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Abstract. We consider the conductivity problem in an array structure with
square closely spaced absolutely conductive inclusions of the high concentra-
tion, i.e. the concentration of inclusions is assumed to be close to 1. The
problem depends on two small parameters: ε, the ratio of the period of the
micro-structure to the characteristic macroscopic size, and δ, the ratio of the
thickness of the strips of the array structure and the period of the micro-
structure. The complete asymptotic expansion of the solution to problem is
constructed and justified as both ε and δ tend to zero. This asymptotic expan-
sion is uniform with respect to ε and δ in the area {ε = O(δα), δ = O(εβ)} for
any positive α, β.

1. Introduction: statement of the problem. A lot of engineering problems
lead to the PDE’s stated in some domains of a small measure. One of such examples
is the so called array structures (Fig. 1) introduced in [11], [12] and then studied
by several authors in [1], [5], [13], [14], [15].

These array structures are presented by domains in Rs (s = 2, 3) depending on
two small parameters ε and δ. Here ε stands for a period of the microstructure
(while the macroscopic characteristic size is taken equal to 1), and every periodic
cell consists of thin strips (rods in 3-dimensional case) of thickness εδ, i.e. δ is the
ratio of the thickness to the length of each rod.

As mentioned above, the PDE’s modeling the physical field or process, are set
in this array structure, and at the boundary Neumann or Dirichlet conditions are
prescribed (cf. [11], [12], [1], [5], [13], [14], [15], [9], [10]). In [12] the complete
asymptotic expansion was constructed for a solution of the conductivity equation,
and in [13] for a solution of the elasticity equations. In particular, in [13] it was
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Figure 1. Rectangular array

proved that if ε
δ = const or ε

δ → ∞ then there is no convergence to the solution of
formally homogenized problem; the leading term of the solution was constructed; it
may be not bounded. For the details we refer to the book [14].

In the present paper we consider a composite rod which consists of one layer of
the array structure Ωεδ and infinitely conductive inclusions occupying the “holes”
Gi of such structure (Fig. 2).

Figure 2. Domain Ωεδ

The leading term of the effective conductivity of such structure (as ε → 0 followed
by δ → 0) was obtained in [6] by the network approximation technique (see [2], [3],
[4]). Below we construct an asymptotic expansion of the solution independently of
the order of passage to the limit as ε → 0, δ → 0.

More precisely, we consider a domain Ωεδ = Πε�
⋃

i∈Z
Gi

εδ , where Πε =
{
x ∈ R2 :

|x2| < ε
2

}
,

Gi
εδ =

{
x ∈ R2 : iε +

εδ

2
< x1 < iε +

(
1 − δ

2

)
ε, |x2| <

ε (1 − δ)

2

}
,

in which the Laplace equation is set

−∆uεδ = f (x1) , x ∈ Ωεδ (1)

with the Neumann boundary condition at the boundary ∂Πε :

∂uεδ

∂x2
= 0, x ∈ ∂Πε (2)

and with conditions of infinitely conductive inclusions at the boundary of each Gi
εδ ,

that is
uεδ = Ci,∫

Γi
εδ

∂uεδ

∂n
dS = 0, Γi

εδ = ∂Gi
εδ

(3)
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where Ci is unknown constant, f ∈ C∞(R) is a T -periodic function of x1 indepen-
dent on ε (the number T is divisible by ε), such that
∫

Ωεδ

T{x1∈(0,T )}
f(x1) dx = 0,

∫ T

0

f(x1) dx1 = 0, uεδ is T -periodic function of x1.

(4)
Our goal is to study an asymptotic of the solution uεδ to the problem (1)÷(3) as

ε → 0+ and δ → 0+. Extend uεδ by constant Ci on every Gi
εδ. The existence and

the uniqueness of solution uεδ of this problem, such that∫

(0,T )×(− ε
2
, ε
2 )

uεδ (x) dx = 0 (5)

is proved in Appendix 1.

Remark 1. Assume that f and f(x1 − T
2 ) are odd functions, T

2 is divisible by ε.
Then there exists a unique solution of problem (1)÷(3), (5) such that

uεδ|x1=0
= 0 and uεδ|

x1=
T
2

= 0.

Indeed, we observe that in our assumption uεδ (·, x2) is odd, too. In fact if we
consider −uεδ (−x1, x2) , we have

∆x1x2
(−uεδ (−x1, x2)) = −∆y1y2

(uεδ (y1, y2)) |y1=−x1,y2=x2

= −f (y1) |y1=−x1
= −f (−x1) = f (x1) .

Moreover −uεδ (−x1, x2) satisfies conditions (2), (3) and (5). Then it is also a
solution of problem (1)÷(3), (5). By uniqueness of solution we have

uεδ (x1, x2) = −uεδ (−x1, x2) .

If x1 = 0, the last equality is true if and only if uεδ (x1, x2) = 0. So

uεδ (x1, x2) = 0 when x1 = 0. (6)

Since f(x1 − T
2 ) is odd and by periodicity we see that

uεδ (x1, x2) = 0 if x1 =
T

2
. (7)

So, the T -periodic in x1 solution of problem (1)÷(3), (5) is also a solution of more
usual boundary value problem (1)÷(3), (6), (7). All results of Appendix 1 are still
valid for solution of this problem (Fig. 3).

Figure 3. Finite bar

The paper is organized as follows. First we recall the asymptotic expansion tech-
nique in the case of finitely conductive inclusions (we follow [14] section 2.2.2). Then
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in section 2.1, we consider the simplified one-dimensional problem with absolutely
conductive inclusions. This auxiliary problem helps to understand the behavior of
the solutions of cell problems inside the inclusions and in the vertical strips of the
domain Ωεδ. These solutions are used further in section 2.2 for the construction of
the complete asymptotic expansion of the solution of problem (1)÷(3), (5). In par-
ticular, the solutions of one-dimensional cell problems of section 2.1 are modified in
the neighborhoods of the corners of the periodic cell outside inclusions, as well as in
the horizontal strips of Ωεδ. The “corner correctors” are functions of the boundary
layer type: they are exponentially decaying as the distance from the corner divided
by εδ tends to infinity.

Finally a priori estimate for (1)÷(3), (5) is applied to prove the estimate of
order (εK−1 + δK−1)

√
ε in H1−norm for the K−th partial sum of the truncated

asymptotic expansion (it is uniform with respect to ε and δ such that ε = O(δα)
and δ = O(εβ) for any positive α, β). This a priori estimate (as well as the existence
and uniqueness of solution of problem (1)÷(3), (5)) is proved in Appendix 1. The
exponential decaying of the solutions of the corner boundary layer problems (58),
(59) is proved in Appendix 2: for each infinite branch the problem is periodically
extended and reduced to the case [8].

