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Given a reducibility ≤r , we say that an infinite set A is r-introimmune if A is not r-reducible to any of its
subsets B with |A\B| = ∞. We consider the many-one reducibility ≤m and we prove the existence of a low1

m-introimmune set in Π0
1 and the existence of a low1 bi-m-introimmune set.

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The study of sets without subsets of higher Turing degree was initiated by Miller in his Master’s thesis [10]. In
his work, Miller raised the question of the existence of a set of natural numbers which contains no subsets of
higher Turing degree. For brevity and following [4], given a reducibility ≤r we call an infinite set r-introimmune
if it does not contain subsets of higher r-degree. Formally, given a reducibility ≤r , we say that an infinite set A is
r-introimmune if and only if for every B ⊆ A with |A\B| = ∞, it holds that A $≤r B. The term “r-introimmune”
was introduced in [4] to denote those sets that fail to be r-introreducible [5] in a strong way, that is, those sets
that are not r-reducible to any of their co-infinite subsets.

Coming back to Miller’s question, Soare [14] and Cohen (unpublished) solved it by proving independently
that T-introimmune sets exist. However, such sets have a very high degree of unsolvability. In fact, Jockusch [6]
showed that T-introimmune sets are Turing hard for the class of arithmetical sets. Later, Simpson [13] improved
the result of Jockusch by proving that they are Turing hard for the class of hyperarithmetical sets. So, the results
of Jockusch and Simpson imply that T-introimmune sets are not definable in the first order arithmetic. A natural
continuation is to consider other reducibilities ≤r and to see if r-introimmune sets are arithmetical, that is de-
finable in the first order arithmetic. For instance, [4] considered the conjunctive reducibility ≤c and proved the
existence of a c-introimmune set in ∆0

4 , the fourth ∆-level of the arithmetical hierarchy. Then, Ambos-Spies [1]
extended and improved this result by proving that there are tt-introimmune sets in ∆0

2 , where tt stands for the
truth table reducibility ≤tt . Therefore, [1] proves that for a reducibility ≤r stronger than ≤tt there are arithmeti-
cal r-introimmune sets, indeed recursively approximable r-intrommune sets. On the other hand it is known that
tt-introimmune sets cannot be recursively enumerable [1] (cf. also [4, Theorem 8.c]).

We conclude this brief history on introimmunity with an elegant result of Soare. Soare [15] proved an unex-
pected result on the topic of T-introimmunity. He observed that by the existence of non recursive sets of minimal
Turing degree we directly get a set without non recursive subsets of lower Turing degree. Soare argued that the
existence of such minimal Turing degrees could be combined with the existence of T-introimmune sets, in such
a way to obtain a set without neither subsets of higher Turing degree nor non recursive subsets of lower Turing
degree. But he proved that this is false. Let us formulate Soare’s result.

Theorem 1.1 [15] Let A be an infinite set of natural number. Then A contains a non recursive subset S such
that S <T A, or A <T S.
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518 P. Cintioli: Low sets without subsets of higher many-one degree

Soare concluded observing that the argument used to prove the theorem “. . . also yields a negative answer
to Sacks’s question of whether there exists an infinite set all of whose subsets are either hyperarithmetic or of
minimal hyperdegree” [15]. We observe that for the many-one reducibility Soare’s claim is true. And even, the
statement includes also the infinite recursive subsets. Precisely: There exists an infinite set A such that for every
infinite subset B of A it holds that A $<m B and B $<m A. In fact, take a cohesive co-maximal set A. Then A
is m-introimmune [3]. Let B be an infinite subset of A, and let us suppose that B ≤m A. First of all, B cannot
be recursive, because A is immune. Then, as B ≤m A, it follows that B ≤m A. But A is maximal, and every
maximal set has minimal m-degree [8]. Thus B ≡m A, that is B ≡m A, and then B $<m A.

