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ABSTRACT 
A lumped parameter model for the time domain inertial soil-structure interaction analysis is proposed with 
reference to square pile group foundations. Simplified formulas are presented for estimating its parameters. The 
model is able to reproduce the coupled rotational-translational behaviour of the soil-foundation system. Formulas 
are calibrated from results of an extensive non-dimensional parametric analysis considering head-bearing pile 
groups. The closed-form expressions may be readily adopted to define the compliant base restraints of a generic 
structure for the non linear dynamic analysis carried out with commercial software. 
 

1 INTRODUCTION 
Dynamic Soil-Structure Interaction (SSI) is 

usually neglected in the design practice since it is 
traditionally considered to have beneficial effects 
on the seismic performance of structures. This 
arises from the convincement that compliant-base 
structures are subjected to lower inertia forces 
and have enhanced dissipation capacity due to the 
radiation damping of the soil-foundation system. 
However, in some circumstances SSI may 
significantly affects the seismic response of 
structures (Mylonakis, 2000).  

SSI analysis may be performed by adopting 
the direct approach, which consists in studying 
structure, foundation and soil in a unique model 
(usually a finite element model), or the sub-
structure approach, which consists in studying 
separately the soil-foundation system and the 
superstructure on compliant-base subjected to the 
foundation input motion (Wolf 1988). The second 
method is certainly more practical than the direct 
method since it may be applied using different 
modelling techniques for each subsystem. 
Making use of the superposition principle, this 

approach can of course be applied in the case of 
linear behaviour of soil, foundation and 
superstructure but, under the assumption of linear 
behaviour of the soil-foundation, can also be used 
in the case of nonlinear behaviour of the structure 
(Ciampoli and Pinto 2005, Carbonari et al, 2012). 
This simplifying assumption is generally 
acceptable if foundations are designed according 
to hierarchy principles. In the framework of the 
substructure approach, the analysis of the soil-
foundation system has a twofold aim: (i) to 
evaluate the kinematic soil-foundation interaction 
(e.g. foundation input motion and stress resultants 
due to the propagation of seismic waves) and (ii) 
to define the soil-foundation dynamic impedance 
functions. The latter are complex-valued 
relationships between forces and displacements 
which have to be used in the inertial interaction 
analysis of the superstructure to define the 
foundation frequency-dependent compliance. 

With reference to pile foundations, different 
models have been developed over the years to 
evaluate their dynamic stiffness. Numerical 
methods, generally requiring high computational 
efforts, are preferred to solve such a fully coupled 
problem; in particular, approaches based on the 
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Boundary Element Method (BEM) are the most 
rigorous ones (Kaynia, 1983); Finite Element 
Method (FEM) is generally adopted by 
introducing different level of simplifications 
(Waas et al., 1984; Takemiya, 1986) to avoid 
modelling the far-field, or even the whole soil. 
However, from an engineering perspective, 
methods based on simplified formulas have 
received more attention. Formulas generally 
derive from physical considerations and weight 
parameters are introduced to account for different 
soil conditions. Among the others, Gazetas and 
Dobry (1984) presented simple methods for 
estimating damping properties of horizontally 
loaded piles in layered soils; Dobry and Gazetas 
(1988) proposed a simplified formulation for the 
dynamic stiffness of floating pile groups starting 
from the dynamic stiffness of a single pile and 
adopting interaction factors to account for pile-to-
pile interactions due to waves radiation. 
Interaction factors, derived from the solution of 
simplified wave propagation problems, have been 
also adopted by Banerjee and Sen (1987) and 
Makris and Gazetas (1992). 

More recently, Dezi et al. (2009) have 
proposed a numerical model for the 3D kinematic 
interaction analysis of pile groups in horizontally 
layered soils, based on the BEM-FEM coupling 
in which piles are modelled with beam elements 
while the soil is schematized with horizontal 
independent infinite layers. The dynamics of the 
soil layer is described by means of Green’s 
functions which allow accounting for both pile-
soil-pile interactions and radiation damping. 
These derive from a simplification of the plane 
strain model of Novak et al. (1978) also 
developed by Gazetas and Dobry (1984). The 
model allows evaluating all the components of 
the frequency dependent foundation impedance 
matrix (e.g. translational, rotational and roto-
traslational impedances).  