Recall the asymptotic expansion method for the case of finite conductivity of
inclusions described in [14] section 2.2.2. That is, consider the problem, which is
similar to (1)÷(3), (5) but with finite conductivity X (x

ε ) (since there is no depen-
dence on the parameter δ here we drop such a subscript):

div
(
X
(x

ε

)
∇uε

)
= f (x1) , x ∈ Πε (8)

∂uε

∂x2
= 0, x ∈ ∂Πε (9)

where X (ξ1, ξ2) is a 1-periodic differentiable function of ξ1, ξ2, X (ξ1, ξ2) > 0 on
Π1 = [0, 1] × [0, 1] (the differentiability condition here is not important: see [14]).

Suppose that f (x1) is T -periodic in x1 and
∫ T

0
f (x1) dx1 = 0; we seek for a T -

periodic in x1 solution uε of problem (8), (9) with vanishing average on Uε =
[0, T ]× [− ε

2 , ε
2 ]. Assume that X (ξ1, ξ2) = X (ξ2, ξ1) .

We look for the asymptotic solution uε in the following form:

u(K)
ε =

K+1∑

ℓ=0

εℓNℓ

(x

ε

)
Dℓ

1v
(K)
ε (x1), (10)

for some K > 0, where Nℓ(ξ), with ξ = x
ε , is 1-periodic function of ξ1, N0 = 1,

v(K)
ε =

K∑

j=0

εjvj(x1), vj ∈ C∞(R), (11)

and Dℓ
1 = ∂ℓ

∂xℓ
1

. Denote Akj = X (ξ) δkj , where δkj is the Kronecker symbol.

Substituting (10) into (8) yields:

−
K+1∑
ℓ=2

εℓ−2Hℓ

(x

ε

)
Dℓ

1v
(K)
ε (x1) + εKrε(x) = f(x1), x ∈ Ωεδ, (12)
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this relation is supposed to be true up to the terms of order εK, here the discrepancy
function

rε =





2∑

k=1

∂

∂ξk
(Ak1NK+1 (ξ)) +

2∑

j=1

A1j
∂NK+1 (ξ)

∂ξj
+ A11NK (ξ)





∣∣∣∣∣∣
ξ =

x

ε

·

DK+2
1 v(K)

ε (x1) + εA11NK+1

(x

ε

)
DK+3

1 v(K)
ε (x1)

can be estimated by
‖rε‖L2,C ≤ C,

(see below) and

Hℓ(ξ) = LξξNℓ +

2∑

k=1

∂

∂ξk
(Ak1Nℓ−1) +

2∑

j=1

A1j
∂Nℓ−1

∂ξj
+ A11Nℓ−2

= LξξNℓ +
∂

∂ξ1
(XN ℓ−1) + X ∂Nℓ−1

∂ξ1
+ XN ℓ−2 (13)

with operator Lξξ = divξ (X (ξ)∇ξ). Hereafter we set Nm = 0 for m < 0.
Substituting (10) into the boundary condition (9) gives us:

∂u
(K)
ε

∂n
=

K+1∑

ℓ=1

εℓ−1 ∂Nℓ

∂ξ2
Dℓ

1v
(K)
ε (x1) = 0. (14)

We require that
(a) Hℓ(ξ) = hℓ, ℓ > 0,

(b)
∂Nℓ

∂nξ
= 0, ξ2 = ±1

2
,

(15)

where hℓ is a constant, defined below in Remark 2.
Note that for Lξξ = △ (that is, Akj = δkj) the equality (13) becomes:

Hℓ(ξ) = △Nℓ + 2
∂Nℓ−1

∂ξ1
+ Nℓ−2. (16)

Remark 2. (Solvability of the problem (15)) There exists (up to a constant)

a solution to problem (15) if and only if hℓ =
〈∑2

j=1 A1j
∂Nℓ−1

∂ξj
+ A11Nℓ−2

〉
, where

〈·〉 is an average over Π1. In particular, if Lξξ = △, one has hℓ =
〈

∂Nℓ−1

∂ξ1

+ Nℓ−2

〉
.

For ℓ = 0, 1, 2 we have h0 = 0, h1 = 0, h2 =
〈∑2

j=1 A1j
∂N1

∂ξj
+ A11

〉
= 0,

respectively, and when ℓ = 1 the problem (15) is the standard cell problem:

LξξN1 +
2∑

k=1

∂

∂ξk
Ak1 = 0, ξ ∈ Y,

∂N1

∂nξ
= 0, ξ2 = ± 1

2 ,

(17)

where Y =
(
− 1

2 , 1
2

)
×
(
− 1

2 , 1
2

)
. (For Lξξ = △ the equation is △N1 = 0). From (12)

it follows:

−
K+1∑

ℓ=2

εℓ−2 hℓ Dℓ
1 v(K)

ε (x1) + εKrε(x) = f(x1), (18)

which is called the higher order homogenized equation.
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Next we find coefficients of the expansion (11) by substituting it into (18):

−
K+1∑

ℓ=2

K∑

j=0

εℓ+j−2 hℓ Dℓ
1 vj(x1) + εKrε(x) + εK+1r1

ε(x1) = f(x1),

or

−
2K−1∑

m=0

εm
∑

0≤j≤min(m,K)

hm−j+2 Dm−j+2
1 vj(x1)+εKrε(x)+εK+1r1

ε(x1) = f(x1). (19)

This relation is supposed to be true up to the terms of order εK, and the second
remainder is

εK+1r1
ε(x1) =

2K−1∑

m=K+1

εm
∑

0≤j≤K
hm−j+2 Dm−j+2

1 vj(x1)

such that ∥∥εK+1r1
ε(x1)

∥∥
L∞(R)

≤ cεK+1.

Thus, for any m = 0, . . . ,K the function vj(x1) satisfies the following equation:

−
m∑

j=0

hm−j+2 Dm−j+2
1 vj(x1) = f(x1) δm0, (20)

with periodic boundary conditions. In particular, for m = 0:

−h2 D2
1 v0 = f(x1),

v0 is 1 − periodic in x1,
(21)

for m = 1:
−h2 D2

1 v1 − h3 D3
1 v0 = 0,

v1 is 1 − periodic in x1,
(22)

for 1 < m ≤ K:

−h2 D2
1 vm −

m−1∑
j=0

hm−j+2 Dm−j+2
1 vj = 0,

vm is 1 − periodic in x1.

(23)

The solvability condition

for m = 0 :

∫ T

0

f(x1) dx1 = 0

is satisfied due to the assumption made above, while
∫ T

0

h3 D3
1 v0 dx1 =

(
h3 D2

1 v0

)∣∣T
0

= 0, for m = 1,

as well as ∫ T

0

m−1∑

j=0

hm−j+2 Dm−j+2
1 vj dx1 = 0, for m > 1 (24)

is satisfied automatically due to the periodicity of the function vj .
After this step, the equation (8) is satisfied up to a remainder εKrε(x)+εK+1r1

ε(x1).
Applying the standard a priori estimate, we obtain∥∥∥u(K)

ε − uε

∥∥∥
H1((0,T )×(− ε

2
, ε
2
))

≤ cεK
√

ε, (25)

which justifies the above procedure.
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In the next section we apply the same methods to the problem (1)÷(3), (5). It
should be modified in order to take into account the new boundary conditions (3)
and the dependency of the domain Ωεδ on the second small parameter δ.

