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IBU-LA samples. p-Akt/Akt and p-CREB/CREB ratios reveal a 
reduction in Aβ sample, going back to the basal level in con-
trol and IBU-LA samples. Cytochrome C/Apaf 1 co-immuno-
precipitate occurs and TUNEL-positive nuclei percentage 
decreases in Aβ sample. Probe test performance shows an 
increased spatial reference memory in the IBU-LA compared 
to the Aβ sample; no significant differences were seen be-
tween the IBU-LA and IBU samples.  Conclusion:  This evi-
dence reveals that IBU-LA administration has the capability 
to maintain a high Ngb level allowing Ngb to perform a neu-
roprotective and antiapoptotic role, representing a valid 
tool in the therapeutic strategy of AD progression. 

 Copyright © 2013 S. Karger AG, Basel 

 Introduction 

 Alzheimer’s disease (AD) is the most common chron-
ic neurodegenerative disorder which affects people aged 
65 years and over, characterized by a progressive decline 
in cognitive function and learning. Major pathological 
hallmarks of AD include extensive neuronal loss, intra-
cellular neurofibrillary tangles and extracellular senile 
β-amyloid (Aβ) plaques accumulation within the cerebral 
cortical and hippocampal regions  [1]  which can be diag-
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 Abstract 

  Background:  Alzheimer’s disease (AD) is a frequent form of 
senile dementia. Neuroglobin (Ngb) has a neuroprotective 
role and decreases Aβ peptide levels. Ngb, promoting Akt 
phosphorylation, activates cell survival involving cyclic-nu-
cleotide response element-binding protein (CREB). A new 
molecule (IBU-LA) was synthetized and administered to an 
AD rat model to counteract AD progression.  Objective:  The 
aim of this study was to investigate the IBU-LA-mediated in-
duction of Ngb neuroprotective and antiapoptotic activities. 
 Methods:  Brain morphology was analyzed through Biel-
schowsky staining, Aβ(1–40) and Ngb expression by immu-
nohistochemistry. Akt, p-Akt, CREB and p-CREB expression 
was evaluated by Western blot, apoptosis through cyto-
chrome C/Apaf 1 immunocomplex formation, and TUNEL 
analysis.  Results:  Bielschowsky staining and Aβ(1–40) ex-
pression show few nerve connections and Aβ(1–40) expres-
sion in an Aβ sample, preserved neuronal cells and Aβ(1–40) 
expression lowering in an IBU sample, mostly in IBU-LA. The 
Ngb level decreases in Aβ samples, compared to control and 
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nosed only by autopsy  [2] . In particular, neurofibrillary 
tangles are mainly formed by aggregates of hyperphos-
phorylated microtubular tau protein, whereas the neu-
ritic plaques are complex extracellular lesions in which an 
Aβ-containing core is surrounded by reactive microglia, 
fibrillary astrocytes, interleukins and dystrophic neurites 
 [3] . Moreover, Aβ aggregates exert toxic effects on synap-
tic and cellular functions leading to neurodegeneration, 
inflammation, and cognitive and neuropsychiatric symp-
toms  [4] . It is well known that the inflammatory process, 
including superoxide production, together with β-amy-
loid deposition, is an important source of oxidative stress 
in AD patients  [5] . This hypothesis suggests that intracel-
lular and extracellular reactive oxygen species and reac-
tive nitrogen species generated by various mechanisms 
are the major risk factors that initiate and promote neu-
rodegeneration in idiopathic AD. These observations 
suggest that the oxidative damage leading to accumula-
tion of DNA errors may be an important factor in the 
progression of neuronal loss in AD  [2] .

