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The base pair fluctuations and helix untwisting are examined for a circular molecule. A realis-
tic mesoscopic model including twisting degrees of freedom and bending of the molecular axis
is proposed. The computational method, based on path integral techniques, simulates a distribu-
tion of topoisomers with various twist numbers and finds the energetically most favorable molec-
ular conformation as a function of temperature. The method can predict helical repeat, openings
loci, and bubble sizes for specific sequences in a broad temperature range. Some results are pre-
sented for a short DNA circle recently identified in mammalian cells. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4807381]

I. INTRODUCTION

The conformational properties of DNA and its biological
functioning depend on key parameters as persistence length
and helical repeat which, in turn, are sequence dependent and
also vary with temperature and counterion concentrations.1, 2

Empirical approaches have been developed to quantify them
in some cases. For circular molecules, common to mitochon-
drial DNA, bacterial plasmids and many viral genomes, mea-
surements of cyclization probabilities, and statistical anal-
ysis of topoisomers distributions3 remain the fundamental
methods. Recently, a new type of extra chromosomal circu-
lar (ecc) DNA consisting of short sequences, ∼200 − 400
base pairs (bps), has been identified in mouse and human
cells4 remarkably suggesting that a large variability may oc-
cur in DNA of somatic tissues. Topoisomers distributions are
caused by thermal fluctuations which convert, by ligase, the
nicked molecules to covalently closed circles each of them
having a peculiar linking number (Lk) that defines its topo-
logical state.5 Gel electrophoresis techniques have been used
to estimate the average helix rotation angles in bacteriophage
PM2 and E. coli plasmid.6 Later on, it has been shown that the
double helix unwinds linearly with temperature up to the pre-
melting regime.7 Beyond being essential for DNA characteri-
zation, a precise knowledge of helical pitch and twist density
is required to design nanostructures efficiently releasing anti-
cancer drugs8 and molecules with functional properties.9, 10

These issues can be theoretically approached by meso-
scopic models, treating DNA at the level of the fundamen-
tal bps interactions, which may predict the energetically most
convenient helical repeat (h) for a given sequence and am-
bient conditions. In this paper, I propose a method based on
the path integral formalism11 which can be applied to any cir-
cular molecule. The model, for N bps, includes both twist-
ing and molecule bending to provide a realistic description
of the effective interactions. This investigation extends a pre-
vious work12 in which the thermodynamics of a short DNA
had been computed, in a fixed plane representation, for a
fixed value of the helical repeat. While we refer to that work
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for more details concerning the path integral method, here
the computation simulates a large topoisomers distribution of
short circular DNAs with variable supercoiling degree and
finds, at any temperature, the most probable twisted geom-
etry on the basis of a macroscopic constraint, the second law
of thermodynamics. As the method calculates the thermal dis-
placements of the bps with respect to the ground state, we can
also monitor the formation of fluctuational openings along the
sequence. In particular, the location of the opening sites and
the size of the bubbles can be determined at various temper-
atures. These findings may be relevant also in view of the
possibility to predict the sequence specific starting sites for
biological functions such as transcription which require DNA
unwinding and bubbles formation.13, 14

The model is described in Sec. II while the results for a
specific sequence of Ref. 4 are discussed in Sec. III. Some
final remarks are given in Sec. IV.

II. MODEL FOR CIRCULAR DNA

In general, Lk = T w + Wr , where T w is the twist ac-
counting for the coiling of the individual strands around the
helical axis and Wr is the writhe measuring the spatial coil-
ing of the axis itself.15–17 While T w and Wr (not necessarily
integer numbers) refer to the molecular geometry, the integer
Lk is independent of the specific geometry. Lk is given with
respect to the relaxed linking number of the least distorted
topoisomer, Lk0 ≈ N/h. Thus, it is σ = (Lk − Lk0)/Lk0 which
measures the molecules supercoiling with almost all living be-
ings keeping their DNA in a σ < 0 supercoiled state. This is
essential to biological processes such as replication and tran-
scription requiring the helix unwinding as a key step to favor
the binding of proteins.