A further challenge on the topic of introimmunity is the following: given a reducibility ≤r and a hierarchy of
sets, to discover which is the smallest class of the hierarchy containing r-introimmune sets. In this perspective,
[3] considered the many-one reducibility ≤m and the arithmetical hierarchy, and proved the existence of a m-
introimmune set in Π0

1 . This has been obtained simply by taking a cohesive co-maximal set: since every cohesive
set is m-introimmune [3], the result directly follows. As Σ0

1 cannot contain m-introimmune sets because every m-
introimmune set is immune [4, Theorem 8.c], it follows that Π0

1 is the smallest class of the arithmetical hierarchy
containing such sets. Moreover, [3] proved the existence of a bi-m-introimmune set in ∆0

2 . In this case, the
result cannot be proved by looking at the cohesive sets, because bi-cohesive sets do not exist. Thus, the bi-
m-introimmune set of [3] has been obtained by a direct construction, using the finite-extension method. Note
that Σ0

1 ∪ Π0
1 cannot contain bi-m-introimmune sets, so ∆0

2 is the smallest class of the arithmetical hierarchy
containing such sets.

In this paper we continue along this line of research, and we take under consideration the many-one reducibility
and the low hierarchy of sets. We observe first that from the existence of a low2 cohesive set [7] we immediately
derive the existence of a low2 m-introimmune set. We improve this result by proving in Section 2 the existence of
a low1 m-introimmune set. Since there cannot be m-introimmune low0 sets, the class of low1 sets is the smallest
class of the low hierarchy containing m-introimmune sets. This result refines that one obtained in [3], in the sense
that our set is in the class Π0

1 . Here the tecnique is very different from that one used in [3]. In fact, we cannot
take a cohesive co-maximal set, because a maximal (and then a co-maximal) set cannot be lown for every n ≥ 0
[9]. Thus, we get our set by a direct contruction. Namely, we construct by the finite-injury priority method a
simple low1 set in a way similar to that one in [16, Chapter VII.3, Theorem 1.1], with further introimmunity
requirements. Finally, in Section 3 we prove our second main result by constructing, using the finite-extension
method, a low1 bi-m-introimmune set. Observe that not all low1 sets are m-introimmune; for example, if X is
any low1 m-introimmune set, then X ⊕ X := {2x : x ∈ X} ∪ {2x + 1 : x ∈ X} is a low1 not m-introimmune
set.

Our terminology and notations are standard, so we refer to any monograph on Computability Theory like, e.g.,
[11, 12, 16]. For every set A and for every natural number n, we denote with A|n the set A∩ {0, 1, . . . , n}. From
now on we fix an acceptable numbering ϕ0 ,ϕ1 , . . . of all the Turing computable unary functions. W0 ,W1 , . . .
is the corresponding enumeration of all the recursively enumerable (r.e.) sets. With K we denote the halting set
{n ∈ N : ϕn (n) is defined}. For every e ∈ N and every set X ⊆ N, let ϕX

e be the unary function computable by
the e-th oracle Turing machine with the aid of the oracle X . For every numbers e, s, x and for every oracle X we
define ϕX

e,s(x) := ϕX
e (x) if there exists t ≤ s such that the e-th oracle Turing machine on input x with oracle X

halts in exactly t steps; in this case we say that ϕX
e,s(x) is defined; ϕX

e,s(x) is undefined otherwise. Whenever we
write formulas like ϕe(x) = ϕe(y), ϕe(x) $= x, etc. we are assuming that ϕe(x) is defined and ϕe(y) is defined.
Given two sets A,B ⊆ N, A is many-one reducible to B, in short A ≤m B, if there exists a recursive function
f : N +−→ N such that for every x ∈ N, x ∈ A ↔ f(x) ∈ B. The many-one degree of a set A is the class of sets
{B : A ≤m B ∧B ≤m A} = {B : A ≡m B}. For the concept of a low set, we refer to the monographs [11, 16].

2 A low m-introimmune set

In this section we prove our first main result.

Theorem 2.1 There exists a low1 m-introimmune set in Π0
1 .

We prove first a technical lemma which we will use in the proof of Theorem 2.1.

Lemma 2.2 Let A and B be two sets such that A is immune, B ⊆ A, A\B is infinite and A ≤m B via f .
Then, for every number z, there is a number x ∈ A such that f(x) ≥ z and f(x) $= x.
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P r o o f. Since, by A ≤m B via f , f(A) ⊆ B, it follows that (A\B) ∩ f(A\B) = ∅, that is, for every
x ∈ A\B, f(x) $= x. So it suffices to show that f(A\B) is infinite. For the sake of contradiction, assume that
f(A\B) is finite. Then f−1(f(A\B)

)
is recursively enumerable. Moreover, by A ≤m B via f it holds that

A\B ⊆ f−1(f(A\B)
)
⊆ A.