Since foundation impedances are frequency-
dependent functions, all previous procedures 
furnish results that may be adopted directly in 
frequency-domain interaction analysis of the 
superstructure (inertial interaction). However, 
such a kind of analysis may be adopted only if the 
superstructure behaves linearly and is less 
familiar to professional engineers than time-
domain analysis. If inertial interaction analyses 
are performed in time-domain, as in the case of 
nonlinear behaviour of the structure, suitable 
Lumped Parameter Models (LPMs), obtained by 
assembling springs, masses and dashpots, have to 
be introduced to reproduce the foundation 
dynamic behaviour.  

Dynamic SSI analyses are therefore 
computationally demanding procedures since 
they require performing dynamic soil-foundation 
interaction analyses and the calibration of suitable 
LPMs. From a practical point of view, simple 
engineering procedures may be of particular 
interest in view of the increasing attention that the 
SSI problem is receiving in modern codes. 
According to this need, Taherzadeh et al. (2009) 
presented simple formulas for the dynamic 
stiffness of large pile groups (greater than 50 
piles). 

In this paper simplified formulas for 
estimating the parameters of an LPM, able to 
reproduce the coupled rotational-translational 
behaviour of pile groups with small and medium 
dimensions, are presented. Formulas are 
calibrated from results of a non-dimensional 
parametric investigation considering head-bearing 
pile groups. Analyses are performed by means of 
the numerical model developed by the authors 
(Dezi et al. 2009). Formulas may be readily 
adopted by engineers to define restraint systems 
that may be implemented in common software for 
structural analysis. 

2 FOUNDATION IMPEDANCES 
The numerical model of Dezi et al. (2009), in 

which piles are modelled with beam elements and 
the soil is schematized with independent 
horizontal infinite layers, is used for the 
evaluation of the foundation impedances (Figure 
1). With reference to a generic group of piles 
embedded in a horizontally layered soil, the 
dynamic stiffness matrix of the system, is written 
as 
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Figure 1. (a) Pile group in a horizontally layered soil; (b) 
soil-foundation model. 



 

where KP, MP are the overall stiffness and mass 
matrices of the piles, respectively, and Pℜ  is the 
overall impedance matrix of the soil, accounting 
for pile-soil-pile interactions as well as hysteretic 
and radiation damping. The piles are connected at 
the head by a rigid cap having six generalized 
displacement components referred to a master 
node. Thus, the dynamic stiffness matrix of the 
constrained system may be written as  
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where the dynamic impedance matrix is suitably 
partitioned to highlight components relevant to 
the master node degree of freedom (ZFF) and A is 
the geometric matrix of the rigid constraint. 

The derivation of the complex-valued 
foundation impedance matrix  

( ) ( )EFEEFEFF ZZZZ 1−−=ωℑ  (3) 

is thus straightforward from the problem 
condensation. The impedance matrixℑ  expresses 
forces necessary to produce unit steady vibrations 
of the master node. 

It is worth noting that matrix ℑ  is generically 
fully populated; however, in the case of doubly 
symmetric pile layouts, locating the master node 
at the intersection of the two symmetry axes, the 
impedance matrix assumes the form 
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For further details the reader may refer to Dezi 
et al. (2009). 

3 LPM FOR TIME DOMAIN ANALYSIS 
In the case of non-linear structural behaviour, 

the inertial interaction analysis must be 
performed in the time domain and the frequency-
dependent impedances (4) of the soil-foundation 
system cannot be used directly. For this purpose 
LPMs constituted by frequency-independent 
parameters (springs, dashpots and masses), 
suitably assembled and calibrated in order to 
reproduce the dynamic behaviour of the soil-
foundation system, can be introduced at the base 
of the superstructure (Wolf, 1988). Impedances of 
LPMs ( )ωℑ

~ must approximate those of the 

soil-foundation system within the frequency 
range in which the earthquake has the highest 
energy content and within which the fundamental 
structural vibration frequencies fall (typically 
0÷10 Hz). The loss of precision in the solution is 
compensated by the advantage of using 
commercial structural analysis software in 
performing non-linear analyses. 

In this work an LPM having the same degree 
of freedom of the foundation cap and able to 
approximate impedance matrix (4) is constructed 
(Figure 2) by assembling different uncoupled 
sub-models. It is characterized by 26 parameters: 
translational (mx, my, mz) and rotational (Ix, Iy, Iz) 
masses, lumped at the master node of the rigid 
cap, elastic (kx, ky kz, krx, kry, krz) and viscous (cx, 
cy, cz, crx, cry, crz,) constants that define the 
relevant spring-dashpot elements and additional 
eccentric masses (mxh, myh) connected to the 
master node by stiff links (with length hx and hy) 
and to the ground by spring-dashpot elements 
(kxh, kyh, cxh, cyh). These last components are 
introduced to catch the coupling between the 
rotation and the translation in x and y directions. 

