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�Waterborne 4-NP exposure increased hepatic PPARa and RXRa mRNA levels in S. solea.
� The PPARa but not the RXRa mRNA expression was up-regulated by E2.
� PPARb gene expression was not modulated neither by E2 nor by 4-NP.
� 4NP-induced PPARa mRNA levels coincide with lower expression of CYP1A1 and CYP3A4.
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The objective of the present study was to investigate the modulatory effects of the xenoestrogen 4-nonyl-
phenol (4-NP) on hepatic peroxisome proliferator-activated receptor (PPAR) a and b gene expression pat-
terns in relation to the detoxification pathways mediated by cytochrome P450 isoforms (CYP1A1 and
CYP3A4). Waterborne 4-NP-induced effects were compared with those of 10�8 M 17b-estradiol (E2) by
using in vivo dose–response experiments carried out with juvenile sole (Solea solea). Compared to the
controls, significantly higher levels of PPARa mRNAs were found in fish treated with E2 or 4-NP
(10�6 M) 3 d after exposure; the highest dose of 4-NP also caused up-regulation of retinoid X receptor
a (RXRa) transcript levels. On the contrary, PPARb gene expression was not modulated by E2 or 4-NP.
Our data show that 4-NP-induced PPARa mRNA levels coincide with suppression of CYP1A1 and CYP3A4
expression similarly to E2. The results from these in vivo studies suggest the presence of cross-talk
between nuclear receptor-mediated signaling pathways and PPARa that may result in modulation of
CYP450 isoforms expression following 4-NP treatment in sole liver.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction in living organisms suggest that 4-NP was glucuronidated by liver
4-Nonylphenol (4-NP) is a well known estrogenic pollutant that
derives from microbial degradation of alkylphenolpolyethoxylates
(APnEOs) resulting in persistent accumulation in the aquatic eco-
system components (Soverchia et al., 2005; Lacorte et al., 2006).
The occurrence data of 4-NP ranges from 0.64 to 180 lg L�1 for sur-
face waters (Naylor et al., 1992; Blackburn and Waldock, 1995),
and from 180 to 330 lg L�1 for sewage effluents and downstream
wastewater treatment plants (Hill and Janz, 2003). Ying et al.
(2003) estimated that 4-NP has a half-life of 5 d for seawater and
5.8 d for marine sediment under oxic conditions. In this regard,
laboratory and field experiments have demonstrated that 4-NP
can bio-accumulate in fish showing a bioconcentration factor
(BCF) that varies from 3 to 1400 (Ekelund et al., 1990; Huang
et al., 2007). Recent studies on metabolic fate of these alkylphenols
microsomes in mammals (Doerge et al., 2002). It has been also re-
ported that 4-NP was extensively metabolized to the glucuronide
conjugate in rainbow trout (Thibaut et al., 1998a,b). In addition,
the kinetics of excretion of alkylphenol-glucuronides into the bile
is closely related to the length of alkyl chain (Daidoji et al.,
2003). Anyhow, liver proves the major organ of accumulation, bio-
transformation and degradation of environmental pollutants (Sov-
erchia et al., 2005; Matos et al., 2007).

Many studies have investigated the toxicity of 4-NP, mainly by
demonstrating estrogen-like effects, on a wide variety of animals
including fish (Palermo et al., 2008, 2012a; Pomatto et al., 2011).
It has been well established for teleost fish that endocrine-disrupt-
ing chemicals (EDCs), like 4-NP, have toxicological effects that can
affect multiple pathways (Isidori et al., 2010; Palermo et al.,
2012b), among which aryl hydrocarbon receptor (AhR) and perox-
isome proliferator-activated receptor (PPAR) – mediated pathways
seem to be some of the most relevant (Fang et al., 2012). In fact, the
AhR pathway mainly regulates the transcription of genes that
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encode several metabolic enzymes such as the hepatic cytochrome
P450 (CYP450) enzymes which are the major responsible for
phase-I xenobiotic-metabolism (Cheng and Klaassen, 2008). In
addition, among hepatic CYP450 enzymes, members of CYP1A
and CYP3A subfamilies are implicated in the oxidative metabolism
of many endogenous compounds, including steroids (Nebert et al.,
1991). Low levels of CYP1A subfamily gene expression have been
found in fish; moreover, these expression patterns can be increased
by AhR agonists (Hasselberg et al., 2004). On the contrary, the
CYP3A isoforms are the major CYP450 subfamily products synthe-
sized by liver and gastrointestinal tract in fish (Lee et al., 2001;
Hegelund and Celander, 2003). Because of their key role in the
metabolism of xenobiotics, modulation of hepatic CYPs expression
markedly affects potential toxicity mechanisms of EDCs (Williams
et al., 1998a).