Therefore, by infinity of A\B, f−1(f(A\B)
)

is an infinite r.e. subset of A. But this contradicts the assumption
that A is immune.

In the proof of Theorem 2.1 we will also use the following known result on low1 sets.

Proposition 2.3 If X =
⋃

t≥0 Xt is a recursively enumerable set and for every n,

[
(∃∞t)ϕXt

n,t(n) is defined
]
→ ϕX

n (n) is defined,

then X is low1 .
We now prove Theorem 2.1.

P r o o f. By a finite-injury priority argument we construct an r.e. set A such that the set A will be low1 and
m-introimmune. We set A0 := ∅ and for every s ≥ 0 we let As denote the finite part of A enumerated by the end
of stage s. Our final set will be

⋃
s≥0 As . The proof will be based on the construction of a low1 simple set as it

is described for instance in Soare’s book [16] and we also adopt some notation introduced there. Before starting
with the construction of the set A, we describe our strategy.

Strategy
It is enough to meet the following requirements, for every e ≥ 0.

– R4e :
[
(∃∞s)

(
ϕAs

e,s(e) is defined
)]

→ ϕA
e (e) is defined (lowness),

– R4e+1 : (∃x ≥ e)(x $∈ A) (co-infinity),

– R4e+2 : We infinite → We ∩ A $= ∅ (simplicity),

– R4e+3 : If for any number z there is a number x ∈ A such that ϕe(x) ≥ z and ϕe(x) $= x, then there is a
number u ∈ A such that ϕe(u) ∈ A (introimmunity).

Note that, by the effectivity of the construction and Proposition 2.3, the lowness requirements imply that A is
low1 . The co-infinity and simplicity requirements imply that A is simple, hence A is immume. So, by Lemma 2.2
the introimmunity requirements guarantee that A is m-introimmune.

As usual we call a requirement Rn positive if the strategy for meeting Rn will enumerate numbers into A
and negative if the strategy will keep numbers out of A. In order to model the restraints imposed by the negative
requirements we define the restraint function r : N × N +−→ N, where r(n, s − 1) is a strict upper bound on the
numbers which requirement Rn wants to keep out of A at stage s > 0. We say that requirement Rn is injured at
stage s > 0 if a number x < r(n, s−1) is enumerated into A at stage s, i.e., if As |r(n, s−1) $= As−1 |r(n, s−1).
We will ensure that any requirement Rn will be injured only finitely often by allowing the positive action for a
requirement Rn ′ to injure Rn only if Rn ′ has higher priority than Rn , i.e. n′ < n, and by guaranteeing that each
requirement acts at most finitely often. Since at a given stage there might be more than one requirement which
wants to act, we will specify when a requirement requires attention (i.e. wants to act); then, we let act the highest
priority requirement which requires attention.

We next describe the strategies for meeting the different types of requirements. The lowness and co-infinity
requirements are purely negative, the simplicity requirements are purely positive, and the introimmunity require-
ments are negative and positive. So, the lowness and co-infinite requirements will never require attention, while
for the simplicity requirements R4e+2 we can set r(4e + 2, s) := 0 for all s ≥ 0, whence these requirements will
never be injured.

In order to meet a negative lowness requirement R4e it is enough to define r(4e, s) as the use function of
ϕAs

e,s(e), i.e., r(4e, s) := the least strict upper bound >0 of the set of oracles queries made by the e-th oracle
Turing machine on input e with oracle As , if such Turing machine halts in t ≤ s steps, r(4e, s) := 0 otherwise.
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Thus, by restraining A on r(4e, s) if ϕAs
e,s(e) is defined, the relative computation will be preserved, guaranteeing

that ϕA
e (e) will be defined, unless R4e will be injured later.

In order to meet a negative co-infinity requirement R4e+1 it is sufficient to define r(4e + 1, s) :=
min x[x ≥ e ∧ x $∈ As ] + 1.