  Neuroglobin (Ngb) is the third globin expressed in the 
nervous system  [6] , and as a member of the globin fam-
ily, it participates in oxygen homeostasis acting as an en-
dogenous neuroprotector  [7] . Previous studies  [8]  have 
demonstrated that Ngb overexpression protects cells 
from oxidative stress-induced death, indicating that Ngb 
possesses a wider neuroprotective role. Ngb levels, in 
fact, have been found to decrease with age in several rat 
and human brain regions implying a possible relation 
between Ngb deficiency and age-related neurodegenera-
tion  [9, 10] . Moreover, a correlation between Ngb ex-
pression and AD-induced progression has already been 
demonstrated in several animals and in in vitro   models 
in which Ngb overexpression is shown to decrease Aβ(1–
40) and Aβ(1–42) levels, improving cognitive perfor-
mance  [11]  and decreasing the levels of Aβ-induced reac-
tive oxygen species  [12] . Furthermore, Ngb directly pro-
motes Akt phosphorylation  [13] , which in turn   activates 
cell survival pathways by inducing phosphorylation of 
proteins such as NF-kB, procaspase-9 and transcription 
family members such as cyclic-nucleotide response ele-
ment-binding protein (CREB)  [14] . CREB protein is a 
43-kDa basic leucine zipper transcription factor involved 
in numerous cell functions including proliferation, apop-
tosis, survival, differentiation and adaptive response 
 [15–17] . 

  Multiple studies in different models have extensively 
stated a critical role for the cAMP signaling pathway and 
CREB-mediated gene expression in cell survival and also 
in different forms of synaptic plasticity related to learning 

 [18] , and it is well known that inhibition of the CREB-
mediated transcriptional program is involved in Aβ-
induced neuronal derangement and AD progression  [19, 
20] . 

  Current treatment of AD includes drugs that mainly 
provide symptomatic, short-term benefits, without af-
fecting the underlying pathogenic mechanisms of the dis-
ease  [21] , though their neuroprotective potential role has 
also been proposed  [22, 23]  along with the capability to 
counteract the disease progression.

  Starting from this evidence in our laboratory, a new 
lipophilic molecule, ibuprofen and lipoic acid conjugate 
(IBU-LA), was synthetized  [24]  with the aim of counter-
acting AD progression by targeting the pathogenic mech-
anisms of the disease. IBU-LA, in fact, is obtained by join-
ing two molecules, ibuprofen (IBU) and (R)-α-lipoic acid 
(LA), whose beneficial effect in AD has already been dem-
onstrated. IBU, a member of the nonsteroidal anti-in-
flammatory drugs, seems to protect against the disease 
development by delaying its onset through an allosteric 
modulation of γ-secretase activity, the enzyme that medi-
ates the cleavage of amyloid precursor protein liberating 
Aβ(1–42) peptide  [25–27] , while cycloxygenase-2 inhibi-
tion, the principal pharmacological mechanism of IBU, 
does not seem to be involved in the IBU-mediated Alz-
heimer beneficial effect  [28] . In parallel, IBU has a mar-
ginal efficiency in crossing the blood-brain barrier (BBB). 
On the other hand, LA has been used in trials to prevent 
AD, based on its antioxidant ameliorating effect on pro-
gression of the disease through oxidative stress reduction 
and brain cholinergic function improvement  [29, 30] . 
IBU-LA, with a high degree of chemical and enzymatic 
stability, might permit targeted delivery of IBU and LA 
directly to the neurons, which are stressed in AD patients. 
In a previous work, the effects of IBU-LA conjugate in 
chronic treatment following bilateral intrahippocampal 
infusion of Aβ(1–40) protein have been reported  [31] . 
The conjugate seemed to protect against the behavioral 
detriment induced by the simultaneous administration of 
Aβ(1–40) protein. In particular, spatial cognition, in-
duced by administration of our compound, was more im-
proved than with IBU treatment. This treatment may also 
protect against the oxidative stress generated by reactive 
oxygen species and the cognitive dysfunction induced by 
the intracerebroventricular infusion of Aβ(1–40) in rats. 

  In order to evaluate the amount of IBU transported 
across the BBB, its brain concentration after subcutane-
ous injection of IBU-LA and the parent drug has been 
previously evaluated  [31] . The conjugate exhibited a 
much higher brain concentration of IBU when compared 
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with an equimolar dose of IBU alone, suggesting that 
IBU-LA behaves like a bioreversible bioconjugate and 
could enhance the availability of IBU in the brain.

