on the genetic and 

phenotypic variations of Ethiopian landraces across the country. Moreover, larger sample of 

diverse landraces per local agroecology, which was not possible in the other global studies, may 

offer better statistical power to understand the impact of local bioclimatic factors in shaping the 

overall genetic and morphological architecture of the accessions and its signature on adaptation. 

This study is part of a comprehensive project supported by the USAID FtF program, where over 

2000 accessions representing the diverse agroecology of Ethiopia were characterized for various 
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agronomic traits. The study aims to investigate the relationship between bioclimatic factors and 

plant attributes and how these may have guided the adaptation and selective cultivation of sorghum 

in different agroecology of the country.  

 Material and Methods 

 Plant materials  

The plant materials included in this study are a subset of the Ethiopian sorghum landrace 

collection representing diverse regions and agroecology of the country. Details of the materials are 

outlined in (Girma et al., 2019). Briefly, 2010 accessions were drawn out of the over 9000 

accessions maintained by the Ethiopian Biodiversity Institute. Released varieties and landraces 

grown by local farmers in different regions were also included. The materials were planted on a 

single-row plot at Melkassa Research Center during the 2014 season for seed increase and 

preliminary observation. For this study, we utilized 1579 materials for which genotype data were 

available. Of these 1523 were landraces, 10 were elite materials from breeding programs, 32 

released cultivars, and seven were introductions. The remaining seven had no collection data.  

The materials were grown at multiple locations throughout the country for three subsequent 

seasons. Due to the size of the entries, the experiment was not replicated per location. The data 

used for this study were derived from experiments carried out at selected locations representing 

the ecological diversity of sorghum production, namely Arsi Negele, Haramya, Bako, and Pawe. 

Data were collected on plant height, days to flowering, and grain mold incidence scored using a 1-

5 scale, with one being resistant (no disease) and five for susceptible (Tessema et al., 2019). Panicle 

compactness was coded following the sorghum descriptor (IBPGR and ICRISAT, 1993) with some 

modifications as: (1) very lax, very loose (2) loose erect, semi-loose droop, (3) Semi-loose erect 

(4) semi-compact and compact. The grain samples from the 2016 Arsi-Negele test were evaluated 

for determining grain characteristics such as thousand kernel weight and endosperm vitreousness 

following the sorghum descriptors (IBPGR and ICRISAT, 1993). Grain translucence was visually 

scored under a light box using a 1-5 scale with “1” for completely opaque and “5” for completely 

translucent. The grain dimension, length (l), width (w) and height (h) were evaluated using a 

Aickar TM digital micro-caliper to the 0.01 accuracy from 5 kernels per accession. The presence of 
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tannin was determined using a bleach test (Waniska et al., 1992). Black coloring after bleaching 

indicated presence of tannin and was coded as “1”, and no black coloring as the absence of tannin 

“0”. Pericarp thickness was evaluated following the procedure outlined in (Gomez et al., 1997) by 

scraping the kernels. If the pericarp comes out as flakes, it was considered thick and scored “1’ 

and if it fragmented or powdered, it was thin and scored “0”. 

 GBS genotyping 

The work employed genotypic data from two sets. One was from the Ethiopian collection, 

and the other is from the global sorghum collection. For the Ethiopian collection, details of DNA 

extraction, library preparation, and sequencing were as outlined in (Tessema et al., 2019). The 

global accessions included in the second set were diverse materials from different sources, and 

details of the accessions is outlined in (Wang et al., 2020a). The raw fastq sequence for global 

sorghum collection is a subset of SAMN01828196 BIOSAMPLE from the NCBI Sequence Read 

Archive database and was obtained using fastq-dump from the SRA toolkit (v2.10.8 

https://hpc.nih.gov/apps/sratoolkit.html). The raw sequences from the Ethiopian core collection 

and global accessions were combined for the GBS pipeline. The TASSEL Version 5 (Bradbury et 

al., 2007), and GBSV2 pipeline (Glaubitz et al., 2014) were used to process the raw sequence files, 

align to the Sorghum bicolor reference genome version 3.1.1 from Phytozome (McCormick et al., 

2018) using the “very-sensitive” parameter of Bowtie2 (Langmead and Salzberg, 2012), and called 

SNPs for the accessions. The GBS pipeline of the Ethiopian core collection and the global sorghum 

accessions yielded 342,395 SNPs. These were further filtered for bi-allelic sites at a maximum of 

20% missing data, and a minimum of 1% minor allele frequency using VCFtools - 0.1.17 (Danecek 

et al., 2011), finally retaining 311,228 SNPs. Imputation using Beagle4.1 (Browning and 

Browning, 2016) was performed separately for each chromosome.  

 Bioclimatic variables 

Bioclimatic data was obtained from WorldClim Version2 database (Fick and Hijmans, 

2017). Administrative boundaries were retrieved from Open Africa Database 

(https://africaopendata.org/dataset/ethiopia-shapefiles). In house R code using the R-Package 

https://africaopendata.org/dataset/ethiopia-shapefiles
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Raster (Hijmans et al., 2015) was used to extract bioclimatic variables. District level mean value 

of each variable was used for further analysis. 

 Correlation and principal component analysis (PCA) among plant and bioclimatic 

variables 

Character association was evaluated using spearman correlation analysis using the function 

corr.test in Psych (v2.0.12; (Revelle and Revelle, 2015) package. Partial correlations were 

computed using pcor.test from ppcor package (Kim, 2015). PCA was implemented using the PCA 

function of FactoMineR (Husson et al., 2016) package. The biplots were displayed using the 

FactoExtra package (Kassambara and Mundt, 2017).  

 Population Genomic Analysis 

Population structure among the landraces was evaluated using PCA utilizing the 

PrincipalComponentsPlugin in TASSEL 5.0 (Bradbury et al., 2007). A model-based tool 

ADMIXTURE (Alexander et al., 2015) was used to infer ancestry estimates using genetic clusters 

2 to 20. PLINK (Purcell et al., 2007) using the option –indep-pairwise 50 5 0.5 was used to prune 

the SNP based on LD, and 65,712 SNPs were retained for estimating ancestry. Population 

differentiation (Fst) among subpopulations was computed using VCFtools - 0.1.17 (Danecek et al., 

2011). Nucleotide diversity π was computed for a window of 1 Mb using VCFtools - 0.1.17 

(Danecek et al., 2011).  

 Race membership determination 

For the Ethiopian core collection, putative landrace determination was made following two 

approaches. The major botanical races were manually determined using the spikelet and 

inflorescence features as outlined in (Harlan and de Wet, 1972). The botanical race assignment of 

potentially intermediate races and those with ambiguous features were inferred with supervised 

admixture analysis using ADMIXTURE software (Alexander et al., 2015) utilizing manually 

assigned landraces and the predetermined botanical races of global collection. An admixture 

coefficient value of 0.8 was used as a cut-off value for admixture assignment.  
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 Genome-wide association study (GWAS) of plant attributes  

Biallelic SNPs with minor allele frequency above 0.05 were utilized for the GWAS of plant 

attributes. General Linear Model (GLM), Mixed Linear Model (MLM), fixed and random model 

circulating probability unification (FarmCPU), and Bayesian-information and Linkage-

disequilibrium Iteratively Nested Keyway (BLINK) using the R package GAPIT (Lipka et al., 

2012) were implemented for the association study. False discovery correction rate (FDR) <0.05 

was used as a threshold to determine the significance of SNP effect.  

 Genomic Signatures for local adaptation 

A PCA-based statistic was used for identifying outlier SNPs that may be associated with 

local adaptation. SNPs associated with Principal Components (PCs) which defined population 

structure were assumed to be potential contenders for local adaptation. A tenth of one percent 

outlier SNPs were selected as a potential SNPs using loading of the first few PCs analyzed using 

Tassel (Bradbury et al., 2007).  

 Priori genes for grain weight, grain quality, and panicle compactness  

Priori genes for grain weight and panicle morphology were assembled from (Tao et al., 

2017) and (Olatoye et al., 2018), respectively. Moreover, other genes related to anthocyanin 

regulation and synthesis, kafirin genes were assembled. Linkage with the priori gene was 

established if the outlier SNP is within 50 kbp flanking region of the priori gene. 

 Result 

 Racial attributes of the collections 

Botanical race assignment utilized two approaches. The first approach was to manually 

assign the major botanical races based on kernel features as outlined in (Harlan and de Wet, 1972). 

Botanical race determination on the remaining unassigned genotypes was made using supervised 

admixture analysis utilizing the global sorghum diversity collection as a reference (Wang et al., 

2020a). Supervised admixture analysis using the software ADMIXTURE has been found reliable 
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in the literature (Thornton et al., 2014). Admixture, a model-based ancestry estimating software 

using autosomal SNPs of individuals (Alexander and Lange, 2011), has the option to accept 

predefined ancestral populations to supervise the learning phase and enhance ancestry estimation 

of individuals.  

Table 2-1 shows the number of genotypes from Ethiopian core population and the global 

sorghum diversity collection used as a reference for our supervised race assignment.  

The result shows that the durra race dominates (48.9%) the Ethiopian collection, followed 

by the intermediate race durra-bicolor (18.9%) and caudatum (15.4%). Guinea has smaller (0.5 %) 

representation even though guinea-caudatum mixed race has a significant proportion (13.6%). 

Kafir was also represented with a smaller percentage (0.8%) in the core collection (Table 2-2). 

To further validate the race assignment, we performed PCA, a non-parametric factor 

reduction method, by forming mutually uncorrelated dimensions which maximize the variances of 

the first few PCs. The analysis facilitates observation of individual clusters in a space determined 

by the orthogonal dimensions as an axis. PCA of the accessions showed similar clustering as 

predicted by the ADMIXTURE analysis (Figure 2-1). The first five PCs explained 22% of the total 

genetic variation of the Ethiopian accessions and the global collection. Each of these five PCs 

differed in their importance in discriminating the botanical races. Durra accessions were 

differentiated from the rest across the PC1 axis while durra-bicolor on PC2. PC3 separated one of 

the clusters of guinea-caudatum from the rest; PC6 separated the two guinea-caudatum clusters 

and caudatum clusters from the durra and durra-bicolor cluster  

Among the botanical races, the Fst showed durra-bicolor as a highly differentiated race 

relative to other races: bicolor (0.22), durra (0.28), caudatum (0.28), and guinea-caudatum (0.32). 

The durra and caudatum races were also moderately differentiated (0.22) (Table 2-3).  

The level of LD for the whole core collection and across the different botanical races was 

analyzed. On average, in the Ethiopian collection, LD decayed to half of its maximum r2 in ~10 

kb and to the background LD (r2 ~ 0.1) by around 46 kb (Figure 2-2). The rate of decay across the 

botanical races is different. Caudatum decayed faster to its half-maximum r2 within 12kb and durra 
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in 13 kb, bicolor (15.1 kb), and durra bicolor (18 kb), while the guinea-caudatum (46 kb) had 

slower decay. 

To evaluate the shift in allele distribution within populations, nucleotide diversity (π) was 

evaluated for each botanical race separately. A comparison of the median nucleotide diversity, 

which quantifies the expected per site pair-wise nucleotide differences, showed that the bicolor 

race had the largest nucleotide diversity, where the median of 50 kb genomic bins had ~6% more 

nucleotide diversity than the whole population. The rest of the landraces had smaller π than the 

whole population, where caudatum, durra-bicolor, durra, and guinea-caudatum had 92%, 72%, and 

65%, and 50% of the whole core collection.  

An optimum number of hypothetical ancestral populations (K) is determined as the K 

value, which minimizes the cross-validation error (Figure 2-3 A). However, it was difficult to find 

the optimum K value which satisfies this requirement. Efforts were made to estimate the admixture 

using K=6, K=8, and K10 (Figure 2-3 B-D). The analysis showed that the Ethiopian core collection 

is a highly admixed. Moreover, the botanical races themselves are a mixture of subpopulations. 

For example, Durra at K=6 is a mixture of G1 and G5.  

 Phenotypic evaluation of grain and panicle traits 

Given that Ethiopia is the center of origin and diversity for the crop and is also endowed 

with wide agroecology (Figure 2-4), sorghum accessions in the country harbor a wide range of 

variations, including grain and panicle traits (Table 2-4 and Figure 2-5). The grain yield per panicle 

ranged from no seed set to a high of 222.2 g, with an overall mean of 49.6 g. The mean hundred 

kernel weight across accessions was 2.5g, with a score ranging from a low of 0.6 g to 4.7 g in bold 

accessions. The mean grain dimension, length, width, and thickness were 3.9, 2.8, and 2.5 mm, 

with the range for grain length being 2.6 to 5.1 mm, width 2.3 to 5.6 mm, and thickness 1.7 to 4.7 

mm. Grain protein content also ranged from 7.0 to 14.0 %. 

Spearman correlation analysis revealed highly significant associations among the plant 

attributes Table 2-5. Landraces with tannin tend to possess loose panicle (r= - 0.30, P< 0.0001) 

thicker pericarp (r= 0.15, P< 0.0001), starchy endosperm (r= 0.29, P< 0.0001), opaque kernel (r= 

0.34, P< 0.0001), and smaller seed mass (r= -0.28, P< 0.0001). Large and heavier seeds were 
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associated with a more compact panicle (r=0.44, P< 0.0001), higher grain protein content (r=0.37, 

P< 0.0001) and more translucent kernel (r=0.19, P< 0.0001). Compact panicle was also associated 

with thinner pericarp (r=0.21, P< 0.0001) and translucent kernel (r=0.31, P< 0.0001). 

Race membership explained some of the variations among the accessions. The percentage 

of variance for grain size attributes explained by race and estimated using η2 revealed that race 

membership explained a substantial percentage of the variation for the traits. Race had influence 

on kernel width (28.2 %), HKW (27.5 %), and kernel length (13.1 %). Durras had the largest HKW 

(2.88 g) while durra-bicolor the smallest (1.88 g ). Similarly, kernel dimensions were also variable 

among the races. Durras had the largest values for kernel length, width, and thickness. Another 

peculiar observation was the width to the length ratio, which was above 1 for durra while it was 

below 1 for the rest of races.  

A Chi-square test of independence was used to determine the association between 

categorical variables, race membership and other grain attributes. The test revealed a highly 

significant association between botanical race membership and tannin (df=4, P < 0.0001) and 

pericarp thickness (df=4, P < 0.0001). Tannin was present in 86.4% of the accessions from the 

caudatum race, 83.3% of the guinea, and 71.4% of the durra-bicolor types; whereas the durra, 

guinea-caudatum, and kaffir races had lesser proportion (50% accessions that contain tannin. 

About 74% of the caudatum accessions had thick pericarp, whereas durra (33.6%) and durra-

bicolor (22.8%) by thin pericarp land-races (Table 2-2).  

 Association between the attributes of landraces and bioclimatic variables 

The result for the spearman rank correlation analysis is presented in Table 2-6. Tannin 

presence was positively associated with levels of annual precipitation (r=0.15, P< 0.001), and 

precipitation during the wettest quarter (r=0.15, P< 0.001), and precipitation during the coldest 

quarter (r=0.217, P< 0.0001). About 61% of the accessions contained tannin, but the distribution 

of tannin sorghums varies across regions and bioclimatic zones. Tannin types tend to dominate the 

wetter regions in the Western part of the country, while drier regions in the East and Northeast had 

less proportion of tannin sorghums (Figure 2-6). Likewise, landraces originating from dryer areas 

of the country tend to possess compact panicles. Panicle compactness generally had a negative 
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correlation with annual precipitation (r=-0.247, P< 0.0001), precipitation during the wettest quarter 

(r=-0.18, P< 0.0001), and precipitation during the coldest quarter (r=-0.286, P< 0.0001). However, 

compact panicle was positively associated with precipitation during the warmest quarter (r=0.185, 

P< 0.0001). Like panicles, large-seeded landraces were associated with dry agroclimate; that is, 

accessions grown in the drier environment tend to have larger seed sizes. HKW was negatively 

correlated with annual precipitation (r= -0.247, P< 0.0001), precipitation during the wettest quarter 

(r=-0.161, P< 0.0001) and precipitation during the coldest quarter (r= -0.194, P< 0.0001). 

However, it was positively correlated with precipitation during the warmest quarter (r= 0.185, P< 

0.0001). Kernel width also had a similar pattern of association with bioclimatic variables as HKW 

(Table 2-5). Pericarp thickness had a different pattern of association with precipitation; it was 

negatively associated with precipitation during the driest month (r= -0.175, P< 0.001), and during 

the driest quarter (r= -0.216, P< 0.0001), and warmest quarter (-0.211, P< 0.0001). It was positively 

correlated with precipitation during the wettest quarter (r=0.129, P< 0.001) and coldest quarter 

(r=0.187, P< 0.0001). We also evaluated the correlation of these plant attributes with monthly 

precipitation. Precipitation during the months of September and October were significantly 

correlated with panicle compactness (September-r=-0.18, October= -0.19), tannin (September- 

r=0.18, P< 0.0001; October- r=0.19, P< 0.0001). Months September and October, mostly grain-

filling periods for most sorghum genotypes, coincide with the period of active grain and panicle 

infection by grain molding pathogens. 

PCA on combined bio-climate variables is shown in (Figure 2-7). The plot of variables on 

the first and second PCs shows that landraces that originated in high precipitation areas, 

specifically from high coldest quarter precipitation, tend to be tannin type. Landraces with compact 

panicles, more translucent, and larger mass arise from drier areas. Pericarp thickness in the first 

two dimensions tends to cluster with precipitation seasonality and temperature seasonality. 

Additionally, traits that were positively correlated with precipitation of origin had positive 

association with grain mold resistance. For example, tannin sorghums which originated in high 

precipitation areas were more tolerant while non-tannin, compact, large kernel genotypes tend to 

be susceptible to the disease when grown in disease hot-spot areas. 

Caudatum race is mainly distributed in humid lowland areas of the country (50.5%). Durra 

is distributed across wet-highland (40.1%) and dry lowland (24.1 %) areas. Durra-bicolor is mainly 
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distributed in wet-highland and wet intermediate altitude regions. Bicolor is also mainly distributed 

across wet highlands while guinea-caudatum is distributed across most of the traditional 

geographic zones. The caudatum landraces mostly occur in humid warmer areas (Annual mean 

Temperature=22.3C, and annual precipitation=1043 mm), while durras are concentrated in colder 

but drier regions (Annual mean Temperature=20.6 and Annual precipitation=848 mm). Durra-

bicolor is more abundant in colder areas of the country. 

 Genomic support for the role of grain and panicle attributes for adaptation 

Since the first few PCs of genome wide PCA were responsible to discern botanical races, 

they were used as a proxy for testing adaptation. To test whether these PCs were related to 

bioclimatic variables, correlation analysis was conducted using spearman method. The first 

genomic PC was correlated with precipitation variables i.e annual precipitation (r=-0.283, P < 

0.0001), and precipitation during the coldest quarter (r=-0.285, P < 0.0001). The second genomic 

PC correlated with annual temperature (r=-0.344, P< 0.0001), isothermality (r=0.289, P < 0.0001), 

temperature seasonality (-0.248, P < 0.0001), temperature of the warmest month (r= -0.366, P < 

0.0001), minimum temperature of the coldest month (r = -0.336, P < 0.0001), mean temperature 

of the wettest quarter (r= -0.303, P < 0.0001), precipitation during the driest month (r=0.251, P < 

0.0001), precipitation seasonality (r=-0.215, P < 0.0001), precipitation during the driest quarter 

(r=0.335, P < 0.0001), precipitation in the coldest quarter (r= -0.244 , P < 0.0001). The third 

Genome wide PC of Ethiopian collection is correlated with annual precipitation (r=0.276, P < 

0.0001), precipitation of the coldest quarter (r=0.256, P < 0.0001) (Table 2-7). 

Correlation between genomic PCs and grain attributes (Table 2-8) showed the first PC to 

be associated with several grain and panicle attributes including seed mass (r=0.444, P < 0.0001), 

head compactness (r=0.413, P < 0.0001), susceptibility to grain mold (r=0.36, P < 0.0001), kernel 

width (r=0.464, P < 0.0001), kernel thickness (r=0.403, P < 0.0001), and tannin presence (r=-

0.335, P < 0.0001). PC was associated with pericarp thickness (r=-0.359, P < 0.0001), kernel length 

(r=-0.256, P < 0.0001). The fourth PC was associated with kernel translucence (r=0.267, P < 

0.0001).  
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The top 0.1 % outlier SNPs which contributed the most to PCs 1, 2, 3,4, and 6 were further 

analyzed for their association with known genes. A total of 446, 326, 327, 361, and 416 genes 

were identified within the 50 kbp region flanking the outlier SNPs. As the PCs were correlated 

with plant attributes and adaptive traits, SNPs in the neighboring region were further scanned for 

the presence of known grain, panicle, and adaptation-related priori genes (Table 2-9, Figure 2-8). 