Short linear DNA, below ∼500 bps, shows a lower prob-
ability than long sequences to ligate into circles as a conse-
quence of the intuitive fact that bending smaller fragments
has a higher energy cost. However, whenever ligation of the
chain ends occurs in circles with decreasing diameters, super-
coiling increments are due to twisting rather than writhing.3

In fact, unwinding (or overwinding) the double helix requires
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FIG. 1. (a) Helicoidal model for circular DNA with bending planes. The blue
filled circles are the pointlike bps stacked along the molecule backbone. In
the ground state, all bps lie on the circumference with ray R. The red-shaded
areas are spanned by the fluctuational vectors whose amplitude is measured
by |rn| for the n − bp. φn is the bending of the n − bp plane with respect to the
(x′, y′) plane, x′ being normal to the sheet plane. (b) Local reference system
for the n − bp. θn measures the twisting around the molecule backbone. The
z-axis is tangent to the ground state circle.

essentially the same energy per unit length whereas the
writhing involves crossings of the helix axis over itself and
elastic deformations which are mostly confined in the apical
loops. As the latter contain a larger proportion of the helix in
smaller diameter circles, it is in shorter fragments that the en-
ergy required to change Wr becomes increasingly higher than
the energy associated to a change in T w. Hence, supercoiling
increments are due to twisting rather than writhing. Accord-
ingly I assume that, for short circular DNA, the helix axis lies
in a plane (Wr = 0) while the degree of supercoiling mea-
sured by the linking number is attributed only to the twisting,
Lk ≡ T w.

Figure 1 displays the fragment with N bps whose equilib-
rium separations are regularly arranged in a circle with center
point O′ and ray R lying in the (y′, z′) plane. The bp fluctua-
tion is described by an inter-strand vector displacement rn (n
numbers the bps in real space) measuring the pair mates sepa-
ration with respect to the ground state. The latter is recovered
when |rn| = 0 for any n. In general, rn spans an orbit whose
center On stays on the ground state circle hence, O ′On = R.
With respect to O′, the fluctuation vector is

tn = ((tn)x ′ , (tn)y ′ , (tn)z′),

(tn)x ′ = |rn| cos φn cos θn,
(1)

(tn)y ′ = (R + |rn| sin θn) cos φn,

(tn)z′ = (R + |rn|) sin φn.

The polar angle, θn = (n − 1)2πT w/N + θS , measures
the n − bp twisting around the molecule backbone with
h ≡ N/T w. θS is the twist of the first bp along the stack.
As one turn of the helix hosts h bps, it matters to know which
twist angle is associated to the starting sequence site: in fact
the choice of the initial twist may affect the fluctuational am-
plitudes at the successive sites. Then, I integrate over a set
of θS values, thus weighing an ensemble of distinct rotational
conformations which contribute to the partition function.

The azimuthal angle, φn = (n − 1)2π /N, defines the
(counterclockwise) rotation of the nth fluctuational orbit with
respect to the (x′, y′) plane. The latter contains the orbits of the
fragment ends, the n = 1 and n = N + 1 bps, which overlap
due to the closure condition holding for the DNA ring. Base
pairs, which would be distant along the stack in a chain model,
become closer in a circular model that accordingly accounts
for stabilizing long range effects.18

In general, the shape of the fluctuational orbits is function
of the bending φn and changes from circular (φ1 = 0) to a
straight line (φ(N+1)/4 = π /2) being elliptic for 0 < φn < π /2.
In fact, only a subset of orbital points do represent effective
bps fluctuations: for instance, the n = 1 orbit is in principle
circular but, being θn a discrete variable, only those points
corresponding to the chosen set of θS values do correspond
to real fluctuational states for the n = 1 bp. With this caveat,
one notices that the orbit size is determined by the fluctuation
amplitude |rn| which is temperature dependent. While large
thermal fluctuations may occur for any n-site, the condition
|rn| < R should be anyway fulfilled in the computation so as
to ensure that an overall ring shape is preserved for the DNA
fragment.19

Then, given a circular DNA sequence with N bps, the
geometry is essentially determined by R and T w. R/N sets
the bps density along the molecule backbone. Assuming R
= 80 Å the sequence length is consistently taken of order 50
nm which is also the persistence length of short DNA frag-
ments recently measured at room temperature.20 T w/N sets
the torsional stress of the double helix. Both parameters are
incorporated in the tn variables.