PPARs are members of the nuclear hormone receptor superfam-
ily and are involved in controlling key cellular functions, including
lipid metabolism, inflammation, and cell differentiation (Latruffe
et al., 2001; Tan et al., 2001). The PPAR family includes at least
three isoforms identified as PPARa, PPARb/d, and PPARc in mam-
mals (Berger and Moller, 2002). PPARa is expressed primarily in
tissues with a high degree of fatty acid oxidation, including liver,
heart, skeletal muscle, brain, and intestine, but slightly or not at
all in other tissues. In contrast, PPARc is largely expressed in adi-
pose tissue, whereas PPARb (also called PPARd) is ubiquitously dis-
tributed (Berger and Moller, 2002). Several recent studies have
shown the primary involvement of PPAR isoforms a and b in the
regulation of important biological processes, including lipidic and
glucidic metabolism (Wu et al., 2001; Wang et al., 2008). Interest-
ingly, PPARs heterodimerize with the retinoid X receptor (RXR), to
fully activate gene transcription (Mangelsdorf and Evans, 1995;
Chandra et al., 2008). Although differences in genomic structure,
fish PPAR isoforms are homologous to their mammalian counter-
parts (Leaver et al., 2005, 2007). In addition, it has been demon-
strated that fish PPARa and b show an activation profile in
response to a large set of ligands similar to that of the mammalian
PPARs (Leaver et al., 2005). The ligand-binding domain of PPARs is
unusually large, and consequently, these receptors are relatively
promiscuous, being activated by a number of natural and synthetic
ligands of different chemical structure (O’Sullivan, 2007). In this
context, PPARs were found to interact with tributyltin oxide
(TBTO) (Colliar et al., 2011) and phthalate mono-esters (Bility
et al., 2004) suggesting PPAR-dependent effects in response to pol-
lutants. Several studies have suggested that peroxisome prolifera-
tion could be used as biomarker of exposure to environmental
contaminants (Cajaraville et al., 2003; Desvergne et al., 2009).
Therefore fish species that can be exposed to several contaminants
via waters may be particularly predisposed to PPAR disruption. In
the present work, we have used bottom feeding fish (i.e. Solea so-
lea) as study models because they are at higher risk of exposure
to chemical that accumulate in sediments through direct physical
contact with the sediment (Baker et al., 2009) or interstitial water
(Hallare et al., 2011).

The aim of the present study was to investigate the modulatory
effects of environmentally relevant concentrations of 4-NP on he-
patic PPAR (isoforms) a and b gene expression patterns in relation
to RXRa, CYP3A4 and CYP1A1 mRNA levels in juvenile sole (S. solea).
2. Materials and methods