Ortholog genes attributed to variations in inflorescence, grain weight, and tannin biosynthesis were 

identified near the outlier SNPs. Moreover, genes related to heat shock and cold shock tolerance 

were also placed across the PC axis, discriminating durra-bicolor from caudatum or durra (PC2). 

 GWAS of plant attributes 

MLM and BLINK did not produce SNPs with significant association to HKW. However, 

Farmcpu yielded 7 SNPs (FDR< 0.05) Table 2-10. Of these SNPs, SNP_1_73446733 

(SORBI_3001G458400) was found to be associated with the beta-glucosidase gene. Similar to 

HKW, MLM did not yield a significant association for panicle compactness. BLINK nevertheless 

produced 4 SNPs with significant association (FDR < 0.05). Out of these, SNP_5_6993037 and 

SNP_6_55438950 had significant associations to genes SORBI_3005G063700 and 

SORBI_3006G203400, respectively, where the former codes for a protein similar to F-box/WD-

40 repeat-protein and the later is related to growth-regulating factor 3. 

MLM did produce a significant association with tannin and kernel translucence. 

SNP_4_6231642 was significantly associated with tannin presence and was located within the 

gene transparent-testa (maf=0.458, FDR < 0.0001). Kernel Translucence was also associated with 

SNP_6_46657114 (maf=0.121, FDR=0.012) which is near (~100 bp) glutamate decarboxylase 2 

gene. Association analysis using BLINK also yielded a significant connection with SNP 

SNP_6_46696897 (maf= 0.199, FDR < 0.0001) which is near the gene ZEAXANTHIN 

EPOXIDASE (SORBI_3006G097500).  

 Genome Environment Association (GEA) 

We conducted GEA to identify genes that are associated with adaptation across 

precipitation gradients. GEA using MLM did not identify significant (FDR < 0.05) SNPs. 
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However, SNP_1_16432372 was found to be associated (BLINK-FDR < 0.0001, FARMCPU-

FDR < 0.01, maf =0.228) with precipitation. The SNP is within the gene coding for 4-coumarate-

CoA ligase like gene.  

Another precipitation variable that saw significant association is the October month 

precipitation. The SNP _3_60581629 was significantly associated (FDR < 0.001, maf =0.228) with 

the October month precipitation. The SNP is within the gene transcript of mitogen-activated 

protein kinase 3. Other mitogen-activated protein kinase genes were also identified at 8, 14, and 

49 kb from the SNP. Precipitation for September month was also associated with SNPs linked with 

genes such as senescence-associated gene 20, ethylene-responsive transcription factor ERF014 

and CHALCONE SYNTHASE 1 (Table 2-11).  

 Discussion 

Sorghum is one of the five most important crops in the world. It is the second most widely 

used feed and food grain in the US and sub-Saharan Africa. However, sorghum has constraints 

that limit its value as animal feed and human food. Although it has similar and even better protein 

content, the digestibility of sorghum proteins based on pepsin assay is lower than most cereals. 

Even if the significance of tannin as one of the anti-nutritional factors is diminishing due to the 

exclusive use of non-tannin genotypes, the impediment to protein availability, recalcitrant protein, 

and starch are still constraints undermining the biological value of sorghum. Researchers have 

speculated the nature of sorghum grain development and maturation may have contributed to the 

low bioavailability of its nutrients. Sorghum is one of the few crop species that develop and mature 

naked and exposed to climatic and biotic agents. But little information is available on the impact 

of this on grain biochemical properties and the response mechanisms that the crop may have 

developed to cope under such environments. However, sorghum and other naked grains appear to 

have distinct grain properties that may be regarded as adaptation mechanisms. In this study, we 

hypothesized that grain structural properties (adaptive traits) that appear to protect its naked kernel 

may be among the factors shaping the overall sorghum grain attribute that may be a culprit for its 

compromised nutritional value.  

The Ethiopian sorghum collection offers a unique opportunity to study the adaptive traits 

that shaped grain phyisco-chemical attributes. Due to large bioclimatic variations among major 
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sorghum-producing areas of the country, the landraces are subjected to an array of selection forces 

that eventually led to the development and evolution of unique sorghums adapted to their unique 

agroecology. Long-term selection against the biotic and abiotic factors has been shown to have led 

to the divergence in various morphological attributes between the landraces (Lasky et al., 2015; 

Wang et al., 2020a).  

The distinct morphological features and geographical distribution of the botanical races 

had long been reported as one face of the manifestation of millennia-old sorghum adaptation 

(Stemler et al., 1975). The Ethiopian core collection under this study is composed of all the major 

botanical races as expected was dominated by durra and caudatum races (Table 2-1). Guinea and 

kaffir were a minority in the collection. All the major races of sorghum have been reported to be 

present in Ethiopia (Doggett, 1970; Harlan and de Wet, 1972; Harlan and Stemler, 1976; Menamo 

et al., 2021). Few other authors reported kaffir as part of Ethiopian germplasm (Subramanian et 

al., 1995; Tirfessa et al., 2020). From the intermediate races, durra-bicolor and guinea-caudatum 

appear as significant groups suggesting an ecological overlap between the two races. These two 

were also reported as important intermediate races in ICRISAT Ethiopian collections (Reddy et 

al., 2002). Durra-caudatum is another significant intermediate race in the Ethiopian-sourced 

ICRISAT collection. As both durra and caudatum are dominant in Ethiopia, durra-caudatum was 

expected to be an important intermediate race. However, Nevertheless, we did not identify any 

durra-caudatum in our result. One explanation may be that the Ethiopian durra-caudatum was not 

represented in the reference set. As the Ethiopian durra is relatively distant from durras of Indian 

and Sudanese origin, the durra caudatum landraces used as a reference for the supervised analysis 

may not genetically represent the prevalent durra-caudatum in Ethiopia. 

Grain and panicle attributes are associated with the botanical races and agroclimatic cues. 

The major constraints of disease and pests, including insects, are associated with climatic factors, 

and thus a response to these biotic agents may be another driver for adaptation. Grain mold, a 

critical disease severely constraining grain size, germination, and overall fitness of sorghum, is 

caused by multiple species of fungal pathogens (Thakur et al., 2008). It is particularly dominant in 

high temperature and humid areas (Ackerman et al., 2021). The grain and panicle characteristics 

are significant attributes conditioning plant response to biotic and abiotic factors. Sorghums with 

compact-panicle were often found susceptible to mold and other grain/panicle diseases. Compact 
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architecture favors moisture accumulation and delays drying, creating an ideal condition for fungal 

invasion (Thakur et al., 2008; Sharma et al., 2010). This also correlates with insect damage 

(Sharma et al., 1994). The presence of tannin and phenolic compounds in sorghum grain had been 

linked to resistance against grain mold (Bandyopadhyay et al., 1988; Ackerman et al., 2021).  

Correlation analysis between bioclimatic variables and sorghum grain attributes showed 

that tannin and pericarp thickness were positively correlated with precipitation variables, 

confirming the general observation that the tannin trait tends to be common in landraces from high 

rainfall regions. These regions are also hot spots for grain molding pathogens which implies that 

farmers of the regions were perhaps after grain mold resistance and bird tolerance, not the tannin 

trait per se. Like tannin, pericarp thickness was also positively correlated with precipitation with 

rainfall. The correlation pattern to monthly precipitation is like that of tannin, and this may be 

associated to grain mold resistance. But there are contradictory reports in the literature. As thick 

pericarp is due to the accumulation of starch at the pericarp’s meso layer, some authors argue that 

it is deemed to produce a favorable environment for fungal growth (Glueck et al., 1980). However, 

Esele et al. (1993), using the RIL population, showed no relationship between pericarp thickness 

and grain mold resistance. In maize, pericarp thickness was associated with Phlobaphene 

concentration which is associated with resistance to fungal attack (Ackerman et al., 2021). The 

current result indicates that thick pericarp genotypes are favored in high precipitation areas. The 

correlation may not be because thick pericarp renders resistance to grain mold; it may be due to 

co-selection with other traits imparting resistance, especially tannin, which occurs in thick pericarp 

genotypes. In this study, for tannin-free accessions, we noted very weak and statistically 

insignificant correlation between pericarp thickness and precipitation (r=0.075, P=0.2213), while 

this correlation in tannin sorghums was stronger (r=0.25, P < 0.0001). Likewise, the association 

between precipitation and tannin became stronger (changed from r=0.18 for thin pericarp 

genotypes to r=0.25 for thicker pericarp genotypes). This suggests that thick pericarp and tannin 

presence were co-selected in disease prone high precipitation areas. All in all, the association 

between pericarp thickness and precipitation does not seem to be due to the thick pericarp 

imparting resistance to grain mold by itself but because of its correlation with tannin and other 

traits. The question of why tannin presence and pericarp thickness traits are correlated needs an 

answer. In fact, though not represented in the study accessions, there are unique variants of 

sorghum cultivars called bobe adapted to the warm and humid lowlands of Western Ethiopia. 
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These cultivars are unique in that they possess large seeds with thick pericarp, soft-kernels, and 

are resistant to foliar and panicle diseases. The key driver for the adaptation of such cultivars by 

the gumuz community of the area is its processing attributes, ease of manual grinding of the grains, 

and quality of porridge.  

Just like tannin, panicle structure also appears to mediate crop adaptation, especially grain 

mold resistance. Analysis of the data from two disease prone environments, Bako and Pawe in 

western Ethiopia, revealed that correlation between tannin presence and grain mold incidence was 

highly significant both for Bako (r=- -0.35, P< 0.0001) and Pawe (r=-0.25, P< 0.0001). There was 

similar correlation between grain mold susceptibility and panicle compactness at both Bako 

(r=0.26, P< 0.0001) and Pawe (r=0.28, P< 0.0001). The role of grain size in shaping adaptation 

may not be direct and some hypothetical. Wang et al. (2020) presented genomic support for the 

adaptation of larger seeds to drier environment using the colocalization of grain weight loci with 

precipitation gradient. Some argue that larger seeds have good emergence and excellent seedling 

vigor that facilitate crop establishment to help withstand drought stress. In our study, the main 

cause for the large seed accessions dominating the dry areas is likely due to the drought tolerance 

of the durra race which is generally large seeded and has compact head. Likewise, large-seeded 

durra is not common in high precipitation regions due to the associated compact head that favors 

grain mold incidence. Research needs to untangle the large seed trait from compact panicle if large 

seeded open panicle types are needed in high rainfall areas.  

Given the fact that grain weight parameter is associated to population structure, and hence 

to the PCs controlling for population structure, GWAS using MLM failed to identify SNPs 

associated with the trait. Wang et al. (2020) also reported similar result using a global diversity 

population where controlling for population structure failed to identify genomic loci associated 

with grain weight. However, FARMCPU identified an SNP (SNP_1_73446733) associated with 

beta-glucosidase. In watermelon, the beta-glucosidase gene function was shown to have a 

significant association between seed size and weight. Using the expression atlas from Uniprot 

(https://www.uniprot.org/database/DB-0004), the gene is also highly expressed in sorghum during 

and after flowering in the seeds. Another gene, SORBI_3003G291200 associated with 

SNP_3_62350910 had its Arabidopsis ortholog annotated as auxin response factor2 gene. In 

https://www.uniprot.org/database/DB-0004
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Arabidopsis, the gene is responsible for integrating auxin signaling with developmental processes, 

including the size of seeds (Schruff et al., 2006).  

The distribution of botanical races across the country appears to be influenced by 

bioclimatic variables. The compact durra races mainly occur in dryland and sub-humid high-land 

areas of the country (Stemler et al., 1975, 1977). They are not preferred in high rainfall areas 

because of their compact panicle and largely tannin-free or low tannin content- conducive traits 

for grain mold diseases. Only a tiny proportion of durra sorghum has tannin, and the majority are 

goose-necked compact panicles. Moreover, unlike other races, the glume covers less than half of 

the grain and is directly exposed to biotic and abiotic agents. Durra-bicolor races are mostly 

dominant across cooler and high precipitation areas, perhaps due to the relatively open panicles. 

However, the caudatum race was grown in somewhat higher temperature and precipitation regions. 

However, the prevalence of caudatum landraces in relatively higher precipitation areas contradicts 

with Stemler et al. (1977) where caudatum was reported to be restricted to hot dry land savannas. 

Most cuadatum landraces from the Ethiopian collection contain tannin, a character that perhaps 

imparted their adaptation to high precipitation region in the country (Table 2-2).  

PCA was utilized for the detection of genomic signatures of selection (Duforet-Frebourg 

et al., 2016; Luu et al., 2017). In this study, PCs which discriminated the botanical races were also 

correlated to precipitation gradient and grain attributes, supporting that grain attributes as adaptive 

traits. Moreover, some of the outlier SNPs associated with the PCs had been linked to known priori 

genes related to inflorescence and grain weight. PC1 resolved durra from the rest of the botanical 

races, and the gene SORBI_3001G468400 is an ortholog to the maize Prol1.1 codes for the basic 

helix-loop-helix transcription factor. The gene had been previously shown to be related to multiple 

domestication traits and controlled the number and size of inflorescence and kernel weight (Wills 

et al., 2013). Other priori genes associated with this PC are two GS2/GL2 paralogs, 

SORBI_3004G269900 & SORBI_3006G203400, homologs to the rice GS2, which codes for rice 

OsGRF4 (growth-regulating factor 4) (Li et al., 2016). PC1 was also correlated with 

SORBI_3003G286500 ortholog to the inflorescence priori gene sparse inflorescence1 (spi1). The 

gene codes for flavin-binding monooxygenase family protein pivotal in auxin biosynthesis and is 

involved in lateral and axillary meristem organ formation in maize (Gallavotti et al., 2008).  
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The second PC from the genome wide PCA was correlated with precipitation and 

temperature bio variables. It is not a surprise that it is associated with temperature-related bio-

variables as it discerned durra-bicolor adapted to cooler environments and caudatum mainly 

dominant in the hotter landscape. Post-hoc, we searched the cold tolerance-related genes in 

proximity to the outlier SNPs. We found the uncharacterized gene SORBI_3006G228000, which 

possesses a cold-shock domain and may need further investigation. 

GEA revealed significant associations of SNPs with sorghum adaptation across 

precipitation variables. Genes 4-COUMARATE-COA LIGASE LIKE 1 and CHALCONE 

SYNTHASE 1 are both involved in phenolic secondary metabolite synthesis, which is involved in 

many aspects of plant physiology, including disease resistance. COUMARATE-COA LIGASE 

LIKE 1 is a ligase involved in lignin biosynthesis. CHALCONE SYNTHASE is the first 

committed step in flavonoid biosynthesis tasked with the conversion of 4-coumaroyl-CoA to 

naringenine chalcone. Both enzymes are involved in polypropanoid pathway where 

COUMARATE-COA LIGASE LIKE 1 is responsible for primary defense by forming a chemical 

barrier (Chezem et al., 2017) and is known to confer resistance to diseases (Liu et al., 2017). Apart 

from its importance for disease resistance, its polypropanoid polymer product, lignin, has become 

the focus of many investigations in the ethanol production industry due to its negative role in 

fermentable sugar yield (Chen and Dixon, 2007). In sorghum, a paralogous gene to 4-

COUMARATE-COA LIGASE LIKE 1 was found to control the brown midrib phenotype (bmr2) 

(Saballos et al., 2012). Chalcone synthase is also involved in disease resistance, which is 

upregulated in response to fungal infection (Lue et al., 1989; Cui et al., 1996). The association of 

these loci with precipitation during post-flowering period may indicate when sorghum is 

vulnerable to diseases and the importance of disease-responsive genes in such conditions. 

The top 1% outlier GEA SNPs using GLM were searched against priori genes related to 

grain quality traits. Genes related to anthocyanin regulation and beta and delta kafirin genes were 

identified to be linked with the outlier SNPs (Table 2-9). A study that involved sequencing of 

kafirin genes found very limited functional divergence among diverse accessions (Laidlaw et al., 

2010)  
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 Conclusion 

Ethiopia has diverse agroecology, and sorghum has been cultivated in the country for 

millennia. This has opened an opportunity to understand how grain and panicle attributes played a 

role in the overall adaptation of the crop. In this study, we showed that grain and panicle traits had 

played a significant role in the adaptation of sorghum across agroecology. However, there are 

numerous plant traits that appear to be limited to only certain agroecology such as grain size in the 

dry areas and disease resistance in the wet areas. Future studies need to untangle some of these 

beneficial traits that are restricted to certain agroecology to develop cultivars that transcend across 

the traditional adaptation and grow in all regions of the country. The result indicates that any future 

endeavor targeting grain attributes should also consider the characteristics of the target 

environment.  
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Figure 2-1 Principal component analysis of Ethiopian core collection with the genomic data 

where accessions are displayed against the first few PCs.  
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Figure 2-2. Linkage disequilibrium decay along the genome of sorghum botanical races.  
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Figure 2-3 Admixture proportion of Ethiopian landraces for K=6 and K=12. (A) Cross 

validation error for different K values. (B-D) admixture proportions of different predicted 

ancestral populations. Top rug shows the assigned botanical race of the individual. The 

bottom bar graph shows the admixture proportions. 
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Figure 2-4 Spatial distribution of some climatic variables across Ethiopia. 
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Figure 2-5. Frequency distribution of categorical grain attributes. 
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Figure 2-6 Tannin sorghum distribution across administrative zones of Ethiopia. 

Triangles and inverted Triangles show significant (P< 0.05) upward and downward deviations, 

respectively, from the national average of tannin sorghums percentage (62%). 

  



34 

 

 

 

Figure 2-7 Direction of relationships for plant and bioclimatic variables across the first two 

dimensions (Principal components). 

An-Annual, M-Month, Q-Quarter, T-Temperature, P-Precipitation, Wrm-Warmest, C-Panicle 

compactness, Cld-Coldest, Wt-Wettest, Dr-Driest, Min-Minimum, Mn-Mean, S-Seasonality, Dim 

Dimension axis, HKW-Hundred kernel weight, C- Panicle compactness, Vitr-endosperm 

vitreousness, GM- Grain mold sucesceptiblity, PT-Pericarp thickness, HU-Haramaya University 

(site), AN-Arisi Negele (site), BK-Bako (site), PW-Pawe (site).  
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Figure 2-8 Genome scan of the loadings of the first few principal components. 

The x-axis represent the position of each SNP on the chromosomes and the y-axis the -log10(P-

values) using adjusted chi-square distribution. The horizontal line represents 99.9% percentile 

threshold. The bottom rug shows grain and panicle priori candidate genes, and the vertical lines 

show priori genes linked (50 kbp) with outlier SNPs. 
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Table 2-1. Race assignment of Ethiopian landraces.  

Botanical Races 
 

Reference1 
 

Inferred 

Race Assigned 
Ethiopian Core Ethiopian Core 

Collection2 
Global 
Collection Reference Total Ethiopian Core 

Bicolor 35 84 119 0 35 

Caudatum 47 362 409 165 212 

Caudatum bicolor 0 77 77 0 0 

Durra 80 258 338 605 685 

Durra-bicolor 0 126 126 248 248 

Durra vaudatum 0 157 157 0 0 

Guinea 6 445 451 0 6 

Guinea-caudatum 0 192 192 183 183 

Kaffir 7 38 45 3 10 

Total 175 1739 1914 1204 1379 

1Reference accessions used for supervised race membership analysis using ADMIXTURE 

software. 2Manually assigned.  
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Table 2-2 Mean performance of various plant attributes aggregated by botanical races and geographic zones. 