  Thus, the aim of this study was to investigate the IBU-
LA-mediated potential induction of neuroprotective and 
antiapoptotic activities of neuroglobin, focusing atten-
tion on the molecular events downstream to neuroglobin 
activation in Aβ(1–40)-infused rat brain as a model of 
AD. 

  Materials and Methods 

 Animals 
 Male Wistar rats (n = 42) (Harlan, UD, Italy), weighing 200–

225 g at the beginning of the experiments, were used. The animals 
were housed individually on a 12-hour light/dark cycle (lights off 
at 7:   00 a.m.) at a constant temperature (20–22   °   C) and humidity 
(45–55%). Rats were offered food pellets (4RF; Mucedola, Settimo 
Milanese, Italy) and tap water ad libitum. All the procedures were 
performed according to the European Community Council Direc-
tive for Care and Use of Laboratory Animals and in accordance 
with the Local Ethical Committee.

  Drug Preparation 
 Aβ(1–40) peptide (Bachem, Switzerland) was dissolved in ster-

ile saline 35% acetonitrile/0.1% trifluoroacetic acid. Both IBU and 
IBU-LA were solubilized in sterile saline containing 20% (v/v) 
DMSO and administered daily to different animals subcutaneous-
ly for 28 days at doses of 5 and 10 mg/kg, respectively. A vehicle 
solution (vehicle for subcutaneous injections) prepared with ster-
ile saline containing 20% (v/v) DMSO or a sterile saline alone, were 
also administered subcutaneously for 28 days at a dose volume of 
250 μl/kg as IBU and IBU-LA. One month after the last day of 
Aβ(1–40) peptide infusion, cognitive and morphological tests 
were performed.

  Surgical Procedure 
 The rats were anesthetized with a mixture of zolazepam and 

tiletamine (10 mg/kg i.p.) (Zoletil 100, Italmed, Italy). Continuous 
infusion of Aβ(1–40) peptide solution (4.6 nmol/rat at a final vol-

ume of 200 μl) or the vehicle alone was delivered for 28 days by 
attachment of an infusion kit connected to an osmotic pump (Al-
zetmodel 2004, Charles River, Italy). The infusion kit was implant-
ed into the right cerebral ventricle. Aβ(1–40) peptide cerebrospi-
nal infusion and subcutaneous drug treatments were delivered 
over the same period of time.

  The choice of the Aβ(1–40) peptide was dictated by its high af-
finity to form amyloid fibrils in rats, in which a neurodegenerative 
effect was evidenced at the CA1 subfield of the hippocampus and 
by good peptide solubility requirement in order to guarantee a 
continuous delivery throughout the treatment period. All group 
treatments are reported in  table 1 .

  Kinetics of Enzymatic Hydrolysis 
 The enzymatic hydrolysis of IBU-LA was evaluated in rat plas-

ma at 37   °   C. Stock solutions were prepared by dissolving 5 mg of 
the codrug in 50 μl of DMSO. This solution was added to 4 ml of 
prewarmed (37   °   C) plasma previously diluted to 80% with 50 m M  
phosphate buffer, pH = 7.4, prethermostated at 37   °   C. The result-
ing solution was kept at 37   °   C and 0.2-ml samples were withdrawn 
at intervals and added to 0.4 ml of cold (4   °   C) acetonitrile to pre-
cipitate the serum proteins. After centrifugation for 10 min at 
10,000 rpm and at 5   °   C, the supernatant was assayed by HPLC.

  Degradation by Brain Homogenate 
 Rat brains were isolated, pooled, homogenized with 20 vol of 

50 m M  Tris-HCl (pH = 7.4), and stored at –80   °   C until used. The 
aliquots (100 μl, 10 mg protein/ml) were incubated with 100 μl of 
compound (0.5 m M ) over 0, 7.5, 15, 22.5, 30 and 60 min at 37   °   C in 
a final volume of 200 μl. The reaction was stopped at the required 
time by placing the tube on ice and acidifying with 20 μl of 1  M  
aqueous HCl solution. The aliquots were centrifuged at 20,000  g  
for 10 min at 4   °   C. The obtained supernatants were filtered and 
analyzed by HPLC.