Using the latter, I represent the system in Fig. 1 by an
extended Peyrard-Bishop (PB) Hamiltonian.21 The model is
treated by the finite temperature path integral method22 as-
suming that the bps radial displacements are one-dimensional
paths x(τ i) with the imaginary time τ i ∈ [0, β], β = (kBT)−1,
kB is the Boltzmann constant and T is the temperature. The in-
dex i numbers the bps along the time axis. The periodic condi-
tion, x(τ i) = x(τ i + β), allows to Fourier expand the paths and
accounts for the closure of the DNA sequence into a ring. Par-
titioning the β length in N intervals, the space-time mapping
of the fluctuational vectors in Eq. (1) is performed through

±|rn| → x(τi); ±|rn−1| → x(τi − β/N ),
(2)

±|tn| → η(τi); ±|tn−1| → η(τi − β/N ).

Hence, the partition function of our system is written, in
terms of the fluctuations amplitudes η(τ i), as

Z =
∮

Dx
∑
θS

exp

{
−β

N∑
i= 1

[
μ

2
η̇2

i + VM [ηi] + Vsol[ηi]

+VS[ηi, η
′
i]

]}
,

VM [ηi] = Di[exp(−ai(ηi − R) − 1]2,

Vsol[ηi] = −Difs[tanh((ηi − R)/ls) − 1], (3)

VS[ηi, η
′
i] = KGi,i−1 · (ηi − η′

i)
2,

Gi,i−1 = 1 + ρi,i−1 exp[−αi,i−1(ηi + η′
i − 2R)],

ηi ≡ η(τi); η′
i ≡ η(τi − β/N ).
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The measure Dx, which normalizes the kinetic action,
is a multiple integral over the path Fourier coefficients.23

μ = 300 amu is the reduced mass and K = 20 meV Å
−2

is the harmonic force constant both for AT- and GC-bps.24

The Morse potential VM models the hydrogen bonds be-
tween complementary strands with site dependent effective
pair dissociation energy Di and inverse length ai. Setting,
DAT = 30 meV and DGC = 45 meV, the hydrogen bond en-
ergies are above kBT at room temperature. Further I take,
aAT = 2.4 Å−1 and aGC = 2.7 Å−1. The Morse plateau im-
plies that, if all fluctuations are larger than a−1

i , the open
strands can go in principle infinitely apart. As strands recom-
bination may instead occur in solution, the solvent term Vsol

is introduced12, 25 to enhance the height (fs = 0.1) and tune the
width (ls = 5 Å) of the barrier for pair dissociation.

Adjacent bps along the molecule stack interact via the
potential VS which includes heterogeneity in the anharmonic
parameters αi,i− 1 and ρ i,i−1. αi, i − 1/ai � 1 ensures that
the VS range is larger than that of VM . Whenever one of
the fluctuations is such that, ηi − R > α−1

i,i−1, the hydrogen
bond breaks and the stacking coupling in Eq. (3) drops from
∼K(1 + ρ i,i−1) to ∼K. Then, also the next bp tends to open as
both pair mates are less closely packed along their respective
strands. A reduced stacking implies a softer stretching fre-
quency (smaller contribution to the free energy) hence, the co-
operative formation of fluctuational openings along the back-
bone is measured by an entropic gain.26 As the latter is ex-
pected to be larger for AT bps, heterogeneous stacking an-

harmonicity is modeled by taking: αAT,AT = 0.2 Å
−1

, ρAT, AT

= 25, αAT,GC = 0.3 Å
−1

, ρAT, GC = 15, αGC,GC = 0.4 Å
−1

,
ρGC, GC = 1.

