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ELLIPTIC EQUATIONS WITH COMPACTLY
SUPPORTED SOLUTIONS

ORAZIO ARENA AND CRISTINA GIANNOTTI

ABSTRACT. For any p € (1,2) and arbitrary f € LP(R?) with compact
support, it is proved that there exists a pair (L, ), with L second order
uniformly elliptic operator and u € WOQ’p(RQ) such that Lu = f a.e. in
R2.

1. Introduction

Let L be a second order uniformly elliptic operator with bounded measurable
coefficients in R? of the form

(1.1) L:=a"9,, + 2a12azy + a228yy.

When u € W22(R?) is a solution of the equation Lu = f for a compactly
supported function f, in general, one cannot expect that u also has compact
support.

On the other hand, for the case when p is small enough so that the a priori
bounds of K. Astala, T. Iwaniec, G. Martin [1] do not hold, Buonocore and
Manselli proved in [3] that there exists an operator L (of the above form and
with first order terms) and a non trivial « € W2P(R?) with compact support
satisfying the equation Lu = 0 a.e. (see [3]). A similar example in R? has been
constructed in [4].

In this paper, we consider the corresponding question on compactly sup-
ported solutions for the non-homogeneous equation Lu = f and prove that:
For any given p € (1,2) and f € LP(R?) with compact support, there exist an
operator L of the form (1.1) and a function u € Woz’p(RQ) satisfying Lu = f
a.e. in R2.

The proof basically follows arguments in [6]. In that paper, the authors
considered the homogeneous equation Lu = 0 and proved that, given two
arbitrary functions f(©) and f() on the boundary dD of the unit disk D C R2,
there exists a function uw and a second order uniformly elliptic operator L of
the form (1.1) so that Lu =0 in D, ul,p, = f(©) and g—Z’aD = ),
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Here, the construction starts by taking a function u satisfying Au = f a.e.
in the unit disk D of the form v = w + @, where w is the solution to the
Dirichlet problem Aw = f in D, w = 0 on 0D and @ is the sum of a series of
Green functions with poles in a countable subset N of D with no accumulation
points in D. Such a function u assumes the boundary conditions u|,, = 0,
g—z ap = Uin asuitably generalized sense and its existence follows from a result
n [5]. After this, following the method used in [6], we modify the function u
and the operator A in suitably chosen disks centered at the points of N and
we obtain an elliptic operator L of the form (1.1) and a function u’ € W?2P?(D)
satisfying all required properties.

The paper is organized as follows: In §2, we recall notations and results of
[6] and determine the previously described function v = w + 4 (Lemma 2.2).
In §3 we outline the modifying procedure for u and A and in §4, we prove the
main result.

2. Notations and preliminary results

In what follows, we identify R? with C and, for any r > 0, we denote by
D(a,r) the open disk centered at a € C with radius r. The unit disk D(0,1)
will be simply denoted by D

L is the family of linear second order uniformly elliptic operators with
bounded measurable coefficients in D of the form (1.1) with lower ellipticity
constant o > 0 and upper ellipticity constant 1/a.

Given W2P(D), the Sobolev space of functions in LP(D) with second deriva-
tives in LP(D), p > 1, for any v € W?P(D), we denote by vl,, and an’aD
the traces on 9D of v and of %, respectively. We also denote by VVO2 P(D) the
closure of C§°(D) in W#P(D), i.e., the class of v € W#P(D) such that v|,, =0
and 6” ‘ op =0

Let us recall some notations and definitions from [6].

For any real number v > 0, we denote by A the Banach space of real-
valued functions, defined on 0D, of the form

(2.1) F(e?) = % —|—nz::1(ancosn9+bn sinno)
with Fourier coefficients a.,, b,, such that
(2.2) {nYan}, {nb,} €

and norm defined by || f]|yc» = [{n7an}lpx + {70 }H]pr -
Also, for any v > 0, let o be a fixed constant, 0 < 0 < 5 dependmg on y
such that

(2.3) d@p+1) o™ <1
p=1
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and let Q“SQZ (ne€N,l=0,...,2n—1, j = 1,2) be the 4n-th roots of o* ordered
as follows:

(2.4) G =ome wl 1=0,...,2n 1,

(2.5) 2 =ome CEATDL =0, 20— 1.

Let us denote by N := {a,},>0 the sequence given by 0 and the points Q“SQZ
ordered in the following way:

ap=0, a,=¢), if v=1+2n—Ln+2(j - n+I

foranyn € N,1=0,...,2n—1, j = 1,2. Notice that A/ has no limit points in
D.

