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Abstract
We propose a scheme for entangling the optical and microwave output modes of the respective
cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side,
is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a
high-finesses optical cavity. We then show how this continuous variable entanglement can be
profitably used to teleport the non-Gaussian number state |1〉 and the superposition
(|0〉 + |1〉)/

√
2 from the microwave cavity output mode onto an output of the optical cavity

mode with fidelity much larger than the no-cloning limit.

PACS numbers: 03.67.Bg, 42.50.Lc, 42.50.Wk, 85.85.+j, 03.67.Hk, 03.67.Mn

(Some figures may appear in colour only in the online journal)

1. Introduction

The on-demand generation of optical single photons on a chip
is one of the most challenging and required results for the
successful implementation of quantum information devices.
Many proposals for the production of single optical photons
have been described and realized in recent decades. Early
experiments demonstrated photon generation from single
ions [1], atoms [2–4] and molecules [5]. The challenges
involved in overcoming the practical difficulties in isolating
single particles make their use as single-photon sources very
demanding. The first demonstration of a stable, triggered,
room temperature single-photon source was done using
a nickel nitrogen defect in micro-diamonds [6]. Another
alternative is to use quantum dots [7], although radiation
in all directions makes efficient collection difficult. It is
also possible to use twin photons produced in parametric
down-conversion to generate a ‘heralded’ source of single
photons, ‘heralded’ meaning that the single-photon state is
conditional on the detection of the other photon of the pair.
The production of 1550 nm wavelength photons in this way
was reported in [8–10]. Perhaps one of the main disadvantages
of the single-photon sources described so far is that the
emission is random. It is not possible to tell if a particular

excitation pulse has generated a single-photon emission until
that single photon is detected.

A true resource for quantum information on a chip is the
mapping of qubit states onto microwave photon states. These
photons are generated on-demand with a high repetition rate,
high efficiency and good spectral purity [11, 12]. The recent
production of single microwave photons, and superpositions
of photon states into an LC resonator from a superconducting
flux qubit [11, 13], and the creation of a microwave photon
counter [14] are important steps towards on-chip quantum
optics experiments.

In this work, we will show that the single microwave
photon generated on-demand in superconducting cavities, and
the superposition of number states, can be teleported with
high fidelity into a single photon and superposition of number
states at optical wavelength exploiting the entanglement
between the output fields mediated by a mechanical resonator
(MR).

Entanglement is the property possessed by a multipartite
quantum system when it is in a state that cannot be factorized
into a product of states or a mixture of such products. In
an entangled state the various parties share non-classical and
possibly non-local correlations, which are at the heart of
the counter intuitive quantum phenomenon. In recent years,
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a wide range of experimental and theoretical schemes have
been proposed to observe entanglement also in macroscopic
objects [15], for example, the proposed entanglement of
two mirrors of a ring cavity by using the radiation
pressure of the cavity mode [16]. Subsequently, different
schemes have been proposed to entangle nano- and micro
mechanical resonators with macroscopic and microscopic
systems, such as the entanglement of a nanomechanical
resonator with a Cooper pair box [17], or an optical
mode [18], for entangling two charge qubits [19] or two
Josephson junctions [20] via nanomechanical resonators, and
for entangling two nanomechanical resonators via trapped
ions [21] or Cooper pair boxes [22, 23]. One should also
mention the recent proposal of a protocol for entangling
mechanical micro-resonators with traveling wave light pulses,
which is not subject to stability conditions like the schemes
working in the steady state [24]. With this scheme it
could be possible to entangle and verify the optomechanical
entanglement by using two successive pulses; then continuous
variable (CV) teleportation would also be possible.