Somewhat different sets of parameters have been used in
other studies to test the (homogeneous) anharmonic PB model
albeit without rotational degrees of freedom.27–30 Morse pa-
rameters and harmonic force constants have also been re-
cently obtained for RNA, fitting the PB model to the exper-
imental melting temperatures.31

Computing Eq. (3) amounts to sample the ensemble of
molecule states where each state, defined by a set of Fourier
coefficients, is a point in the path configuration space. About
2 × 106 paths for every bp are included in the computation at
high T.

III. RESULTS

The model is applied to the micro-DNA sequence with
N = 184 bps (∼46% GC content) of Ref. 4

AGGGAAGGGGGAGAAAT CAACT T T CCC

ACAAT CCT ACAACT AT T CAAAAAGCT T

AGT GGGAGGT ACAGGAGGT GGAAGCAC

GGT GCCT TCT T AT CACAAGCAGCT CT T T

CGACAAGCCT CT T CGT GCT T CT CT AA
GCTT T T T GAAT AGT T GT AGGAT T GT GG

GAAAGT T GAT T T CT CCCCCT T C. (4)

Given the set of potential parameters the entropy,
S = kBβ2d[β−1ln Z]/dβ, is computed at a initial temperature

(T = 300 K) for a sufficiently large ensemble of DNA con-
formations. At the successive T, a new molecule ensemble is
generated (consistently with the fact that the path fluctuations
are T-dependent) and S is re-evaluated. If S does not grow
versus T, a new partition of the path configuration space is
performed until the selected DNA conformations fulfill the
second law of thermodynamics throughout the whole consid-
ered range, T ∈ [300, 370] K with a 1 K step. A large dis-
tribution of topoisomers is simulated by treating the helical
repeat as a free parameter to be determined at any T. Hence,
the entropy profiles provide a criterion to select the energet-
ically most favorable helicoidal geometry corresponding to
the most stable DNA conformation for specific ambient con-
ditions. While this method produces a remarkable growth of
the CPU time with respect to the previous work,12 it also of-
fers a more appropriate computational scheme to determine
the equilibrium properties of the molecule.

A. Helical repeat

The helical repeat for the relaxed most probable topoi-
somer is first obtained at T = 300 K and the change in h is
next computed at any larger T. The theoretical approach sim-
ulates the experimental method by Depew and Wang.6 The
results are shown in Fig. 2. Remarkably, the predicted h val-
ues are in the range of those typical for DNA under physio-
logical conditions.32 A stair-like pattern is found for h with
four incremental steps at T1,2,3,4 = 311, 319, 323, 340 K. The
corresponding changes in the helix twist angle θ̄ are: δθ̄/δT1

= −0.032◦K−1, δθ̄/δT2 = −0.043◦K−1, δθ̄/δT3

= −0.078◦K−1, δθ̄/δT4 = −0.022◦K−1 (per bp), respec-
tively. The average unwinding over the range [300, 340] K
is δθ̄/δT = −0.038◦K−1 bp−1 with the largest contribution
arising at T = 323 K. Previous studies7 have found a T-
linear unwinding up to the pre-melting regime with δθ̄/δT

∼ −0.01◦K−1 bp−1, albeit for much longer sequences. Note
that, while our calculation determines the untwisting of short
molecules, the cited experiments have only provided an av-
erage estimate of h in sequences with thousands or more bps
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FIG. 2. Helical repeat for the sequence in Eq. (4). (Inset) Entropy versus
temperature computed via Eq. (3).
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for which closed and open segments may coexist below and
inside the denaturation regime.

The entropic gains, see inset in Fig. 2, are respon-
sible for the helix untwisting. Their values, calcu-
lated at the four temperature steps, are: �S(T1) = 5
× 10−4 meV K−1, �S(T2) = 3.6 × 10−3 meV K−1, �S(T3)
= 9.2 × 10−3 meV K−1, �S(T4) = 5.1 × 10−3 meV K−1.
The smallness of the entropy increments suggests that helix
denaturation is an overall smooth phenomenon in agreement
with the conclusions of a recent neutron scattering analysis.33