Remark 3. Extending problem (1)÷(3), (5) ε−periodically with respect to x2, one
can see that problem (8), (9) set in R2 has a solution which tends to v0, and v0 satis-
fies equation (21) equivalent to the equation −h2∆v0 = f (x1) (because v0 depends
only on x1). It means that h2 is the effective conductivity of the periodic medium
in x1 direction. Here the effective conductivity is defined as the conductivity of an
homogeneous medium mechanically equivalent to the heterogeneous one. It means
that for any smooth right hand side f the solution of the conductivity equation for
the heterogeneous medium is close to the solution of the conductivity problem of
the effective homogeneous medium. We recall that if X = +∞ in the inclusions
and X = 1 out of inclusions, then it is proved in [14], p. 316 that h2 = 1

δ + o
(

1
δ

)
as

δ → 0. Let us mention here that if we consider a perforated medium and the right
hand side has a support out of the holes then the effective conductivity is defined
as h2 multiplied by the measure of the periodic cell without the hole in dilated ξ−
variables, that is, one minus the volume concentration of the holes. This factor can
be explained by the following reason: in the mechanically equivalent homogeneous
medium the macroscopically equivalent right hand side is ”diffused” everywhere,
even inside the holes. It means that it is equal to the original f multiplied by the
mentioned above factor.

2. Asymptotic expansion of the problem for a strip with infinitely con-
ductive inclusions. We apply now the technique presented in the previous section
to the case of the infinitely conductive inclusions, that is, to problem (1)÷(3), (5).

For ε → 0+ and δ → 0+ we are looking for the solution of (1)÷(3), (5) in the
form of an asymptotic expansion:

u
(K)
εδ =

K+1∑

ℓ=0

εℓNℓ

(x

ε

)
Dℓ

1v
(K)
εδ (x1), (26)

for some K > 0, where

v
(K)
εδ (x1) =

K∑

j,r=0

εjδrvjr(x1), (27)

where, as before, Nℓ is 1-periodic continuous function of ξ1 = x1

ε , N0 = 1.

2.1. Simplified one-dimensional problem. First, we consider a simplified one-
dimensional problem for a strip with vertical infinitely conductive inclusions (Fig.
4):

Ĝi
εδ =

{
x ∈ R2 : iε +

εδ

2
< x1 < iε +

(
1 − δ

2

)
ε, |x2| <

ε

2

}

Then the solution of (1)÷(3), (5) in such a domain depends on x1 only and such
problem can be rewritten as (x1 is denoted by x)

u′′
εδ = f(x), x ∈ Ω̂εδ, (28)
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Figure 4. Simplified one-dimensional structure

where Ω̂εδ =
⋃

i∈Z

{
x ∈ R : |x − iε| < εδ

2

}
with boundary conditions

uεδ = Ci, x ∈
(
iε + δε

2 , iε + (1 − δ
2 )ε
)
,

− duεδ

dx

∣∣∣∣
x=iε+ δε

2

+
duεδ

dx

∣∣∣∣
x=iε+(1− δ

2
)ε

= 0,
(29)

or due to periodicity

(a) uεδ = Ci, x ∈
(

δε
2 , (1 − δ

2 )ε
)
,

(b) − duεδ

dx

∣∣∣∣
x= δε

2

+
duεδ

dx

∣∣∣∣
x=(1− δ

2
)ε

= 0,
(30)

where Ci is an unknown constant. As before, we seek for a T -periodic solution uεδ.
Substitution of the expansion (26) into equation (28) yields (ξ1 is denoted by ξ):

d2Nℓ

dξ2
+ 2

dNℓ−1

dξ
+ Nℓ−2 = hℓ, in

(
0,

δ

2

)⋃(
1 − δ

2
, 1

)
, ℓ ≥ 1, (31)

with hℓ =
〈

dNℓ−1

dξ + Nℓ−2

〉
1

+ 1
δ

(
dNℓ

dξ + Nℓ−1

)∣∣∣
ξ=δ/2−0

ξ=−δ/2+0
where 〈·〉1 = 1

δ

∫ δ/2

−δ/2 ·dξ.

Note that N0 = 1 and Nℓ = 0 for ℓ < 0.
We remark that condition (30a) means that duεδ

dx = 0 in
(

δ
2ε, (1 − δ

2 )ε
)
, then after

substituting (26) into this equation we have:

K∑

ℓ=1

εℓ−1

(
dNℓ

dξ
+ Nℓ−1

)
dℓvεδ

dxℓ
= 0, in

(
δ

2
ε, (1 − δ

2
)ε

)
, (32)

up to a remainder

r
(3)
i,εδ (x) = εKNK (ξ)

dK+1vεδ (x)

dxK+1

from which we obtain the following equations for Nℓ:

dNℓ

dξ
+ Nℓ−1 = 0, in

(
δ

2
, 1 − δ

2

)
. (33)

Remark 4. The remainder r
(3)
i,εδ shows that the solution does not belong to the

subspace of functions equal to constant on the inclusions. So we will have to think

about the construction of a special corrector, equal to −
∫

r
(3)
i,εδ dx1 on inclusions

placing the asymptotic expansion into the space of functions, constant on inclusions.
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Condition (30b) implies:

−
K∑

ℓ=1

εℓ−1

(
dNℓ

dξ
+ Nℓ−1

)
dℓvεδ

dxℓ

∣∣∣∣∣x = δ
2ε

ξ = δ
2

+
K∑

ℓ=1

εℓ−1

(
dNℓ

dξ
+ Nℓ−1

)
dℓvεδ

dxℓ

∣∣∣∣∣x = (1 − δ
2 )ε

ξ = − δ
2

= 0,

(34)

up to the remainder

r
(2)
K (x) = −εKNK (ξ)

dK+1vεδ

dxK+1

∣∣∣∣x = δ
2ε

ξ = δ
2

+ εKNK (ξ)
dK+1vεδ

dxK+1

∣∣∣∣x = (1 − δ
2 )ε

ξ = − δ
2

.

The function vεδ is expanded into the Taylor series around a point x0 ∈
(

δε
2 , (1 − δ

2 )ε
)
:

vεδ(x) =

M∑

j=0

v
(j)
εδ (x0)

j!
(x − x0)

j +
1

(M + 1)!
v
(M+1)
εδ (y)(x − x0)

M+1, (35)

for some y ∈ (x0, x). For the point x0 = ε
2 we have the following:

(x − x0)|x= δ
2

ε = ε

(
δ − 1

2

)
,

(x − x0)|x=(1− δ
2
)ε = ε

(
1 − δ

2

)
.