Owing to recent improvements in nanofabrication
techniques, a new scheme for entangling nanomechanical
resonators with the microwave field of superconducting
coplanar waveguide fields, without the mediation of Cooper
pair boxes, was proposed [25]. In particular, this CV
entanglement can be used to teleport an unknown quantum
state. Quantum teleportation [26] is the transfer of an
unknown quantum state from a sender (Alice) to a receiver
(Bob) by means of the entanglement shared by the two parties
and appropriate classical communication. The teleportation
is perfect and Bob recovers an exact copy of the state
teleported to him by Alice only if the quantum channel is
an ideal maximally entangled state. If we deal with qubits
represented by polarization states of photons, then we can
employ a pair of polarization entangled photons generated by
means of spontaneous parametric down-conversion, wherein
the entanglement is almost perfect [27, 28]. However, in
the case of continuous quantum variables [29, 30], an ideal
channel is an unphysical infinitely squeezed state. In quantum
optics, by considering the finite quantum correlations between
the quadratures in a two-mode squeezed state, Braunstein and
Kimble [30] proposed a realistic protocol employing a beam
splitter and homodyne measurements, which approaches
perfect teleportation in the limit of an infinite degree of
squeezing. This teleportation was first realized in [31] using
a Gaussian coherent state and then was successfully extended
to a non-Gaussian state in [32].

In [33], we proposed a specific optomechanical system
for the teleportation of Schrödinger’s-cat states. In the present
paper, we show how a CV quantum teleportation protocol
can be implemented in the same optomechanical system
for realizing the teleportation of a single-photon state and
even of a coherent superposition of number states from
microwave to optical frequencies. Combining this scheme
with the demonstrated ability to generate on-demand single
microwave photons, we could realise a deterministic source
of single optical photons.

We consider a hybrid, strongly quantum-correlated
system formed by a microwave cavity (MC) coupled to
a high-finesse optical cavity (OC) via a vibrating micro

Figure 1. Schematic description of the device under study.
A microwave transmission line source is coupled into a
superconducting microwave resonator. The capacitance of this
resonator is modulated by a bulk MR the motion of which
modulates the frequency of an OC with a fibre output coupler.

cantilever. The MC mode is indirectly coupled to an OC
mode via the common interaction with the vibrating micro
mechanical resonator [34]. We show that with the current
scheme, it is possible to generate a reversible stationary
CV entanglement between the output fields of optical and
microwave resonators, which gives a realistic device capable
of CV quantum teleportation for non-Gaussian single-photon
states and even the coherent superposition of two different
photon number states.

This paper is organized as follows. In section 2, we briefly
describe the proposed system [33] and derive the linearized
quantum Langevin equations (QLEs). In section 3, we study
the steady state of the system and quantify the entanglement
between the outputs of optical and microwave fields by using
the logarithmic negativity. In section 4, the fidelity of the
teleportation is studied for particular non-Gaussian states,
while the conclusions are summarized in section 5.

2. System dynamics

The system studied in this work is sketched in figure 1.
We assume an MR which, on the one side, is capacitively
coupled to a driven superconducting MC of resonant
frequency ωw and, on the other side, it is coupled to a
driven OC with resonant frequency ωc. Such a system
might be possible using the lumped-element superconducting
resonator with a free-standing drum-head capacitor recently
developed in [36]. In fact, by adding an optical coating,
the drum-head capacitor could also play the role of the
reflecting micromirror of a Fabry–Perot OC formed by a
second standard input mirror. The microwave and optical
cavities are driven at the frequencies ω0w = ωw −10w and
ω0c = ωc −10c, respectively. The Hamiltonian of the coupled
system reads [25, 34, 35, 37]

H =
p̂2

x

2m
+

mω2
m x̂2

2
+
8̂2

2L
+

Q̂2

2[C + C0(x̂)]
− e(t)Q̂

+ h̄ωca†a − h̄G0ca†ax̂ + ih̄Ec(a
†e−iω0ct

− aeiω0ct ), (1)

where (x̂, p̂x ) are the canonical position and momentum of an
MR with frequency ωm, (8̂, Q̂) are the canonical coordinates
for the MC, describing the flux through an equivalent inductor
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L and the charge on an equivalent capacitor C , respectively;
(a, a†) represent the annihilation and creation operators of
the OC mode ([a, a†] = 1), Ec =