2.1. Fish and treatment

Juvenile sole (S. solea) (mean weight and length: 20.3 ± 4.8 g
and 13.1 ± 1.2 cm) were purchased from an Italian fish farm, Orbe-
tello Pesca Lagunare s.r.l. (Orbetello, GR, Italy) and kept in 100-L
glass aquaria filled with 80 L of seawater (temperature 15–16 �C,
dissolved oxygen 6.7–8.0 mg L�1, salinity 34–36 g L�1, pH 7.0–8.0,
natural photoperiod) at Centro Universitario di Ricerca per lo Svi-
luppo e la Gestione delle Risorse dell’Ambiente Marino e Costiero
(UNICRAM), University of Camerino in San Benedetto del Tronto
(AP, Italy). Fish were not fed during the experimental procedure.
The experiment was performed under static conditions, and the
experimental water was not changed during the 3-d exposure per-
iod on the basis of Palermo et al. (2012a) and Meucci and Arukwe
(2006). Fish were divided into four groups (each consisting of se-
ven individuals): one served as negative control, one as positive
control (E2 10�8 M; Sigma, St. Louis, MO, USA) and the others were
exposed to different concentrations (10�8 and 10�6 M) of 4-NP
(CAS number: 104-40-5, Sigma–Aldrich Chemicals, St. Louis, MO,
USA). Chemicals were dissolved in ethanol, while the control group
received carrier solvent alone. 4-NP concentrations were chosen
for this study because they are environmentally relevant (Petrovic
and Barcelo, 2000; Hill and Janz, 2003); in addition, these doses of
4-NP, including that of E2, caused estrogenic effects (i.e. vitello-
genin synthesis and estrogen receptor mRNA up-regulation) in
juvenile sole (Palermo et al., 2009, 2012a). Three replicates were
set up for each experimental group. For the sampling, each animal
was anaesthetized with 3-aminobenzoic acid ethyl ester (Sigma;
100 mg L�1) within 5 min after capture and liver tissues were har-
vested, immediately frozen in liquid nitrogen and stored at �80 �C
for molecular biology analyses. Animal manipulation was per-
formed according to the recommendations of the University Ethi-
cal Committee, to the European Union directive (2010/63/EU)
and under the supervision of the authorized investigators.
2.2. RNA extraction and real time PCR

Total RNA was extracted from 100 mg of liver samples using
Trizol Reagent (Invitrogen, Milan, Italy) according to the manufac-
turer’s instructions. DNase digestion (2U, 30 min, 37 �C; Ambion,
Austin, TX) was performed to eliminate genomic DNA contamina-
tion. RNA concentration and purity were assessed spectrophoto-
metrically at absorbance of 260/280 nm, and the integrity was
confirmed by electrophoresis through 1% agarose gels stained with
ethidium bromide. The complementary DNA (cDNA) was synthe-
sized from 2 lg of total RNA in 20 lL of total volume reaction using
random hexamers (50 ng lL�1) and 200 U of SuperScript™ III RT
according to manufacturer’s instruction (Invitrogen Life Technolo-
gies, Milan, Italy). SYBR green-based real-time PCR (q-PCR) was
used to evaluate expression profiles of PPARa, PPARb, RXRa,
CYP1A1 and CYP3A4 (Ribecco et al., 2011) target genes and the
acidic ribosomal protein (ARP) (Palermo et al., 2011, 2012b; Picci-
netti et al., 2011) as an internal standard. The expression of indi-
vidual gene targets was analyzed using the Mx3000P Real-time
PCR system (Stratagene, La Jolla, CA, USA). Thermo-cycling for all
reactions was for 15 min 95 �C, followed by 40 cycles of 10 s at
95 �C and 40 s at 58 �C. Fluorescence was monitored at the end
of every cycle. Results were calculated using the relative 2�DDCt

method (Livak and Schmittgen, 2001) and means of mRNA levels
are expressed with respect to control fish ± standard error of the
mean (SEM).
3. Statistical analysis

Data were first examined for their fit to a normal distribution
and homogeneity of variance using Kolmogorov–Smirnov and Le-
vene median tests. A one-way analysis of variance (ANOVA) was
used to compare results between groups, followed by the Tukey
post hoc test. Differences between means were considered
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significant when P < 0.05. All statistical analyses were performed
using R (R Development Core Team, 2008).
4. Results