The impedance matrix of the proposed LPM is 

( ) ( )CMK ~~~~ 2 ω+ω−=ωℑ i  (5) 

where 
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Figure 2. Assemblage of uncoupled LPMs. 
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Figure 3. Scheme of investigated soil-foundation systems 

Table 1. Parameters variability. 
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4 NON-DIMENSIONAL PARAMETRIC 
ANALYSIS 

LPMs have been derived for a wide number of 
end-bearing pile groups with square patterns 
suitably parameterised. The scheme of the soil-
foundation systems considered and the 
parameters defining both the geometry and the 
mechanical properties are reported in Figure 3. 
The Poisson’s ratio ν, the soil hysteretic damping 
ratio ξ , the shear wave velocity Vs2 and density 
ρ2 of the bedrock and the pile elastic modulus 
Ep and density ρp are considered to be constant. 

According to the Buckingham’s theorem, the 
i-th component Πi of the non-dimensional 
impedance matrix depends on the following 
quantities: 
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which include geometric and mechanical 
parameters, as well as, the non-dimensional 
frequency ωd/Vs1. Due to the square pile layout, 
the non-dimensional impedance matrix has only 
five independent components expressed as 
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All the combinations of parameters reported in 
Table 1 are considered for a total of 144 analysis 
cases. Analyse are performed by means of the 
numerical model of Dezi et al. (2009), 
implemented in the Matlab programming 
environment. 

4.1 LPM optimization 
The non-dimensional impedance matrix of 

each investigated soil-foundation system is 
approximated with expression (5), namely the 
real components are approximated with second 
order parabolas while imaginary components 
with straight lines passing for the axes origin. 
Due to the square pile layout, the 26 parameters 
defining the LPM reduce to only 16 as the 
coupled rotational-translational behaviour in x 
and y directions are the same. In particular the 
non-dimensional parameters of the LPM are  
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in which i = x, y. Such parameters are identified 
according to a least square procedure within the 
non-dimensional frequency range (0÷a0,max) with 



 

1
max,0

20

sV
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To avoid thermodynamic inconsistencies the 
optimization problem has been constrained by 
imposing LPM stiffness, damping and mass 
matrices to be positive definite. Furthermore, 
many commercial computer programs for 
structural analysis do not support the 
implementation of negative masses so that a 
further constraint has been imposed to the mass 
sign; in some cases this enforces solutions with 
null masses. Impedances of the soil-foundation 
system are thus overall well approximated in the 
desired frequency range even if some 
inaccuracies may arise in same cases as a 
consequence of the LPM limits in capturing 
impedances fluctuations. 

 

Table 2. Parameters of Equation (22). 

Ωi  α  β  χ  δ  ε  φ 

Ω1  0.002  1.379  1.028  0.107  1.294  -9.670 
Ω2  0.737  2.641  0.963  -0.041  0.076  0.532 
Ω3  0.021  2.158  1.481  -0.003  1.086  -7.836 
Ω4  1.568  1.004  0.157  -0.219  0.421  -1.597 
Ω5  2229.4  3.503  0.545  -2.817  -3.546  44.915 
Ω6  0.884  1.774  0.819  0.143  0.141   0.444  
Ω7  0.020  3.782  2.035  -0.552  1.577   -8.485  
Ω8  0.278  5.969  3.225  0.161  -0.906   8.521  
Ω9  5.6e-4  4.957  3.908  0.571  0.386   0.772  
Ω10  0.155  0.394  0.017 -2.8e-4   0.423  -1.572 
Ω11  0.117  1.246  0.201  -0.343   1.607  -8.556 
Ω12  823.41  3.325  -0.542  0.344   -4.475  55.078 
Ω13  0.161  2.516  1.337  0.060   0.720  -3.129 
Ω14  1.282  3.170  1.938  -0.080   0.165  0.177 
Ω15  12.712  4.284  2.517  -0.027   -0.197  -2.243 
Ω16  0.021  4.500  3.210  0.099   -0.084  5.849 

 