√
2Pcκc/h̄ω0c is related

to the input driving laser, where Pc is the power of the
input laser and κc describes the damping rate of the OC,
G0c = (ωc/L)

√
h̄/mωm gives the optical radiation–pressure

coupling, where m is the effective mass of MR, and L is
an effective length, which depends upon the OC geometry.
The coherent driving of the MC with damping rate κw is
given by the electric potential e(t)= −i

√
2h̄ωwL Ew(eiω0wt

−

e−iω0wt ), where Ew =
√

2Pwκw/h̄ω0w with Pw the power of
the input microwave source. We finally stress that the optical
and microwave cavities might support additional degenerate
modes which we ignored in writing equation (1). This is
valid as long as one assumes small cavities, in which the
free spectral range (FSR) is much larger than the mechanical
frequency ωm. In this case, scattering of photons from the
driven mode into other cavity modes is negligible. This
guarantees that only one cavity mode participates in the
optomechanical interaction and the neighbour modes are not
excited by a single central frequency input laser.

The capacitive coupling between the MC and the MR
as a function of the resonator displacement x̂ is given by
C0(x̂). We expand this function to the lowest order around
the equilibrium position of the resonator corresponding to
a separation d between the plates of the capacitor, with the
corresponding bare capacitance C0.

The Hamiltonian (1) in the interaction picture with
respect to the frequencies of the two cavity pump fields,
written in terms of the raising and lowering operators

of the MC, i.e. b =

√
ωw L
2h̄ Q̂ + i

√
2h̄ωw L

8̂, b†([b, b†] = 1), the

dimensionless position and momentum operators q̂ =

√
mωm

h̄ x̂

and p̂ =
p̂x√

h̄mωm
( [x̂, p̂] = ih̄), and defining G0w =

µωw

2d

√
h̄

mωm
,

reads [25, 34]

H = h̄1wb†b + h̄1ca†a +
h̄ωm

2
( p̂2 + q̂2)− h̄G0wq̂b†b

− h̄G0cq̂a†a − ih̄Ew(b − b†)+ ih̄Ec(a
†
− a). (2)

However, the dynamics of the three modes is also affected by
damping and noise processes, due to the fact that each of them
interacts with its own environment. We can describe them
adopting a QLE treatment in which the Heisenberg equations
for the system operators associated with equation (2) are
supplemented with damping and noise terms.

The resulting QLEs linearized with respect to the semi-
classical steady state and written in terms of fluctuations of
quadrature operators [34] can be compactly written as

u̇(t)= Au(t)+ n(t), (3)

where

u(t)= [δq(t), δp(t), δXc(t), δYc(t), δXw(t), δYw(t)]
T (4)

and

n(t)= [0, ξ(t),
√

2κc X in
c ,
√

2κcY in
c ,
√

2κw X in
w ,
√

2κwY in
w ]T,

(5)

with the drift matrix defined by

A =



0 ωm 0 0 0 0

−ωm −γm Gc 0 Gw 0

0 0 −κc 1c 0 0

Gc 0 −1r −κc 0 0

0 0 0 0 −κw 1w

Gw 0 0 0 −1w −κw


, (6)

and Gc =
2ωc
L

√
Pcκc

mωmω0c(κ2
c +12

c)
, Gw =

µωw

d

√
Pwκw

mωmω0w(κ2
w+12

w)
, γm

the damping rate of the mechanical mode and ξ(t) the
Brownian noise acting on the mechanical motion, and X in

j

and Y in
j ( j = c,w) the shot noise quadratures entering the

respective cavities. All these noises can be considered as delta
correlated white noises [37, 38].

This dynamical system is obtained by linearization
around the semiclassical fixed point and we need to choose
the parameters of the system in such a way as to have stability.