We also set

1 .

(2.6) my i= 5 min la, —a,]
(indeed, one may alternatively consider constants m, := emin,, |a, — a,| for
any other fixed € € (0,1]). Notice that as 1+ 2n(n — 1) < v < 2n* + 2n, for
any fixed value of v, the corresponding value of n satisfies the inequalities

—1++v1+4+2 1++v2r—1
2.7) irvita o thver—1
2 2
1 1 N
Since |a,| = ow, it follows that m, > ""“%"" = %ex :ln(gﬁg for some z €

(£Ino, 25 Ino) and hence

oln(1/0) 201n(1/0) C(o)
My 2 2(n+1)2 = (34+V2v —1)2 = v

Notice that the set

(2.8)

— 2
D, =D\ U;2yD(a,, gm,,)

is an open non-empty subset of D.
Let G(z,() be the Green function for the Laplace operator in D with pole
¢:
1

G(Z,C) = —%ln

z—¢
1—2C

) z#C.

The following result is proved in [5].

Fact 2.1. Let v > 0 and o be as above and 1 < p < 2. Given f(!) € A®) | there
exist ag € R, two sequences {a,}, {8,} and a constant K > 0 (depending on
7, p only) such that:

(a) faol +[1()7euller + [1()7 BNl < K[| FD] 103
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(b) The function
u(z) = —magG(z,0)

09) a3y z (6 (5:05,) — 6 (26 )]

0 n—1
Bn 9 )
—r > PN (5 cs) - G (5 )]
n=1 p=0
is harmonic in D\ N; @ belongs to L?(D) with its first derivatives and

1@l ooy + 1Dl Loy < K|LF Vs
(¢) For N € N, the partial sums of & defined as

H(2) = — maG(,0) ~ 1Y 2o > & (=) =G (2B
n=1 p=0

N n—1
Bn 2 2
(210) w35 3|6 (5 Ea) ~ G (5 G )]
n=1 p=0
have the boundary properties:
i) a™) is of class C? in a neighbourhood of 9D, G(N)laD = 0,
| e A,
0D
it) @) converges to % uniformly on any compact subset of D \ N
and
ou™)
(2.11) H “ — Ol o
I |ap AG)

Now let f € LP(R?), p > 1, and denote by supp f the support of f, i.e.,
the complement of the greatest open set in which f = 0 a.e.. For the moment,
assume that

— 2
supp f CC Dy, = D\ U2y D(a,, =m,)

3
and let w € W?2P(D) be the solution to the Dirichlet problem
Aw=f in D,
(2.12)
w=0 ondD.

Notice that w is harmonic in a neighbourhood of 9D and hence g—;’lj ap Delongs

to A for all 4 > 0. Thus, the following is an immediate consequence of Fact
2.1, applied with f(1) = — | .

Lemma 2.2. Let v, o, p, f, w be as before and u the function associated to
fO = g_:”aD as in Fact 2.1. Then
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(a) the function
(2.13) u=w+u
is in W2P(D\N)NW'P(D) and Au = f a.e. in D;
(b) The partial sums u™N)(2) = w(z) +uN)(2) converge to u uniformly on

compact subsets of D\ N, are harmonic in a neighbourhood of 0D with
u(N)‘aD =0, and

(2.14) - 0.

A

Ou®)
H on

oD

Let us write u in the form
(2.15) u(z) = w(z) +7TZwVG(z,a,,),
v=0

where the coefficients w, are: wy = —ag,
(-2 ify=1+2(n—1)n+1,
Wy, =

(D) L iy =14+ 20— 1)n+2n+1

. J
and satisfy {v2w,} € (1.
Moreover, one can write u as the sum v = uy + ug, where

1 oo
(2.16) u(z) = 3 Zowu In|z—a,l,
and
(2.17) () =w+ 23w (el +injz - |
. us(z) =w+ = wy | In|a, niz——||».
’ 2 v=1 G
Given vy € NU {0}, let us define
1
(2.18) 10 (2) == — 5% In|z —a,,]
and
y " 1
(2.19) w0 (2) == ui(z) — 10 (2) = -3 ; w,In |z — a,.
VF+ro

The following lemma states some properties of these functions.