4.1. Hepatic PPARa, PPARb, RXRa mRNA levels

Compared to the controls, significantly (P < 0.05) higher levels
of PPARa mRNAs were found in fish treated with E2 or 4-NP
(10�6 M) (Fig. 1A); the highest dose (10�6 M) of 4-NP also in-
creased hepatic RXRa mRNA transcripts with respect to control
fish (Fig. 2). On the contrary, PPARb gene expression was not mod-
ulated by E2 or 4-NP (Fig. 1B).
Fig. 2. Expression of hepatic retinoid X receptor a (RXRa) in juvenile sole (Solea
solea) exposed to various concentrations (10�8 or 10�6 M) of 4-nonylphenol (4-NP)
or to 10�8 M 17b-estradiol (E2) for 3-d. Values were normalized against acidic
ribosomal protein (ARP) as a housekeeping gene and represent relative mean mRNA
expression value ± S.E.M (n = 7) to that of control. Statistically significant differ-
ences when compared with control, *P < 0.05 level.
4.2. Hepatic CYP1A1 and CYP3A4 mRNA levels

Changes in S. solea hepatic mRNA levels following exposure to
4-NP were investigated for two members of the P450 family,
CYP1A1 and CYP3A4 respectively. Hepatic CYP1A1 mRNA levels
were decreased by E2 and the highest dose of 4-NP (10�6 M)
whereas the lower dose of 4-NP (10�8 M) did not affect the CYP1A1
expression profile (Fig. 3A). CYP3A4 mRNA levels were decreased
by E2 (10�8 M) and by 4-NP at both doses (10�8 and 10�6 M)
(Fig. 3B).
Fig. 1. Expression of hepatic peroxisome proliferator-activated receptor (PPAR) a
(A) and b (B) in juvenile sole (Solea solea) exposed to various concentrations (10�8 or
10�6 M) of 4-nonylphenol (4-NP) or to 10�8 M 17b-estradiol (E2) for 3-d. Values
were normalized against acidic ribosomal protein (ARP) as a housekeeping gene and
represent relative mean mRNA expression value ± S.E.M (n = 7) to that of control.
Statistically significant differences when compared with control, *P < 0.05 level.
5. Discussion

The present study first examined the effects of 4-NP waterborne
exposure on PPARa, PPARb and RXRa transcript abundance in a
Fig. 3. Expression of hepatic cytochromes P450 1A1 (CYP1A1) (A) and P450 3A4
(CYP3A4) (B) in juvenile sole (Solea solea) exposed to various concentrations (10�8

or 10�6 M) of 4-nonylphenol (4-NP) or to 10�8 M 17b-estradiol (E2) for 3-d. Values
were normalized against acidic ribosomal protein (ARP) as a housekeeping gene and
represent relative mean mRNA expression value ± S.E.M (n = 7) to that of control.
Statistically significant differences when compared with control, *P < 0.05 level.
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marine fish species (i.e. S. solea) which is considered a sentinel
organism for monitoring environmental pollution (Ribecco et al.,
2011; Palermo et al., 2012a,b). The obtained results indicate 4-NP
potential in modulating hepatic PPAR gene expression. In fact,
our data show that both E2 and 4-NP (10�6 M) increased hepatic
PPARa mRNA levels; on the contrary, mRNA expression of PPARb
was not significantly affected by any of these treatments. Several
studies have demonstrated the estrogen (i.e. E2) – mediated effect
on PPARs expression and activity (Djouadi et al., 1998; Ma et al.,
1998; Keller et al., 2000; Ibabe et al., 2005), but little is known
about the involvement of 4-NP in the modulation of genes encod-
ing for PPARa and PPARb. It was found that E2 is a potent tran-
scriptional activator of the PPARs isoforms in skeletal muscle in
Sprague-Dawley rats (Campbell et al., 2003). However, E2 failed
to induce PPARa expression in zebrafish hepatocyte cultures con-
firming that estrogens show tissue and concentration-dependent
effects (Ibabe et al., 2005). It has also been suggested that the
estrogen-dependent production of PPAR activating metabolites
could result in peroxisome proliferation (Ma et al., 1998). More-
over, ERs are able to activate PPARa target genes through interact-
ing with peroxisome proliferator responsive elements (PPREs)
(Djouadi et al., 1998) which consist of a direct repeat of the consen-
sus sequence AGGTCA spaced by 1 or 2 bp [direct repeat 1 or 2
(DR1 or DR2)] (Desvergne and Wahli, 1999) (Supplementary mate-
rial (SM), Fig. SM-1). Interestingly, the signal cross-talk between ER
and PPAR has been suggested to be bidirectional (Keller et al.,
1995; Wang and Kilgore, 2002; Jeong and Yoon, 2007). An alterna-
tive DR1 element has been found in the human PPARa promoter
suggesting that PPARa itself modulates its own expression (Pineda
Torra et al., 2002). In this regard, induction of PPARa gene expres-
sion by PPARa agonists has been demonstrated in different rodent
cell lines (Sterchele et al., 1996; Zhou et al., 1998; Valmaseda et al.,
1999). The induction of PPARa mRNA levels by 4-NP is in line with
a previous report that found strong activation of PPARa gene
expression in zebrafish exposed to 10�7 M of either 4-NP or E2 (Ba-
ker et al., 2009).