Then, assuming that requirement R4e+1 is not injured after stage s0 , the least number x ≥ e which has not yet
entered As0 will be kept out of A for ever.

In order to meet a positive simplicity requirement R4e+2 it suffices to wait for a number x to show up in
We which is not restrained by any higher priority requirement and then put x into A. If We is infinite, this will
eventually happen since the restraint by the higher priority requirements will be finite. In what follows, We,s

denotes the finite approximation of We obtained by performing s steps in the enumeration of We . Formally, we
say that:

– requirement R4e+2 is satisfied at stage s, if there is a number x ≤ s such that x ∈ We,s ∩ As ,

– requirement R4e+2 requires attention at stage s, if s > 4e + 2, R4e+2 is not satisfied at stage s − 1, and
there is a number x ≤ s such that

(1) x ∈ We,s ∧ x ≥ max
n<4e+2

r(n, s − 1).

Finally, the strategy for meeting a positive and negative introimmunity requirement R4e+3 is as follows. The goal
is to find a number x such that:

– x has not yet been put into A, and

– ϕe(x) is defined and ϕe(x) $= x.

Then, put ϕe(x) into A and at the time restrain x from A.
In order to be compatible with the other strategies, ϕe(x) must not be restrained by some higher priority

requirement. But, if the hypothesis of the requirement R4e+3 is satisfied, this will not be a problem since the set
of restrained numbers will be finite.

Formally, we say that:

– requirement R4e+3 is satisfied at stage s, if there is a number x ≤ s such that

x $∈ As ∧ x < r(4e + 3, s) ∧ ϕe,s(x) is defined ∧ ϕe,s(x) ∈ As ;

– requirement R4e+3 requires attention at stage s, if s ≥ 4e+3, R4e+3 is not satisfied at stage s− 1 and there
is a number x ≤ s such that

(2) x $∈ As−1 ∧ ϕe,s(x) $= x ∧ ϕe,s(x) ≥ max
n<4e+3

r(n, s − 1).

For requirements R4e+3 we initially set r(4e + 3, 0) := 0 for every e ≥ 0. At every stage s > 0 we set

r(4e+3, s) :=






0 if R4e+3 is injured at stage s,

x + 1 if R4e+3 becames active at stage s, where x is minimal such that (2) holds,
r(4e + 3, s − 1) otherwise.

Now, using the above introduced notations, the construction of the set A is as follows.

Construction of the set A.

Stage s > 0. Let As−1 be the set constructed up to the end of stage s − 1.
If there is no requirement which requires attention, then set As := As−1 and go to the next stage s+1. If there

is a requirement Rn which requires attention, then let n0 be the least such n. Call Rn0 active and distinguish the
following two cases on n0 :

– n0 = 4e + 2. Pick x minimal such that (1) holds and set As := As−1 ∪ {x}. Go to the next stage s + 1.

– n0 = 4e + 3. Pick x minimal such that (2) holds, set As := As−1 ∪ {ϕe,s(x)}. Go to the next stage s + 1.

End construction of the set A.

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Note that the construction is effective. So, A is r.e. and, in order to show that A has the required properties, it
is sufficient to show that all the requirements are met. We establish this by proving the following two claims.

Claim 2.4 For any n ≥ 0, lims→∞ r(n, s) < ∞ exists and Rn requires attention at most finitely often.
P r o o f. The proof is by induction. Fix n and, by inductive hypothesis, choose a stage sn such that, for n′ < n,

it holds that r(n′, s) = r(n′, sn ) for all s ≥ sn and Rn ′ does not require attention at stage s ≥ sn . This means
that Rn will not be injured at any stage s ≥ sn and Rn will become active at any such stage at which it requires
attention.

Now, if n = 4e or n = 4e + 1 then it suffices to show that lims→∞ r(n, s) < ∞ exists since such a
requirement Rn will never require attention. But if n = 4e, then lims→∞ r(n, s) = r(n, s̃) for the least number
s̃ ≥ sn such that r(n, s̃) > 0 (and, of course, lims→∞ r(n, s) = 0 if there is no such number). If n = 4e + 1,
then lims→∞ r(n, s) = r(n, sn ).