Hence,

dℓvε

(
δ
2ε
)

dxℓ
=

M∑

j=0

dℓ+jvεδ(x0)

dxℓ+j

(
δ − 1

2

)j
εj

j!
+ R+

ε,M,l, (36)

dℓvε

(
(1 − δ

2 )ε
)

dxℓ
=

M∑

j=0

dℓ+jvεδ(x0)

dxℓ+j

(
1 − δ

2

)j
εj

j!
+ R−

ε,M,l. (37)

where ∣∣∣R±
ε,M,l

∣∣∣ ≤ 1

(M + 1)!
sup

0≤j≤K+M

(
sup
[0,1]

∣∣∣∣
djvεδ(x)

dxj

∣∣∣∣

)
εM+1

After substituting (35), (36), (37) into (34) we obtain:

K∑

ℓ=1

M∑

j=0

εℓ−1

(
dNℓ

dξ
+ Nℓ−1

)(
δ

2

)
dℓ+jvε(x0)

dxℓ+j

(
δ − 1

2

)j
εj

j!
+

+
K∑

ℓ=1

M∑

j=0

εℓ−1

(
dNℓ

dξ
+ Nℓ−1

)(
1 − δ

2

)
dℓ+jvε(x0)

dxℓ+j

(
1 − δ

2

)j
εj

j!
= 0,

(38)

up to remainders

r
(2)
K =

K∑

ℓ=1

R+
ε,M,ℓ +

K∑

ℓ=1

R−
ε,M,ℓ,

where x0 = ε
2 . Thus, due to periodicity of Nℓ (38) can be rewritten as follows:

∑

±
∓
∑

r≥1

εr−1 drvε(x0)

dxr

r∑

j=0

1

j!

(
dNr−j

dξ
+ Nr−j−1

)(
± δ

2

)(
±δ − 1

2

)j

= 0, (39)
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(also up to above remainders) from what we obtain

∑

±
∓

r∑

j=0

1

j!

(
dNr−j

dξ
+ Nr−j−1

)(
± δ

2

)(
±δ − 1

2

)j

= 0, for r = 1, 2, . . . (40)

Now slightly move coordinate system so that its origin is in the middle of the
inclusion. Taking into account the periodicity of the function Nℓ and (39) we obtain
the following problem for Nℓ, ℓ ≥ 2:

(a)
d2Nℓ

dξ2
+ 2

dNℓ−1

dξ
+ Nℓ−2 = hℓ, in

(
−1

2
,
δ − 1

2

)⋃(
1 − δ

2
,
1

2

)
,

where

hℓ =

〈
dNℓ−1

dξ
+Nℓ−2

〉

1

+δ−1
∑

±
∓

r∑

j=1

1

j!

(
dNr−j

dξ
+Nr−j−1

)(
±δ

2

)(
±δ−1

2

)j

,

(b)
dNℓ

dξ
+ Nℓ−1 = 0, in

(
δ − 1

2
,
1 − δ

2

)
,

(c)
∑

±
∓

ℓ∑

j=0

1

j!

(
dNℓ−j

dξ
+ Nℓ−j−1

)(
± δ

2

)(
±δ − 1

2

)j

= 0,

(d) Nℓ is 1-periodic and continuous.
(41)

In particular, the first three problems for N0, N1 and N2 are as follows.

(a) N0 = 1, in

(
−1

2
,
δ − 1

2

)⋃(
1 − δ

2
,
1

2

)
,

(b)
dN0

dξ
= 0, in

(
−1 − δ

2
,
1 − δ

2

)
,

(c) −dN0

dξ

∣∣∣∣
ξ=− 1−δ

2

+
dN0

dξ

∣∣∣∣
ξ= 1−δ

2

= 0,

(d) N0 is 1-periodic and continuous in

(
−1

2
,
1

2

)

(42)

hence, N0 ≡ 1 in (− 1
2 , 1

2 ). Also

(a)
d2N1

dξ2
= h1 = 0, in

(
−1

2
,−1 − δ

2

)⋃(
1 − δ

2
,
1

2

)
,

(b)
dN1

dξ
+ 1 = 0, in

(
−1 − δ

2
,
1 − δ

2

)
,

(c) −
(

dN1

dξ
+ 1

)∣∣∣∣
ξ=− 1−δ

2

+

(
dN1

dξ
+ 1

)∣∣∣∣
ξ= 1−δ

2

= 0,

(d) N1 is 1-periodic and continuous in

(
−1

2
,
1

2

)

(43)

hence (see Fig. 5),

N1(ξ) =





1 − δ

δ
ξ +

1 − δ

2δ
, in

(
−1

2
,−1 − δ

2

)

−ξ, in

(
−1 − δ

2
,
1 − δ

2

)

1 − δ

δ
ξ − 1 − δ

2δ
, in

(
1 − δ

2
,
1

2

)
.

(44)
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Figure 5. Function N1(ξ)

Also consider problem for N2:

(a)
d2N2

dξ2
+ 2

dN1

dξ
+ 1 = h2, in

(
−1

2
,−1 − δ

2

)⋃(
1 − δ

2
,
1

2

)
,

with h2 =

〈
dN1

dξ
+ 1

〉

1

+
1 − δ

δ

(
dN1

dξ
+ 1

)∣∣∣∣
ξ=± 1−δ

2

=
1

δ2
,

(b)
dN2

dξ
+ N1 = 0, in

(
−1 − δ

2
,
1 − δ

2

)
,

(c)
∑

±
∓
(

dN2

dξ
+ N1

)∣∣∣∣
ξ=∓ 1−δ

2

∓
(
∓1 − δ

2

) (
dN1

dξ
+ 1

)∣∣∣∣
ξ=± 1−δ

2

= 0,

(d) N2 is 1-periodic and continuous in

(
−1

2
,
1

2

)

(45)
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_
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8

2
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Figure 6. Function N2(ξ)

Hence,

N2(ξ) =





1

2

(
1 − δ

δ

)2(
ξ +

1

2

)2

, in

(
−1

2
,−1 − δ

2

)

ξ2

2
, in

(
−1 − δ

2
,
1 − δ

2

)

1

2

(
1 − δ

δ

)2(
ξ − 1

2

)2

, in

(
1 − δ

2
,
1

2

)
(46)
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For simplicity we move the system of coordinates so that perfectly conducting
inclusion occupies the interval (− 1

2 ,− δ
2 )
⋃

( δ
2 , 1

2 ). Thus, two functions N1(ξ) and
N2(ξ) would be

N1(ξ) =





−ξ − 1

2
, in

(
−1

2
,− δ

2

)

1 − δ

δ
ξ, in

(
− δ

2
,
δ

2

)

−ξ +
1

2
, in

(
δ

2
,
1

2

)
(47)

N2(ξ) =





(−ξ − 1/2)2

2
, in

(
−1

2
,− δ

2

)

1

2

(
1 − δ

δ

)2

ξ2, in

(
− δ

2
,
δ

2

)

(−ξ + 1/2)2

2
, in

(
δ

2
,
1

2

)
(48)

(see Fig. 7, 8).

Figure 7. Function N1(ξ)
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Figure 8. Function N2(ξ)

The goal of this section was to obtain problem (41) for the functions Nℓ. They
can be constructed as some piecewise polynomial functions. The coefficients hl can
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be expanded in powers of δ:

hl =
1

δ2

K+2∑

j=0

δjhlj + O
(
δK
)
.