3. Entanglement between output modes

The intracavity optical field (microwave field) fluctuation
δa(t) (δb(t)) and its output are related by the usual input–
output relation [38] which is characterized by δaout(t)=
√

2κcδa(t)− ain(t) (δbout(t)=
√

2κwδb(t)− bin(t)). The
output optical field δaout(t) satisfy the same commutation
relation as the input optical field ain(t), i.e. the only nonzero
commutator is [δaout(t), δaout(t)†] = δ(t − t ′) as well as for
microwave operators δbout(t). From the continuous output
field δaout(t) (δbout(t)), one can extract many independent
optical modes (microwave modes), by selecting different time
intervals or, equivalently, different frequency intervals [39]
depending on the details of the measurements made on the
output. One can define a generic set of N output modes by
means of the corresponding annihilation operators

δaout
k (t)=

∫ t

−∞

ds gk(t − s)δaout(s), k = 1, 2, . . . , N ,

(7)

where gk(t) is the causal filter function. In a typical
experimental setup, one of these modes is selected and mixed
in a beam splitter with a strong local oscillator prior to
detection on a photodetector resulting in a homodyne current.
This current can then be integrated over some appropriate time
window. Thus, we can define the measurement in terms of
filtered output modes when the temporal mode function of the
local oscillator is suitably chosen. The two output modes of
interest originate from two different cavities and consequently
describe two independent modes. Therefore, we can assume
the following filter functions in terms of the Heaviside step
function θ(t) as

g j (t)=

√
2
τ j
θ(t) e−(1/τ j +i� j )t , ( j = c,w), (8)

characterized by bandwidths 1/τ j and central frequencies,� j .
Because equation (3) is linear and the noises are

Gaussian, the covariance matrix (CM) completely describes
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all output moments of this system. The entanglement between
the optical and microwave output modes is then fully
determined by the CM Vout, whose matrix elements are

V out
i j (t)=

1
2 〈uout

i (t) uout
j (t)+ uout

j (t) uout
i (t)〉. (9)

Once the system’s parameters are chosen satisfying
the stability condition, by using the output cavity modes
equations (7) and (8), one can derive the following general
expression for the stationary output CM [37]:

Vout
=

∫
dωT̃(ω)(M̃ext(ω)+ Pout)

× Dext(M̃ext(ω)† + Pout)T̃†(ω), (10)

where T̃(ω) is the Fourier transforms of

T(t)=



δ(t) 0 0 0 0 0

0 δ(t) 0 0 0 0

0 0 Rc −Ic 0 0

0 0 Ic Rc 0 0

0 0 0 0 Rw −Iw

0 0 0 0 Iw Rw


, (11)

and M̃ext(ω)= (iωI + A)−1 with I the identity matrix, Pout =

Diag[0, 0, 1/2kc, 1/2kc, 1/2kw, 1/2kw], the drift matrix A is
given by equation (6), Dext = Diag[0, γm(2n̄b + 1), 2κc, 2κc,

2κw(2N (ωw)+ 1), 2κw(2N (ωw)+ 1)] is the diffusion matrix
due to existence of noise terms in the linearized QLEs (3),
R j =

√
2κ j Re[g j (t)], I j =

√
2κ j Im[g j (t)] ( j = c,w).

In order to establish the conditions under which the
output of optical and microwave modes are entangled, we
consider the logarithmic negativity EN, which can be defined
as [40]

EN = Max[0,−ln(2η−)], (12)

where η−
≡ 2−1/2(6(V′)−

√
6(V′)2 − 4 det V′)1/2 is the

minimum symplectic eigenvalue of the partially transpose
reduced CM, and we have used the 2 × 2 block form of the
reduced CM equation (10) as

V′
=

(
B C

CT B′

)
. (13)

Then

6(V′)≡ det B + det B′
− 2 det C, (14)

and

B =

(
V out

33 V out
34

V out
34 V out

44

)
, B′

=

(
V out

55 V out
56

V out
56 V out

66

)
,

C =

(
V out

35 V out
36

V out
45 V out

46

)
.