  Memory Performance Test 
 One month after the last treatment with the drugs, rats were 

trained for 5 consecutive days in a standard Morris spatial water 
maze task to learn and remember the spatial location of a plat-
form submerged 1 cm below the surface of the water in a circular 
pool 1.5 m in diameter  [32] .   Training consisted of 4 trials per day 
with an intertrial interval of 30 s. On day 6 (i.e. 24 h following the 
last hidden platform trial), a probe trial was conducted in which 

Table 1. Treatment protocol

Group Aβ(1–40) infusion
i.c.v.

Vehicle infusion
i.c.v.

Vehicle
s.c.

IBU
s.c.

IBU-LA
s.c.

Control (n = 9) – 200 μl/rat – – –
DMSO (n = 9) – 200 μl/rat X – –
Aβ (n = 8) 200 μl/rat – 250 μl/rat – –
Aβ+IBU (n = 8) 200 μl/rat – – 5 mg/kg –
Aβ+IBU-LA (n = 8) 200 μl/rat – – – 10 mg/kg

  Quantity or volume of drug solutions administered to the five groups of rats are represented in mg or ml/kg 
of rat body weight or μl/rat. n = Number of rats per group.
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the platform was removed from the pool to measure the time 
spent in the target quadrant where the platform had been located 
during training for 90 s. The probe test allows assessing the refer-
ence memory at the end of learning or memory consolidation 
that represents a valid measure of hippocampal integrity. Time 
spent in the target quadrant is expressed as % time measured in 
90 s.

  Morphological Analysis and Immunohistochemistry 
 Excised rat brains, fixed in 10% (v/v) phosphate-buffered, par-

affin-embedded formalin, were dewaxed (xylene and alcohol in 
progressively lower concentrations) and stained following the 
Bielschowsky procedure. In order to detect Aβ(1–40) and neuro-
globin, immunohistochemistry was performed using an UltraVi-
sion LP Detection System HRP Polymer & DAB Plus Chromogen 
kit (Thermo Fisher Scientific, Calif., USA) and processed accord-
ing to the data sheet. Sections (5 μm), performed at the coronal 
level, were incubated in the presence of rabbit polyclonal anti-
Aβ(1–40) (Alpha Diagnostics International, San Antonio, Tex., 
USA) and antineuroglobin primary antibodies (Sigma-Aldrich, St. 
Louis, Mo., USA) and then in the presence of HRP-conjugated 
secondary antibody. Peroxidase was developed using diaminoben-
zidine chromogen. Nuclei were counterstained with hematoxylin. 
Negative controls were performed by omitting the primary anti-
bodies. The labeled slides were examined with a Leica DM 4000 
(Leica Cambridge Ltd., Cambridge, UK) light microscope equipped 
with a Leica DFC320 videocamera (Leica Cambridge) to acquire 
computerized images.

  TUNEL Analysis 
 Terminal deoxynucleotidyl-transferase-mediated dUTP nick 

end-labeling (TUNEL) is the method of choice for rapid identifica-
tion and quantification of apoptotic cells. DNA strand breaks, 
yielded during apoptosis, can be identified by labeling free 3 ′   -OH 
termini with modified nucleotides in an enzymatic reaction. All 
steps were undertaken with a FragEL DNA fragmentation Detec-
tion kit according to the manufacturer’s instructions (Calbiochem 
Merck, Cambridge, Mass., USA). After two rinses in PBS, slides 
were dehydrated, mounted by using a permanent media and ex-
amined under a Leica DM 4000 microscope (Leica Cambridge) 
equipped with a Leica DFC 320 Videocamera (Leica Cambridge) 
to acquire and analyze computerized images.

  Computerized Morphometry Measurements and Image 
Analysis 
 After digitizing the images, a Leica Qwin 3.5 Plus Software Sys-

tem (Leica Cambridge) was used to evaluate Aβ(1–40) and neuro-
globin expression. Image analysis of protein expression was per-
formed through quantification of the thresholded area for immu-
nohistochemical brown colors per field of light microscope 
observation.