Lemma 2.3. Let f € LP(D) with supp f CC D,.

a) uy is harmonic in D\ N and u§”°> in (D\N)U{ay}; uz is harmonic
in D\ supp f and Aug = f a.e. in D.
b) If y>2— %, then uy € WP (D).
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¢) Let vy € NU{0} and my, be as in (2.6). Then there exists a positive
constant A such that

A o0
(2.20) max : |D?us| < m—Q(Z lwul + [1f 112 py )
Yo p=1

D(a vo Mg /2
Proof. Tt is sufficient to prove only (b) and (c¢). Clearly,
||w||W2,p(D) <C ||fHLP(D)

for some constant C'. Now take a point z € D and observe that

1 1 1—ay|
s = = - 1%

a, _W_ B |ay |

Since 1 — |a,| = 1 — o= for some n € N, we have that 1 — |a,| = e®LInd for
some Z in the interval (1 Inc,0) and hence, by (2.7),
clnl/o _ K
> et
n v

where K is a constant depending on 7. Then from (2.17), one has

1—|a,| >

- 1 ~ 1
mgx|uQ —w| <C Z|wy|(§|loga| + |log K| + §1ogu) < +o0.

v=1

Moreover, it is not difficult to check that

- 1
2 -2
12202 = )y < CX el |1 =2
v=1 v LP(D)
oo oo 1
<C y 20w = =2
<Oy lwl+C 3 Pl -1 .
v=1 v=N+1 LP(D(aV73))
where N is chosen sufficiently large such that |E_1\ <2forv > N.
Since 2 + p(y — 2) > 0 and
1 32+p(v=2)) \1/p
T s R T
ay L2 (D(2-.3)) 2+p(y—2)

(b) follows.
Let us prove (c). As supp f CC D, and

C
2
|DZG(Za<)} < m

for some constant C, we get

max  |D%w| < max
D(ayy,muyg/2) D(avy,muy/2)

C
/ D262, 1(0) ¢ < Sl Fllimio-
D, myo
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Moreover,
max  |D*(ug — w)| < % > lw,|
D(avg,mug) myo )
and the bound (2.20) follows. O

3. Modifying u and A in neighbourhoods of a, € N/

From the results of the previous section, it turns out that we need to modify
the function v and the operator A in neighbourhoods of the points a, € N
in order to obtain a new function v and a new second order uniformly elliptic
operator L of the form (1.1) with the following properties:

i) ve (D \N);
ii) ve WyP(D);
iii) Lv= f a.e. in D.
For a fixed vy € NU {0}, let
Tvo = AugMuyg
with m,, as in (2.6) and A, a constant in (0,1/3) to be fixed later. Of course,
D(a,,,7,) C D and D(ay,,27,,) N D(a,,2r,) =0 if v # vy.

To modify the function v inside the disk D(a,,, 7., ), let us replace the term

1(»0) with a smoother function as suggested by the following lemma, from [6].

Lemma 3.1. Let vy e NU{0}, 1 <p<2,0<2— % < h <1 and consider the
function in D(a,,,r,,) defined by

(3.1) s () = HY + Hwh r =2 —ay,),
where
(3:2) HY™ =~ + S0 H = -k
Then

N y (0 (o)

i) 500 (ry,) =100 (ry,) and 257 (ry,) = 25 (1, );

i) s (|- —a,,|) belongs to W2P(D(ay,,7y,)) and
(3.3) 15" o(D (0. o)) < Clwo g (14 [ 17y ),

17 %_2

(34) ||AS( U)||LP(D(‘1V0’TV())) = Cl|wV0|TVU ’

where C and C' are constants, both depending only on p and on h.
For reader’s convenience, we recall its short proof.

Proof. Tt is enough to prove the last two formulas. By means of (3.1) and (3.2),
we have

Tvg P
||S(Vo)||Lp(D(a'/07n0)) < |H8Vo)|771/pr12/(<1) + |H1(Vo)|(2ﬂ_)1/p (/ ypht1 dr)
0
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1/p
_ aplonl 2 1,27
=T 2 ruo (|1nTV0|+h+h(ph+2)1/p)
< Clwy, [rP (14 [Inry, ).
(v0)
Moreover, As(0) = (s(”"))TT + w = —%wyorljohrh_2 so that

h Tvo P
A5 [ Lo(D(ag ) = (21) Pl 5 </ pp(h=2)+1 dr)
0

(20) /Pl | (/2) -2
(p(h—2) +2)1/p " O

Then we have:

Lemma 3.2. Let p,h,vg be as in the previous lemma. Set Q@ =Y 7°  |wy| +
1L (D) and