Category No 
Accessions 
with tannin 

Panicle 

Compactness 

 (1 -4 scale) 

Thick 
pericarp (%) 

Translucence Vitreousness 
HKW 

 ( g) 

YPP 

 ( g) 

L 

 (mm) 

W 

 (mm) 

H 

 (mm) 

Protein 

 (%) 

Botanical races             

Bicolor 35 71.4% 1.3 50.0% 1.5 1.7 2.2 44.1 3.8 3.4 2.5 11.1 

Caudatum 192 86.2% 2.1 73.8% 1.1 1.4 2.2 33.0 3.9 3.7 2.7 10.5 

Durra 617 38.2% 3.3 33.6% 1.7 1.7 2.9 57.2 4.0 4.1 2.9 11.0 

Durra-bicolor 236 77.2% 1.7 22.8% 1.5 1.6 1.9 51.5 3.6 3.4 2.6 9.9 

Guinea 6 83.3% 1.3 20.0% 1.4 1.8 2.2 25.5 3.8 3.6 2.5 10.3 

Guinea-
Caudatum 145 50.9% 2.5 39.6% 1.6 1.7 

2.5 
47.8 4.0 3.8 2.7 10.9 

Kaffir 5 50.0% 2.4 66.7% 1.0 1.7 2.3 56.5 3.7 3.5 2.6 11.7 

NA 299 77.7% 2.2 40.9% 1.4 1.6 2.4 46.9 4.0 3.7 2.7 10.4 

Grand Total 1536 61.1% 2.5 37.8% 1.5 1.6 2.5 50.0 3.9 3.8 2.8 10.7 

Geographic 
zones 

            

Dry highland 114 63.8% 2.4 47.4% 1.4 1.6 2.6 51.9 3.9 3.8 2.8 10.6 

Dry intermediate 117 43.4% 3.1 26.5% 1.8 1.8 2.7 53.9 3.8 4.0 2.8 10.7 

Dry lowland 272 55.0% 2.8 34.5% 1.7 1.7 2.7 48.7 4.0 4.0 2.8 10.9 

Wet highland 530 64.3% 2.5 35.6% 1.4 1.6 2.5 54.5 3.9 3.8 2.8 10.5 

Wet intermediate 163 54.5% 2.4 35.6% 1.6 1.7 2.2 49.0 3.8 3.7 2.7 10.3 

Wet lowland 251 74.5% 2.2 54.7% 1.2 1.5 2.4 41.2 4.0 3.8 2.7 10.9 

Total/mean 1536 61.1% 2.5 37.8% 1.5 1.6 2.5 50.0 3.9 3.8 2.8 10.7 

HKW - Hundred kernel weight; YPP - Yield per panicle; L- Kernel length; H- Kernel thickness, W-Kernel width
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Table 2-3 Population differentiation (Fst) estimate between pairs of botanical races drawn 

from Ethiopian collection. 

 

Race 1 Race 2 Fst 

Bicolor 

Kafir 0.11 

Guinea-caudatum 0.25 

Guinea 0.07 

Durra-bicolor 0.22 

Caudatum 

Kafir 0.09 

Bicolor 0.05 

Durra-bicolor 0.28 

Guinea 0.01 

Kafir 0.1 

Guinea-caudatum 0.16 

Durra 

Durra-bicolor 0.28 

Guinea-caudatum 0.26 

Caudatum 0.22 

Bicolor 0.14 

Durra-bicolor 0.28 

Guinea 0.05 

Kaffir 0.16 

Durra-bicolor 

Kaffir 0.25 

Guinea 0.14 

Guinea-caudatum 0.32 

Kafir 0.25 
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Table 2-4 Summary of grain and phenological attributes of landraces evaluated at Arsi-

Negele in the 2016 main growing season.  

Plant feature Number 
Range 

Mean 
Minimum Maximum 

YPP ( g) 1327 0 222.2 49.6 

HKW ( g) 1420 0.6 4.7 2.5 

Grain protein Content (%) 781 7.07 14.04 10.7 

Kernel Length (mm) 1395 2.6 5.1 3.9 

Kernel Width (mm) 1395 2.3 5.6 2.8 

Kernel Thickness (mm) 1395 1.7 4.73 2.5 

YPP-Yield per panicle, HKW-Hundred kernel weight 
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Table 2-5 Correlation of grain and panicle attributes evaluated during the main season of 2016 at Arsi Negele, Ethiopia. 

 

Character parameter Tannin Comp PT 
Transluc
ence 

Vitreous
ness 

HKW YPP L H W Protein 

Tannin r 1 -0.30 0.15 -0.34 -0.29 -0.28 0.00 -0.09 -0.25 -0.29 -0.27 

 - 𝑙𝑜𝑔 𝑝 - 26.72 4.38 27.32 19.87 22.80 0.00 1.87 17.97 25.00 11.45 

Comp r 
 

1 -0.21 0.31 0.13 0.44 0.40 0.10 0.37 0.50 0.17 

 - 𝑙𝑜𝑔 𝑝 
 

- 9.65 22.57 3.26 60.81 50.29 2.27 42.55 80.72 4.10 

PT r 
  

1 -0.36 -0.19 0.01 -0.21 0.11 0.00 -0.03 0.11 

 - 𝑙𝑜𝑔 𝑝 
  

- 30.07 8.08 0.00 8.88 1.94 0.00 0.00 0.92 

Translucence r 
   

1 0.57 0.19 0.10 0.06 0.11 0.20 0.08 

 - 𝑙𝑜𝑔 𝑝 
   

- 98.16 8.22 1.79 0.27 2.27 8.62 0.27 

Vitreousness r 
    

1 0.13 -0.02 0.08 0.07 0.09 0.09 

 - 𝑙𝑜𝑔 𝑝 
    

- 3.14 0.00 1.13 0.65 1.44 0.42 

HKW r 
     

1 0.34 0.56 0.64 0.72 0.37 

 - 𝑙𝑜𝑔 𝑝 
     

- 33.63 105.24 147.20 210.10 23.53 

YPP r 
      

1 0.13 0.24 0.28 0.01 

 - 𝑙𝑜𝑔 𝑝 
      

- 3.88 15.64 20.30 0.00 

L r 
       

1 0.39 0.52 0.22 

 - 𝑙𝑜𝑔 𝑝 
       

- 50.75 93.71 7.20 

H r 
        

1 0.68 0.28 

 - 𝑙𝑜𝑔 𝑝 
        

- 186.73 12.73 

W r 
         

1 0.33 

 - 𝑙𝑜𝑔 𝑝 
         

- 18.05 

HKW - Hundred kernel weight; YPP - Yield per panicle; L- Kernel length; H- Kernel thickness, W-Kernel width, Comp -panicle 

compactness, PT – pericarp thickness
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Table 2-6 Relationship between plant attributes and precipitation related bioclimatic variables of the landraces source 

environments. 

Plant Character Parameter AnP PWtM PDrM PS PWtQ PDrQ PWrmQ PCldQ 

Tannin 
r 0.154 0.124 0.044 -0.016 0.156 0.003 -0.102 0.217 

-log (P) 3.3 1.4 0.0 0.0 3.4 0.0 0.2 8.5 

Translucence 
r -0.116 -0.143 -0.008 -0.101 -0.153 0.073 0.152 -0.243 

-log (P) 0.7 2.2 0.0 0.0 2.9 0.0 2.8 10.4 

Vitreousness 
r -0.101 -0.110 -0.016 -0.057 -0.122 0.027 0.097 -0.168 

-log (P) 0.0 0.4 0.0 0.0 1.0 0.0 0.0 3.8 

Pericarp Thickness r 0.066 0.108 -0.175 0.173 0.129 -0.216 -0.211 0.187 

 -log (P) 0.0 0.1 3.8 3.7 1.1 7.0 6.6 4.7 

Width r -0.225 -0.126 -0.091 0.082 -0.165 -0.088 -0.003 -0.224 

 -log (P) 10.9 2.0 0.0 0.0 4.9 0.0 0.0 10.9 

Length r -0.109 -0.055 -0.070 0.073 -0.069 -0.108 -0.108 -0.008 

 -log (P) 0.9 0.0 0.0 0.0 0.0 0.9 0.9 0.0 

Thickness r -0.182 -0.120 -0.118 0.069 -0.144 -0.096 -0.004 -0.169 

 -log (P) 6.4 1.6 1.4 0.0 3.2 0.2 0.0 5.2 

HKW r -0.247 -0.128 -0.048 0.106 -0.180 -0.071 -0.018 -0.196 

 -log (P) 14.0 2.2 0.0 0.8 6.4 0.0 0.0 8.0 

Compactness r -0.145 -0.124 -0.018 -0.050 -0.161 0.043 0.185 -0.286 

 -log (P) 3.4 2.0 0.0 0.0 4.7 0.0 6.9 19.7 

YPP r -0.032 -0.049 0.144 -0.131 -0.082 0.194 0.241 -0.194 

 -log (P) 0.0 0.0 3.0 2.1 0.0 7.1 12.1 7.1 

Protein 
r -0.155 -0.107 -0.105 0.049 -0.110 -0.132 -0.157 -0.097 

-log (P) 1.3 0.0 0.0 0.0 0.0 0.3 1.4 0.0 
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r- correlation coefficient, HKW-Hundred kernel weight, YPP- Yield per panicle, An-Annual, M-Month, Q-Quarter, P-Precipitation, 

Wrm-Warmest, Cld-Coldest, Wt-Wettest, Dr-Driest, Min-Minimum, Mn-Mean, S-Seasonality 
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Table 2-7 Correlation between bioclimatic variables and genomic PCs of Ethiopian core collection. 

 

  
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

AnT r -0.003 -0.344 0.087 0.016 0.006 0.033 -0.071 -0.039 0.054 -0.014 

 
p 0.924 0.000 0.002 0.572 0.836 0.245 0.012 0.170 0.060 0.629 

Isothrm r -0.092 0.289 -0.079 -0.046 0.198 0.110 0.144 -0.089 -0.065 -0.061 

 
p 0.001 0.000 0.005 0.107 0.000 0.000 0.000 0.002 0.024 0.033 

TSzn r 0.211 -0.248 -0.035 -0.060 -0.080 -0.059 -0.058 0.023 0.089 0.136 

 
p 0.000 0.000 0.226 0.034 0.005 0.038 0.041 0.427 0.002 0.000 

TWrmM r 0.014 -0.366 0.091 -0.016 -0.038 0.048 -0.104 -0.009 0.064 0.024 

 
p 0.624 0.000 0.001 0.569 0.189 0.091 0.000 0.753 0.024 0.406 

MinTCldM r -0.040 -0.336 0.103 0.015 0.025 0.032 -0.056 -0.033 0.043 -0.033 

 
p 0.157 0.000 0.000 0.602 0.376 0.266 0.050 0.253 0.130 0.245 

MnTWtQ r 0.081 -0.303 0.035 0.047 0.023 0.067 -0.040 -0.016 0.035 0.014 

 
p 0.004 0.000 0.215 0.103 0.412 0.019 0.165 0.586 0.223 0.612 

MnTDrQ r -0.095 -0.350 0.125 -0.008 0.004 0.051 -0.075 -0.036 0.043 -0.046 

 
p 0.001 0.000 0.000 0.772 0.888 0.074 0.009 0.209 0.132 0.109 

MnTWrmQ r 0.030 -0.354 0.077 0.006 -0.014 0.026 -0.087 -0.027 0.066 0.018 

 
p 0.288 0.000 0.007 0.833 0.613 0.370 0.002 0.348 0.020 0.518 

MnTCldQ r -0.054 -0.347 0.103 0.007 0.008 0.046 -0.081 -0.051 0.045 -0.034 

 
p 0.058 0.000 0.000 0.813 0.779 0.104 0.005 0.071 0.117 0.231 

AnP r -0.283 -0.050 0.276 0.137 -0.243 -0.060 -0.174 0.113 -0.060 -0.124 

 
p 0.000 0.082 0.000 0.000 0.000 0.034 0.000 0.000 0.036 0.000 

PWtM r -0.159 -0.095 0.181 0.005 -0.250 -0.052 -0.158 0.103 -0.025 -0.012 

 
p 0.000 0.001 0.000 0.851 0.000 0.071 0.000 0.000 0.378 0.676 

PDrM r 0.013 0.251 -0.083 -0.038 0.041 0.149 0.130 0.145 -0.059 -0.012 
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

 
p 0.659 0.000 0.004 0.188 0.152 0.000 0.000 0.000 0.038 0.681 

PSzn r 0.084 -0.215 -0.003 -0.174 -0.119 -0.033 -0.135 -0.035 0.083 0.169 

 
p 0.003 0.000 0.930 0.000 0.000 0.246 0.000 0.223 0.003 0.000 

PWtQ r -0.227 -0.121 0.245 0.041 -0.279 -0.069 -0.182 0.113 -0.016 -0.065 

 
p 0.000 0.000 0.000 0.154 0.000 0.015 0.000 0.000 0.576 0.022 

PDrQ r 0.020 0.322 -0.091 0.059 0.051 0.089 0.164 0.138 -0.061 -0.053 

 
p 0.485 0.000 0.001 0.038 0.076 0.002 0.000 0.000 0.032 0.063 

PWrmQ r 0.112 0.335 -0.095 0.134 -0.046 -0.034 0.069 0.075 -0.077 0.012 

 
p 0.000 0.000 0.001 0.000 0.109 0.232 0.016 0.008 0.007 0.675 

PCldQ r -0.285 -0.244 0.256 -0.015 -0.194 -0.024 -0.151 0.042 -0.031 -0.065 

 
p 0.000 0.000 0.000 0.588 0.000 0.402 0.000 0.143 0.280 0.023 

An-Annual, M-Month, Q-Quarter, T-Temperature, P-Precipitation, Wrm-Warmest, Cld-Coldest, Wt-Wettest, Dr-Driest, Min-

Minimum, Mn-Mean, Szn-Seasonality, Isothrm- Isothermally, PC-Principal Component 
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Table 2-8. Association of grain and panicle attributes with the first ten PCs extracted from Genome-wide principal component 

analysis of Ethiopian landraces. 

 

Variable   PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

HKW (BLUP) r 0.444 -0.173 -0.091 0.101 0.080 0.108 -0.023 0.020 -0.124 0.056 

  p 0.000 0.000 0.000 0.000 0.002 0.000 0.380 0.443 0.000 0.033 

Compact (AN) r 0.413 0.039 -0.061 0.277 0.146 -0.014 -0.122 -0.017 -0.006 0.069 

 
p 0.000 0.152 0.023 0.000 0.000 0.602 0.000 0.527 0.838 0.011 

Compact (HU) r 0.497 0.016 -0.045 0.329 0.120 0.006 -0.111 -0.005 -0.064 0.094 

 
p 0.000 0.532 0.087 0.000 0.000 0.822 0.000 0.858 0.014 0.000 

GM (BK) r 0.370 -0.077 -0.091 -0.035 0.006 0.149 -0.119 -0.021 0.004 0.014 

 
p 0.000 0.003 0.000 0.180 0.803 0.000 0.000 0.417 0.880 0.577 

GM (PW) r 0.360 0.151 -0.035 0.054 0.091 0.293 0.011 0.062 -0.041 0.044 

 
p 0.000 0.000 0.181 0.039 0.000 0.000 0.677 0.017 0.111 0.091 

Kernel thickness r 0.403 -0.151 -0.072 0.073 0.041 -0.015 -0.057 0.071 -0.038 -0.002 

 
p 0.000 0.000 0.008 0.007 0.133 0.573 0.037 0.010 0.160 0.936 

Kernel Length r 0.141 -0.265 -0.055 0.017 0.021 0.122 -0.007 -0.002 -0.076 0.006 

 
p 0.000 0.000 0.044 0.540 0.443 0.000 0.795 0.939 0.005 0.840 

Kernel Width r 0.464 -0.189 -0.095 0.168 0.034 0.025 -0.043 0.048 -0.127 0.053 

 
p 0.000 0.000 0.001 0.000 0.213 0.355 0.118 0.080 0.000 0.051 

Pericarp thickness r -0.167 -0.359 -0.002 -0.091 -0.174 -0.159 -0.029 0.047 0.002 -0.032 

 
p 0.000 0.000 0.946 0.004 0.000 0.000 0.363 0.140 0.944 0.310 

Tannin r -0.335 0.000 0.016 -0.037 -0.029 -0.138 0.081 0.095 -0.115 0.083 

 
p 0.000 0.994 0.600 0.206 0.322 0.000 0.006 0.001 0.000 0.005 

Translucence r 0.144 0.119 -0.023 0.267 0.147 0.033 -0.043 -0.134 0.097 -0.036 

 
p 0.000 0.000 0.448 0.000 0.000 0.276 0.160 0.000 0.001 0.234 
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Variable   PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Vitreousness r 0.048 0.045 -0.011 0.168 0.124 0.062 0.009 -0.116 0.172 -0.077 

  p 0.116 0.133 0.717 0.000 0.000 0.040 0.770 0.000 0.000 0.011 

Characters in the parentheses represent test locations: AN-Arsi Negele, HU- Haramaya University, BK- Bako, PW- Pawe, H-Kernel 

thickness, GM- Grain Mold  
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Table 2-9 Priori panicle-related and grain-related genes nearest (<50kbp) to outlier SNPs with top 0.1% loadings on the 

respective PCs. 

Trait PC Gene name Gene Symbol Molecular Function SNP_ID Percentile 
Distance 
(bp) 

Inflorescence 

       

 

PC1 SORBI_3003G28
6500 

sparse inflorescence1 
(spi1) 

Flavin-binding monooxygenase family 
protein 

SNP_3_61991478 99.989% 30723 

 

PC2 SORBI_3006G19
7200 

Ramosa1 (ra1) zinc-finger protein 10 SNP_6_54995748 99.997% 21204 

 

PC4 SORBI_3002G18
4600 

Ramosa3 (ra3) Halo acid dehalogenase-like hydrolase 
(HAD) superfamily protein 

SNP_2_56856481 99.979% 210 

 

PC4 SORBI_3006G20
1600 

Aberrant Panicle 
Organization (APO2) 

floral meristem identity control protein 
LEAFY (LFY) 

SNP_6_55309725 99.934% 16405 

        

Grain weight 

       

 

PC1 SORBI_3001G46
8400 

Prol1.1 homeobox protein 21 SNP_1_74124398 99.956% 11080 

 

PC1 SORBI_3004G26
9900 

GS2/GL2 growth-regulating factor 5 SNP_4_61449408 99.931% 27581 

 

PC1 SORBI_3006G20
3400 

GS2/GL2 growth-regulating factor 5 SNP_6_55427490 99.943% 16175 

 

PC2 SORBI_3001G44
5900 

CYP90B2/CYP90B1 Cytochrome P450 superfamily protein SNP_1_72308374 99.999% 41980 

 

PC4 SORBI_3001G25
4100 

PGL1 basic helix-loop-helix (bHLH) DNA-
binding family protein 

SNP_1_28194181 99.991% 20844 

        

Heat* 

       

 

PC1 SORBI_3002G24
3200 

 

HEAT SHOCK PROTEIN 81.4 SNP_2_63263027 99.995% 36910 

 

PC1 SORBI_3002G24
3500 

 

HEAT SHOCK PROTEIN 81.4                                                                 SNP_2_63263027 99.995% 7080 
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Trait PC Gene name Gene Symbol Molecular Function SNP_ID Percentile 
Distance 
(bp) 

 

PC1 SORBI_3003G28
6700 

 

heat shock transcription factor C1 SNP_3_61991478 99.989% 355 

 

PC1 SORBI_3010G23
0600 

 

heat shock protein 70 (Hsp 70) family 
protein 

SNP_10_57265445 99.975% 41641 

 

PC2 SORBI_3002G27
1100 

 

heat shock transcription factor B2A SNP_2_65454031 99.983% 12375 

 

PC6 SORBI_3006G00
5600 

 

heat shock protein 90.1 SNP_6_849922 99.967% 18299 

        

Cold * 

       

  PC2 SORBI_3006G22
8000* 

  cold shock domain protein 1 SNP_6_57262005 99.945% 80 

*Post-hoc search 
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Table 2-10 Genes linked to SNPs associated to grain and panicle attributes identified through GWAS. 