  Leica Qwin assessments were logged into Microsoft Excel and 
processed for percentage, standard deviations and histograms.

  Western Blotting Analysis and Immunoprecipitation 
 For immunoprecipitation, the cerebral cortex lysate (500 μg) 

was incubated in the presence of 50 μl of the suspended IP (Im-
munoprecipitation) matrix (Exacta Cruz, Santa Cruz Biotechnol-
ogy Inc., Santa Cruz, Calif., USA) for 30 min at 4   °   C. The matrix 
was pelleted for 30 min at 4   °   C and 50 μl of suspended IP matrix, 

3 μg of mouse cytochrome C monoclonal antibody and 500 μl of 
PBS were added to the supernatant and incubated at 4   °   C on a ro-
tator for 1 h. The matrix was then pelleted and washed twice with 
500 μl of PBS. The cytochrome C antibody-IP matrix complex was 
incubated with the lysate overnight on a rotator at 4   °   C. The ma-
trix containing the immunoprecipitated sample was then pelleted 
and washed 3 times with RIPA buffer. Samples were boiled and 
stored at –80   °   C. Cerebral cortex lysates (20 μg) or immunopre-
cipitates were electrophoresed and transferred onto nitrocellulose 
membranes. Nitrocellulose membranes, blocked in 5% nonfat 
milk, 10 m M  Tris pH 7.5, 100 m M  NaCl, 0.1% Tween-20, were 
probed with rabbit polyclonal anti-Akt, anti-p-Akt, anti-p-CREB, 
rabbit monoclonal anti-CREB (Cell Signaling Technology, Dan-
vers, Mass., USA), mouse monoclonal anti-cytochrome C and 
rabbit polyclonal anti-Apaf 1 primary antibodies (Santa Cruz Bio-
technology) and then incubated in the presence of specific en-
zyme-conjugated IgG horseradish peroxidase. Immunoreactive 
bands were detected by ECL detection system (Amersham Int., 
Buckinghamshire, UK) and analyzed by densitometry. Densito-
metric values, expressed as integrated optical intensity, were esti-
mated in a CHEMIDOC XRS system by QuantiOne 1-D analysis 
software (BIORAD, Richmond, Calif., USA). The values obtained 
were normalized based on the densitometric values of internal 
β-actin and β-tubulin. 

  Statistics 
 Statistical analysis was performed with GraphPad Prism 5 soft-

ware using ANOVA and the t test. Results are expressed as mean 
± SD. p < 0.05 was considered statistically significant.

  Results 

 In order to verify AD induction after Aβ(1–40) infu-
sion, sections were processed for the Bielschowsky pro-
cedure which is a marker for nerve connections ( fig. 1 a) 
and Aβ(1–40) immunohistochemical analysis ( fig. 1 b, c). 
The control sample discloses organized layers of cells, 
each associated by nerve fiber connections in black, not 
dilated capillary vessels, while the DMSO sample shows 
dilated capillary vessels. In Aβ-infused cerebral cortex 
rare and disorganized neuronal cells along with few 
nerve connections can be recognizable. The Aβ+IBU-
infused cerebral cortex shows few but well-preserved 
neuronal cells with respect to Aβ, while in Aβ+IBU-LA-
infused cerebral cortex cells appear well organized and 
nerve fiber connections seem to be partially restored. In 
parallel, immunohistochemical analysis of Aβ(1–40) ex-
pression was performed revealing that Aβ(1–40) peptide 
precipitates inside blood vessels. No β-amyloid expres-
sion is evidenced in control and DMSO samples, while 
the Aβ sample shows a higher Aβ(1–40) expression. A 
significant decrease of Aβ(1–40) expression is revealed 
both in the Aβ+IBU- and Aβ+IBU-LA-treated samples 
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with respect to Aβ rather than in the Aβ+IBU-LA sample 
with respect to the Aβ+IBU sample. The expression of 
Ngb, evaluated through immunohistochemical analysis, 
is significantly decreased in Aβ-infused cerebral cortices 
with respect to both the control and the Aβ+IBU-LA-
treated samples, while the Ngb level in the Aβ+IBU sam-
ple does not show any significant difference with respect 
to the control and Aβ+IBU-LA-treated samples ( fig. 2 ). 
In our study, the DMSO sample showed dilated capillary 
vessels in infused cerebral cortex and should be respon-
sible for the decrease of Ngb expression. In any case, 
treatment with IBU or IBU-LA was able to restore Ngb 
in neuronal cells both in Aβ- and in DMSO-treated rats. 
Our observations were restricted to the cerebral cortices 
since AD mainly affects these areas, as often reported in 
the international literature  [33] . Since the ability of Ngb 
to activate Akt signaling was already demonstrated  [13] , 