_ 1 (L —h)ww,|
(3.5) Avy = mln{z, m} ,

where A is the constant in the estimate (2.20).
Consider the following function v(*°) on D(a,,,2r,,) :

sCO (|-~ |) +ul" Fuz in D(ayy,70,),
o) —

n in D(ayy,2r) \ D(ayy, Twg)-

It turns out that:

(a) U(UO) € Clﬁl(D(aV()v 27",/0) \ {al’O});
(b) v®) is harmonic in D(ay,,2r,,) \ D(tu, 70, );
(c) v € W2P(D(ay,,2r,))-

Moreover, v*0) satisfies a second order, uniformly elliptic equation Lv(*) =0
with bounded measurable coefficients in D(ay,,2r,,) and lower ellipticity con-
stant $(1 — h).

Proof. Statement (a) follows by Lemma 3.1(i) and from the fact that v(*0) has
second order derivatives bounded in every compact subset of D(ay,,2r,,) \
{ay, }. Statement (b) is clear and in regard to (c), it is enough to use Lemma
3.1(ii).

As far as the last claim is concerned, by known facts (see e.g. [2], Ch. 6),
one needs to verify the existence of a number ¢ € (0,1) such that

('U(VU))ZE

(3.6) ().

<gq in D(ay,,ry).
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Let us prove that (3.6) holds true with ¢ = h. Indeed, recalling that ugyo) and
ug are harmonic in D(a,,,7,,), one may write

(500 (| - —a,, )= |
(500 (| - —ayo|) +ul™ +us)..

(U(VO))zE
(U(VO))ZZ -

On the other hand, by (3.1), (3.2) and using polar coordinates with origin a,,

wwu-%mmwm<%<ijﬂzam2,

4 27\ Ty,

@mw%mu&%(iyﬁz_

8 Tuo

Then by easy calculations,

(v(”"))zg B Wy hr ™2 (2 — ay,)?
(vo) o y —h
(’U 0 )zz 2(*]1/0(1 o %) + 8(’&5 0) +U2)zz (ﬁ) (Z _ au0)2
) fonol
(vo) " o|
(2= 1)+ 8" ) (75) (2 )

Now, it is clear that

—h
8(u§l’°) + U2) .z (L) (2 —ay,)?

v
< 8r2  max ‘(u1 + u2)zz| -
Tue

—= vy —

D(avg,rug)

Moreover, since for any z € D(ay,,r.,) and v # vy,

|Z - U.,/| > |al/0 - U.,/| - |Z - al’ol > Myy — Ty = (1 - )‘Vo)muo’

we have
2u{| 1 |w, | 1 Q
Z < Z
0z2 |~ 4 |z —a,|2 = 4(1— X, )%*m?
v#vo (]
and, recalling the bound (2.20) and using (3.5), we get
AQ Q
82 ’ (vo) | <82 bV < (1—h)|wy,l
Tl/() 5(?3?7):%) (ul =+ u?) = 7’”0 m12/0 + 4(1 _ )\Vo)2m12/0 = ( )|w 0|
Therefore,
(UEVU;)ZE < |ww, [P o <h
W)z L™ (2 = B) = 8(rw ) maxpyq, (08" + ug)c ]

and (3.6) holds true for ¢ = h. O
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4. The main theorem

Now we are ready to prove our main result under the hypothesis that
suppf CC D, = D\ U ,D(a,, %ml,).

Theorem 4.1. Let 1 <p <2, 2 — % <h<1and fe€ LP(D) with suppf CC

D,. Then there exist a function v € WOQ’p(D) and a uniformly elliptic oper-
ator L of the form (1.1) with bounded measurable coefficients in D and lower
ellipticity constant 15_}1 such that Lv = f a.e. in D.

Proof. In what follows, we will denote by the same letter C' different constants.
Choose v > 4(p — 1) and notice that since v > 2 — %, Lemma 2.3 holds true.
For any v € NU{0}, denote by D, the disk of center a, and radius r, = A\,m,,,
where A, is given by (3.5). Let

(41) [ u in D\U,~o Dy,
' v v(”):s(”)+ugu)+u2 in D, forall v=0,1....