Nuclear receptor PPARs need to heterodimerize with the X
receptor for 9-cis-retinoic acid (RXR) for binding to PPREs and for
modulating transcription of target genes (Marcus et al., 1993).
The results of the present study revealed an up-regulation of RXRa
gene expression following exposure to the highest dose of 4-NP.
Interestingly, the observed increase in RXRa transcript abundance
is consistent with concomitant 4-NP-induced increases in PPARa
mRNA levels. Recent reports have demonstrated that RXRa regu-
lates the response to contaminated sediment exposure (Janosek
et al., 2006) and its up-regulation in expression was found to be
associated with increases of PPARa and PPARb mRNA levels (Rib-
ecco et al., 2011). In this regard, male turbot sampled from polluted
areas of Southern California coastal regions exhibited higher in-
crease in RXR expression than control fish (Baker et al., 2009).
RXRa has been shown to be up-regulated by both E2 and 4-NP in
zebrafish (Baker et al., 2009). The lack of E2-induced RXRa mRNA
levels could be ascribed to the different chemicals concentrations
and duration of exposure adopted in the our study with respect
to the work of Baker et al. (2009). Among EDCs, bisphenol A
(BPA), a well-known xenoestrogen, was found to induce up-regula-
tion of RXRa mRNA expression in murine embryos leading to dis-
ruption of xenobiotic metabolism and retinoid signaling
(Nishizawa et al., 2005). Interestingly, the authors suggest that
BPA may exert this effect by altering the estrogen-dependent sig-
nal transducing system (i.e. working as an antiestrogen com-
pound). In this regard, it has been demonstrated that BPA
functions in ER subtype specific way, thus showing dual actions
as an estrogen agonist and antagonist (Hiroi et al., 1999). E2 has
also no effect on the expression of RXRs in human endometrial
stromal cells in vitro (Kumarendran et al., 1994). Taken together,
these findings highlight that the modes of actions of xenoestrogens
are more complex than expected further suggesting that 4-NP is
able to act through an alternative pathway to that employed in
the estrogen-activated mechanism of action.

Together with PPAR isoform expression changes, we have inves-
tigated the effects of 4-NP waterborne exposure on the detoxifica-
tion pathways by evaluating the mRNA levels of CYP1A1 and
CYP3A4. Treatment with 4-NP (10�6 M) or E2 down-regulated both
CYP1A1 and CYP3A4 mRNA expression. Similarly to our results,
Williams et al. (1998b) found low levels of CYP1A mRNA in atlantic
tomcod (Migrogadus tomcod) females captured at river sampling
sites in which high concentrations of E2 were measured. An inhib-
iting effect of E2 on CYP1A mRNA was also found in studies on cul-
tured trout hepatocytes (Navas and Segner, 2000). In vivo studies
demonstrated that 3-d treatment with 4-NP resulted in a decrease
in CYP1A1 mRNA expression in juvenile salmon (Meucci and Ar-
ukwe, 2006). Both 4-NP and E2, via i.p. injection, lowered CYP1A1
basal levels in the marine fish Gobius niger (Maradonna et al.,
2004). In addition, E2 exposure resulted in decreased CYP3A at
both mRNA and protein levels in juvenile rainbow trout (Buhler
et al., 2000). Interestingly, Meucci and Arukwe (2006) speculated
that CYP3A mRNA levels may be modulated through dose-depen-
dent interaction of 4-NP with pregnane X-receptor (PXR) and/or
other receptor–coactivators/repressors. In mammals, CYP3A pro-
tein expression was found to be decreased after dietary 4-NP expo-
sure at the doses of 25 and 2000 ppm (Laurenzana et al., 2002).
However, comprehensive mechanisms responsible for the down-
regulation of fish CYP3A isoforms mRNA levels following exposure
to 4-NP have not yet been proposed.