Akt expression and activation and the intracellular 
downstream molecular events were then evaluated. 
Western blotting analysis shows that Akt expression 
does not show any significant difference among the dif-
ferent experimental points, while the activated Akt (p-
Akt) and p-Akt/Akt ratio reveals a significantly strong 
reduction in the Aβ-infused sample, going back to the 
basal level in control and Aβ+IBU-LA-treated samples 
( fig. 3 ). Given that CREB is considered a regulatory tar-
get for the protein kinase Akt  [34] , CREB and the phos-
phorylated/activated form of CREB (p-CREB) were also 
investigated, revealing for the p-CREB and p-CREB/
CREB ratio a trend parallel to the p/Akt and p-Akt/Akt 
ratio ( fig. 4 ). Lastly, since Ngb seems to give protection 
from intrinsic apoptotic pathway induction, the occur-
rence of apoptotic events was evaluated through cyto-
chrome C/Apaf 1 immunocomplex formation. Cyto-

   Fig. 1.   a  Bielschowsky staining of rat cerebral cortex coronal sec-
tions in different experimental   conditions. Arrows indicate nerve 
connections (in black). ×40.  b  Immunohistochemical detection of 
Aβ(1–40) peptide (rabbit anti-Aβ(1–40) antibody, Alpha Diag-
nostic International, San Antonio, Tex., USA, cat. No. BAM403-
M) expression in rat cerebral cortex in different experimental con-
ditions. Arrows indicate Aβ(1–40) plaques. ×40.  c  Densitometric 

analysis of Aβ(1–40)-positive area, expressed as percentage (± SD), 
assessed by direct visual counting of three fields for each of five 
slides per each sample at ×40 magnification by Leica QWin 3.5 
Plus Sotware System. Data are the mean ± SD of three different 
consistent experiments.  * Aβ vs. control;  * Aβ+IBU vs. Aβ (p = 2.0 
× 10 –8 ) p < 0.01;  * Aβ+IBU-LA vs. Aβ (p = 3.1 × 10 –2 ) p < 0.05; 
 *  Aβ+IBU-LA vs. Aβ+IBU (p = 2.4 × 10 –2 ) p < 0.05.  
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chrome C/Apaf 1 immunoprecipitation markedly oc-
curs in an Aβ(1–40)-infused sample, lowering in the 
Aβ+IBU-LA-treated sample ( fig. 5 ). In parallel, TUNEL 
analysis, which evidences DNA strand breaks yielded 
during apoptosis, shows a positive nuclei percentage de-
crease at the same experimental point ( fig. 6 ). 

  All these molecular results are further supported by a 
probe test performed in a spatial water maze to determine 
whether or not the animal remembers where the platform 

was located during the training. The group of rats treated 
with Aβ(1–40) shows a decrease in memory consolida-
tion versus all groups even though no significant differ-
ences between Aβ+IBU-LA- and Aβ+IBU-infused rat 
cortices can be observed ( fig. 7 ). 