Then we seek for the solution vεδ in the form of series (27) and obtain the chain of
problems for vjr in the same way as in Introduction: v′′lj = flj (x1) , where are the

right hand sides defined by v′′l1j1
such that l1 ≤ l and j1 < j or l1 < l and j1 ≤ j;

f00 = f01 = 0, f02 = f.

2.2. Asymptotic expansion of solution to problem (1)÷(3), (5). In this
subsection we modify functions Nℓ constructed for the one-dimensional case in order
to obtain solutions of cell problems for two-dimensions. For this end we construct
some special correctors in horizontal strips of Ωεδ and some exponentially decaying
boundary layer type correctors in the neighborhoods of the corners of Ωεδ. The
values of constants hℓ will be also modified because the measure of the periodic cell
is greater in the 2-dimensional case, and the functions Nℓ are not the same.

For the correspondent two-dimensional problem we work with the solution u
(K)
εδ

of the form (26) where v
(K)
εδ are sought in the form (27), satisfying (12), with Hℓ,

defined by (15) and (16).
Denote

Sδ =
{
ξ =

x

ε
, x ∈ Ωεδ

}
, Γi =

{
ξ =

x

ε
, x ∈ ∂Gi

εδ

}
,

�i =
{
ξ =

x

ε
, x ∈ Gi

εδ

}
, Si

δ = (i, i + 1) ×
(
−1

2
,
1

2

)
��i.

Also Γi = Γ+
1 ∪Γ−

1 ∪Γ+
2 ∪Γ−

2 as shown in Fig. 9, that is, Γ±
q =

{
xq = i + 1

2 ± 1−δ
2

}
∩

Γi, q = 1, 2. Since Nℓ is 1-periodic in ξ1 we drop the index i and work with the
periodicity cell Si

δ.

Figure 9. The boundary of an inclusion
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Substituting u
(K)
εδ of the form (26) into (1)÷(3), (5) we obtain, as in the previous

subsections, the following chain of cell problems for Nℓ (recalling that Lξξ = △):




△ξNℓ + 2
∂Nℓ−1

∂ξ1
+ Nℓ−2 = hℓ, ξ ∈ Sδ

∂Nℓ

∂ξ2
= 0, ξ2 = ±1

2

Nℓ(ξ) = N in
ℓ (ξ1), ξ ∈ Γ

∑

±

∫

Γ±

1

±
r∑

j=0

1

j!

(
±1 − δ

2

)j (
∂Nr−j

∂ξ1
+ Nr−j−1

)∣∣∣∣
ξ1=∓ δ

2

dξ2+

+
∑

±

∫

Γ±

2

±∂Nr

∂ξ2

∣∣∣∣
ξ2=± 1−δ

2

dξ1 = 0,

Nℓ is 1 periodic in ξ1,

(49)

where N in
ℓ (ξ1) is defined in the inclusion � by relations (33) with N in

0 (ξ1) = 1, and

hℓ =

〈
△Nℓ +

∂Nℓ−1

∂ξ1
+

∂Nℓ−1

∂ξ1
+ Nℓ−2

〉

2

=
1

|S0
δ|

[∫

S0

δ

(
∂Nℓ−1

∂ξ1
+ Nℓ−2

)
dξ +

∫

Γ

(
∂Nℓ

∂νξ
+ Nℓ−1 cos(ν, ξ1)

)
ds

]

(50)
with |S0

δ | = 1 − |�| = 2δ − δ2, 〈·〉2 = 1

|S0

δ|
∫

S0

δ

(·) dξ and the normal vector ν is

directed inside the inclusion �. We find the surface integral of the right hand side
of (50) from the following integral condition:

∑

±

∫

Γ±

1

±
r∑

j=0

1

j!

(
±1 − δ

2

)j (
∂Nr−j

∂ξ1
+ Nℓ−j−1

)∣∣∣∣∣∣
ξ1=∓ δ

2

dξ2

+
∑

±

∫

Γ±

2

(
∂Nr

∂ξ2

)∣∣∣∣∣
ξ2=± 1−δ

2

dξ1 = 0,

(51)

for r = ℓ. The surface integral of the right hand side of (50) corresponds to j = 0
in (51) taking into account the direction of ν.

Therefore,

hℓ =
1

2δ − δ2

[∫

S0

δ

(
∂Nℓ−1

∂ξ1
+ Nℓ−2

)
dξ

+
∑

±

∫

Γ±

1

±
ℓ∑

j=1

1

j!

(
±1 − δ

2

)j (
∂Nℓ−j

∂ξ1
+ Nℓ−j−1

)∣∣∣∣∣∣
ξ1=∓ δ

2

dξ2


 .

(52)

Note that

△ξNℓ + 2
∂Nℓ−1

∂ξ1
+ Nℓ−2 =

∂

∂ξ1

(
∂Nℓ

∂ξ1
+ Nℓ−1

)
+

(
∂Nℓ−1

∂ξ1
+ Nℓ−2

)
= hℓ, (53)

where two last parentheses in (53) are equal zero on the inclusions.
We decompose the solution Nℓ of ℓth-cell problem (53) as follows:

Nℓ(ξ) = N v
ℓ (ξ1) + N h

ℓ (ξ1, ξ2) + N c
ℓ (ξ1, ξ2),
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where N v
ℓ (ξ1) is defined in the vertical strip V , N h

ℓ (ξ1, ξ2) in the horizontal strips
H1 and H2, N c

ℓ (ξ1, ξ2) is in the half-crosses C1 ∪ V ∪H1, C2 ∪ V ∪H2, where H1 =

((− 1−δ
2 ,− δ

2 )∪ ( δ
2 , 1−δ

2 ))× (− 1
2 ,− 1

2 + δ
2 ), H2 = ((− 1−δ

2 ,− δ
2 )∪ ( δ

2 , 1−δ
2 ))× (1

2 − δ
2 , 1

2 ),

V = (− δ
2 , δ

2 ) × (− 1−δ
2 , 1−δ

2 ), C1 = (− δ
2 , δ

2 ) × (− 1
2 ,− 1−δ

2 ), C2 = (− δ
2 , δ

2 ) × (1−δ
2 , 1

2 )
(see Fig. 10, 11).

Figure 10. Decomposition of the function Nℓ(ξ)

For each region H1, H2, V, C1, C2 shown in Fig. 11 the corresponding solutions
N h

ℓ , N v
ℓ , N c

ℓ are split into

N ...
ℓ = N ...

ℓ + hℓM...
ℓ

where hℓ is defined by relation (52) and N ...

ℓ satisfies the first equation of (49) with
the zero right-hand side and all boundary conditions of this problem except integral
condition. The function M...

ℓ in each region would be constructed separately. So,
constant hℓ is fixed by the integral condition.

x2

x1

-
2
_1

2
_1

-
2
_-1 d

2
_-1 d

H1

V

H2

C1

C2

-
2
_d

2
_d1

2
- d-_ 1

2
d-_

H1

H2

Figure 11. Decomposition of a cell.