Ensemble ID SNPID maf P FDR Trait Method Annotated function 
SNP distance 
from gene 

SORBI_3005G063700 SNP_5_6993037 0.223 9.94E-08 1.01E-02 
Head 
Compactness BLINK 

F-box/WD-40 
repeat-containing 
protein At3g52030 20,406 

SORBI_3006G203400 SNP_6_55438950 0.216 3.28E-07 1.99E-02 
Head 
Compactness BLINK 

growth-regulating 
factor 3 31,449 

SORBI_3003G291200 SNP_3_62350910 0.092 1.21E-08 1.83E-03 HKW FARMCPU 
auxin-responsive 
protein IAA6-like 41,826 

SORBI_3003G290700 SNP_3_62350910 0.092 1.21E-08 1.83E-03 HKW FARMCPU 

anthocyanidin 5,3-
O-
glucosyltransferas
e 31,221 

SORBI_3003G290900 SNP_3_62350910 0.092 1.21E-08 1.839E-03 HKW FARMCPU 

probable 
glutamate 
carboxypeptidase 
LAMP1 9,887 

SORBI_3001G458400 SNP_1_73446733 0.314 1.25E-06 3.798E-02 HKW FARMCPU beta-glucosidase 6 19,497 

SORBI_3001G458600 SNP_1_73446733 0.314 1.25E-06 3.798E-02 HKW FARMCPU beta-glucosidase 6 28,872 

SORBI_3010G019700 SNP_10_1555964 0.390 2.15E-09 3.764E-04 
Pericarp 
thickness FARMCPU 

cytochrome P450 
704C1 45,066 

SORBI_3003G010100 SNP_3_924565 0.127 9.71E-11 1.479E-05 Tannin FARMCPU 
cytochrome P450 
71A1 47,575 

SORBI_3003G010200 SNP_3_924565 0.127 9.71E-11 1.479E-05 Tannin FARMCPU 
cytochrome P450 
71A1 44,821 

SORBI_3003G010300 SNP_3_924565 0.127 9.71E-11 1.479E-05 Tannin FARMCPU 
cytochrome P450 
71A1 40,094 
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Ensemble ID SNPID maf P FDR Trait Method Annotated function 
SNP distance 
from gene 

SORBI_3003G010400 SNP_3_924565 0.127 9.71E-11 1.479E-05 Tannin FARMCPU 
ras-related protein 
Rab7 38,008 

SORBI_3004G280800 SNP_4_62316425 0.458 1.27E-11 3.885E-06 Tannin MLM 

protein 
TRANSPARENT 
TESTA GLABRA 1 Within_gene 

SORBI_3004G280800 SNP_4_62316425 0.458 3.27E-11 9.972E-06 Tannin FARMCPU 

protein 
TRANSPARENT 
TESTA GLABRA 1 Within_gene 

SORBI_3004G280800 SNP_4_62316425 0.458 4.49E-09 1.369E-03 Tannin BLINK 

protein 
TRANSPARENT 
TESTA GLABRA 1 Within_gene 

SORBI_3004G280800 SNP_4_62334227 0.389 3.2E-08 3.255E-03 Tannin MLM 

protein 
TRANSPARENT 
TESTA GLABRA 1 18831 

SORBI_3006G097500 SNP_6_46696897 0.199 3.95E-15 1.205E-09 Translucence BLINK 

zeaxanthin 
epoxidase, 
chloroplastic 18,633 

SORBI_3006G097200 SNP_6_46696897 0.199 3.95E-15 1.205E-09 Translucence BLINK 

gamma-
glutamylcyclotransf
erase 2-3 1,439 

SORBI_3007G068300 SNP_7_7647653 0.392 5.31E-08 2.721E-03 

 

BLINK 

polyphenol 
oxidase I, 
chloroplastic 30,159 

SORBI_3007G068500 SNP_7_7647653 0.392 5.31E-08 2.721E-03 

Translucence 

BLINK 

polyphenol 
oxidase II, 
chloroplastic 18,072 

SORBI_3007G068700 SNP_7_7647653 0.392 5.31E-08 2.721E-03 

Translucence 

BLINK 

polyphenol 
oxidase I, 
chloroplastic 17,865 

SORBI_3003G111100 SNP_3_10030133 0.140 5.91E-07 1.802E-02 

Translucence 

BLINK 
pathogen-related 
protein-like 21,133 
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Ensemble ID SNPID maf P FDR Trait Method Annotated function 
SNP distance 
from gene 

SORBI_3003G111300 SNP_3_10030133 0.140 5.91E-07 1.802E-02 

Translucence 

BLINK 
proteinase inhibitor 
PSI-1.2 3,856 

SORBI_3007G068300 SNP_7_7647653 0.392 2.07E-09 3.151E-04 

Translucence 

FARMCPU 

polyphenol 
oxidase I, 
chloroplastic 30,159 

SORBI_3007G068500 SNP_7_7647653 0.392 2.07E-09 3.151E-04 

Translucence 

FARMCPU 

polyphenol 
oxidase II, 
chloroplastic 18,072 

SORBI_3007G068700 SNP_7_7647653 0.392 2.07E-09 3.151E-04 

Translucence 

FARMCPU 

polyphenol 
oxidase I, 
chloroplastic 17,865 

SORBI_3001G191200 SNP_1_16981727 0.357 3.35E-08 2.419E-03 

Translucence 

FARMCPU 

dormancy-
associated protein 
1 24,337 

SORBI_3006G096500 SNP_6_46696897 0.199 1.39E-07 7.045E-03 
Translucence 

FARMCPU 
glutamate 
decarboxylase 2 39,684 

SORBI_3004G201100 SNP_4_55263055 0.384 9.33E-07 2.021E-02 

Translucence 

FARMCPU 
flavonoid 3'-
monooxygenase within Gene 

SORBI_3004G200800 SNP_4_55263055 0.384 9.33E-07 2.021E-02 

Translucence 

FARMCPU 
flavonoid 3'-
monooxygenase 41,956 

SORBI_3004G200900 SNP_4_55263055 0.384 9.33E-07 2.021E-02 

Translucence 

FARMCPU 
flavonoid 3'-
monooxygenase 29,472 

SORBI_3006G096500 SNP_6_46696897 0.199 3.37E-07 7.378E-03 
Translucence 

MLM 
glutamate 
decarboxylase 2 39,684 

SORBI_3006G096500 SNP_6_46657114 0.121 7.28E-07 1.233E-02 
Translucence 

MLM 
glutamate 
decarboxylase 2 99 

SORBI_3007G151400 SNP_7_58345307 0.279 1.43E-06 4.838E-02 

Translucence 

MLM 
cytokinin 
dehydrogenase 11 within Gene 
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Table 2-11 Genes linked to SNPs associated with bioclimate variables identified through genome-environment Association 

Analysis. 

Ensemble ID SNPID maf P FDR Trait Method Annotated function 
SNP Distance from 

gene (bp) 

SORBI_3001G187000  SNP_1_16432372 0.228 4.29E-13 1.307E-07 Annual Precipitation BLINK 4-coumarate--CoA ligase-like 1 within Gene 

SORBI_3009G228600 SNP_9_56994935 0.414 4.79E-08 3.651E-03 Annual Precipitation BLINK 
cytochrome c oxidase assembly 
protein COX19 

48,450 

SORBI_3001G187000 SNP_1_16432372 0.228 9.1E-09 2.774E-03 Annual Precipitation FARMCPU 4-coumarate--CoA ligase-like 1 within Gene 

SORBI_3009G198200 SNP_9_54857300 0.241 2.7E-09 8.224E-04 
Precipitation of coldest 
Quarter 

FARMCPU 
28 kDa heat- and acid-stable 
phosphoprotein 

12,863 

SORBI_3002G061800 SNP_2_5947146 0.373 2.24E-07 2.073E-02 Precipitation of June FARMCPU protein argonaute MEL1 35,845 

SORBI_3003G268700 SNP_3_60581629 0.241 3.14E-09 4.997E-04 Precipitation of October FARMCPU 
mitogen-activated protein kinase 
kinase kinase A-like 

49,750 

SORBI_3003G268800 SNP_3_60581629 0.241 3.14E-09 4.997E-04 Precipitation of October FARMCPU 
mitogen-activated protein kinase 
kinase kinase YODA 

14,413 

SORBI_3003G268900 SNP_3_60581629 0.241 3.14E-09 4.997E-04 Precipitation of October FARMCPU 
mitogen-activated protein kinase 
kinase kinase 2 

8,931 

SORBI_3003G269000 SNP_3_60581629 0.241 3.14E-09 4.997E-04 Precipitation of October FARMCPU 
mitogen-activated protein kinase 
kinase kinase 3 

within Gene 

SORBI_3005G015450 SNP_5_1400244 0.339 1.37E-07 1.389E-02 Precipitation of October FARMCPU cytochrome P450 714C3-like 536 

SORBI_3005G015600 SNP_5_1400244 0.339 1.37E-07 1.389E-02 Precipitation of October FARMCPU cytochrome P450 714C2 7,763 

SORBI_3009G198200 SNP_9_54857300 0.241 2.4E-07 2.054E-02 
Precipitation of 
September 

FARMCPU 
28 kDa heat- and acid-stable 
phosphoprotein 

12,863 
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Ensemble ID SNPID maf P FDR Trait Method Annotated function 
SNP Distance from 

gene (bp) 

SORBI_3010G080400 SNP_10_6805250 0.230 2.7E-07 2.054E-02 
Precipitation of 
September 

FARMCPU 
ethylene-responsive transcription 
factor ERF014 

45,091 

SORBI_3002G427900 SNP_2_77468713 0.074 7.3E-07 3.438E-02 
Precipitation of 
September 

FARMCPU senescence associated gene 20 36,429 

SORBI_3005G107800 SNP_5_20464774 0.101 1.4E-06 4.751E-02 
Precipitation of 
September 

FARMCPU chalcone synthase 1 7,036 
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Chapter 3 - Germplasm sampling strategy affects the performance 

of genomic prediction: A case of Ethiopian Sorghum Landraces 

 Abstract 

Germplasm screening is a vital avenue to utilize naturally available genetic variation for 

crop improvement. However, the inherent population structure of germplasm collections and their 

colossal size make screening for promising genotypes a daunting task. In this study, the potential 

use of genomic prediction was assessed using 304,802 SNPs and more than 1400 diverse Ethiopian 

germplasm was evaluated in multi-environment trials. First, the genomic prediction (GP) accuracy 

was assessed using two models – genomic best linear unbiased prediction (gBLUP) and ridge 

regression BLUP (rrBLUP) on the BLUP values of phenological and grain attributes. We 

computed the validation accuracy of the models utilizing training-set sizes ranging from 25 to 500 

genotypes. The result showed that both models had comparable validation accuracies for all traits 

and training sizes. Generally, increasing training size increased validation accuracy. Days to 

flowering had the highest (0.70) validation accuracy, followed by plant height (0.66) and days to 

maturity (0.61). Hundred kernel weight (HKW) had moderate (0.49) prediction accuracy, while 

grain yield (0.39) and grain protein content (0.34) had the lowest validation accuracies at the 

training-set size of 500. Second, the effect of FIGS sampling method on the overall accuracy of 

GP was assessed. The FIGS approach utilizes landrace origin information to narrow down 

germplasm to a smaller target-trait enriched population. In this study, seed mass was used as a 

target trait and a proxy for assessing the FIGS effect on the general population parameters and GP 

accuracy. The FIGS sampling approach reduced the average pairwise distance between individuals 

in the established reference population, increased average genome-wide LD, and changed race 

composition relative to the base population. The GP accuracy implemented on FIGS-derived 

reference population was low relative to the GP on random reference populations. A modified GP 

which included germplasm from contrasting environments improved GP and selection differential. 

Overall, the result showed that GP can be implemented on a diverse germplasm population and 

offers an outline for the future design of training populations utilizing the FIGS approach.  
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 Introduction 

The genetic gain in crop improvement has either slowed or plateaued in many crops partly 

due to overexploited genetic diversity within elite lines (Grassini et al., 2013; Rakshit et al., 2014). 

This is particularly concerning given that climate change and population pressure are poised to 

strain food availability by reducing productivity and increasing demand for food. Hence, 

developing efficient methods to maximize functional genetic variation and exploit them in 

breeding programs is of paramount importance to improving genetic gain (Fonseca et al., 2021b). 

Cognizant of this, breeders, in addition to improving target trait, always strive to expand genetic 

variability through enriching the breeding population with fresh germplasm materials (Wang et 

al., 2017). However, identifying new lines and alleles from a large pool of uncharacterized 

germplasm is usually time-consuming and often ends up with little or no success.  

One tool gaining traction to characterize and select promising germplasm is genomic 

prediction (GP) (Yu et al., 2016; Dzievit et al., 2021; Fonseca et al., 2021a). It leverages the recent 

advances in genotyping technologies, statistical modeling, and computing power. GP is based on 

training a model using a subset of accessions, training population, and later expanding the trained 

model to predict the breeding value of genetically related un-phenotyped test-set (Meuwissen et 

al., 2001). Unlike the QTL-based marker-assisted selection which only uses specific large effect 

markers for selection, GP, through simultaneous estimation of genome-wide additive effects, 

predicts the genomic estimated breeding values (GEBVs). It can also predict the total genotypic 

value by modeling additive, dominance, and epistatic genetic effects. Numerous models have been 

proposed for estimating genotypic values, which can be broadly categorized into parametric and 

non-parametric models. The parametric models utilize assumptions about population-based 

parameters and include the BLUP models: rrBLUP (Whittaker et al., 2000; Meuwissen et al., 

2001), G-BLUP (VanRaden, 2008), Least Absolute Shrinkage and Selection Operator LASSO 

(Usai et al., 2009), and the Bayesian alphabet models BayesA, BayesB, BayesC (Meuwissen et 

al., 2001). The non-parametric models, however, do not rely on population assumptions and some 

of these include Reproducing Kernel Hilbert Spaces regression (RKHS) (Gianola et al., 2006), 

machine learning methods including support vector regression (Moser et al., 2009) and random 

forests (González-Recio and Forni, 2011). The G-BLUP and rr-BLUP are based on the 

infinitesimal additive model and estimate mainly additive genetic effects. Non-parametric and 
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sometimes parametric models, using appropriate kernel function, can model total genotypic value 

by modeling epistatic and dominance interactions (Endelman, 2011; González-Camacho et al., 

2012; de Los Campos et al., 2013). A comparison of the different, more complex models such as 

Bayesian alphabet models and LASSO with respect to GBLUP and RR-BLUP showed mixed 

result. gBLUP and rrBLUP performed comparably primarily when empirical data was used 

(Maulana et al., 2021; Ganesamurthy et al., 2022; Meher et al., 2022). In studies that involved 

germplasm collection, comparable results had been reported with rrBLUP and gBLUP producing 

similar accuracy levels with Bayesian models (Yu et al., 2016).  

GP has become an essential breeding tool mainly for developing elite breeding lines, while its 

utilization for exploring landrace germplasm is minimal but slowly picking up (Crossa et al., 2016; 

Yu et al., 2016; Muleta et al., 2017). Factors that generally affect the performance of GP for 

advanced lines, such as heritability, the genetic architecture of the trait, and population structure 

(Fonseca et al., 2021a) would similarly affect GP for germplasm screening. The major constraint, 

specifically for germplasm screening, emanates from the loss of prediction accuracy for collections 

inherently possessing a strong population structure. Because the germplasm collections come from 

diverse agroecology, reproductive isolation and adaptive evolution produce genetically distinct 

subpopulations with extensive LD decay. The predictive accuracy of GS models declines when 

the training and validation populations are genetically distant and when the LD pattern between 

the training and the validation population changes (Clark et al., 2012; Lorenz and Smith, 2015). 

Such conditions are expected to be common in landrace collection. The ideal condition for higher 

accuracy of GP is where both the training and test sets share the same casual mutations (Olatoye 

et al., 2020). Different strategies have been suggested to circumvent the negative effect of 

population structure. These include stratified analysis (Hayes et al., 2009; Olson et al., 2012) and 

allele-cluster interaction to model heterogenous allele effect across breeds (de Los Campos et al., 

2015) with a slight improvement in the overall accuracy of genomic prediction (de Los Campos et 

al., 2015).  

Sorghum is one of the major crops with large germplasm collections at different gene banks 

worldwide. It has magnificent resilience to marginal environments where moisture conditions are 

unpredictable. This specific attribute of sorghum makes it a crop of choice to combat climate 

change. Due to its broad adaptation to a range of agroecology, it is expected to harbor a wealth of 
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genetic resources waiting to be exploited. More than 165,000 germplasms are stored globally in 

different locations. Such an extensive landrace collection is difficult to evaluate because of 

logistical, resource, and technical constraints. GS offers the tool to minimize the sample needed to 

be assessed phenotypically and can help predict the genetic value of un-phenotyped germplasm. 

However, for GP and GS to work, the accessions need to be genotyped, and even that is still 

impractical given the sheer size of germplasm in gene banks. One strategy to maximize 

exploitation of such germplasm is to utilize the center of origin and diversity of landraces as a 

starting point. Countries like Ethiopia that harbors the greatest diversity of the crop may serve as 

focal geography for such study. Ethiopian sorghum germplasm has been the source of many vital 

traits under discovery and utilization worldwide (Singh and Axtell, 1973; Haussmann et al., 2002; 

Rhodes et al., 2017; Nida et al., 2019; Muleta et al., 2021). The Ethiopian materials comprise all 

major botanical races and their intermediates (Doggett, 1988), with durra, bicolor, and caudatum 

and their mixed races being dominant. The majority of sorghum germplasm collections maintained 

in different parts of the world constitute a great deal of the Ethiopian germplasm. The local gene 

bank in Ethiopia, the Ethiopian Biodiversity Institute, maintains some 9772 sorghum germplasm 

accessions collected across the country, about 9760 accessions of Ethiopian origin are represented 

in international gene banks (CGIAR, 2007).  

GS and GP may be applied both for genetic improvement of the crop and to maintain 

diversity in germplasm conservation endeavors. In cases where the objective is to preserve the 

diversity of the population within the sampled core collection, a representative sampling from 

across agroecology of origin is implemented (Upadhyaya and Ortiz, 2001). However, rare and 

beneficial alleles may not be identified using this approach (Street et al., 2016). Whereas in 

situation where germplasm is mined for trait mining, the FIGS approach may be used to enrich the 

selected landraces with favorable alleles of the target trait. The FIGS approach works with the 

premise that selection increases the frequency of favorable alleles. A priori relationship between 

environmental parameters of origin and a trait of interest can be used to predict potential landraces 

with the target attribute. The FIGS approach had been successful in identifying rare variants for 

different adaptive traits, including sunn pest (Bouhssini et al., 2009), and Russian wheat-aphid 

(Bouhssini et al., 2011) in wheat, and drought-adaptation in faba bean (Khazaei et al., 2013).  
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The size of the reference population constituted through the FIGS approach is variable 

across the literature. In published reports - 1125 from 17778 (El Bouhssini et al., 2011); 500 from 

3738 (Endresen et al., 2012); 87 from 4576 (Dadu et al., 2019). The size may depend on a variety 

of factors including but not limited to the type of species, the base-population size, the size of 

collection from a favorable environment, and the relative ease of the trait to phenotype. As the 

FIGS selection is made using environment-only information, the approach is not directly selecting 

genotype but environments. As a result, the approach does not have the power to distinguish 

genotypes originating from similar environments. Such concern is especially critical in centers of 

diversity such as Ethiopia, where diverse germplasm exists in proximity. In such cases, these 

diverse sets of landraces tend to possess common environmental parameters and sampling only a 

few based solely on environmental data may risk missing beneficial variants hiding in another 

environment. However, GP can complement the FIGS approach by letting the pipeline to sample 

first a larger set from the germplasm collection. Later, a smaller training population with 

manageable size can be sampled to conduct thorough phenotyping and to train genomic prediction. 

Such an approach may increase the search space and improve chance of identifying potential 

landraces. 

 Combining both approaches may bring complementarity where the FIGS approach 

removes the garbage and paves the way to ‘identify the needles in a haystack’ (Shim et al., 2021), 

while GS opens the opportunity to evaluate a more extensive set with the potential to identify 

promising landraces with beneficial sets of alleles. Nevertheless, coupling FIGS and GP may have 

an impact on the overall accuracy of the pipeline as the FIGS sampling strategy to form the 

reference population can affect population parameters. The FIGS sampling may return 

subpopulations with narrower genetic base because of the likelihood of selecting genetically 

related individuals from similar environments. Since germplasm collections come from landraces 

distributed across agroecology, population structure is likely to present in such collections. Studies 

have showed that population structure affects the overall accuracy of genomic prediction (Muleta 

et al., 2017; Sapkota et al., 2020). In this study, we first evaluated the overall performance of GS 

in Ethiopian sorghum core collection using phenological traits and physicochemical grain 

attributes. Second, we assessed the effect of training size on the accuracy of GP. Third, we 

evaluated the impact of the FIGS sampling approach on the accuracy of GP and the overall 

performance of the FIGS-GS pipeline.  
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 Materials and methods 

 Plant materials and study sites 

A population panel comprising 2010 accessions including landraces, improved varieties, 

and inbred lines was used in this study. The collections were assembled as part of a collaborative 

effort supported by the United States Agency for International Development (USAID) through the 

sorghum and millet innovation lab (SMIL) in partnership with US and Ethiopian Universities, 

Ethiopian Institute of Agricultural Research (EIAR) and Ethiopian Biodiversity Institute (EBI). 

The testing sites are outlined in (Tessema et al., 2019) and briefly summarized as follows. The 

Field experiments were laid out at Haramaya University, Arsi-Negele, Bako, Pawe, and Meiso 

sites, in different regions of Ethiopia. Each accession was planted in a non-replicated 3m long 

single rows, at a spacing of 75 cm between rows, and a 20 cm between plants. The experiments 

were planted at the regular planting time for the crop, from mid-April to mid-May. At planting, 

phosphorus was applied as di-ammonium phosphate (DAP) at the rate of 46 kg ha-1 P2O5 and 18 

kg ha-1 N. Additional nitrogen fertilizer was applied in the form of urea at the rate of 46 kg N ha-1 

when the crop was around knee height. Fields were regularly supervised by resident technicians at 

each station and plots were kept free of weeds by manual weeding. Data were collected on a 

number of traits including emergence, flowering, plant height, maturity, and leaf and panicle 

diseases. After harvest, more data were collected on grain quality, yield components, and protein 

content. Only those data applicable to this study are further described herein. Days to flowering 

was recorded as the number of days from planting until 50% of the plants in a plot reached half 

bloom; while days to maturity as the number of days taken for grains in the middle section of the 

panicle reached the black layer stage. Plant height was measured as the average length of a mature 

plant measured from the base. Hundred kernel weight (HKW) was measured as the weight of 100 

kernels and adjusted to 12% moisture content. Yield per panicle was estimated as the average 

weight of grains from five random panicles collected from each plot. Grain protein content was 

estimated using PertenIM-9500 (PerkinElmer), and later, the spectral data was calibrated for 

protein content determination at USDA, Manhattan, Kansas, USA. The geographic description of 

each trial location is shown in Table 3-6. 
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 Genotypic data 

A portion of the collection, 1628 accessions were genotyped by the genotyping by 

sequencing (GBS) platform. The procedure for DNA extraction, library preparation, and 

sequencing were as described in Tessema et al. (2019). Briefly, DNA was isolated using the CTAB 

procedure from the landraces (Mace et al., 2003). The GBS genotyping was carried out at the 

University of Wisconsin Biotechnology Center. The TASSEL Version 5 (Bradbury et al., 2007), 

GBSV2 pipeline (Glaubitz et al., 2014) was utilized to process the raw sequence files, aligning to 

the Sorghum bicolor reference genome version 3.1.1 from Phytozome (McCormick et al., 2018). 