(15)

To determine the best entanglement between the output
of optical–microwave modes, we have plotted the logarithmic
negativity versus the normalized central frequency �c/ωm

at four different values of the normalized inverse bandwidth

Figure 2. EN at four different values of the normalized inverse
bandwidth ε = τωm versus the normalized frequency �c/ωm, at
fixed central frequency of the microwave output mode �w = ωm.
λ0c = 810 nm and power Pc = 3.4 mW, with ω0w/2π = 10 GHz
and microwave input power Pw = 42 mW.

ε = εw = εc = τωm at 1w = ωm, 1c = −ωm and �w = ωm in
figure 2, where we have assumed an experimental situation
representing a feasible extension of the scheme of [36], i.e.
we have assumed a lumped-element superconducting circuit
with a free-standing drum-head capacitor, which is then
optically coated to form a micromirror of an additional optical
Fabry–Perot cavity. We have taken parameters similar to that
of [36] for the MC and MR, that is, an MR with ωm/2π =

10 MHz, Q = 15 × 104, and an MC with ωw/2π = 10 GHz,
κw = 0.04ωm, driven by a microwave source with power Pw =

42 mW. The coupling between the two is determined by the
parameters d = 100 nm, µ= 0.013. We have considered a
lower mechanical quality factor, and resonator higher mass
m = 10 ng than that of [36], in order to take into account
the presence of the coating, which typically worsens the
mechanical properties. We have then assumed an OC of length
L= 1 mm and damping rate κc = 0.04ωm driven by a laser
with wavelength λ0c = 810 nm and power Pc = 3.4 mW. The
choice of these parameters satisfy the stability condition. As
is shown in figure 2, the higher the ε (small bandwidths) the
larger the stationary entanglement appears around the blue
detuned sideband at �c = −ωm. Thus, it could be possible to
control the entanglement of the microwave–optical modes by
varying the detection bandwidth τ−1. From the experimental
point of view this means that one can obtain an effective
entanglement distillation by appropriately filtering the output
fields. Similar results have also been obtained in the case of
entanglement of the output of optical modes and the movable
mirror [37].

4. Continuous variable teleportation between the
optical–microwave output modes

4.1. Single-photon state

We have seen that the vibrational mode of the MR realizes
an effective entanglement between optical and microwave
output modes. Since optical (microwave) traveling wave
fields (output modes) are typically used for CV quantum
information applications, this fact suggests the possibility

4
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of using the output microwave fields (optical fields) in the
manipulation and storage of CV quantum information.

The first experimental demonstration of a CV quantum
information protocol was the quantum teleportation of an
unknown coherent state of an optical mode onto another
optical mode illustrated in [31]. Quantum teleportation
requires the use of shared entanglement between two distant
stations (the quantum channel), Alice and Bob, and of a
classical channel for the transmission of the results of the Bell
measurement from Alice to Bob. The coupling between the
microwave and optical output modes establishes the required
quantum channel, i.e. the shared entangled state between the
output of optical mode in Alice’s hand and that of microwave
mode at Bob’s station. The teleportation scheme in the current
setting is the same as that proposed in [30] but exchanging the
role of Alice and Bob. In the scheme proposed in this paper
a single photon number state of the radiation field in the MC
is prepared by a verifier (Victor) in a source cavity and then
emitted towards Bob’s station. To implement a teleportation
protocol Bob needs to make a joint measurement on the
output of the source cavity and his part of the entangled
microwave–optical modes.