Nuclear receptors involved in the regulation of CYP450 isoforms
include PPARs, aryl hydrocarbon receptor (AhR), constitutive
androstane receptor (CAR) and PXR (Baldwin et al., 2005). PPARa
regulates CYP4A gene transcription in mouse that are treated with
peroxisome proliferators (Johnson et al., 1996). In juvenile Atlantic
salmon, a potential xenoestrogens-mediated regulation of hepatic
CYP1A expression via AhR has been suggested by Meucci and Ar-
ukwe (2006). Also in zebrafish, the regulation of CYP3A expression
seems to be mediated by the AhR-signaling pathway (Prasch et al.,
2003; Tseng et al., 2005). It was suggested that the ER-E2 complex
can affect CYP1A1 gene transcription either directly or indirectly
by interacting with the AhR pathway (Navas and Segner, 2000).
In fish, CYP1A expression was found to be induced by environmen-
tal contaminants through activation of AhR (Timme-Laragy et al.,
2007; Jonsson et al., 2007a,b). Particularly for xenobiotics such as
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated
biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs), which
bind to the AhR, antiestrogenic activities have been observed in
both mammals (Navas and Segner, 1998) and teleosts (Anderson
et al., 1996). Several evidences indicate that the AhR-mediated
antiestrogenicity involves interactions with estrogen-dependent
genes, including down-regulation of ER expression (Navas and Seg-
ner, 2000). On the other hand, ERs have been found to induce ubiq-
uitination processes of aryl hydrocarbon receptor nuclear
translocator (ARNT) that is required for AhR signaling pathways
(Lim et al., 2011). For teleost fish, down-regulation of CYP1A1 by
estrogens and xenoestrogens seems also to be mediated through
the activation of the AhR repressor (Maradonna et al., 2004). On
the basis of the observed results, we suggest that the inhibitory ef-
fect of 4-NP on CYP450 isoforms may be related, at least in part, to
the stimulatory effects of short-term 4-NP exposure on PPARa
mRNA expression. In mammals, Shaban et al. (2004) have demon-
strated that treatment with PPARa ligands (e.g. clofibric acid) re-
sults in down-regulation of AhR protein expression and CYP1A1/
A2 protein and mRNA levels. These findings are probably related
to the competition between PPARa and AhR for a common pool
of co-activators such as SRC-1 and p300 which have been found
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to be involved in co-activation of PPARa (Zhu et al., 1996; Dowell
et al., 1997) or AhR (Kobayashi et al., 1997; Ke et al., 2001).
5.1. Conclusion

In conclusion the present study demonstrates that 3-d exposure
of juvenile sole to environmentally relevant concentration of 4-NP
clearly modulates PPARa and RXRa expression in sole liver at tran-
scriptional level. Another interesting finding of our work is that 4-
NP-induced PPARa mRNA levels coincide with down-regulation of
both CYP1A1 and CYP3A4 gene expression values. Collectively, our
results suggest the presence of cross-talk between nuclear receptor
(e.g. ER, AhR)-mediated signaling pathways and PPARa that may
result in modulation of CYP450 isoforms expression. However
the molecular mechanism by which 4-NP induces PPARa expres-
sion remains to be elucidated.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.chemosphere.
2013.06.058.
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