If n = 4e + 2, then the first part of the claim is trivial since r(n, s) = 0 for every s ≥ 0. Moreover, if R4e+2
requires attention at some stage ŝ ≥ sn , then it will become active at stage ŝ and will be satisfied at all the later
stages. Thus R4e+2 will require attention at most once after stage sn .

Finally, assume that n = 4e + 3. Since r(4e + 3, s) > r(4e + 3, s − 1) only if R4e+3 is active at stage s,
it is sufficient to show that R4e+3 will require attention at most once after stage sn . Assume that s ≥ sn is the
least stage at which R4e+3 requires attention. Then R4e+3 becomes active at stages s. Hence there is a number
x $∈ As such that ϕe,s(x) ∈ As and x < r(4e + 3, s). Since R4e+3 will not be injured after stage sn it follows
by induction that, for t ≥ s, r(4e + 3, t) = r(4e + 3, s) and R4e+3 is satisfied at stage t. Thus R4e+3 will not
require attention after stage s.

Claim 2.5 For any n ≥ 0, requirement Rn is met.

P r o o f. By Claim 2.4 choose a stage s0 such that, for all n′ < n, Rn ′ does not require attention after stage
s0 and r(n′, s) = r(n′, s0) for every s ≥ s0 , and let z = maxn ′≤n r(n′, s0). We analyse the four cases for
requirement Rn .

(1) If Rn is a lowness requirement R4e , then w.l.o.g. we may assume that ϕAs
e,s(e) is defined for infinitely

many s. So, we may fix s ≥ s0 such that ϕAs
e,s(e) is defined. By definition, r(4e, s) is the use function of

ϕAs
e,s(e). Moreover, by choice of s0 , for any t ≥ s, r(4e, t) = r(4e, s) and R4e will not be injured at stage

t. This implies that A|r(4e, s) = As |r(4e, s), therefore ϕA
e (e) = ϕAs

e,s(e), and this proves that R4e is met.

(2) If Rn is a co-infinity requirement R4e+1 , then, for every s ≥ s0 ,

r(4e + 1, s) = r(4e + 1, s0) = min x[x ≥ e ∧ x $∈ As0 ] + 1.

Since R4e+1 will not be injured at any stage ≥ s0 , it follows that the least number x ≥ e in As0 will never
enter A. So R4e+1 will be met.

(3) If Rn is a simplicity requirement R4e+2 , then for the sake of contradiction assume that Rn is not met.
Then We is infinite and We ∩ A = ∅, whence R4e+2 is never satisfied. By infinity of We we may fix a
number x ∈ We such that x > z and a stage s ≥ max{s0 , 4e + 2} such that x ∈ We,s . Then R4e+2
requires attention at stage s, contrary to the choice of s0 .

(4) If Rn is an introimmunity requirement R4e+3 , then for the sake of contradiction assume that R4e+3 is
not met. By the latter we may fix a number x $∈ A such that ϕe(x) $= x, ϕe(x) > z and ϕe(x) $∈ A.
Moreover, since an introimmunity requirement which is satisfied at some stage s and not injured at any
stage t ≥ s is met, R4e+3 is not met at any stage s ≥ s0 . So, at the least stage s ≥ max{s0 , x} such that
ϕe,s(x) is defined, R4e+3 will require attention. But this contradicts the choice of s0 .

This completes the proof of Claim 2.5 and of the theorem.

3 A low bi-m-introimmune set

In this section we prove our second main result by constructing a low1 bi-m-introimmune set. We use a suf-
ficient condition for the bi-m-introimmunity based on strongly bi-m-immune sets. This condition is formalized
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in Lemma 3.2 below. First, we state the concept of strong bi-m-immunity, whose polynomial-time version was
introduced in [2].

Definition 3.1 A set X ⊆ N is strongly bi-m-immune if and only if every m-reduction of X to any set Y is
one-one almost everywhere.

Lemma 3.2 [3] Let f : N +−→ N be inductively defined by f(0) := 1 and f(n + 1) := maxu,v≤n+1{f(n),
ϕu (v) : ϕu (v) is defined} + 1. Then any strongly bi-m-immune set A satisfying

(3) (∃∞n)(A ∩ {x : n ≤ x ≤ f(n)} = ∅) ∧ (∃∞n)(A ∩ {x : n ≤ x ≤ f(n)} = ∅)

is bi-m-introimmune.
Theorem 3.3 There exists a low1 bi-m-introimmune set.