Table 3. Parameters of Equation (23). 
  Ω2 Ω3 Ω4 Ω6 Ω7  Ω9 Ω11 Ω13  Ω14  Ω15  Ω16 
a 0 1.318 0 1.575 0 0.966 1.206 2.848 0.010 0 2.050 
b1 0 0.439 0 0 0.271 2.196 0 0.604 0.043 1.048 0 
b2 0 0 0 0 0 0 0.191 0 0 0.385 0.028 
b3 0 0 0 0 0 0 0 0 0.009 0.089 0 
b4 0 0 0 0 0 0 0 0 0.007 0 0 
b5 0 0 0 0 0 0 0 0 0.002 0.191 0 
c1 2.883 0.086 0 0 0.932 0 0 0.026 0.238 0.049 0.220 
c2 0 0 0 0.116 0.265 0.419 0 0 0.714 0 0.442 
c3 0 0 1.067 0 0 0.011 0.073 0.014 0.058 0 0 
c4 0 0.003 0.201 0 0.089 0 0.087 0.008 0.074 0 0 
c5 9.627 0 0.156 0 0 0 0 0 0 0.073 0 
d12 1.975 0.429 2.539 0.929 1.426 1.133 0.239 0.630 1.435 0 1.461 
d13 0 0 3.360 0.555 0.947 0.095 0.564 0.099 0.911 0.041 0.039 
d14 0 0.130 0.278 0 0.390 0 0.115 0.160 1.500 0.057 0.315 
d15 0.625 0 0 2.781 0 1.849 0 0 0.031 0 0.200 
d23 0 0 2.135 0 0.459 0.108 0 0 0.204 0.070 0 
d24 0 0.083 0 0.018 0.076 0 0 0 0.498 0.021 0 
d25 0 0 0 0.711 0 0.378 0 1.321 0.190 0 0 
d34 0 0 0 0.100 0 0 0 0 0.067 0 0 
d35 0 0 3.985 0.966 0 0 0 0 0.007 0.255 0 
d45 0 0 0 0 0 0 0 0 0.005 0.743 0 
e1 0 0 0 0 0 0 0 0 0 0.267 0 
e2 0 0 0 0 0 0 0 0.044 0 0.088 0 
e3 0 0.005 3.210 0 0.225 0 0.088 0.021 0.219 0 0 
e4 0 0 0 0 0 0 0 0 0.208 0 0 
e5 0 0 0 1.465 0 0 0 0 0 0.190 0.098 
f1 0.347 0 0.035 0 0.078 0 0.036 0 0.028 0 0 
f2 0 0 0.213 0 0 0 0.006 0 0.007 0 0 
f3 0 0 0 0.061 0 0 0.033 0 0.001 0 0 
f4 0.003 0 0 0 0 0 0 0 0.008 0 0 
f5 0 0 0 0 0 0 0 0 0.115 0.070 0 
h12 0 0 0 0 0.029 0 0 0 0 0 0 
h13 0 0 0.064 0 0 0 0 0 0 0 0 
h14 0 0 0 0 0 0 0 0 0.016 0 0 
h15 0 0 0 0 0 0 0 0 0.164 0.139 0 
h23 0 0 0.557 0.024 0 0 0.010 0 0 0.003 0 
h24 0.029 0 0 0 0 0 0 0 0 0 0 
h25 0 0 0 0 0 0 0 0 0 0.193 0 
h34 0.005 0 0.077 0 0 0 0 0 0.009 0.022 0 
h35 0 0 0 0 0.150 0 0 0.021 0.081 0 0 
h45 0 0 0 0 0 0 0 0 0 0.713 0 

 



 
 

5 FORMULAS FOR LPM DEFINITION 
Regression formulas to define the LPM 

previously introduced are proposed in order to 
overcome the demanding dynamic pile-soil-pile 
interaction analysis necessary for the evaluation 
of the soil-foundation impedances and the 
subsequent calibration of the frequency 
independent parameters. 

The following monomial expression is first 
assumed for the generic non-dimensional 
parameter Ωi: 

φεδχ
β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ

ρ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛α=Ω
1

2
11

p

s

p
i V

E
d
h

d
sn  (22) 

Coefficient α and exponents β, χ, δ, ε and φ, 
reported in Table 2, have been calculated by a 
multiple regression analysis. 

Figure 4 (black dots) compares the optimized 
non-dimensional parameters of the LPM with 
values obtained from the proposed formulas. 
Maximum errors are around 30% with the 
exception of non-dimensional masses (Ω5, Ω8 
and Ω12) for which errors are higher as a 
consequence of the constrained optimization 
that, for a significant number of cases, provide 
null values (grey dots) that cannot be captured 
with equation (22). 
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Figure 4. Comparisons between the optimized non-dimensional parameters of the LPM and the proposed formulas. 