B. Thermal bubbles

Thermal fluctuations produce local openings which are
similar to transcriptional bubbles starting at biologically ac-
tive sites.13 Location and size of denaturation bubbles depend
on ambient conditions and sequence specificity34–36 with AT
rich regions being more capable to release the torsional stress
of supercoiled DNA.37, 38 Bubble size distributions have also
been used to determine the hydrogen bonds and stacking free
energies of the bps by stochastic optimization techniques.39

In the path integral method, position and growth of the
bubbles can be monitored versus T by computing the path
fluctuations with respect to the ground state of the circu-
lar molecule. The path ensemble averaged bps displacements
〈η(τ i)〉 are compared to a threshold ξ : if, 〈η(τ i)〉 − R ≥ ξ ,
the i −bp contributes to the bubble.40 The ξ values are ar-
bitrary and may be tuned on the base of the model poten-
tial parameters for specific sequences.41 Thermal bubbles are
formed, for the molecule in Eq. (4), as a number of consecu-
tive base pairs undergoes displacements which are of order of
∼0.1 − 0.2 Å. Larger amplitudes may be, however, expected
for systems with higher percentages of AT base pairs. Fluctu-
ational patterns are shown in Fig. 3. The bubble size is plotted
versus the index marking the middle of the bubble itself. If the
size is even, the abscissa indicates the closest to the middle-bp
starting from the left in Eq. (4). Figure 3(a) shows that signif-
icant openings, larger than ξ = 0.1 Å, exist already at room
T and are centered around the i = 45, 135 sites (overlined in
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FIG. 3. Number of consecutive base pairs whose stretchings are larger than
ξ (in Å) with respect to the ground state (a)–(c). The bubble sizes are T de-
pendent. The symbols abscissas mark the central base pair in the bubbles.

Eq. (4)). At T = 320 K (and above), the bubble centres are
at i = 45, 138. At T = 300 K, the i = 45 site hosts a CG-pair
embedded in an extended 33-bps bubble with 64% AT-pairs.
The i = 135 site hosts a AT-pair embedded in a 24-bps bub-
ble with 67% AT-pairs. The average AT content in the whole
sequence is 56%. Hence, the main openings occur in the AT
richest regions but GC pairs (inside those regions) coopera-
tively participate to the bubble formation. The room T fluctu-
ations are smaller than ξ = 0.15 Å as both bubbles, centered
at i = 45, 135, disappear in Fig. 3(b). After heating the sys-
tem at T = 340 K the two bubbles show up again. However,
the bubble sizes shrink with respect to the (a) panel signalling
that a path fluctuations subset is in the range [0.1, 0.15] Å.
Likewise, the bubble centered at i = 89 contains 24-bps at
T = 340 K in the (a) panel, whereas it spreads into much
smaller openings in the (b) panel at the same T. Only a few
fluctuations are larger than ξ = 0.2 Å ((c) panel) thus form-
ing very localized bubbles.42 Altogether, our findings point
to a substantial thermal stability of the short (ecc)-DNA with
sizeable content of GC-pairs.

IV. CONCLUSION

A realistic mesoscopic model incorporating twisting de-
grees of freedom and bending of the molecule axis has been
developed for circular DNA. Heterogeneous stacking anhar-
monicity stabilizes the molecule in the twisted geometry
while permitting the formation of those local openings which
release the torsional stress and sustain thermal fluctuations.
Path integral techniques have been developed to quantitatively
predict the helix untwisting together with size and location of
fluctuational bubbles. The base pairs fluctuational vectors are
mapped onto time dependent paths contributing to the clas-
sical partition function. Our computation simulates a distri-
bution of topoisomers with different twist numbers (as it is
found in experiments) and finds the energetically most sta-
ble conformation as a function of temperature. The method
has been applied to a small circular sequence with a relevant
GC-content. While the bubbles are located in the AT-richest
regions of the sequence, GC base pairs embedded in such re-
gions can also experience sizeable fluctuations whose ampli-
tude can be monitored at any temperature. The predicted heli-
cal repeat presents a stair-like pattern whose incremental steps
are associated to the entropic gains due to bubbles formation.
While experimental information is becoming available to set
accurate values for the effective model parameters, path inte-
gral computation is emerging as an efficient tool to investigate
dynamics and stability conditions of DNA sequences.
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