A “very-sensitive” parameter of Bowtie2 (Langmead and Salzberg, 2012) was used to call single 

nucleotide polymorphism (SNPs). The GBS pipeline produced a total of 397,313 SNPs across the 

landraces. These were further filtered for <12.5% Heterozygosity, biallelic sites, a maximum of 

20% missing data (Dzievit et al., 2021), and a minimum of 1% minor allele frequency using 

VCFtools - 0.1.17 (Danecek et al., 2011), finally retaining 304,802 SNPs. Imputation for missed 

loci was performed separately for each chromosome using Beagle4.1  

 Bioclimatic parameters 

The passport data of accessions included district, zone, and administrative regions. 

Bioclimatic data was obtained from the WorldClim Version2 database (Fick and Hijmans, 2017). 

Administrative boundaries were retrieved from shape files archived in the Open Africa Database 

(https://africaopendata.org/). R code Package- Raster (Hijmans et al., 2017) was used to obtain the 

mean value representing the respective district for 19 climate variables. Bioclimatic data was 

extracted for 1258 of the landraces with genotypic data.  

 Plant parameters 

The BLUPs values of all accessions was used for all traits to account for the environment 

effect using a mixed linear model implemented in the R package lme4 (Bates et al., 2015). The 

BLUPS were estimated as follows:  

𝑦𝑖𝑗 = µ + 𝐺𝑖 + 𝐿𝑗 +  𝜀𝑖𝑗  
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Where yij is the observed phenotypic value of ith accession in the jth environment, μ is the 

overall mean, Gi is the random genotypic effect for the ith accession, Lj is the fixed environmental 

effect of the jth envirionment, and εij is the residual.  

 Variance components and heritability 

Components of variance were computed using the lmer package treating genotype effect 

as random and environment effect as fixed. Broad-sense heritability on the entry-mean basis was 

roughly estimated using the equation:  

H =
σg

2

σg
2  + σ𝑒

2
/l

2   

Where σ2
g and σ𝑒

2
 are estimated genetic error variances, respectively. l is the number of 

environments. 

 Principal component analysis, linkage disequilibrium and genetic distance 

Population structure and landraces’ relatedness were established using principal 

component analysis and kinship matrices. We used the Tassel (Bradbury et al., 2007) command-

line version to run principal component analysis, while the R package-GAPIT (Lipka et al., 2012) 

was used to compute the Kinship matrix. We manually assigned botanical race information from 

our unpublished work following the procedure outlined in Harlan and de Wet (1972; IBPGR and 

ICRISAT (1993). The supervised option of the Admixture option (Alexander et al., 2015) was 

used to assign the majority of the unassigned landraces using botanical race data obtained from 

Wang et al. (2020a). Linkage disequilibrium for the different sets of populations was separately 

characterized by PLINK (Purcell et al., 2007) where r2 was computed using 100 SNPs within 100 

Mb window. 

 Effect of prediction method and population size on accuracy of genomic prediction 

The study first evaluated the genomic prediction accuracy of different plant traits using 

rrBLUP and GBLUP models implemented in the R package rrBLUP (Endelman, 2011). The 

rrBLUP is explained as follows: 
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 𝑦𝑖 = µ + ∑ 𝑋𝑖𝑘

𝑝

𝑘=1

𝛽𝑘 + 𝜀𝑖  

Where yi is the observed phenotype of the ith individual, µ the mean, Xik is the genotype 

matrix for biallelic single nucleotide polymorphisms of ith individual and kth marker. 𝛽𝑘 is additive 

random effect of the kth marker, k~N (0,σg
2) and 𝜀𝑖 is the residual error ~N (0,σe

2). GEBVs for 

individuals were calculated as the sum-total of marker effects.  

We used the GBLUP method introduced by Habier et al. (2007) and VanRaden (2008) and 

implemented using rr-BLUP software package where: 

𝑦 = 1µ + 𝑍γ +  𝑒 

Where y is phenotype vector, 1 is a vector of 1s, µ is grand mean, Z is the incidence matrix for 

breeding values, 𝑒 is the residual error, 𝑒 ~ N (0, σe
2), and 𝛾 is a vector of breeding values, ~N (0, 

Gσg
2). σg

2 is genetic variance, and G is calculated as follows: 

𝐺 =
𝑊𝑊′

2 ∑ 𝑝𝑖(1 − 𝑝𝑖)
 

Where W is computed from a n  m marker matrix coded as (0,1,2) by adding -2pi, where pi is the 

allelic proportion of one of the alleles in the population. 

At this early stage of breeding, the interest is mainly on additive effects. Both rrBLUP and 

GBLUP are computationally faster models capable of modeling additive effects. Their 

performance is as good as the more complex models when used to screen a wide range of traits for 

GS (Bhering et al., 2015; Yu et al., 2016). 

 Performance of GP across multiple traits 

Of the 2010 accessions included in the trial, we used only those for which genotypic data 

available (1628 accessions). Training sizes of 25, 50, 100, 150, 200, 250, 400, and 500 accessions 

were used to evaluate predictive accuracy for both rr-BLUP and G-BLUP methods. A thousand 

iterations were made for each training size. Mean Pearson correlation coefficient r between GEBV 

and observed values was estimated for the training population. The model developed using the 
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specified training population estimates GEBVs for the remaining validation population. The mean 

correlation of the observed phenotypic values and the test set’s respective GEBVs was considered 

validation accuracy. Unless stated, accuracy in the text refers to validation accuracy. The plateau 

for prediction accuracy of increasing training population size was determined as the tilt below the 

threshold of 0.0001 of the rate of improvement in accuracy per unit training size increment. 

 Effect of FIGS sampling approach to select larger seed mass on the overall 

Performance of GP 

The FIGS approach works mainly for adaptive traits where a relationship between trait of 

interest and landrace origin can be made. Such traits include biotic, and biotic stress tolerance, 

where environmental cues can be associated with plant attributes. For this study, we retained HKW 

as a target trait for the FIGS approach. In sorghum, seed mass is one of the important adaptation-

related traits associated with precipitation gradient (Wang et al., 2020a). Different studies suggest 

that landraces from drier areas possess larger seed masses (Stromberg and Boudell, 2013; Wang 

et al., 2020a). For the FIGS sampling method, the approach by (Khazaei et al., 2013) was adopted 

with modification. Since seed mass had been associated with precipitation gradient, bioclimatic 

variables associated with magnitude of precipitation were used. The computed Euclidean distance 

was computed for the environments and distance parameter for hierarchical clustering was used. 

The clusters were sorted based on the annual precipitation from the driest to the wettest. Individuals 

were selected from cluster with lowest annual precipitation and continued to the next cluster until 

the size of the reference population, which was set to 700, was met.  

The pipeline which incorporates the GP in the FIGS approach employs two sampling 

stages, as outlined in Figure 3-1. The first sampling step is where we mimicked the scenario where 

large gene banks are sampled to a manageable size of germplasm collection, which we coin 

henceforth as the reference population. The reference population in some literature is synonymous 

with the training set (Zhu et al., 2021). However, in this study, the reference population is the 

working population which comprises both the training population and the test sets (Yu et al., 2016). 

We used three methods at this sampling stage: The FIGS approach, here termed as FIGS_Dry 

approach, where we followed the procedure outlined before. A modified version of the FIGS we 

called FIGS staggered where we sampled 80% and 20% of the individuals from the driest and 
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wettest clusters, respectively. The other sampling method used to establish reference populations 

was the random sampling method. We sampled 50 random and independent reference populations 

using this sampling method (Figure 3-11).  

The second sampling stage draws individuals from the reference population to set up 

training populations for GP (Figure 3-1). For this stage, we used random sampling from the 

reference populations constituted using FIGS_Dry, FIGS_Staggered and random methods. 

Additionally, representative sampling of the reference populations formed by FIGS_Dry and 

FIGS_Staggered approaches was made based on K-means clustering on PCs of the genomic data. 

For simplicity, we will refer FIGS_Dry approach as FIGS approach and FIGS_staggered approach 

as staggard approach from this point forward. For each reference population, one hundred 

independent training sets were determined. Training and validation accuracies were computed for 

each iteration of the training population. For each reference population, average of these iterations 

is reported. We also compared FIGS-GP and staggered-GP pipelines in terms of the average of 

observed HKW values of top landraces with 5% and 10% GEBVs.  

We tested the statistical significance of whether proportions changed, enriched, or shrank 

when we drew using FIGS approaches from the base population using two-tail, right tail, or left 

tail binomial tests implemented in R (R Core Team, 2020), respectively. Significance difference 

in means was tested using a two-tailed t-test using base R statistical software (R Core Team, 2020).  

 Result 

 Landraces performance, variance components, and heritability 

The grain and phenological data of the landraces across environments is shown in Table 

3-1. Mean days to flowering ranged from 66 to 159, which is typical for tropical landraces, and 

took 125 to 214 days to mature. Mean plant height (PH) ranged from 98 to about 467 cm. HKW 

and grain protein content ranged from 0.5 to 4.6 g and 7.1 to 15.5%, respectively. Yield per plant 

also went from 5 to 174 g per panicle, with a mean of 55.7 g (Table 4-1). The heritability of the 

traits was also variable, where plant height had the highest heritability (90.3%) followed by days 

to flowering (88.4%) and days to maturity (68.1%). Grain protein content (64.2%) and yield per 

panicle (51.5%) had the least heritability.  
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 Training size influences genomic prediction 

Using the entire 2010 population as a reference, we estimated the validation accuracy of 

GBLUP and rrBLUP (Table 3-2 and Table 3-3, respectively) using models established by training 

500 individuals. The training population was sampled randomly for both models. Days to 

flowering (rrrBLUP =0.698, rGBLUP=0.699) followed by plant height (rrrBLUP =0.661, rGBLUP=0.665) 

and had high prediction accuracy of the validation population compared to the grain attributes 

HKW (r-rrBLUP =0.489, r-GBLUP=0.488), grain protein content (rrrBLUP =0.333, rGBLUP=0.333) and 

yield per panicle (rrrBLUP =0.389, r-GBLUP=0.396). A comparison of the validation prediction 

accuracy relative to the estimated broad-sense heritability computed as a ratio of (Table 3-1) 

revealed that days to maturity had the highest ratio (0.90), while grain protein content had the least 

(0.61)  

Both models fit by rrBLUP, and gBLUP yielded comparable results for all the training 

sizes (Table 3-2 and Table 3-3). In all traits, increasing population size improved the prediction 

accuracy of the validation population. The most significant improvement (83%) was obtained for 

yield per panicle, followed by days to maturity (56.5%) and grain protein content (48%), while 

HKW did not show much improvement (only 23%). While we observed improvement with an 

increase in training size, the rate of improvement per a unit increment of training size kept 

declining. The prediction accuracy improvement per unit training size increase approached below 

a training size around 300 < 0.0001 for most traits.  

 FIGS sampling approach to sample landraces with larger HKW  

Assuming that genotype and phenotype information are not available, we selected the 

reference population using only the passport data (Figure 3-1). The site of origin was used to 

extract bioclimatic variables. Using the clustering approach of bioclimatic precipitation variables, 

we obtained nine optimal clusters determined by using the hierarchical clustering approach (Figure 

2A). A reference population size of 700 landraces was established by drawing from each cluster 

sorted by their mean annual precipitation (Figure 3-2 B & C). The mean HKW of landraces 

grouped in the respective clusters was correlated with the mean annual precipitation of clusters (r= 

-0.829, P=0.0057) (Figure 3-2 and Figure 3-2D). Botanical race membership also differentiated 
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the population into different grain weight classes (Figure 3-3 A). Selection based on precipitation 

gradient yielded a significant difference in HKW (P ≤ 0.0001) (Figure 3-2 D) and also caused 

compositional change of landraces (Table 3-4). Durra had a 14% (P=0.0009) increase in the 

proportion of the selected reference materials, while caudatum shrank by more than 40% (P < 

0.0001). The FIGS approach significantly enriched HKW relative to the whole panel and to the 

staggered approach (Figure 3-3B). 

Principal component analysis reveals population structure within the whole panel where 

botanical races are clustered distinctively (Figure 3-4). LD analysis showed that LD decayed to 

half in the whole panel, FIGS, and staggered reference population within 2.5 kbp, 3kbp, and 3kbp, 

respectively. As expected, the average pairwise distance computed from IBS showed that the 

whole panel is composed of genetically distant landraces (0.309) followed by staggered reference 

population (0.306). The FIGS population was constituted relatively by more related individuals 

(0.303) (Table 3-5). 

 Origin-based sampling impacted overall validation prediction accuracies 

Training prediction accuracies were higher than validation prediction accuracies (Figure 

3-5). The median training accuracy for the randomly established populations was higher than all 

origin-based approaches across all the training sizes. The training accuracies of FIGS at 100 and 

400 training sizes were higher than the staggered training accuracy, while at 200 training 

population size, the staggered approach outperformed the FIGS approaches. Like the training 

accuracy, median validation accuracies from the random reference populations had higher 

accuracy than the origin-based methods. The staggered approach had higher validation accuracy 

than the FIGS approach for all the training sizes (Figure 3-5). 

To evaluate the GP-assisted performance of the FIGS approach in identifying the best 

individuals from the whole panel, we considered the mean observed HKW of the top 5% and 10% 

of individuals selected based on GEBVs (Figure 3-6). As expected, the smaller proportion (5%) 

had higher mean performance than the higher proportion (10%). However, a similar pattern of 

ranking for the selection approaches was observed for both ratios. We compared relative 

performance with the mean distribution of top GEBV individuals from the reference populations. 
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The FIGS approach at 25 and 50 training sizes trailed far to the left tail of the random reference-

population mean distribution. 

In contrast, the staggered approach performed better and stood around the middle of the 

distribution. However, the FIGS approach shot up at 100 and 150 training sizes and marginally 

outperformed the staggered approach. In larger training populations starting from size 200, the 

FIGS approach retracted back while the staggered approach consistently improved for all training 

sizes (Figure 3-6).  

 Discussion 

In light of the anticipated increase in food demand and a production challenge posed by 

climate change, breeders need to adopt new methods, tools, and technologies to improve the 

attributes of food and feed crops to satisfy human needs. Climate change is predicted to bring about 

new challenges to crop production, such as increased disease and pest prevalence and 

unpredictable weather (drought, heat) that may alter crop adaptation and productivity. Coping with 

such changes may require, among others, exploring unutilized genetic resources stored in gene 

banks. The major hurdle to properly accentuate on this approach is the sheer size of germplasm 

collection stored in gene banks and the lack of clue where the desired allelic variants may be 

hiding. This task of chasing a slim probability of identifying a genotype of interest from the large 

gene pool is appropriately compared with trying to find a needle in a haystack (Shim et al., 2021). 

The advent of GS, complemented by the recent advances in genotyping, phenotyping, and 

computational capabilities, may provide a useful tool to facilitate the mining of germplasm 

resources and increases the chance of success in identifying the genotypes/genes of interest.  

In this study, we first evaluated the potential use of GS on diverse Ethiopian germplasm 

using a range of parameters. Among the phenological traits, our prediction accuracy for plant 

height of 0.65 was comparable to other reports on sorghum (Yu et al., 2016; Habyarimana et al., 

2020). Grain weight, highly influenced by population structure, had moderate prediction accuracy 

(0.49) across environments. Sapkota et al. (2020) reported a slightly higher (0.65) prediction 

accuracy for grain weight evaluated across botanical races, while they reported smaller accuracy 

(0.31) for the within race prediction. GPC prediction accuracy is low for both rrBLUP and GBLUP 

(~0.33). Studies about the genomic prediction for the GPC in sorghum are scarce. In wheat, a 
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moderate level of accuracy (0.41) was reported (Huang et al., 2016). Higher single environment 

prediction accuracy (0.50 to 0.69) was reported using the NAM population (Sandhu et al., 2021), 

while combined multi-year prediction accuracy declined to 0.3 to 0.43. They attributed the low 

multi-environment prediction accuracy to genotype-by-environment interaction, where the 

importance of loci determining GPC becomes different for different environments. Similarly, the 

prediction accuracy for grain yield per panicle (0.33) was also low but comparable to previously 

reported values by Velazco et al. (2019) and Hunt et al. (2018).  

Training population size is an important factor in determining prediction accuracy. For all 

traits, we observed an improvement in genomic prediction accuracy with an increase in population 

size. Similar results were also reported in maize (Zhang et al., 2017), wheat (Muleta et al., 2017), 

and rice (Berro et al., 2019). With increasing population size, the marker effects could be more 

accurately estimated and may result in better accuracy (Muleta et al., 2017). In the current study, 

while training size improved prediction accuracy, the rate of improvement (relative change of 

accuracy per a unit increase in training size) with further increase in the size of training set declined 

rapidly and reached our threshold < 0.0001 around training size 300.  

Reference populations sampled from a larger germplasm collection need to be as large as 

possible to minimize the risk of missing promising, and as small as possible to reduce the resource 

burden. Different strategies are utilized to narrow down larger germplasm collection in gene banks 

to make up the reference population. Generally, traits related to crop adaptation are correlated with 

agroecology of the adaptation region. Approaches like FIGS utilize this relationship to narrow 

down potential genotypes for adaptation-related characteristics. For this study, we selected grain 

weight, as associated with adaptation to dryland environments. Even though the mechanism behind 

it is not yet established, it has been hypothesized that larger seed weight offers resources in the 

initial stage of emergence and crop establishment, playing a central role in survival under dry 

conditions (Stromberg and Boudell, 2013; Wang et al., 2020a). In sorghum, grain weight is 

correlated with precipitation variables which can easily be cross-referenced using the place of 

origin. Additionally, grain weight is highly associated with population structure, affecting the 

overall accuracy of genomic prediction. As a result, it is a good proxy parameter for evaluating the 

effect of using origin-based reference population establishment on the performance of GS, which 

can be extended to other adaptation-related traits. 
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As shown in Figure 3-3, the reference population selected using the FIGS approach had a 

mean seed mass larger than the base population. Since genotypes adapted to similar environments 

also tend to be in relative physical proximity to each other or have some degree of genetic 

similarity due to genetic parallelism (Passarella et al., 2008), we expected the FIGS approach to 

yield more related genotypes. As expected, the average pairwise genetic distance of individuals 

from the FIGS reference population was the smallest compared to the whole panel and the 

staggered reference population (Table 3-5). Moreover, the large-seeded durra types that dominate 

the country’s drier regions were enriched in the population, contributing to the higher mean seed 

weight, while medium-sized caudatum types prevalent in humid areas were underrepresented.  

In addition to its association with geographic origin, grain weight was also highly 

associated with population structure, further confirming its potential use as a proxy parameter for 

evaluating the effect of using origin-based reference population establishment on the performance 

of GS, which can be extended to other adaptation-related traits. As the population composition 

changed, the LD pattern also changed where the FIGS reference population had, on average, more 

extended LD (59kbp) than the whole panel (40 kbp). Similar changes in composition and the 

consequent changes in population parameters had been shown to impact overall genomic 

prediction accuracies. In sorghum, a study on the effect of population composition on validation 

accuracy of genomic prediction showed that models trained in relatively homogeneous populations 

tend to fail when used to predict a more heterogeneous population (Sapkota et al., 2020). Similarly, 

in wheat, genomic prediction using two distantly related groups where one was used as a training 

and the other as a test population had inferior prediction results to the GP model utilizing the 

mixture of the two groups as a training population (Muleta et al., 2017). In rice and wheat, the 

genetic relationship between training and validation populations had paramount importance in 

shaping model accuracy on the test set (Berro et al., 2019). In this study, the over-representation 

of the durra race in the FIGS reference population, which is already significant in the base 

collection, may have reduced the overall stratification of the FIGS reference population. As a 

result, marker effects for the underrepresented group/s may not be estimated and as a result become 

source of bias. In a GP study involving cattle, validating a model on a validation set dominated by 

breeds that were the minority in the training set had lower validation accuracy. The accuracy was 

improved by incorporating multiple breeds in the training set (Olson et al., 2012).  
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In contrast, the staggered approach sampled 80% of individuals targeting the driest 

environment and the rest 20% from the wettest environments. This sampling procedure was aimed 

at capturing more diverse set of genotypes in the population while reasonably maintaining the 

population enriched for the trait of interest. The staggered reference population had higher 

validation accuracies than the FIGS population for all training sizes. The result conforms with 

(Isidro et al., 2015), who reported the stratified sampling under a strong population structure had 

yielded higher GP accuracy. The inclusion of environments from the extreme end of the 

precipitation gradient might have included genetic groups which were underrepresented in the 

FIGS reference population. Increasing the share of an underrepresented group in the reference 

population might have increased the chance of the minority groups occurring in the training set 

and better model marker effects. The incorporation of genotypes from the extreme environments 

might have also increased the overall variance of the trait in the training populations sampled. 