He can do this by mixing the filtered output of the
source cavity on a balanced beam splitter with the output of
the microwave mode. The two outputs of the beam splitter
are then subject to a homodyne measurement, using two
IQ mixers, with a pulsed local oscillator mode matched to
the single-photon source cavity. The integrated homodyne
current then produces two measurement results, X+ and
P−. Currently, the quantum efficiency of the homodyne
measurement is not high due to the need to amplify the
signal prior to using the IQ mixer; however, the use of
phase-dependent amplifiers, such as Josephson parametric
amplifiers [42], and the recent development of single
microwave-photon detectors [14] indicate that there should
not be many obstacles in improving the quantum efficiency.

These results are then passed through a classical channel
to Alice, who completes the protocol by implementing
conditional displacements of her component of the shared
entangled beams. These displacements will need to be
done using a pulsed local oscillator synchronous with and
phase-locked to that used for the microwave measurements
at Bob’s station. Upon receiving this information, Alice
displaces her part of the entangled state (the output of

optical mode) as follows: X̂out
c → X̂out

c +
√

2X+ and P̂out
c →

P̂out
c −

√
2P−. We emphasize that Alice and Bob do not

assume any prior knowledge of the input state and adhere to
unity-gain teleportation, so that the teleporter does not have
any restriction regarding the specific family of quantum states
it can faithfully teleport.

To quantify the quality of the teleportation protocol in
the system under study, one can use the fidelity that in the
case of a pure state |ψin〉, it is given by F = 〈ψin|ρout|ψin〉,
where ρout is the output state of the protocol. In our case, the
non-Gaussian single-photon state can only be teleported and
retrieved at the output port when F > Fth [41], a threshold
bound Fth = 2/3 known as the no-cloning limit. Thus, we
have a practical criterion to determine the successful transfer
of single-photon number state.

Figure 3. Teleportation fidelity F at four different values of
ε = τωm versus �c/ωm and for the single-photon state |1〉. The
other parameters are the same as in figure 2.

We thus restrict the discussion to the case when the input
state is a single photon number state |1〉 with the characteristic
function

φin
n=1(λ)= Ln=1(|λ|

2) exp(−|λ|2/2)

= (1 − |λ|2) exp(−|λ|2/2), (16)

where Ln(x) is the Laguerre polynomial of degree n. Our
quantum channel is a Gaussian channel with the corres-
ponding characteristic function 8ch(Eξ)= exp(−Eξ T Vch Eξ/4 +
i Ed T Eξ) (where Eξ T

= (Xout
c , Y out

c , Xout
w , Y out

w ) is the vector
in the phase space of variables and Vch is the reduced
CM V′). We also assume that Alice and Bob share a
zero-displacement state, implying that Ed = E0. Thus, the
fidelity of the teleportation can be written in terms of the
channel and the input state as [43]

F = π−1
∫

d2η|φin(η)|2[φch(η∗, η)]∗. (17)

By plugging equation (16) into (17) and after some algebraic
rearrangement, we obtain

F = π−1
∫

d2η(1 − |η|2)2exp(− EµT0 Eµ), (18)

where EµT
= [ηI,−ηR], (η = ηR + iηI) and 0 = 2Vcoh + ZBZ +

ZC + CTZ + B′,Z = Diag(1,−1), Vcoh = Diag(1/2, 1/2).
The fidelity of teleportation after performing the integral

is given by

F =
1

√
det 0

(
1 +

1

det 0

[
1
2 − (011 +022)

]

+
3[02

11 +02
22 + 202

12]

4(det 0)2

)
. (19)

Figure 3 shows the fidelity of the teleportation protocol
between the microwave and optical output modes versus
normalized central frequency �c/ωm in the case of four
different values of ε with the same data of figure 2. Clearly,
at 1c = ωm, 1w = −ωm and �w = ωm the fidelity is highly
peaked around �c = −ωm, where it is higher than the

5
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Figure 4. Teleportation fidelity F at four different values of
ε = τωm versus �c/ωm for the coherent superposition of number
states 1

√
2
(|0〉 + |1〉). The other parameters are the same as in figure 2.

no-cloning limit. Furthermore, similar to the logarithmic
negativity, the fidelity of the protocol can be controlled by
varying the frequency bandwidth τ−1. It is interesting that
for large enough values of frequency bandwidth τ−1 the
teleportation fidelity is always greater than the no-cloning
limit of 2/3 very near �c = −ωm, which shows the great
practical potential of this system to teleport a single-photon
state.