First, consider the vertical strip V . Then as mentioned above:

N v
ℓ (ξ1) = N v

ℓ + hℓMv
ℓ .
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We choose the function Mv
ℓ to satisfy the following problem:

∂2Mv
ℓ

∂ξ2
1

= 1, ξ ∈ V

Mv
ℓ = 0, ξ1 = ± δ

2

(54)

hence,

Mv
ℓ (ξ1) =

1

2

(
ξ1 −

δ

2

)(
ξ1 +

δ

2

)
in V.

Since the constructed function Mv
ℓ does not depend on ℓ we drop this subscript

hereafter.
Thus, for function N v

ℓ (ξ1) we have the following problem

∂2N v

ℓ

∂ξ2
1

+ 2
∂N v

ℓ−1

∂ξ1
+ N v

ℓ−2 + hℓ−2Mv = 0, in V

N v

ℓ = N in
ℓ , ξ1 = ± δ

2

(55)

where N in
ℓ is taken to be equal to the solution of the corresponding one-dimensional

ℓth-cell problem considered above in (33).
In horizontal strips H1 and H2 we decompose the function N h

ℓ (ξ1, ξ2) as follows:

N h
ℓ (ξ1, ξ2) = N h

ℓ + hℓMh
ℓ ,

where the function Mh
ℓ (ξ2) is chosen to satisfy:

∂2Mh
ℓ

∂ξ2
2

= 1, ξ ∈ H1 ∪ H2

Mh
ℓ = 0, ξ2 = ±1 − δ

2
∂Mh

ℓ

∂ξ2
= 0, ξ2 = ±1

2

(56)

hence,

Mh
ℓ (ξ2) =





1

2

(
ξ2 −

1 − δ

2

)(
ξ2 −

1 + δ

2

)
, ξ2 ∈

(
1 − δ

2
,
1

2

)

1

2

(
ξ2 +

1 − δ

2

)(
ξ2 +

1 + δ

2

)
, ξ2 ∈

(
−1

2
,−1 − δ

2

)

Since the constructed function Mh
ℓ does not depend on ℓ we drop this subscript

hereafter.
We choose N h

ℓ in the form:

N h

ℓ (ξ1, ξ2) = N in
ℓ (ξ1) + Ñ h

ℓ (ξ2),

where Ñ h
ℓ (ξ2) satisfies

∂2Ñ h
ℓ

∂ξ2
2

+ Ñ h
ℓ−2 + hℓ−2Mh = 0, in H1 ∪ H2

Ñ h
ℓ = 0, ξ2 = ±1 − δ

2
∂Ñ h

ℓ

∂ξ2
= 0, ξ2 = ±1

2

(57)



ARRAY OF CLOSELYSPACED ABSOLUTELY CONDUCTIVE INCLUSIONS 369

We extend both N v
ℓ and N h

ℓ in the periodic cell with zero where they are not
defined.

For the corresponding solution N c
ℓ (ξ1, ξ2) in the half-cross C1∪V ∪H1 we consider

similar decomposition (the other half-cross C2 ∪ V ∪ H2 is treated similarly):

N c
ℓ (ξ1, ξ2) = N c

ℓ + hℓMc
ℓ,

where the function N c

ℓ satisfies the following problem:

△ξN
c

ℓ + 2
∂N c

ℓ−1

∂ξ1
+ N c

ℓ−2 + hℓ−2Mc
ℓ−2 = 0, in C1 ∪ V ∪ H1

N c

ℓ = 0, if ξ1 = ± δ

2
, ξ2 ∈

(
−1 − δ

2
,
1 − δ

2

)
or ξ2 = −1 − δ

2
, |ξ1| >

δ

2

∂N c

ℓ

∂ξ2
= 0, if ξ2 = −1

2

[N c

ℓ ] = −N v

ℓ , on Σ2

[N c

ℓ ] = ∓N h

ℓ , on Σ±
1

(58)
and Mc

ℓ satisfies

△Mc
ℓ =

∂2Mc
ℓ

∂ξ2
1

+
∂2Mc

ℓ

∂ξ2
2

=





1, ξ2 ∈
(
−1

2
,−1

2
+

δ

2

)
and ξ1 ∈

(
− δ

2
,
δ

2

)

0, otherwise

Mc
ℓ = 0, if ξ1 = ± δ

2
, ξ2 ∈

(
−1 − δ

2
,
1 − δ

2

)
or ξ2 = −1 − δ

2
, |ξ1| >

δ

2

∂Mc
ℓ

∂ξ2
= 0, if ξ2 = −1

2

[Mc
ℓ ] = −Mv, on Σ2

[Mc
ℓ ]Σ±

1

= ∓Mh, on Σ±
1

(59)
where Σ±

i , i = 1, 2 are shown in Fig. 12. Note that the problem for Mc
ℓ also

does not depend on ℓ so we drop this subscript. Let us translate the origin of the
coordinates to point (0,−1/2) and extend this problem to the infinite half-cross
(−∞, +∞) × (0, δ

2 ) ∪ (− δ
2 , δ

2 ) × (0, +∞).
Here we remark that if one denotes

Mc(ξ1, ξ2) = δ2M̃c

(
ξ1

δ
,
ξ2 + 1

2

δ

)
=: δ2M̃c (η1, η2) ,

then M̃c does not depend on δ and satisfies:

△ηM̃c =





1, η2 ∈
(

0,
1

2

)
and η1 ∈

(
−1

2
,
1

2

)

0, otherwise

with the boundary conditions generated by the above boundary conditions for Mc.
For such a function there exists an unique solution and it satisfies the following
estimate: ∣∣∣M̃c(η)

∣∣∣ ≤ c1e
−c2|η|
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with some positive constants c1, c2 due to Phrägmen-Lindelöf type theorem (see
Appendices 1 and 2).

Figure 12. The jump surfaces
∑±

1 and
∑

2

The functions N̄ c
ℓ and N c

ℓ also decay exponentially as translated ξ
δ → +∞ (cf.

Appendix 2). Therefore, we multiply these functions by a cutting function that
vanishes at the distance |ξ| ≥ 2

3 and that is equal to 1 if |ξ| ≤ 1
3 . This multiplication

will produce an error of order O
(
e−

c
δ

)
that is negligible in comparison with the

desired error estimate O
(
εK−1 + δK−1

)√
ε if δ and ε are related by some bounds

δ = O (εα) and ε = O
(
δβ
)

with some α and β from (0, +∞) .

Thus, we have to add one more remainder in equation (1), that is, r
(4)
εδ (x) such

that
∥∥∥r(4)

εδ

∥∥∥
L∞(Ωεδ)

= O
(
e−

c
δ

)
.