  The stability of the new codrug IBU-LA towards pe-
ripheral and central enzymatic degradation, by measur-
ing its bioconversion rates in the presence of rat plasma 
and brain homogenate, was also evaluated, finding that 

   Fig. 2.   a  Immunohistochemical detection of Ngb (rabbit antineu-
roglobin antibody, Sigma-Aldrich, cat. No. N7162) expression in 
rat cerebral cortex in different experimental conditions. The pic-
tures are the most representative out of three consistent experi-
ments. ×40.  b  Densitometric analysis of Ngb expression in rat ce-
rebral cortex coronal sections in different experimental condi-

tions. Ngb-positive area, expressed as percentage (± SD), assessed 
by direct visual counting of three fields for each of five slides per 
each sample at ×40 magnification by Leica.Qwin 3.5 Plus Software 
System. Data are the mean ± SD of three different consistent ex-
periments.  * Aβ vs. control p < 0.01 (p = 2 × 10 –8 );  *  Aβ vs. Aβ+IBU-
LA p < 0.01 (p = 3 × 10 –4 ); *   Aβ vs. Aβ+IBU p < 0.01 (p = 5 × 10 –4 ).  
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IBU-LA is able to reach the brain unchanged ( t½    rat plas-
ma about 60 min) and after passing through the BBB is 
rapidly hydrolyzed ( t½    rat brain about 15 min) ( fig. 8 ) to 
give the parent drugs as outlined in  figure 9 .

  Discussion 

 AD is the most common chronic neurodegenerative 
disorder in the elderly, characterized by neuronal degen-
eration provoked by Aβ aggregates precipitation and tau 
protein hyperphosphorylation along with an increase in 
inflammatory and oxidative stress. In fact, Aβ deposition 
within the cerebral cortices, activating reactive oxygen spe-
cies and reactive nitrogen species production, leads to a 
wide inflammatory status in the brain of AD patients  [35] . 
Previous studies have already demonstrated decreased 
Ngb levels with age in several human and rat brain regions, 
suggesting a possible relation between Ngb deficiency and 
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   Fig. 3.   a  Expression of Akt and p-Akt in rat cerebral cortex   in dif-
ferent experimental   conditions.   Western blotting is the most rep-
resentative out of three different consistent experiments. As 
shown, samples were normalized by incubating membranes in the 
presence of β-actin monoclonal antibody.  b  Densitometric analy-
sis performed on three different consistent experiments (± SD). 
*   Aβ p-Akt vs. control p-Akt p < 0.05 (p = 3.4 × 10 –2 );  *  Aβ p-Akt 
vs. Aβ+IBU-LA p-Akt p < 0.05 (p = 3.1 × 10 –2 ); * *  Aβ p-Akt/Akt 
vs. control p-Akt/Akt p < 0.05 (p = 1.7 × 10 –2 );  * *   Aβ p-Akt/Akt vs. 
Aβ+IBU-LA p-Akt/Akt p < 0.05 (p = 1.4 × 10 –2 ).  
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   Fig. 4.   a  Expression of CREB and p-CREB in rat cerebral cortex   in 
different experimental   conditions. Western blotting is the most 
representative out of three different consistent experiments. As 
shown, samples were normalized by incubating membranes in the 
presence of β-tubulin monoclonal antibody.  b  Densitometric anal-
ysis performed on three different consistent experiments (± SD). 
 *  Aβ p-CREB vs. control p-CREB p < 0.05 (p = 3.7 × 10 –2 ); Aβ p-
CREB vs. Aβ+IBU-LA p-CREB p < 0.05 (p = 4.0 × 10 –2 );  *  *  Aβ p-
CREB/CREB vs. control p-CREB/CREB p < 0.05 (p = 1.3 × 10 –2 ); 
 *  *   Aβ p-CREB/CREB vs. Aβ+IBU-LA p-CREB/CREB p < 0.05 
(p = 1.7 × 10 –2 ).  

Apaf 1 –130 kDa

ippt cytochrome C –15 kDa
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   Fig. 5.  Co-immunoprecipitation of cytochrome C and Apaf 1. Im-
munoprecipitated cytochrome c was probed against rabbit Apaf 1 
polyclonal antibody and reprobed against mouse cytochrome C 
monoclonal antibody. Note that cytochrome C/Apaf 1 complex is 
present mainly in Aβ(1–40)-injected cerebral cortex.  
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age-related neurodegeneration  [9, 10] . Moreover, Ngb 
promotes survival of neurons in vitro and protects the 
brain from damage by both AD and stroke  [36] . Basing on 
this knowledge, the aim of our work was to evaluate the 
IBU-LA-mediated effect on neuroglobin and downstream 
signaling events, focusing on the neuroprotective and 
antiapoptotic role played by such molecules in Aβ-infused 
rat cerebral cortex, as a model of AD. 