Larger phenotypic variance in a training population with a strong population structure had been 

associated with improvement in prediction accuracy (Isidro et al., 2015) 

At last, we evaluated the mean HKW performance of the top 5 and 10% of individuals 

selected based on GEBVs. Generally, the top GEBV individuals from the FIGS reference 

population had the least selection differential than the reference populations developed through 

the staggered or random approach. However, for some training sizes, it outperformed the staggered 

method. The relatively smaller validation accuracy observed in the FIGS approach may have 

negatively impacted the accuracy of GEBV values, directly influencing the selection differential. 

However, the staggered approach improved as the training size increased, outperforming the FIGS 

approach in most training sizes. It is not clear why the FIGS approach performed well at 100 and 

150 training sizes and retracted back with a training size above 150. Since the staggered approach 

comprised of individuals from both dry and wet environments, it may have increased the 

population’s overall heterogeneity, opening the chance to assess the effect of genomic loci that 

would not otherwise be evaluated under the FIGS approach. The better estimation of marker effects 

may have improved the validation accuracy of test individuals. 
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 Conclusion 

The study was aimed at investigating the power of GS to exploit diverse germplasm 

collections for breeding purposes. The result showed that GS works for traits under consideration, 

but the model can be tweaked to enhance accuracy. The moderate validation accuracy observed in 

the smaller training set was improved by increasing training size, which can be optimized to 

provide decent prediction power. We also evaluated whether the FIGS approach, which ICARDA 

popularizes, is compatible with GS. Moreover, the FIGS approach was tested along with the GS 

to see the feasibility of the combined approach to targeting particular traits of interest in germplasm 

exploration. Since the FIGS approach is skewed in that it samples only individuals presumably 

possess known traits of interest, its accuracy in predicting the reference population parameter was 

only moderate. This was improved by using the staggered approach that allows the incorporation 

of individuals from either extreme for the trait of interest. The staggered approach improved 

validation accuracy and GEBV-based selection differential. 
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Figure 3-1 Schema showing how the reference and training populations were selected for this study. 

The SMIL core collection is assumed to represent an extensive germplasm pool. Most of the genotypes are assumed with passport 

(n=1258) data. From these genotypes, reference populations (n=700) were sampled using Random, FIGS, or staggered approaches. The 

reference population is now assumed to be genotyped. Sampling of the reference population to form training population followed either 

random or representative (repres.) approach.  
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Figure 3-2 FIGS based selection of landraces: (A) Determination of optimum number of clusters (B) Group size and mean 

precipitation of the clusters. (C) The distribution of the clusters along precipitation gradient and PCs. (D) Relationship of  mean 

cluster HKW and annual precipitation. 

Abreviation: Ann. Annual, Prec. Precipitation, Dim- Principal component Axis, HKW- Hundred kernel weight 
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Figure 3-3 (A) Mean HKW performance of botanical races (bars show 95% confidence interval) (B) Mean HKW performance 

of reference populations drawn using different sampling strategies (bars shows 95% confidence interval). 

Emmean: Adjusted mean of the group 

 

A. B. 
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Figure 3-4 Population structure as evidenced by a few of the first PCs. 



82 

  

Figure 3-5 Training and validation accuracy of genomic prediction computed using reference populations assembled through 

FIGS (FIGS_Dry), Staggered (Staggered_OriginBased), and random (Random_Reference pop.) approaches. 

FIGS_Dry_representative and FIGS_Dry_Random: FIGS approaches whose training individuals were selected using representative and 

random sampling approaches, respectively. 
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 1 

Figure 3-6 Mean HKW of top 5% and 10% lines selected based on GEBVs computed 2 

using different sampling strategies.  3 

FIGS_Dry_rep and FIGS_Dry_Rand: FIGS approaches whose training individuals were 4 

selected using representative and random sampling approaches, respectively. 5 

  6 
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Table 3-1 Performance results of landraces evaluated in different environments. 7 

Trait Environment Mean Range σ2g σ2res H2 (%)  

DTF 5 106.0 66.0 – 159.0 206.1 134.9 88.4 

DTM 3 167.0 125.0 – 214.0 92.3 129.8 68.1 

PH (cm) 6 
317.0 97.9– 466.8 2972.7 1897.5 90.3 

HKW (g) 2 2.4 0.5-4.6 0.2 0.2 66.1 

YPP (g) 2 
55.7 5.0 -174.0 287.2 540.2 51.5 

GPC (%) 2 
10.9 7.13 – 15.5 0.6 0.6 64.2 

DTF: Days to Flowering; DTM: Days to Maturity; HKW: Hundred kernel weight; PH: Plant 8 

height; GPC: Grain protein content; YPP: Yield per plant.  9 

 10 

 11 
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Table 3-2 Prediction accuracy of landrace performance for six agronomic traits affected by training population size under rrBLUP using 

random samples drawn from the population. 

Prediction accuracy at different Training population sizes (nTP) 

Trait nTP =25 nTP =50 nTP =100 nTP =150 nTP =200 nTP =250 nTP =300 nTP =400 nTP =500 

DTF 0.491 0.574 0.636 0.659 0.670 0.680 0.686 0.693 0.698 

DTM 0.393 0.486 0.550 0.573 0.587 0.595 0.601 0.610 0.615 

PH 0.486 0.551 0.597 0.619 0.630 0.638 0.645 0.654 0.661 

HKW 0.395 0.426 0.448 0.460 0.468 0.473 0.477 0.483 0.489 

GPC 0.225 0.272 0.298 0.310 0.317 0.323 0.326 0.331 0.333 

YPP 0.212 0.273 0.316 0.341 0.354 0.364 0.371 0.381 0.389 

DTF: Days to Flowering; DTM: Days to Maturity; HKW: Hundred kernel weight; PH: Plant height; GPC: Grain protein content; YPP: Yield per 

plant.  
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Table 3-3 Prediction accuracy of landrace performance for six agronomic traits affected by training population size under 

GBLUP using random samples drawn from the population.  

Prediction accuracy at different Training population sizes (nTP) 

Trait nTP =25 nTP =50 nTP =100 nTP =150 nTP =225 nTP =300 nTP =400 nTP =500 

DTF 0.506 0.565 0.662 0.672 0.675 0.690 0.697 0.699 

DTM 0.418 0.520 0.531 0.570 0.602 0.599 0.611 0.618 

PH 0.476 0.518 0.608 0.613 0.640 0.646 0.653 0.665 

HKW 0.406 0.425 0.455 0.459 0.472 0.477 0.473 0.488 

GPC 0.209 0.245 0.305 0.301 0.319 0.322 0.329 0.333 

YPP 0.220 0.260 0.317 0.335 0.365 0.373 0.374 0.396 

DTF: Days to Flowering; DTM: Days to Maturity; HKW: Hundred kernel weight; PH: Plant height; GPC: Grain protein content; YPP: 

Yield per plant.  
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Table 3-4 Composition of reference populations established based on origin information. 

s/no Race Total 
Expected 

Proportion1 

FIGS 

Selected 

FIGS Selected 

Proportion 

FIGS Population 

 Change 

from base 

Staggered 

Selected 

Staggered 

Selected 

Proportion 

Staggered Population  

Change 

form base 

1 Bicolor 35 0.028 13 2.3% -14.9% 18 3.1% 13.88% 

2 Caudatum 195 0.153 50 9.0% -41.3% *** 61 10.6% -30.73%** 

3 Durra 617 0.485 309 55.7% 14.7% *** 292 50.9% 4.79% 

4 Durra-bicolor 237 0.186 105 18.9% 1.5% 131 22.8% 22.39% * 

5 Guinea 6 0.005 1 0.2% -61.8% 3 0.5% 10.71% 

6 Guinea-Caudatum 171 0.135 76 13.7% 1.8% 64 11.1% -17.13% 

7 Kaffir 10 0.008 1 0.2% -77.1% 5 0.9% 10.71% 

 

(*), (**), (*** ) show statistically significant different proportions from the expected proportion evaluated using the binomial test for 

equality of proportions. 
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Table 3-5 Characteristics of reference populations sampled using different approaches relative to the whole panel used. 

 

Parameter FIGS Staggered Whole Panel 

LD decay to half maximum ~3 kbp ~3 kbp ~2.5 kbp 

LD decay to r2 0.1 ~59 kbp ~63 kbp ~40kbp 

Average pairwise Distance 
(on basis of IBS) 

0.303 0.306 0.309 
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Table 3-6 Geographic descriptions of study sites and number of data points collected for each trait from each location (data 

include un-genotyped individuals). 

No Site Location Mean Temperature* 
(0C) 

Mean 
precipitation*  

 (mm) 

The Koppen-Geiger 
climate classification* 

Number of data points used*  

PHT (Year) DTF DTM HKW GPC YPP 

1 Arsi Negele 7°21′ N, 38°42′ E 18 915 humid subtropical 
climates 

1943 1629 

 

1761 (2016) 781 1326 (2016) 

2 Haramaya 
University 

9°24′ N, 42°01′ E  18 799 Subtropical highland 
climate 

 

1983; 

1520 (2016) 

1944 1972 1498 (2016) 405 1215 (2016) 

 

3 Meiso 8059'N, 40025'E 23. 831 Tropical Climate 1301 1992 1964 

  

 

4 Pawe 11° 18'N, 

36° 24E' 

24 1601 Tropical Climate 1960 2008 

   

 

5 Bako 9° 05'N, 

37° 02E' 

20 1200 Tropical wet and dry or 
savanna climate 

1998 1998 1998 

  

 

*Reference:(Fick and Hijmans, 2017; Tessema et al., 2019). The number of data points without an accompanying bracket represents 

2015 data 

  

https://en.wikipedia.org/wiki/Tropical_savanna_climate
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Chapter 4 - Genotype and pre-processing treatments impact in-vitro protein 

digestibility (IVPD) in the Ethiopian fermented bread from sorghum  

 Abstract  

Sorghum is an important source of calorie and protein for smallholder farmers in Sub-

Saharan Africa and Southeast Asia. Nevertheless, the low digestibility of sorghum proteins and 

the lack of access to alternative protein sources make consumers vulnerable to protein 

malnutrition. Processing sorghum into cooked products generally reduces protein digestibility with 

fermented products tending to suffer less compared to unfermented products. The objective of this 

study was to investigate the impact of grain processing treatments on the protein digestibility of 

the Ethiopian fermented flatbread. Four sorghum genotypes (TxArg-1, B503, Macia, and Dorado) 

were subjected to four processing treatments, decortication, sprouting, roasting, and unprocessed 

control, and milled to two-particle sizes resulting in a total of 32 treatments. The genotype, 

processing treatment, and their interaction were significant for in vitro protein digestibility (IVPD) 

in cooked and uncooked samples. The roasting treatment significantly reduced IVPD compared to 

the unprocessed control while sprouting significantly increased IVPD. Decortication appears to 

have no impact on IVPD. Finer particle size tends to enhance IVPD in all genotypes and for all 

processing methods. Processing treatments slightly affected protein content, with the trait 

significantly improved by the sprouting treatment.  
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 Introduction 

Sorghum (Sorghum bicolor (L.) Moench) is one of the five major cereal crops of the world. 

The developed nations utilize sorghum primarily as animal feed (Ronda et al., 2019) while the 

crop is cultivated as principal food crop in developing countries of Sub-Saharan Africa and South 

Asia (Ratnavathi and Patil, 2013). Inherent characteristics of the crop such as resilience to drought, 

low input requirements, and long tradition of its use and cultivation, makes sorghum widely 

preferred by smallholder communities in developing countries. Although sorghum is similar to 

other cereals in terms of nutritional composition, the availability of nutrients, especially proteins 

in sorghum-based diets, appears to be low, making the consumers vulnerable to protein 

malnutrition (Maclean et al., 1981; Semba, 2016).  

The digestibility of sorghum proteins is a complex process involving several factors, with 

the major ones related to the characteristics of the sorghum protein itself (Duodu et al., 2003). 

Sorghum storage proteins, the kafirins, are organized into spherical protein bodies with enzyme-

resistant fractions often occurring on the outer layer restricting access of digestive enzymes to the 

more digestible kafirin fractions (Duodu et al., 2003). Moreover, starch granules are embedded 

into the protein matrix, rendering sorghum starch recalcitrant to enzymatic digestion (Rooney and 

Pflugfelder, 1986). In cooked sorghum, gelatinized starch may also inhibit the digestion of 

sorghum proteins (Duodu et al., 2002). Several factors in sorghum extrinsic to storage proteins but 

inherent to the grain characteristics may also influence in-vitro protein digestibility, IVPD (Duodu 

et al., 2003). Sorghum grain carries trypsin proteinase inhibitors in its bran layer, which may lower 

protein digestibility (Kumar et al., 1979). Sorghum also contains phytate, which can form protein-

phytate complexes (Kumar et al., 2010). Certain types of sorghum also have tannins that bind with 

proteins and reduce their digestibility.  

Efforts to improve the nutritional quality of sorghum in the past have focused on addressing 

these factors and have made significant progress towards understanding the structure, chemistry, 

and genetic factors behind sorghum protein digestibility and reducing the adverse effects of anti-

nutritional factors. Germplasm lines with improved protein digestibility have been developed, 

though their commercial deployment is pending (Weaver et al., 1998; Tesso et al., 2006). 

However, there are additional factors that need to be addressed to remove the barrier that low 
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protein digestibility imposes on the value of the crop, both as animal feed and human food. Food 

processing methods and genotypes have been shown to affect the digestibility of proteins from 

sorghum foods (Weerasooriya et al., 2018; Rashwan et al., 2021). Cooking sorghum food products, 

primarily through wet process, reduces protein digestibility dramatically, with the degree of 

reduction varying by food types and processing methods (Weerasooriya et al., 2018). Furthermore, 

there is little or no correlation between protein digestibility from raw flour and cooked foods which 

complicates improving the trait for human food since it requires samples to be cooked to screen 

them for digestibility (Weerasooriya et al., 2018).  

Smallholder farmers in Sub-Saharan Africa heavily depend on sorghum as the primary 

source of protein and energy (Belton and Taylor, 2004). According to FAOSTA (2018), the 

population in the major sorghum-consuming country of Sudan derived 24% of its dietary protein 

from sorghum (Chavan et al., 1988). Disaggregation of consumption data by occupation or 

economic opportunity would undoubtedly show the percentage to be higher among poor rural 

communities (Gali and Rao, 2012). 

Sorghum is traditionally consumed after processing into different food types. The most 

common sorghum-based foods used in the developing world include porridge, and fermented and 

unfermented breads, all of which involve wet cooking and cause a substantial reduction in protein 

digestibility. Given that smallholder farmers do not have access to animal protein to supplement 

their diet, the low availability of protein from this staple cereal exposes the community to severe 

protein malnutrition. The prevalence of stunting and wasting reported widely among rural children 

in sub-Saharan Africa is evidence of severe protein-energy deficiency (Semba, 2016; Derso et al., 

2017; Gerald J. and Dorothy R. Friedman, 2019; Gebre et al., 2019; Gebreegziabher and Regassa, 

2019).  

Fermented flatbread, recognized by different names in different communities, is the major 

component of local dishes in Ethiopia and Sudan. While the best quality of such bread in Ethiopia 

is made from teff, sorghum comes second and exhibits the same quality as teff bread when mixed 

with teff up to 50%. Communities in sorghum-producing regions in Ethiopia prefer sorghum bread 

to teff. Because teff has primarily become a cash crop, rural communities in teff-growing areas 

such as the central highlands use teff-sorghum composite flour. The increasing price for teff grain 
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in recent years, partly forced by the growing foreign market and population pressure, is forcing a 

large segment of the urban community to turn to sorghum as alternative food grain making it the 

third most widely used food crop in Ethiopia (Taffesse et al., 2013; Demeke and Di Marcantonio, 

2019). Given the changes to teff utilization and sorghum consumption, the need to improve protein 

digestibility in sorghum becomes even more important to protect communities from hidden protein 

malnutrition. 

The traditional bread-making process in Ethiopia involves fermentation of the dough. 

Fermentation enhances protein availability by prompting structural changes in sorghum storage 

proteins, kafirins (Taylor and Taylor, 2002). Previous studies have shown that fermentation 

improves protein digestibility (Correia et al., 2010), alters starch properties (Abd Elmoneim et al., 

2017), and enhances the overall nutritional quality of food products (Chavan et al., 1988; Osman, 

2004; Weerasooriya et al., 2018; Adeyeye et al., 2019). A comparison of fermented and 

unfermented sorghum food supplements in laboratory rats showed that fermented sorghum 

supplements improved nutritional parameters (Adejuwon et al., 2020). Although cooking 

generally reduces protein digestibility, the extent of the reduction is lower in the fermented 

product, and uncooked fermented sorghum has higher IVPD relative to unprocessed raw sorghum 

(Weerasooriya et al., 2018). Even though fermentation enhances the IVPD of uncooked samples, 

digestibility was still compromised by wet cooking relative to uncooked grain, which is an integral 

part of bread making in many traditional food products, including the Ethiopian fermented bread 

injera (Taylor and Taylor, 2002) and in many food products made from sorghum. This suggests 

that opportunity still exists to enhance the digestibility of proteins from cooked sorghum foods 

using pretreatment procedures. The objective of this study was to optimize the bread-making 

processes and methods to improve protein digestibility in the Ethiopian fermented flatbread. 

 Material and methods 

 Plant materials 

Four sorghum genotypes, B503, TxArg1, Macia, and Dorado, were used in this study. B503 

is a recent seed parent line release from Kansas State University. The grain has typical burgundy 

color and is high in total protein and lysine. TxArg-1 is an old white seeded waxy sorghum used 
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in various food quality studies. Macia and Dorado are both white seeded food-grade sorghums 

widely grown and used in various types of foods in Africa. Seeds of these genotypes were 

increased during the 2017 growing season at Kansas State University Agronomy Research Farm, 

Ashland Bottoms, near Manhattan, Kansas. At maturity, the grains were harvested, cleaned and 

stored until use. 

 Experimental design and treatments  

The experiment consisted of three factors, genotype, and processing treatments each 

consisting of four levels, and flour particle size consisting of two levels. The genotype factor 

consisted of four diverse sorghum genotypes (B503, TxArg1, Macia, Dorado) described above. 

The four levels of processing factor included sprouting, decortication, roasting and the 

unprocessed control. The two levels of flour particle sizes were achieved by grinding the samples 

using 0.5 mm and 2 mm screen sizes. The treatment was a factorial combination of the different 

levels of these factors totaling to 32 treatments. Grain samples of genotypes from the same batch 

were sampled and divided into four subgroups for processing treatments (sprouting, decortication, 

roasting and control). The experiment was conducted in randomized complete block design with 

two replications, where replications were considered as blocks. Due to large treatment size, the 

experiment was carried out at two different times representing the two replications. 

 Grain processing procedure  

 Sprouting  

Grains were rinsed with tap water and placed in a 10 cm deep 20 cm diameter metallic pan. 

Approximately 2.5 liter of tap water was added to the pan to fully submerge the grains with the 

water level visibly above the grains and was maintained this way for 48 h with the water replaced 

every 8 to 10 h. The samples were then transferred to 35 cm  21cm  12 cm trays with multiple 

layers of a water-soaked paper towel placed at the bottom of the tray. Additional paper towels were 

used to fully cover the grains. The trays were left in the dark at room temperature for another 48 

h. The grain layers were intermittently mixed to insure uniform germination. Moldy-looking grains 
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were removed as soon as observed. After 48 h of germination, the samples were spread thin on flat 

metallic pan to air dry.  