Consider now a periodicity cell
(
− 1

2 , 1
2

)
×
(
− 1

2 , 1
2

)
and denote by aj (j = 1, 2)“the

corner points” a1 =
(
0,− 1

2

)
and a2 =

(
0, 1

2

)
; denote by N c

ℓ(aj ; ξ) and Mc(aj ; ξ)
the solutions of the above boundary layer problems corresponding to the half-crosses
containing point aj. Set

N ℓ = N v

ℓ + N h

ℓ +

2∑

j=1

N c

ℓ(aj ; ξ)χ(−aj + ξ),

and

Nℓ = N ℓ + hℓ


Mv + Mh +

2∑

j=1

Mc(aj ; ξ)χ(−aj + ξ)


 ,

where aj (j = 1, .., 4) is the corner of the unit square and χ(ξ) is defined by:

χ(ξ) = χ(|ξ|) =





1, |ξ| <
1

3

sin
3π|ξ|

2
,

1

3
≤ |ξ| <

2

3

0, |ξ| ≥ 2

3

(60)

Note that functions Nℓ satisfy the cell problem (49) up to a remainder r
(4)
εδ (x)

such that
∥∥∥r(4)

εδ

∥∥∥
L∞(Ωεδ)

= O
(
e−

c
δ

)
.
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Figure 13. The half-cross domain of definition of M̃c

By induction it can be seen that

N v

ℓ (ξ1) =

K∑

j=0

δjN v

ℓj

(
ξ1

δ

)
+δK+1rv

ℓK, Ñ h
ℓ (ξ2) =

K∑

j=0

δjÑ h
ℓj

(
ξ2 ± 1/2

δ

)
+δK+1rh

ℓ K

with N v

ℓj(η), Ñ h
ℓj(η) independent of δ, the sign ± is taken with respect to the domain

H1 or H2 where the solution is sought; and rv
ℓK, rh

ℓK are bounded in the same sense,
and that

N c

ℓ(aj ; ξ) =
K∑

j=0

δjN c

ℓj

(−aj + ξ

δ

)
+ δK+1rc

δℓ K(ξ)

with N c

ℓj(η) independent of δ and exponentially decaying, and rc
δℓ K is exponentially

decaying and bounded in L∞ norm.
Then (52) yields:

hℓ =
1

δ2

K+2∑

j=0

δjhℓj + δKrδK, with |rδK| ≤ CK,

where hℓj are independent of parameters. In particular

h2 =
1

2δ2
+ O

(
1

δ

)
.

Taking into account that the right hand side support is the domain Ωεδ, we
can calculate the leading term of the effective conductivity of the strip multiplying
this value h2 by the measure of the periodic cell in the extended variables ξ (see
Remark 3). We get then that the leading term for the effective conductivity is
ε
δ . If we extend the problem (1)÷(3), (5) ε−periodically with respect to x2, then
it will model the conductivity of the periodic medium with absolutely conductive
inclusions. Its effective conductivity has the leading term 1

δ . It corresponds to the
asymptotic analysis of [14], p. 316, Theorem 4.10.1. Substituting now expansion
(27) into (18) allows us to obtain the set of equations for vjr :

v′′jr = fjr (x1)

where fjr are the right hand sides defined by vj1r1
, such that j1 ≤ j and r1 < r

or j1 < j and r1 ≤ r; f00 = f01 = 0, f02 = f . These equations can be solved
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successfully by induction in j, r with an additional condition

∫ T

0

vjr (x1) dx1 = 0.

Finally, we obtain the equation (1) satisfied up to the remainders which are:

• the remainder analogous to εKrε of Introduction, that is,

εKr̂εδ = εK
{

2
∂

∂ξ1
NK+1 (ξ) + NK (ξ)

}∣∣∣∣
ξ= x

ε

DK+2
1 v

(K)
εδ (x1)

+ εK+1NK+1

(x

ε

)
DK+3

1 v
(K)
εδ (x1) ;

• the remainder analogous to εK+1r
(1)
ε (x1) of Introduction, that is,

εKr̂
(1)
εδ =

2K−1∑

m=K+1

εm
∑

0≤j≤K
hm−j+2 Dm−j+2

1 vjδ(x1),

where vjδ(x1) =
∑K

r=0 δrvjr (x1);
• the remainder of Taylor formula:

r
(2)
K =

K∑

ℓ=1

R+
ε,M,ℓ +

K∑

ℓ=1

R−
ε,M,ℓ,

of relations (34), (38);

• the remainder r
(4)
K related to the multiplication of boundary layer functions

N c
ℓ and Mc by the function χ given by (60);

• the remainder related to the truncation of the expansions in δ of Ñ v
ℓ , Ñ h

ℓ , Ñ c
ℓ

and hℓ at the terms of order δK;
• the remainder in (32):

r
(3)
i,εδ (x1) = εKNK

(x1

ε

) dK+1vεδ (x1)

dxK+1
1

(61)

that should be compensated by a corrector equal to a primitive of the func-

tion −r
(3)
i,εδ (x1) extended by 0 outside the domain

(
iε + δ

2ε, iε +
(
1 − δ

2

)
ε
)
×(

− ε
2 , ε

2

)
. This corrector will place an asymptotic solution into the space of

functions equal to constants on the inclusions (Remark 4).

More precisely, this means that to compensate the last remainder r
(3)
i,εδ given

by (61), in the equation ∂u
∂x1

= 0 on the infinitely conductive inclusion, we add a

corrector Φεδ (x1) to the asymptotic solution u
(K)
εδ . This corrector is a primitive

in x1 of −r
(3)
i,εδ (x1), constant for all segments x1 ∈

{[
−

√
ε

2 ,
√

ε
2

]
+ εZ

}
such that

Φεδ (0) = 0. This corrector places the asymptotic solution to the space H1
per,ε(Uε)

where an a priori estimate is proved (cf. Appendix 1), but it generates a new
remainder in the right hand side of the Laplace equation, which is the Laplacian

of the corrector Φεδ or simply the derivative of the remainder r
(3)
i,εδ ; it is of order

O
(
εK−1

)
in L∞ norm. This adds a complementary term of such an order to the

error estimate.
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Finally, taking into account estimates for all the remainders and applying a priori
estimate of Appendix 1, we obtain

∥∥∥u(K)
εδ − uεδ

∥∥∥
H1(Ωεδ∩(0,T )×(− ε

2
, ε
2
))

≤ C
(
εK−1 + δK−1

)√
ε. (62)

So we have proved the following result:

Theorem 1. Let for any α, β > 0, ε = O (δα) and δ = O
(
εβ
)
. Then estimate (62)

holds.

Theorem 4 justifies the asymptotic expansion of the solution of problem (1)÷(3),
(5) constructed in section 2. It gives the complete analysis of the conductivity of
the periodic strip with infinitely conductive inclusions of the high concentration
uniformly with respect to small parameters ε and δ such that ε = O (δα) and
δ = O

(
εβ
)

for any α, β > 0. It justifies the existence of the effective conductivity
of the strip, that is not evident for array structures (cf. [13], where it is not the
case for the elasticity equations). The leading term of this macroscopic conductivity
coincides with calculated in [6].

3. Appendix 1. Existence and uniqueness of solution of the problem in
a thin strip with infinitely conductive periodic inclusions.

Theorem 2. There exists a unique solution of problem (63).