4.2. Superposition state

Let us now consider the special case in which the input state
is a coherent superposition of number states |ψ in

〉 =
1

√
2
(|0〉 +

|1〉). The Wigner characteristic function of this state is
given by

φin(η)= Tr(ρeηa†
−η∗a)=

1
2 (2 − |η|2 + 2ηR)e−|η|2/2. (20)

The fidelity of teleportation can be obtained by substituting
φin into equation (17), which reads as

F =
1

4π

∫
d2η(4 + |η|4 + 4η2

R − 4|η|2 + 8ηR − 4|η|2ηR)

× exp(− EµT0 Eµ). (21)

Performing the integral, we obtain the fidelity of teleportation
as follows:

F =
1

4
√

det 0

(
4 +

1

det 0

[
1

2
− 2022

]
+

3[02
11 +02

22 + 202
12]

4(det 0)2

)
.

(22)

The teleportation fidelity for the superposition states equa-
tion (22) is shown in figure 4. We have chosen a particular
superposition with fixed relative phase; however, a similar
result would be obtained considering a more general
superposition of number states. In this case as well, we have a
small region around �c = −ωm where the fidelity is higher
than the no-cloning threshold, showing the possibility of
teleporting qubit states from microwave to optical frequency
on demand. Of course, also the reverse teleportation would be
possible due to the symmetry of the device.

5. Conclusion

We have proposed a scheme for the realization of the CV
teleportation of a single-photon state and the superposition
of two number states of radiation between the outputs
of optical and microwave modes by means of a micro
mechanical resonator. As we have shown, the MR leads to
the entanglement between an output of optical mode and an
output of microwave mode. This entanglement can be used
as a realistic Gaussian quantum channel to approach the CV
quantum teleportation. We have shown that for experimentally
feasible parameters and at optical and microwave frequencies
the protocol is identical to the standard Braunstein–Kimble
protocol [30], and the proposed scheme is able to teleport
non-Gaussian number states and its superpositions with
fidelity well above the no-cloning limit.

A similar result was obtained in [44], where a model to
interconvert stationary and photonic qubits mediated by an
MR was proposed. In our present scheme, the state transfer
is obtained by using a standard CV teleportation protocol
between the two outputs of the device, which are strongly
entangled, while the work [44] uses a different setting where
the excitations from the qubit are transferred to the MR and
finally mapped onto a traveling photon.

From the experimental point of view the realization of
our teleportation experiment lies on the possibility of making
homodyne measurements at microwave frequency, as we
have discussed above. At the moment the single photon and
the superposition of number states are generated within the
MC [11] interposing a Josephson phase qubit between the
superconducting MC and a classical signal. The measurement
of the Wigner function of the prepared states is also obtained
by measuring the final state of the qubit, repeating a number
of times the states to be measured. Therefore, even the
single-microwave source should be implemented in such
a way that the single-microwave photon and the number
states superposition exit the microwave source cavity with
a well-defined frequency. This could be obtained by using
a selective filter function giving an output signal at the
same frequency of the entangled output in Bob’s hands.
By repeating several times the preparation of the state and
synchronizing the homodyne measurements at the Bob site
with the Alice receiver, one should be able to reconstruct the
Wigner function by a tomographic apparatus such as the one
in [45] used for reconstructing the single photon Fock state at
optical wavelength.

It is worth mentioning here that the same result could
be obtained if, instead of an MC, the second cavity were
another OC at a different frequency. In that case the device
would be able to convert single photons and number states
superpositions at different frequencies, potentially, at will.
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