Decortication 

The decortication treatment was conducted using a facility at the Kansas State University 

Grain Science Department. A custom-made sample abrasive decorticator STRONG-SCOTT-

17810 (Minneapolis, MN) fitted with a 6-inch diameter and 24 grit grinding disc on a 0.25 hp 

motor was used. Five-hundred grams of grain of each of the genotype was subjected to 

decortication. The machine was set to remove twenty percent of the bran layer. Due to the inherent 

differences in grain characteristics, the average decortication time for each genotype was different 

with TxArg1, B503, Dorado, and Macia requiring 2:30, 2:45, 2:50, and 2:45 mins, respectively. 

 Roasting 

The roasting treatment was applied using a clay pan preheated to 100 C. The grains were 

poured onto a hot pan and roasted for five minutes with occasional stirring to achieve uniform 

exposure to the surface of the pan. The samples were then allowed to cool down on a kitchen 

counter for one hour. 

 Control 

These are intact grain samples of each genotype not subjected to any processing treatment. 

All processed samples were placed in a labeled plastic container for storage at room temperature.  

 Sample Grinding 

The sprouted, roasted, decorticated, and intact control samples were ground into the two 

selected particle sizes using a UDY Cyclone Sample Mill (Udy Corporation, Fort Collins CO). 

Each of the pretreated samples was divided in half, with one half ground using a 0.5 mm screen 

and the other half with 2 mm screen providing two different particle sizes. The flour samples were 

collected into a labeled Ziploc bags and stored at 4C until needed. The particle size distribution 

of the flour was later analyzed in duplicates using LS 13 320 Particle Analyzer (Beckman Coulter 
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Life Sciences, Indiana, USA) with Universal Liquid Module. Particle sizes were reported as 

volume-weighted mean diameter. 

 Food sample preparation  

The sample foods (fermented bread) were prepared from each of the thirty-two treatment 

combinations using the following procedure. About 200 g flour from each sample were mixed with 

500 ml water along with a 10 ml of liquid commercial yeast (5%). The mixture was left at room 

temperature to ferment for 48 h. Then the samples were placed in the refrigerator to stop further 

fermentation. About 30 g of the fermented dough was taken in a metal cup, mixed with 100 ml 

water, and heated on a stove until gelatinized. The gelatinized dough was added back to the original 

dough and thoroughly mixed. Warm water was added until the dough was soft enough for 

spreading on a pan and was let to set for two hours before cooking into bread. For cooking, a 40 

cm wide, circular electrical claypan (WASS Electronics Inc., VA, USA) was preheated to 121C. 

The slurry was spread circularly on the pan and covered with a metal lid to cook for two minutes. 

The cooked samples were then cooled down, lyophilized, and ground for analysis. 

 Sample characterization 

 IVPD was determined in duplicates from each of the pretreated raw flour and fermented 

food samples using the method of Mertz et al. (1984) as detailed in Cremer et al. (2014). Protein 

content (PC) of unprocessed raw samples, and processed samples before and after cooking 

measured by nitrogen combustion method using a TruSpec CN combustion analyzer (LECO Corp, 

St. Joseph, MI). The nitrogen content was multiplied by the 6.25 factor to obtain crude protein 

content estimate. Change in protein content (ΔPC) of processed and cooked samples with reference 

to the unprocessed raw samples.  

 Statistical analysis 

Model fitting was conducted using the lm function of the R software (R Core Team, 2020). 

Analysis of variance (ANOVA) was performed using the Anova function from the car package 

(Fox and Weisberg, 2018). The functions emmeans from the package emmeans (v 1.5.2, (Lenth et 
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al., 2019)) and cld from the multcomp package (v 1.4-17 (Hothorn et al., 2016)) were used for 

marginal means comparison. Type I error (α) level was set at 0.05 with Bonferroni adjustment for 

multiple testing. Paired t-test was conducted using t-test function from the R package (v 4.0.3, (R 

Core Team, 2020). 

 Results 

The genotypes used in this study possess diverse physicochemical attributes. Genotype 

B503 had the highest PC of 14.4 % and the highest proportion of vitreous endosperm (Figure 4-1 

and Table 4-1). The African cultivar Macia had the lowest PC of 12% and an intermediate 

vitreosity comparable to Dorado, another African cultivar. TxArg-1 was a waxy genotype with 

near zero percent apparent amylose content while others are non-waxy with amylose content of 

about 14% (Table 4-1). All genotypes except B503 have white pericarp color. Figure 4-1 B shows 

the flour particle size distribution of the genotypes after milled with a 2mm screen. Particle sizes 

ranged from near zero to 1600 m and peaked around 500 m for B503 and Dorado, while 

BTxArg1 and Macia had lower particle sizes as their peak (Figure 4-1 B).  

 Analysis of variance 

The analysis of variance for the effects of the different factors on IVPD and PC in cooked 

and uncooked states is presented in. Both traits were highly significant for all factors, except the 

genotype effect for raw IVPD and raw PC for particle size (P.value < 0.01). The interaction 

between these parameters and the three-way interaction was not significant for both raw PC and 

raw IVPD. Likewise, all three factors were highly significant for both IVPD and PC in the cooked 

samples (P.value < 0.01). The interaction between genotype and processing methods was also 

highly significant for both IVPD and PC. However, the processing method by particle size 

interaction was significant only for PC. IVPD and PC for Genotype by particle size interaction for 

both IVPD and PC, processing method by particle size for IVPD and the three-way interaction 

both for IVPD and PC were not significant (Table 4-2). 
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 IVPD and PC in uncooked samples  

The pre-processing treatments were shown to significantly affect IVPD and PC in 

uncooked samples of all test genotypes. Decortication significantly reduced PC while other 

processing treatments, sprouting, and roasting did not have substantial effect on PC (Table 4-3). 

Likewise, PC was significantly different among the test genotypes with B503 having the highest 

uncooked PC (14.3%) while genotype Macia had the lowest (11.9%). The effect of particle size 

on PC, however, was not significant (Table 4-2).  

The effect of pre-processing treatment on IVPD of uncooked samples was also significant 

(Table 4-2 and Table 4-4). Unlike the PC, where decortication was shown to have the most 

considerable effect, roasting was shown to have the highest negative effect on IVPD in all 

genotypes (Table 4-4). On the other hand, sprouting significantly improved IVPD in all genotypes. 

The decortication process did not have significant effect on IVPD unlike the PC. Compared to the 

control treatment, the reduction in IVPD across genotype and particle size in roasted samples was 

44.2%, while the improvement in IVPD in sprouted samples compared to the untreated control 

was 10.2%. Unlike the PC, IVPD was significantly higher in finer flour particles than the coarser 

flours in all genotypes. IVPD in uncooked samples was not significantly different between 

genotypes.  

 IVPD and PC in cooked samples  

Similar to the uncooked samples, IVPD and PC in cooked samples were significantly 

affected by processing treatments, genotypes, and flour particles. Roasting significantly reduced 

PC while sprouting improved PC compared to the unprocessed control (Table 4-5). Overall, 

sprouting improved PC by 11% and there is significant difference between genotypes. Relative to 

the control, sprouting increased PC by 11.8% in TxArg1, 8.7% in Macia, and by 6.1% and 16%, 

in B503 and Dorado, respectively. On the other hand, roasting reduced PC by 6% while 

decortication did not have significant effect. 

Across processing treatments, B503 had the highest PC of 14.7% in the cooked state, 

followed by TxArg1 with 14.3% PC. The lowest mean PC was reported in the African genotype 

Macia while the other African genotype Dorado was about average between the high and low 
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genotypes. Flour particle size also significantly affected PC of cooked samples in all genotypes 

and processing treatments. Unlike in the uncooked samples, food samples prepared from smaller 

particle size flours consistently had higher PC than those made from coarser flour (Table 4-5). 

As expected, IVPD in cooked products was markedly lower than in the uncooked products. 

B503 had the lowest reduction of 29% while Macia had the highest reduction (45%). Dorado and 

TxArg-1 had 35% and 38% reduction in IVPD compared to the uncooked samples. IVPD in the 

cooked products was also significantly affected by processing treatments, genotypes, and 

interaction between them (Table 4-2 and Table 4-6). Roasting treatment caused significant 

reduction (46%) in IVPD compared to the unprocessed control, while sprouting significantly 

improved (40%) IVPD. The reduction in IVPD in roasted samples relative to their respective 

control was 22.6, 54.9, 52.5, and 53.2% in B503, Dorado, Macia, and TxArg-1, respectively, while 

sprouting accounted for 47.4, 53.5, -4.7, and 65.6% increase in B503, Dorado, Macia, and TxArg-

1, respectively. Decortication, although assumed to have removed the bran layer that is believed 

to carry various anti-nutritional factors, did not significantly affect IVPD.  

Among genotypes, the highest marginal mean of cooked IVPD of 32.6% was obtained in 

B503, followed by the waxy genotype TxArg-1 (31.6%), while the least (25.1%) was found in the 

African cultivar, Macia. IVPD of cooked samples was also affected by the interaction between 

genotypes and processing treatments, indicating that the IVPD response of genotypes to processing 

treatments was different (Table 4-2 and Table 4-6). Although roasting reduced IVPD across 

genotypes, the response of individual genotypes to roasting was different and was similar for 

sprouting, contributing to the significant interaction effect of the genotype  processing method. 

Although not of similar magnitude to the uncooked samples, flour particle size had significant 

effect on IVPD in cooked sampled with food samples from finer particles are on average 8.8% 

higher in IVPD than those from coarser flowers (Table 4-4 and Table 4-6).  

 Changes in PC  associated with processing treatments 

Cooking sorghum has been reported to undermine protein availability to a variable degree 

depending on cooking methods and processing. The processing of sorghum into different food 

products has been reported to affect the availability of nutrients, especially of proteins. In this 



100 

study, we compared the effect of cooking on sorghum samples subjected to different processing 

treatments. In general, cooking doesn't seem to have a negative impact on PC but food samples 

from sprouted grain had significantly higher ∆PC in all genotypes while roasting tended to reduce 

PC in some genotypes (Figure 4-2). 

The other area to draw a comparison is the effect of processing treatments on IVPD. 

Regardless of the processing treatments subjected to, cooked products have markedly less IVPD 

than their respective uncooked samples. Across genotype mean IVPD was reduced by 41.3% in 

cooked samples subjected to decortication treatment while the roasting and sprouting treatments 

had 43.3 and 23.6% reductions in the IVPD of their cooked samples. The across genotype 

reduction in IVPD in the control samples was 29.9%. In other words, IVPD in the cooked control 

treatment sample was only 70.1% as high as in the uncooked sample. The IVPD from the uncooked 

control treatment was 47.4, 48.2, 52.4, and 54.2% for B503, Dorado, Macia, and TxArg1, 

respectively. However, when cooked into fermented flatbread, the IVPD dropped to 29.7, 28.6, 

31.6, and 29.9, respectively, showing that protein in the cooked samples were only 62.7, 59.3, 

60.3, and 55.2% as digestible as those in the uncooked samples (Table 4-7). Hence the goal of the 

research was to identify a processing treatment that can increase this proportion. The data in this 

study revealed that the processing treatments of decortication and roasting did not provide any 

benefit but the sprouting treatment significantly improved IVPD of cooked products. Compared to 

the untreated control, the IVPD of B503, Dorado, and TxArg-1 improved to 92.4, 91.1, and 91.3% 

in cooked food samples prepared from sprouted grains compared to 62.7, 59.3 55.2% in cooked 

foods from untreated samples. IVPD in genotype Macia, however, did not show positive response 

to sprouting. 

 Discussion 

Because sorghum is uniquely low in the bioavailability of its proteins, especially when 

cooked, protein digestibility has been the focus of numerous studies on this crop (Duodu et al., 

2003). Although different processing methods had been shown to improve cooked protein 

digestibility, all of them were low compared to digestibility values from raw grain samples. In a 

previous study, our group investigated IVPD in various food products commonly consumed in 

Africa, where the fermented flatbread from Ethiopia was shown to have markedly higher IVPD 
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compared to other unfermented food products (Weerasooriya et al., 2018). Thus, the focus of this 

study was to optimize the processing method for making the Ethiopian flatbread that can enhance 

the digestibility of sorghum proteins without significantly altering the taste and texture of the 

product. Based on previous research, we expected that genotypes might react differently to 

processing treatments. The results may help fine-tune breeding goals towards setting tailored 

breeding objectives to select cultivars more suitable for making fermented bread with higher 

protein digestibility. In this study, we produced test samples from four tannin-free sorghum of 

African and temperate origin varying in seed color, starch properties, and protein profile and three-

grain pretreatment procedures along with untreated check milled at two particle sizes. The samples 

were then tested for protein digestibility both before and after cooked to the Ethiopian fermented 

bread.  

Processing treatment significantly affected the PC of uncooked samples (Table 4-2). 

Decortication that involved removal of the bran layer reduced mean PC significantly compared to 

the unprocessed control (Table 4-2). It appears that in addition to removing the pericarp layer, 

decortication may also partly remove the protein-dense germ and peripheral endosperm layers 

leading to an overall decline in PC of samples (Yetneberk et al., 2005). However, both roasting 

and sprouting did not have a significant effect on PC of uncooked samples (Table 4-3). However, 

Previous studies on other crops also showed sprouting increasing PC (Warle et al., 2015). Among 

the likely factors attributable to this is the respiratory loss of carbohydrates through CO2, 

effectively concentrating protein in the remaining grain (Dicko et al., 2006). Several other studies 

reported results countering this finding (Subramanian et al., 1995; Elkhalifa et al., 2010; Afify et 

al., 2012; Singh et al., 2017; Yi et al., 2017). However, in many of these studies, the sprouts were 

removed before evaluating grain PC, which may have resulted in the loss of a significant portion 

of protein and, therefore, a decline in PC (Subramanian et al., 1995; Afify et al., 2012). Taylor 

(1983) also reported that germination induced the partitioning of a significant portion of protein 

and non-protein nitrogen to the developing roots and shoots. In the current study, the sprouts were 

dried and milled together with the grain and thus there was minimal loss of nitrogen in the process. 

PC in the cooked bread was higher than the respective uncooked sample PC. A paired t-

test between pairs of raw and fermented and then baked bread showed that baked samples had 

significantly higher PC than raw samples (P < 0.01). Such an increase in PC in fermented products 
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is consistent with the increase in PC in yeast-mediated fermented products reported by Day and 

Morawicki (2016). The fermentation process in the traditional preparation of Ethiopian bread is 

mediated by a complex mixture of yeast and lactic acid bacteria (Tadesse et al., 2019). Yeast-

mediated fermentation is responsible for the characteristic honey-comb-like holes in the bread, and 

the release of CO2 from the slurry's air pockets is responsible for carving out of the "eyes" 

(Attuquayefio, 2014) and, as a result, concentrated protein through depletion of carbon from the 

system (Day and Morawicki, 2016).  

This study determined ΔPC, the difference between the PC of cooked bread and the PC of 

respective uncooked samples. In our study, sprouted samples had the highest (ΔPC) (Figure 4-2B), 

and this may be due to enhanced fermentation in sprouted samples and the resulting 

disproportionate mass loss in the form of CO2. Sprouting had been shown to increase reduced 

sugar (Mella, 2011) and free amino nitrogen (Yi et al., 2017) concentrations in samples, both of 

which are rate limiting inputs of fermentation, and their abundance in sprouted samples may have 

fueled the fermentation step in the bread making process (Pickerell, 1986).  

Fine milling also appeared to increase PC and ΔPC in cooked samples (Table 4-5 and 

Figure 4-2 B). Generally, samples ground using the finer 0.5 mm screen had higher PC (Table 

4-5). Similarly, except for the roasted sample, where ΔPC was essentially zero, ΔPC was higher 

for finely milled sprouted samples than for courser samples (Figure 4-2 A). This may be due to the 

likely increase in the fermentation rate and the resulting increase in PC as aforementioned. Fine 

milling increases the surface area for enzymatic action (Mahasukhonthachat et al., 2010). Higher 

reducing sugar concentration was achieved in finely milled sorghum through enhanced amylase-

mediated starch digestion (Barcelos et al., 2011). The improved accessibility of starch and other 

supplies have enhanced the overall fermentation rate and as a result increased PC and ΔPC. The 

zero ΔPC in roasted samples in both milling sizes may indirectly show that fermentation rate in 

the roasted samples might have been the slowest. 

Processing treatments, genotypes, and particle size significantly affected protein 

digestibility both in cooked and uncooked states; however, not all processing treatments and 

genotypes had a significant effect on the trait (Table 4-2). The effect of decortication on bread 

IVPD relative to the control was not significant (Table 4-6). Although removing the bran layer 
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through decortication was expected to remove anti-nutritional compounds including phenols and 

protease inhibitors (Nikmaram et al., 2017), this did not significantly affect IVPD in the current 

study. Previous studies have shown that non-tannin phenolic compounds such as flavonoids and 

phenolic acids did not significantly impact protein digestibility (Duodu et al., 2003; Emmambux 

and Taylor, 2003). However, these compounds are potent inhibitors of the activity of alpha-

amylase (Funke and Melzig, 2005). Another study on non-tannin sorghums showed that 

decorticating the grain increased the reducing sugar production and overall fermentation rates 

(Alvarez et al., 2010). Contrary to the expectations, decortication reduced IVPD in cultivar Macia 

(Table 4-6). This is difficult to explain but it may have to do with the elimination of the more 

digestible protein from the germ (Alvarez et al., 2010). Also, Macia is white, tan plant containing 

likely low amount of anti-nutritional factors in the bran that removal of the brain layer has little or 

no impact on IVPD.  

The other processing treatment, roasting, rather had a significant effect on IVPD, with all 

genotypes showing a significant reduction in IVPD both before and after cooking. It is not clear 

what chemical changes have occurred due to roasting that increased resistance to pepsin digestion. 

In another report by our group, roasted food products were shown to have higher IVPD compared 

to fermented products (Weerasooriya et al., 2018). However, the roasted products in the previous 

study involved a prolonged heat treatment in achieving dry cooking. In contrast, the roasting in 

the current study was imposed to simulate the traditional practices in Africa, where the grain is 

subjected to light roasting aimed at facilitating drying and milling instead of cooking. In other 

words, the degree of roasting used in the current study, unlike the previous one, was only partial 

and did not achieve complete cooking. Nevertheless, the reduction in IVPD following partial 

roasting needs further investigation.  

Unlike decortication and roasting, sprouting significantly increased protein digestibility in 

most of the genotypes, especially in the cooked state. In B503, Dorado, and TxArg-1, sprouting 

increased bread IVPD by 47.5%, 53.5 %, and 65.6 %, respectively, relative to the unprocessed 

cooked control sample. It is not clear what factor (s) contributed to improved IVPD in sprouted 

samples. It appears that sprouting activated starch hydrolyzing enzymes softened the endosperm 

making it more prone to fermentation, which is part of the cooking process. Fermentation appears 

to further degrade the starch granules exposing the protein bodies to action by protease enzymes. 
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Previous studies have reported on the synergistic effect of sprouting and fermentation on 

improving IVPD (Wedad et al., 2008; Abd Elmoneim et al., 2017). Germinated sorghums were 

reported to have higher protease activity and higher amino nitrogen as well as increased albumin 

and globulin fractions and a general decline in the kafirin fraction (Yi et al., 2017). However, Abd 

Elmoneim et al. (2017) argued that the effect of germination on the inaccessible proteins was 

minimal, while fermentation plays an essential role in modifying the protein aggregates to make 

them more accessible. In our study, germination/sprouting was shown to have a significant and 

positive effect on IVPD, with all test genotypes except Macia having almost as high IVPD as its 

uncooked version. Macia has vitreous endosperm (Figure 4-1) reported to be rich in enzyme 

resistant cross-linked polymeric protein (Ioerger et al., 2007). However, grain hardness alone does 

not seem to be responsible since other genotypes such as B503 are even more vitreous and perhaps 

as hard as Macia and yet had reasonably higher IVPD under all-grain processing treatments.  

Sorghum proteins become less digestible when cooked in any form. The current result also 

showed that for all treatments, IVPD dropped upon cooking compared to their uncooked state and 

the unprocessed control but with significant differences between treatments and genotypes (Table 

4-6). Cooked IVPD dropped the most in roasted samples and the least in sprouted samples. For the 

majority of the genotypes, cooked IVPD from sprouted samples was 91-92% as high as the 

unprocessed raw sample. This is the least drop in IVPD upon cooking of sorghum foods and 

sprouting appears to have significant potential in addressing the problem of protein digestibility in 

sorghum, especially for smallholder sorghum producers in Africa. Cooked IVPD in all other 

processing treatments was less than 70% of the unprocessed raw sample, with the most significant 

reduction occurring in roasted samples. The chemical changes brought about by the processing 

treatments to cause the difference in IVPD, cooked or uncooked, are unclear.  