 
 

In an attempt to improve the accuracy of the 
LPM estimations, more complex formulas have 
been considered as an alternative to equations 
(22) for some of the parameters. In particular, the 
following expression has been considered for the 
i-th parameter 
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for j, k, l = 1…5 and k ≠ l. Coefficients appearing 
in Equation (26) have been determined, with 
reference to improved parameters, by a multiple 
regression analysis and are reported in Table 3. 
As can be observed from Figure 4 (red dots), 
most of the LPM parameters are now better 
approximated by Equation (23). It is worth 
nothing that despite this last formulation is rather 
complex, it may be easily implemented in 
common spreadsheets. 

Formulas (22) and (23) are very useful tools 
for practical applications because once 
determined the few non-dimensional parameters 
that characterise a specific pile group, namely 
number of piles in a row (n), spacing (s/d), depth 
(h/d), modulus of elasticity (Ep/ 2

11 sVρ ) and density 
(ρp/ρ1), they readily provide the 16 non-
dimensional parameters of the LPM. The 
parameters of the LPM to be introduced in the 
structural analysis program are thus calculated by 
inverting relationships (13-20) without the need 
of carrying out a specific analysis of the soil-
foundation system. 

6 APPLICATION 
A single 10 m high circular bridge pier, 

extracted from a multi-span bridge, is considered 
with the relevant mass. 

The geometry of the structure and the soil-
foundation system is reported in Figure 5 with the 
mechanical properties of the soil. The concrete of 
both pier and piles has Young’s modulus 

Ep = 30000 MPa and density ρp = 2.5 t/m3. 
Furthermore, a structural damping ξs = 5% is 
assumed for the pier. For the sake of brevity, 
analysis is performed only with reference to the 
transverse direction of the bridge. The response 
obtained by adopting the actual soil-foundation 
impedances, resulting from the numerical 
procedure of Dezi et al. (2009), is compared with 
those achieved by considering an LPM to 
simulate the foundation behaviour. Parameters of 
the LPM are obtained by (i) an optimization 
procedure (within the range 0÷10 Hz), (ii) by 
adopting Equation (22) and finally (iii) by 
considering the refined Equation (23).  

Figure 6 compares the translational, rotational 
and roto-translational impedances of the soil-
foundation system obtained with the procedure of 
Dezi et al.(2009), with those of the LPMs defined 
with the three methods. Equation (22) behaves 
generally quite well with exception of the 
rotational impedance for which a significant error 
is evident. On the other hand, the use of Equation 
(23) guarantees a greater level of accuracy also in 
this case. 

Figure 7 shows the Frequency Response 
Function (FRF) of the system, namely the 
displacement of the mass subjected to a unit 
harmonic force, evaluated by means of a steady 
state analysis. The fixed base model is reported as 
well to show significance of SSI effects. As 
expected, a frequency shift and a displacement 
increase is evident for FRFs relevant to compliant 
base models. From their comparisons it can be 
observed that the use of Equation (23) leads to a 
very high level of precision, even if Equation (22) 
furnishes satisfactory results and inaccuracies are 
largely compensated by the expression simplicity 
and rapidity of use. 
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Figure 5. Case study: (a) geometry, (b) model with 
frequency dependent impedances and (c) model with LPM. 
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Figure 6. Soil foundation impedances. 

Finally, the response of the bridge subjected to 
the Strofades Earthquake (Greece - 18.11.97 
Mw = 6.6) is shown in Figure 8 where the time 
histories of the relative  displacement of the fixed 
and compliant  base models are shown. 
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Figure 7. Frequency Response Function of the system 

 
It can be observed that the response obtained with 
the optimized LPM is practically coincident with 
that resulting from the use of the proposed 
formulas with just some slight differences using 
Equation (22). 

7 CONCLUSIONS 
Two formulas for the definition of an LPM 
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Figure 8. Case study: (a) geometry, (b) model with frequency dependent impedances and (c) model with LPM. 



 
 

well as the roto-traslational coupling behaviour of 
pile group foundations have been presented. The 
proposed expressions have been calibrated with 
the results of an extensive non-dimensional 
parametric analysis. Head-bearing pile groups are 
considered and the analyses are performed by 
means of the numerical model developed by Dezi 
et al. (2009). Formulas may be readily adopted by 
engineers to define a restraint system that may be 
implemented in common structural analysis 
software to account for the soil-foundation 
compliance. One of the proposed expressions is 
very simple and may be used by means of a 
pocket calculator; the second one, which improve 
precisions of the parameter estimates, is more 
complex and may need the use of a spreadsheet. 
An application to a case study demonstrates that, 
despite some inaccuracies in the estimates of the 
soil-foundation impedances, the use of the simple 
formula provides a reliable prediction of the 
actual structural response. 
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