  First the validity of our model was checked by mor-
phological analysis along with Aβ(1–40) immunohisto-
chemistry, revealing an altered morphology with few 
nerve connections and Aβ(1–40) expression within the 

blood vessels in the Aβ-infused sample and thus con-
firming AD induction.

  Since Chen et al.  [13]  have previously demonstrated 
that the level of Ngb was significantly reduced in differ-
ent mice AD model, the first step of our protocol was to 
estimate if IBU-LA administration could affect Ngb pro-
duction in the AD model. Interestingly, our results show 
a deep decrease in Ngb level in the  Aβ-infused sample 
and mostly a significant restoration in the Aβ+IBU- and 
Aβ+IBU-LA-treated samples when compared with the 
control sample, suggesting that both IBU and IBU-LA 
could improve neuronal protection through Ngb activa-

   Fig. 6.   a  TUNEL analysis of rat cerebral cortex in different experi-
mental conditions. The presence of DNA fragmentation was quan-
tified by direct visual counting of brown counterstained nuclei. 
×40. Arrows indicate positive nuclei; arrow head indicates negative 
cells.  b  Graphical representation of TUNEL analysis. Five slides 
were examined per sample. Apoptotic cells were counted out of a 

total of 100 cells. Percentage values represented in the graph are 
means ± SD. n = 3 for all groups.  *   Aβ %-positive nuclei vs. 
Aβ+IBU-LA-positive nuclei p < 0.01 (p = 2.1 × 10 –4 );  *  Aβ %-pos-
itive nuclei vs. Aβ+IBU-positive nuclei p < 0.05 (p = 3.3 × 10 –2 ); 
 *   Aβ+IBU %-positive nuclei vs. Aβ+IBU-LA-positive nuclei 
p < 0.05 (p = 3.8 × 10 –2 ).  
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tion. Furthermore, as it is well known that Ngb directly 
promotes Akt phosphorylation, we then investigated the 
Akt expression, finding that although the inactive form 
does not show changes in expression, the phosphorylat-
ed form (p-Akt) appears higher in the Aβ+IBU-LA-
treated sample than in the Aβ-infused and Aβ+IBU-
treated samples, confirming this evidence in our experi-
mental model as well. Given that CREB is a regulatory 
target for the protein kinase Akt  [34] , CREB and the 
phosphorylated/activated form of CREB (p-CREB) ex-
pression were studied showing a trend parallel to the p-
Akt/Akt ratio.

  The protective role played by Ngb can arise from the 
regulation exerted on the apoptotic mitochondrial path-
way  [37] . In particular, Ngb seems to bind cytochrome C 
on Lys 72 and 25 residues  [38] , the same amino acidic 
residues involved in cytochrome C/Apaf 1 interaction 
 [39] . Thus, based on these data, we have lastly considered 
the apoptotic event occurrence through both cytochrome 
C/Apaf 1 immunocomplex formation and TUNEL analy-
ses. In fact, the formation of cytochrome C/Apaf 1 com-
plex is revealed in the Aβ-infused sample. Moreover, a 
significant higher apopototic nuclei percentage in Aβ-
infused sample than in the Aβ+IBU-LA-treated sample is 

Control

DMSO

Aβ+IBU

Aβ+IBU-LA

Aβ

0 10 20 30 40 50
Time spent in target quadrant (%)

*

   Fig. 7.  Probe test performance in different experimental condi-
tions in a Morris Water Maze 24 h after training. Percentage time 
spent in the target quadrant are means ± SD. n = 7 rats for all 
groups.  *  Aβ % time spent in target quadrant vs. all groups % time 
spent in target quadrant p < 0.05 (p = 3.7 × 10 –2 ).  
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   Fig. 8.  Pharmacokinetic data of codrug in rat plasma and brain.  
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