P r o o f. By a finite-extension method we construct a strongly bi-m-immune set A which satisfies condition
(3). We define A in stages, where the characteristic sequence of A of length ls is defined at stage s of the
construction, for appropriate numbers l0 < l1 < l2 · · · . Let f be the function defined in Lemma 3.2. For ease
of notation in the following we denote the initial segment of the characteristic sequence of A of length ls by the
binary string σs . We denote the length of a binary string σ with |σ|. For every natural number x with x ≤ |σ|,
σ(x) is the x-th symbol of σ. The construction will be recursive in the halting problem, i.e., the binary strings
σs can be uniformly computed with the aid of the oracle K, thus A ≤T K. It is sufficient to meet the following
requirements (for every e ≥ 0):

– R4e : (∃n ≥ e)(A ∩ {x : n ≤ x ≤ f(n)} = ∅),
– R4e+1 : (∃n ≥ e)(A ∩ {x : n ≤ x ≤ f(n)} = ∅),
– R4e+2 : If the set {(x, y) ∈ N × N : x $= y and ϕe(x) = ϕe(y)} is infinite, then there are numbers u and v

such that ϕe(u) = ϕe(v) and u ∈ A ↔ v $∈ A,

– R4e+3 : ϕA
e (e) is defined ↔ ϕσ4 e + 3

e (e) is defined.

Namely, the requirements R4e and R4e+1 guarantee (3), while the requirements R4e+2 guarantee that A is
strongly bi-m-immune. Therefore, by Lemma 3.2, A is bi-m-introimmune. Finally, since the construction will be
recursive in K, the requirements R4e+3 ensure that A is low1 . In fact, by R4e+3 , e ∈ A′ ↔ ϕA

e (e) is defined ↔
ϕσ4 e + 3

e (e) is defined. But the latter can be decided with the oracle K, so A′ ≤T K.
The definition of the initial segment σs of A, where the extension σs of σs−1 is chosen so that requirement

Rs will be satisfied, is as follows. Let σ−1 be the empty string. Given s ≥ 0 and σs−1 , for the definition of σs

distinguish the following four cases:

– s = 4e. Then set σs := σs−10f (|σs−1 |) .

– s = 4e + 1. Then set σs := σs−11f (|σs−1 |) .

– s = 4e + 2. If there is a proper extension τ of σs−1 such that there are numbers x and y with x < y < |τ |
satisfying τ(x) $= τ(y) and ϕe(x) = ϕe(y), then set σs := τ for the least such τ . Otherwise set σs :=
σs−10.

– s = 4e + 3. If there is a proper extension τ of σs−1 such that ϕτ
e (e) is defined, then set σs := τ for the least

such τ . Otherwise set σs := σs−10.

In order to show the correctness of the construction, first observe that σs is a proper extension of σs−1 . Thus
A := lims→∞ σs is well defined. Moreover, since the function f is computable with oracle K and since the
required properties of the string τ in case of s = 4e+2 or s = 4e+3 above are Σ0

1-properties, the construction is
recursive in K. Hence, it only remains to show that for every e ≥ 0 the requirement Re is met. In case of s = 4e
or s = 4e + 1 this is immediate by construction. In case of s = 4e + 2, w.l.o.g. assume that there are infinitely
many pairs of numbers (x, y) such that x < y and ϕe(x) = ϕe(y). Then there is such a pair where |σs | < y.
So, there is a proper extension τ of σs−1 such that x < y < |τ | and τ(x) $= τ(y). It follows by construction that
σs(x) $= σs(y), hence x ∈ A ↔ y $∈ A, for a pair (x, y) with ϕe(x) = ϕe(y). This proves that requirement R4e+2
is met. Finally, if s = 4e + 3 then either for all τ extending σs−1 it holds that ϕτ

e (e) is undefined or σs is chosen
so that ϕσs

e (e) is defined. Obviously, in the first case both ϕA
e (e) and ϕσs

e (e) are undefined, while in the second
case both ϕA

e (e) and ϕσs
e (e) are defined . Thus requirement R4e+3 is met too, which completes the proof.
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