Proof. Recall the notation Uε = [0, T ]× [− ε
2 , ε

2 ] (where T is assumed to be divisible
by ε) and consider the following space

H1
per,ε(Uε) =

{
u ∈ H1

per(Uε) : u = Ci on ∂Gi
δε

}
, with Ci is an arbitrary constant,

where H1
per(Uε) is the completion of the space of C∞-function defined in Πε in the

norm of H1(Uε). Recall that f(x1) is T -periodic such that
∫

Uε
f(x1)dx = 0. Define

f̃ (x) = f (x1)χΩεδ
(x) , where χΩεδ

(x) is the characteristic function of Ωεδ. Note

that
∫

Uε
f̃(x)dx =

∫
Ωεδ∩{x1∈(0,T )}f(x1)dx = 0. Define the subspace

H̃1
per,ε(Uε) =

{
u ∈ H1

per,ε(Uε) :

∫

Uε

udx = 0

}
.

Variational formulation of problem (1)÷(4) is as follows:

Find uεδ ∈ H̃1
per,ε(Uε) such that :

∫

Uε

∇uεδ∇ϕdx =

∫

Uε

f̃(x)ϕdx, ∀ϕ ∈ H1
per,ε(Uε)

(63)

By Lax-Milgram lemma there exists a unique uεδ ∈ H̃1
per,ε(Uε) such that (63) holds

for every ϕ ∈ H̃1
per,ε(Uε). Let us show that (63) holds for every ϕ ∈ H1

per,ε(Uε). For

this take ϕ ∈ H1
per,ε and consider

ϕ = 〈ϕ〉 + (ϕ − 〈ϕ〉),
where

〈·〉 =
1

|Uε|

∫

Uε

·dx,

thus, ϕ − 〈ϕ〉 ∈ H̃1
per,ε. We apply (63) for this function:
∫

Uε

∇uεδ∇(ϕ − 〈ϕ〉)dx =

∫

Uε

f̃(x)(ϕ − 〈ϕ〉)dx,
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hence,

−
∫

Uε

∇uεδ∇ϕdx =

∫

Uε

f̃(x)ϕdx,

since ∇〈ϕ〉 = 0 and
∫

Uε
f̃(x)dx = 0. Therefore, ∀ϕ ∈ H1

per,ε(Uε) we have

−
∫

Uε

∇uεδ∇ϕdx =

∫

Uε

f̃(x)ϕdx. (64)

So the existence is proved. And the uniqueness of solution ũεδ of (63) ∀ϕ ∈
H1

per,ε(Uε) is consequence of the uniqueness of the same formulation ∀ϕ ∈ H̃1
per,ε(Uε).

Proposition 1. Theorem 2 holds for function of two variables f̃ , such that f̃ (x) =

0 for all x ∈ Gi
εδ and satisfying

∫
Uε

f̃(x)dx = 0.

Proof. Applying the Poincaré inequality in Uε = [0, T ]×[− ε
2 , ε

2 ] we have (cf. Lemma
4.A2.6 of [14])

‖uεδ‖2
L2(Uε) ≤ 8T 2 ‖∇uεδ‖2

L2(Uε) .

Then, from (64) we obtain that

‖∇uεδ‖2
L2(Uε) ≤

∥∥∥f̃
∥∥∥

L2(Uε)
‖uεδ‖L2(Uε) ≤ 2

√
2T
∥∥∥f̃
∥∥∥

L2(Ωεδ∩Uε)
‖∇uεδ‖L2(Uε) .

Hence,

‖∇uεδ‖L2(Uε) ≤ 2
√

2T
∥∥∥f̃
∥∥∥

L2(Ωεδ∩Uε)
,

and

‖uεδ‖H1(Uε) ≤ 2
√

2T
√

1 + 8T 2
∥∥∥f̃
∥∥∥

L2(Ωεδ∩Uε)
. (65)

4. Appendix 2. Existence and uniqueness of solution of the boundary
layer problems and theorems of Phrägmen-Lindelöf type.

4.1. Now consider the problem

△u = f (ξ) (66)

with boundary conditions shown in Fig. 14(a) and 14(b) such that

|f (ξ)| ≤ c1e
−c2|ξ|. (67)

Here c1, c2 are two positive constants.
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-
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= 0
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= 0u

= 0u
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2

_1
-
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= 0u

= 0u

= 0u

= 0u

(a) (b)

Figure 14. Domain in which problem (66) is set and the boundary conditions
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We can extend the domain given in Fig. 14(a) by reflection to obtain the domain
shown in Fig. 15 and extend the right hand side as an even function with respect

2

_1

2

_1

2

_1
-

= 0

= 0u

= 0u

= 0u

1
x

2
x

u

2

_1
-

= 0u

= 0u

= 0u

= 0u

Figure 15. New domain obtained from two half-crosses given by
Fig. 14

to the ξ1-axis. The existence and uniqueness of solution in the domain shown in
Fig. 15 follows from the Lax-Milgram theorem applied in the H1

0 Sobolev space.

4.2. Theorems of Phrägmen-Lindelöf type. Consider the following problem

∆u = f (ξ) for ξ ∈ (0, +∞) ×
(
−1

2
,
1

2

)
,

u = 0 for ξ2 = ±1

2
,

(68)

such that |f (ξ)| ≤ c1e
−c2|ξ|.

We reduce problem (68) to a problem with periodicity condition at the lateral
boundary. To this end let us extend the domain (0, +∞) ×

(
− 1

2 , 1
2

)
by reflection

to (0, +∞) ×
(
− 1

2 , 3
2

)
and then periodically in ξ2. Moreover, we extend the right

hand side f as an odd function with respect to the line ξ2 = 1
2 . Then we obtain the

equivalent problem

∆ũ = f̃ (ξ) , ξ1 > 0, ξ2 ∈ R, (69)

where f̃ (ξ) is 2-periodic in ξ2 and

f̃ (ξ) =





f (ξ) for ξ2 ∈
(
−1

2
,
1

2

)
,

−f (ξ1,−ξ2) for ξ2 ∈
(

1

2
,
3

2

)
.

We can apply now the result of [8] that every 2-periodic in ξ2 solution of equation
(69) set in half-space (0, +∞)×R can either have a linear or an exponential growth
as ξ1 → +∞, or it stabilizes to some constant. Theorem 2 in [8] leaves only the last
possibility. Moreover, such a constant is zero because ũ = 0 for ξ2 = ± 1

2 . Applying
this analysis to each branch of the cross (Fig. 15) we obtain that the solution of the
Dirichlet problem for the Laplace equation (66) with exponentially decaying right
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hand side exponentially tends to zero as |ξ| → ∞: there exist two positive constants
c̄1, c̄2 such that,

|u (ξ)| ≤ c̄1e
−c̄2|ξ|. (70)

Note that the same result can be obtained easily directly from (68) by the Fourier
expansion of f and u in ξ2.

Note that the Agmon-Duglas-Nirenberg theory gives estimate (70) with some
constants for the derivatives of u if the derivatives of the right hand side f decay
exponentially.
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