Then v satisfies Av = f in D\J;~, D, and, by Lemma 3.2, it solves an elliptic
equation Lv = 0, i.e., Lv = f, in each D, with ellipticity constant %(1 —h).
By the same lemma, it is also in W2?(D). To prove that v € W2?(D), it is
sufficient to show that v € LP(D) and Av € LP(D). First of all, one has

1 o0 [e ]
[vllzepy < llullre(p) + B Z |wy | og(] - —av )l e (p,) + Z [svllLe(p,)-
v=0 v=0

Now by Lemma 2.3, [|ul|Lr(p) < +00; moreover,

> lwillllog(] - —au)llze(p,) < C Y wy| < +oo.
v=0 v=0

In addition, by (3.3) of Lemma 3.1,

Y llsullzrip,) < C Y lwlri? (1 + log(r,)]) < +o0
v=0 v=0

since {w,} € £ and 72P(1 + |log(r,)|) tends to zero as v — oo. Hence v €
LP(D).

On the other hand, since Av = f in D\ |-, D, and by (3.4) of Lemma
3.1,

||AU||I£P(D) < Hf”ip(p) + Z HAsuH]Zp(DV)
v=0

< Hf”ip(p) + CZ |WU|pT3(1_p)'
v=0
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Now from (3.5), we may write A2 < C|w,| and using (2.8) for sufficiently large
v, we have

Iwul
2(1-p)

|wy [Pr20-P) = |, [P(A2m2)1-P) < C C(|wy|v? )y~ 220D,

Since {v"/%w,} € £ and 2(p — 1) — /2 < 0, it follows that the series

e o)
Z |, [Pr2(=P)
v=0

is convergent and hence that ||AU||Z£p(D) < +o00.

To conclude, we need to prove that v|,, = 0 and 9 =0.

a_fzyaD
For any N =0,1,..., we set

. N
o) . u V) in D\U,_, D
v 4+ s 1 in D, v=0,1,...,N,

where 1Y) is the partial sum defined in Lemma 2.3. The function ) coin-
cides with u¥) in a neighbourhood of D and hence it is regular up to the
boundary. In particular,

o) =0 and lim
oD N—o00

=0.

on A

H Sy @)

oD

Moreover, v(™) converges to v in LP(D): In fact,

||U(N) - U”Izp(p) < HU(N) - UHLP(D\U ° v D y T Z HU(N) - UHLP(D

v=N+1
||v( )*U”LP(D\U,, Ni1 D <7 Z |WV|||G('vaV)”LP(D)
v=N+1
<Cl) Y ] 0
v=N+1
and
> Y —vlppn<r Y llCCalmm + Y I+
N1 v=N4+1 v=N+1
1 oo
t5 D ez =l
v=N+1

oo

= v N—o00
C Y dwlt+ D 1%l = 0.

v=N+1 v=N+1

IN
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In addition,

[A0™) — Avllzapy < 3 188"z, 0
v=N+1

since the series Y7 || Asy||zr(p,) converge.
From this it follows that v(™) converges to v in W?P(D), and hence that

’U(N)|6D tends to v|,, in W2 YPP(9D) and 6%(:)‘6[) tends to g—maD in
W1=1/pp(9D). This implies that v|,, =0 and 52|, =0. O

Finally, let us remove the previous restriction on the support of f.

Theorem 4.2. Let 1 <p <2, 2 — % < h <1 and f € LP(R?) with compact

support. Then there exist a function v € WOQ”’(RQ) and a uniformly elliptic op-
erator L with bounded and measurable coefficients and lower ellipticity constant

1;_}1 such that Lv = f a.e. in R2.

Proof. Assume supp f C D(0,R) and let z, € D, and p > 0 be such that

D(z,p) C D,. Then f(2') := (%)Qf(%(z’ — 2,)) satisfies supp f C D(zo, p)
and by Theorem 4.1, there exist a function 7 € VVO2 P(D) and a uniformly
elliptic operator L of the form L := @™ (2/)0yar + 20*2(2")0pry + a22(2')Dyry:
with lower ellipticity constant % such that Lo = fa.e. in D.

Now, let v(z) := (') = 0(zo + £2) and L := a''(2)0ss + 2a'%(2)0y +

O . R
a??(2)8yy with a"(z) := @ (2') = @ (2, + %2) in D(—(R/p)zs, R/p) and
L = A, otherwise. Then v € WO2 P(R?), L is uniformly elliptic with the same
ellipticity constant of L and Lv = f a.e. in R2. O

Remark 4.3. Let p, f, v, L be as in Theorem 4.2. By classical results on
second order elliptic equations and elliptic first order system (see e.g. [2]), one
has that the function w := v, — fv, belongs to WO1 "P(C) and satisfies a complex
uniformly elliptic first order system of the form

wz = pw, +vwz + inC

with u = u(z), v = v(z) and v = 7(z), complex-valued functions, such that
lp| + v <k <1land |y <K.
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