The impact of flour particle size on IVPD in cooked and uncooked states was significant 

(Table 4-2). Finer particle size flours and food samples had higher IVPD than the coarser samples 

(Table 4-4 and Table 4-6). This agrees with previous studies where smaller particle sizes, perhaps 

due to increased surface area for enzymatic action contributed to improved IVPD. This appears to 

be primarily because on starch than protein per se in that fine milling causes more disturbance to 

starch granules and make them more prone to attack by hydrolyzing enzymes which is believed to 

open the way for protease enzymes to act on freed protein bodies. Peralta-Contreras et al. (2013) 
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reported that coarser granules in sorghum resulted in a lower fermentation rate and slow 

degradation of starch. Depending on genotypes and processing treatments, particle size distribution 

of samples milled with similar mesh sizes seems to vary and is related to IVPD. Generally, flours 

carrying higher proportion of small particles tend to have higher IVPD compared to those with 

lesser proportion of smaller particles. In this study, the particle size of genotypes for the four 

processing treatments tend to vary with roasted samples having larger proportion of large size 

particles compared to the sprouted sample which carries relatively less proportion of the large 

particles (Figure 4-3).  

 Conclusion 

This study showed that protein digestibility is a complex trait that is affected by multitudes 

of factors. Cultivar type and food processing methods do have a significant impact on protein 

availability. Genotypes with inherently improved PC and IVPD milled to appropriate particle sizes 

and pre-processed prior to making fermented bread can significantly improve protein availability 

from sorghum foods. This study demonstrated that sprouting/germination of grains prior to further 

processing to make fermented bread could remarkably increase protein digestibility by minimizing 

the negative impact of cooking on IVPD. The process also increased PC, but the nutritional impact 

of carbohydrate loss that resulted in higher relative PC needs to be determined. Sprouting entails 

little or no cost for processing and can be easily adopted by smallholder communities in Africa to 

improve protein nutrition. On the other hand, the semi-roasting of sorghum grains prior to cooking, 

a common practice used by women in Africa to prepare grains for milling, has a negative impact 

on protein digestibility. Decortication does not seem to affect IVPD in tannin-free sorghum and 

thus may not be important for improving the protein digestibility of sorghum foods.  
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Figure 4-1 Physical properties of sorghum samples used in the study: (A) Endosperm 

vitreosity of the study genotypes (TxArg1 has waxy endosperm). (B) Particle size distribution 

of raw flour samples of the study genotypes milled using 2mm screen. 
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Figure 4-2 Estimated change in protein content (ΔPC) of fermented bread subjected to 

different pre-processing treatments as affected by particle size (A) and genotypes (B). 

For the 0.5 mm screen, changes in protein content between uncooked and cooked samples were 

non-zero for all but the roasted method. However, for the courser 2 mm screen, only the sprouted 

samples showed non-zero ΔPC for all varieties.  
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Figure 4-3 particle size distribution of different samples aggregated by variety, 

preprocessing method, and screen size.  

The chart had two peaks. In the roasted samples, the left peak, which represented finer particles 

around 20 µm was underrepresented compared to most other pre-processing treatments. 
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Table 4-1 Physical and biochemical grain attributes the test sorghum genotypes estimated 

on a dry weight basis. 

Genotype Protein Content (%)  
Amylose content 

 (% of flour) 

Vitreosity proportion (%) 
Grain Color  

B503 14.4 (± 0.09) 14.36 (± 0.55) 71.1 ± (11.25) Red 

TXArg1 13.7 (± 0.11) 0.37 (± 0.35) Waxy endosperm White 

Dorado 13.1 (± 0.06) 14.26 (± 0.54) 57.3 (± 1.50) White 

Macia 12.0 (± 0.09) 14.57 (± 0.10) 63.2 (± 7.23) White 
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Table 4-2 Analysis of variance on the effect of sorghum genotype, processing treatments, and 

screen size on in-vitro protein digestibility (IVPD), protein content (PC) and change in PC 

(∆PC) of cooked and uncooked samples. 

 

Source of Variation DF IVPD (Raw) PC (Raw) IVPD (cooked) PC (cooked) ∆PC 

Replication 1 2.00 0.2405 0.07 1.46 1.64 

Genotype (G) 3 2.25 438.15** 11.64** 205.24** 10.26** 

Preprocess (P) 3 37.23** 16.15** 110.32** 210.57** 117.29** 

Flour particle Size (S) 1 40.61** 3.30 6.33* 45.79** 19.43** 

G x P 9 1.43 1.83 5.63** 6.10** 4.41** 

G x S 3 0.65 0.72 1.32 2.62. 1.27 

P x S 3 0.99 0.68 2.57 6.91** 3.62* 

G x P x S 9 0.58 0.32 1.31 1.27 1.16 

Error 31 
  

 
  

*, ** statistically significant at P  0.05 and P  0.01 levels of probability, respectively. 
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Table 4-3 The mean PC (%) of uncooked sorghum food samples as affected by processesing, 

genotype, and screen used. 

 The mean PC of uncooked sorghum food samples as affected by cooking processes, genotype, 

and flour particle size. Means in the same column followed by the same uppercase letters are not 

significantly different at P ≤ 0.05. Means in the same row followed by the same lowercase letters 

are not significantly different at P ≤ 0.05). Bold faced means with (*) followed by different letters 

show a significant difference between screen size treatment means.  

 

  

Pre-processing treatments 

Genotypes 

Mean B503 Dorado Macia TxArg1 

2 mm screen size      

Decorticated 13.9 12.9 11.7 12.9 12.8 B 

Unprocessed 14.4 13.1 12.0 13.8 13.3 A 

Roasted 14.2 13.1 11.9 13.7 13.2 A 

Sprouted 14.5 13.1 12.0 13.5 13.3 A 

Mean 14.2 a 13.0 c 11.9 d 13.5 b 13.15 *ns 

0.5 mm screen size      

Decorticated 14.1 12.9 11.8 13.1 13.0 B 

Unprocessed 14.5 13.1 11.9 13.6 13.3 A 

Roasted 14.5 13.1 11.9 13.7 13.3 A 

Sprouted 14.6 13.4 12.1 13.5 13.4 A 

Mean 14.43 a 13.13 c 11.93 d 13.48 b 13.25 *ns 

Combined      

Decorticated 14.0 12.9 11.8 13.0 12.9 B 

Unprocessed 14.4 13.1 12.0 13.7 13.3A 

Roasted 14.3 13.2 11.9 13.7 13.3 A 

Sprouted 14.5 11.8 12.0 13.5 13.3 A 

Mean 14.3 a 13.1c  11.9 d 13.5 b 13.20 
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Table 4-4 In-vitro protein digestibility (IVPD) of uncooked sorghum food samples affected 

by pre-processesing, genotype, and flour particle size treatments. 

Means in the same column followed by the same uppercase letters are not significantly different 

at P ≤ 0.05. The Means in the same row followed by the same lowercase letters are not significantly 

different at P ≤ 0.05)—bold-faced means with (*) followed by different letters show a significant 

difference between screen size treatment means.  

 

 

  

Pre-processing treatments 

 Genotypes   Mean 

B503 Dorado Macia TxArg1 

2 mm screen size      

Decorticated 45.2 37.4 43.2 53.0 44.7 A 

Unprocessed 36.2 37.4 44.3 48.8 41.7 A 

Roasted 27.0 23.5 23.0 23.6 24.3 B 

Sprouted 45.0 45.5 46.2 60.5 49.3 A 

Mean  38.4  36.0  39.2  46.5  40.0 *b 

0.5 mm screen size      

Decorticated 63.4 55.3 47 64.9 57.7 A 

Unprocessed 58.7 59.0 60.5 59.6 59.4 A 

Roasted 40.9 28.4 30.1 29.4 32.2 B 

Sprouted 51.9 62.4 68.5 66.0 62.2 A 

Mean  53.7  51.3  51.5 51.3  52.9 *a 

Combined      

Decorticated  54.3 A 46.4 A 45.1 A 59.0 A 51.2 A 

Unprocessed  47.4 AB 48.2 A 52.4 A 54.2 A 50.6 A 

Roasted 33.9 B 26.0 B 26.5 B 26.5 B 28.2 B 

Sprouted 48.4 AB 53.9 A 57.4 A 63.2 A 55.7 A 

Mean  46.1  43.6  45.4  48.9  46.4 
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 Table 4-5 The effect of preprocessing, genotype, and particle size on the PC cooked food 

samples. 

Means in the same column followed by the same uppercase letters are not significantly different 

at P ≤ 0.05. Means in the same row followed by the same lowercase letters are not significantly 

different at P ≤ 0.05). Bold-faced means with (*) followed by different letters show a significant 

difference between screen size treatment means.  

 

 

  

Pre-processing treatments 

Genotypes Mean 

B503 Dorado Macia TxArg1 

2 mm particle size      

Decorticated 13.3 13.0 12.1 13.3 12.9 C 

Unprocessed 14.5 13.1 12.4 14.1 13.5 B 

Roasted 14.1 12.8 12.0 13.3 13.1 C 

Sprouted 15.2 14.7 13.2 15.7 14.7 A 

Mean 14.3 a  13.4 b 12.4 c 14.1 a 13.6 *b 

0.5 mm particle size      

Decorticated 14.5 13.6 12.2 14.0 13.6 B 

Unprocessed 15.1 12.8 12.8 14.5 13.8 B 

Roasted 14.2 12.9 11.8 13.5 13.1 C 

Sprouted 16.2  15.4 14.1 16.4 15.5 A 

Mean 15.0 a 13.7 c 12.7 d 14.6 b 14.0 *a 

Combined      

Decorticated 13.9 C.a 13.3 B b 12.2 B c  13.6 C ab 13.3 B 

Unprocessed 14.8 B a 12.9 B b 12.6 B b 14.3 B a 13.6 B 

Roasted 14.2 B a  12.8 B c 11.9 C d 13.4 C b 13.0 C 

Sprouted 15.7 A a 15.1 A b 13.7 A c 16.0 A a 15.1 A 

Mean 14.6 a 13.5 c  12.6 d 14.3 b 13.8 
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Table 4-6 The effect of processing treatment, genotype, and screen size on IVPD of cooked 

sorghum food samples. 

Means in the same column followed by the same uppercase letters are not significantly different 

at P ≤ 0.05. Means in the same row followed by the same lowercase letters are not significantly 

different at P ≤ 0.05). Bold-faced means with (*) followed by different letters show a significant 

difference between screen size treatment means.  

  

Pre-processing 
treatments 

Genotypes Mean 

B503 Dorado Macia TxArg1 

2 mm particle size      

Decorticated 28.5 24.9 24.3 30.2 27.0 B 

Unprocessed 30.2 28.7 32.4 28.9 30.1 B 

Roasted 20.7 12.3 10.4 11.9 13.8 C 

Sprouted 44.4 46.0 32.5 44.9 41.9 A 

Mean 30.9 a 28.0 ab 24.9 b 29.0 ab 28.2 *b 

0.5 mm particle size      

Decorticated 39.3  32.4 22.8 36.0 32.6 B 

Unprocessed 29.2 28.4 30.8 30.8 29.8 B 

Roasted 25.3 13.5 19.6 16.2 18.7 C 

Sprouted 43.2 41.8 27.7 54.1 41.7 A 

Mean 34.3 a 29.0 ab 25.2 b 34.2 a 30.7 *a 

Combined      

Decorticated 33.9 B a 28.6 B ab 23.6 AB b 33.1 B a 29.8 B  

Unprocessed 29.7 BC a 28.6 B a 31.6 A a 29.9 B a 29.9 B 

Roasted 23.0 C a 12.9 C b 15.0 B ab 14.0 C ab 16.2 C 

Sprouted 43.8 A a 43.9 A a 30.1 A b 49.5 A a 41.8 A 

Mean 32.6 a 28.5 bc 25.1 c 31.6 ab 29.4 
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Table 4-7 Changes in in-vitro protein digestibility (IVPD) of cooked sorghum food products 

caused by processing treatments. 

Genotype Preprocess 
Raw IVPD 

(%) 
Cooked IVPD (%)  IVPD Change (%) 

Cooked IVPD (%) 
relative to uncooked 

control 

B503 Decorticated 54.3 33.9 -37.6 71.5 

Dorado Decorticated 46.4 28.6 -38.4 59.3 

Macia Decorticated 45.1 23.6 -47.7 45.0 

TxArg1 Decorticated 59 33.1 -43.9  61.1 

B503 Roasted 33.9 23 -32.2 48.5 

Dorado Roasted 26 12.9 -50.4 26.8 

Macia Roasted 26.5 15 -43.4 28.6 

TxArg1 Roasted 26.5 14 -47.2  25.8 

B503 Sprouted 48.4 43.8 -9.5 92.4 

Dorado Sprouted 53.9 43.9 -18.6 91.1 

Macia Sprouted 57.4 30.1 -47.6 57.4 

TxArg1 Sprouted 63.2 49.5 -21.7  91.3 

B503 Unprocessed 47.4 29.7 -37.3 62.7 

Dorado Unprocessed 48.2 28.6 -40.7 59.3 

Macia Unprocessed 52.4 31.6 -39.7 60.3 

TxArg1 Unprocessed 54.2 29.9 -44.8  55.2 
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Appendix A - Supplementary Material Chapter 2 

 

Figure A-1 Manhattan plot for Genome-wide association study using Bayesian-information and Linkage-disequilibrium 

Iteratively Nested Keyway (BLINK) and its associated quantile-quantile plot for Tannin presence (A and B,respectively), and 

Panicle compactness (C and D, respectively). 

Red horizontal lines represent threshold at FDR correction (α =0.05). The vertical lines show some linked (<50 kbp) genes with 

associated SNPS. 
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Figure A-2 Manhattan plot for Genome-wide association study and its respective quantile-quantile plot for kernel 

transluscence using BLINK (A and B) and for Hundred Kernel weight using Fixed and random model Circulating Probability 

Unification (FARMCPU) (C and D). 

Red horizontal lines represent FDR adjusted P-value at α =0.05. Red dots represent SNPs singficantly associated with the precipitation 

variables. The vertical lines show some of the linked (<50 kbp) genes with singnificantly associated SNPS. 
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Figure A-3 Genome-environment association study (using FARMCPU) for precipitation 

variables (A, C) and respective quantile-quantile (Q-Q) plots (B, D).  

Red horizontal lines represent FDR adjusted P-value at α =0.05. Red dots represent SNPs 

singficantly associated with the precipitation variables. The vertical lines show some of the linked 

(<50 kbp) genes with singnificantly associated SNPS. 
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Table A-1 List of Priori genes related to sorghum storage proteins, anthocyanin synthesis and starch properties extracted from 

NCBI database.  

NCBI Gene Symbol Ensemble Gene ID Function Source Chromosome Position Start Position End 

LOC8062726 SORBI_3002G211700 
glutelin-2 gamma kafirin protein gamma-
kafirin preprotein NCBI 2 60423442 60424313 

LOC8068650 SORBI_3009G007100 glutelin type-B 5 NCBI 9 639511 641454 

LOC8068296 SORBI_3005G188800 kafirin PGK1 Kafirin PSK8 kafirin preprotein NCBI 5 67366389 67367331 

LOC8079123 SORBI_3005G192900 kafirin PSKR2-like alpha kafirin NCBI 5 67651628 67652562 

LOC8074403 SORBI_3005G184800 zein-alpha Z4 19kD-like alpha kafirin B3 NCBI 5 66970093 66971018 

LOC8072915 SORBI_3010G136100 
10 kDa prolamin delta-kafirin seed storage 
protein delta kafirin truncated delta-kafirin NCBI 10 20530171 20530521 

LOC8068297 SORBI_3005G189000 kafirin PSKR2-like NCBI 5 67373729 67374693 

LOC8066724 SORBI_3005G184700 
zein-alpha A20 19kD-like alpha kafirin B1 
23 kDa alpha-kafirin NCBI 5 66965527 66966456 

LOC8066721 SORBI_3005G184400 kafirin PSKR2-like NCBI 5 66923278 66924099 

LOC8062726 SORBI_3002G211700 
glutelin-2 gamma kafirin protein gamma-
kafirin preprotein NCBI 2 60423442 60424313 

LOC110435706 SORBI_3005G184500 kafirin PSKR2-like NCBI 5 66926726 66927556 

LOC110435321 SORBI_3005G193100 kafirin PSKR2-like alpha kafirin NCBI 5 67654898 67655764 

LOC110435320 SORBI_3005G192700 
kafirin PSKR2 alpha kafirin putative kafirin 
preprotein NCBI 5 67638681 67639585 

LOC110435318 SORBI_3005G193140 kafirin PSKR2-like alpha kafirin NCBI 5 67658193 67658999 

LOC110435317 SORBI_3005G193180 kafirin PSKR2-like alpha kafirin NCBI 5 67661336 67662286 

LOC110429512 SORBI_3005G193000 
kafirin PSKR2-like alpha kafirin hdhl 22-kDa 
alpha kafirin NCBI 5 67648393 67649339 



125 

NCBI Gene Symbol Ensemble Gene ID Function Source Chromosome Position Start Position End 

LOC8079125 SORBI_3005G193260 kafirin PSKR2-like alpha kafirin NCBI 5 67667809 67668707 

LOC8079124 SORBI_3005G193220 kafirin PSKR2-like alpha kafirin NCBI 5 67664574 67665522 

LOC8079122 SORBI_3005G192801 kafirin PSKR2-like alpha kafirin NCBI 5 67641925 67642823 

LOC8079121 SORBI_3005G192901 kafirin PSKR2-like alpha kafirin NCBI 5 67645163 67646057 

LOC8074401 SORBI_3005G184600 kafirin PSKR2-like NCBI 5 66931562 66932272 

LOC8066726 SORBI_3005G185400 kafirin PSKR2-like NCBI 5 67014861 67015858 

LOC8065278 SORBI_3009G001600 zein-beta beta-kafirin truncated beta-kafirin NCBI 9 166827 167614 

LOC8060747 SORBI_3002G055000 
regulatory protein opaque-2 opaque 2 
protein NCBI 2 5254989 5257807 

LOC8060745 SORBI_3002G054800 regulatory protein opaque-2 NCBI 2 5243140 5247362 

LOC8057484 SORBI_3006G108832 protein FLOURY 1 NCBI 6 47817214 47818167 

LOC8056591 SORBI_3006G175700 anthocyanin regulatory R-S protein NCBI 6 53102701 53111029 

LOC8056590 SORBI_3006G175500 anthocyanin regulatory R-S protein NCBI 6 53062306 53080184 

LOC8081981 SORBI_3004G328800 anthocyanin 5-aromatic acyltransferase NCBI 4 66305270 66307053 

LOC8080419 SORBI_3001G340900 anthocyanin regulatory C1 protein NCBI 1 62819065 62821694 

LOC8079334 SORBI_3010G178700 anthocyanin 5-aromatic acyltransferase NCBI 10 51681001 51683061 

LOC8065008 SORBI_3010G269700 anthocyanin regulatory R-S protein NCBI 10 60405194 60407174 

LOC8063845 SORBI_3002G139200 
malonyl-coenzyme:anthocyanin 5-O-
glucoside-6'''-O-malonyltransferase NCBI 2 21729220 21731045 

LOC8058211 SORBI_3003G232900 anthocyanin 3'-O-beta-glucosyltransferase NCBI 3 57192514 57194484 

LOC8073018 SORBI_3006G076900 
anthocyanin regulatory R-S protein myc-like 
regulatory R gene product NCBI 6 44126383 44140389 
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NCBI Gene Symbol Ensemble Gene ID Function Source Chromosome Position Start Position End 

LOC8056589 SORBI_3006G175200 
anthocyanin regulatory R-S protein myc-like 
regulatory R gene product NCBI1 6 53044178 53049377 

LOC8055322 SORBI_3004G348700 
malonyl-coenzyme A:anthocyanin 3-O-
glucoside-6''-O-malonyltransferase NCBI 4 67766000 67768720 

LOC8076027 SORBI_3004G280800 
WD40 repeat (TRANSPARENT TESTA 
GLABRA 1) Tan1 NCBI 4 62315396 62318779 

LOC8069098 SORBI_3002G076600 basic helix-loop-helix protein A (Tan2) NCBI 2 7975937 7985221 

LOC8068390 SORBI_3010G022600 
Granule-bound starch synthase 1 
(Waxy) NCBI 10 1860965 1865278 

Priori genes , not listed here but related with grain weight and panicle compactness can be found from (Olatoye et al., 2018; Wang et 

al., 2020).  

Tao, Y., Zhao, X., Wang, X., Hathorn, A., Hunt, C., Cruickshank, A. W., van Oosterom, E. J., Godwin, I. D., Mace, E. S., & Jordan, D. 

R. (2020). Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnology Journal, 

18(4), 1093–1105. 

Wang, J., Hu, Z., Upadhyaya, H. D., & Morris, G. P. (2020). Genomic signatures of seed mass adaptation to global precipitation gradients 

in sorghum. Heredity, 124(1), 108–121. 

1 NCBI gene database: Gene. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004 

– [cited 2020 04 20]. Available from: https://www.ncbi.nlm.nih.gov/gene/ 
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