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We describe in detail a theoretical scheme to trap and manipulate an arbitrary number of electrons in vacuum
for universal quantum computation. The particles are confined in a linear array of Penning traps by means of
a combination of static electric and magnetic fields. Two-electron operations are realized by controlling the
Coulomb interaction between neighboring particles. The performances of such a device are evaluated in terms
of clock speed, fidelity, and decoherence rates.
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I. INTRODUCTION

In the search for the implementation of quantum comput-
ing, different schemes based on a variety of quantum systems
have been proposed[1]. In the case of trapped ions, for ex-
ample, there are already promising experimental demonstra-
tions [2–5]. However, we are still at the proof-of-principle
stage, where operations are limited to a small number of
qubits. In the long run towards a winning technology for
quantum computation, it is, hence, worthy to investigate new
systems.

Our recent proposal[6] showed the possibility to realize a
scalable quantum computer with trapped electrons in
vacuum. This idea, extending previous schemes[7–9], has
been encouraged by the impressive results obtained in the
experiments with a single electron in a Penning trap[10–12]
and by the recent advancements in three-dimensional(3D)
microtrap costruction[13].

By using electrons in vacuum we combine the low-
decoherence environment and experimental accuracy typical
of ion traps[14,15] with the high clock speed, compactness,
and scalability of solid-state devices[16,17]. In comparison
with rf ion traps[14,15], we have, at least, three major ad-
vantages:(i) faster clock frequency of 2–3 orders of magni-
tude due to the smaller mass of the electron,(ii ) weaker
decoherence effects due to reduced field fluctuations, and
(iii ) dense coding with more qubits per site. Furthermore,
with respect to solid-state proposals[16,17], vacuum traps
for electrons minimize the environmental influence found in
semiconductor devices and could create more accurate struc-
tures[13].

More specifically our system consists of a set of electrons
confined in vacuum within an innovative trapping arrange-
ment. Our scheme reproduces a linear array of Penning traps
with interparticle distances ranging from 1.5mm to 500mm.
Quantum information is encoded in the different quantized
degrees of freedom of the electron motion as well as in the
two states of the spin. The gate operations on single particles
are performed by means of appropriate electromagnetic
pulses. They permit, when combined with specific static in-
homogeneous fields, one to achieve universal computation
on the qubits of each single electron. In order to realize uni-
versal gates between qubits of different electrons we exploit
the Coulomb interaction in the following way. Each trap con-
fines a single electron which oscillates with its own axial
frequency. When two neighboring particles are put into reso-

nance, they may exchange a quantum of excitation[18]. If
we are dealing with the lowest Fock states of the axial
motion—i.e., u0lz and u1lz—this operation amounts to a
swapping gate. This ability, combined with the universal set
of quantum gates on every single electron, allows us to
implement conditional dynamics between different particles.
The final qubit readout can be performed by either axial fre-
quency detection, as in traditional Penning traps[10], or by
capacitance and charge measurements, as in semiconductor
quantum dots[19].

In this paper we present a detailed description and analy-
sis of our system. In particular, we estimate its performances
and efficiency when all the main error and decoherence
sources are taken into account. The results of this investiga-
tion are very encouraging. They demonstrate that, in our
scheme, error probabilities per gate less than 10−4 are within
the reach of present technology. Hence, fault tolerant com-
putation should be actually feasible.

The paper is organized as follows. We first describe the
trapping structure(Sec. II), where the electrons are held. In
Sec. III, we sketch how to implement universal computation
with the qubits stored in each electron. In this section we
also evaluate the fidelity of single-particle quantum gates.
The following section, Sec. IV, is devoted to the analysis of
the swapping gate between qubits of neighboring electrons.
We describe this operation in detail and estimate its fidelity.
This gate allows for two-particle universal operations, as
shown in Sec. V. In Sec. VI we deal with the final qubit
readout. The most relevant decoherence processes and their
effects are analyzed in Sec. VII. Finally, we summarize our
main results in Sec. VIII.

II. LINEAR ARRAY OF PENNING TRAPS

In this section we present a scheme for the implementa-
tion of a scalable quantum processor consisting of a linear
array of electrons. Our aim is to confine the particles inside
the same physical device, creating a periodic potential that
locally well approximates the typical quadrupole potential,
used in traditional Penning traps[20]. Ideally, each electron
is confined to a small region, where the applied electrostatic
potential plus a homogeneous magnetic field reproduce the
usual field configuration of a Penning trap.

The device able to realize such a periodic confining struc-
ture consists of a cylindrical trap of radiusr0 and lengthz0.
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The bases of this cylinder are composed of flat electrodes at
zero potential, whereas the lateral surface is made up by a set
of N ring electrodes of widthDzi, held at different potentials
Vi and separated by thin dielectric layers. Note that no elec-
trode is interposed between the electrons of the array, in
order to prevent the electrostatic shielding.

The electrostatic potential inside this cavity can be ana-
lytically calculated[21,22]. To this end, we choose a set of
cylindrical coordinates with the origin on the left basis of the
cylinder and thez axis along the symmetry axis. With this
choice, the potential inside the cylinder is given by the rela-
tion [21,22]

Vsr,zd = o
n=1

`

An sinSnpz

z0
D I0snpr/z0d

I0snpr0/z0d
, s1d

where the expansion coefficients are given by

An =
4

np
FV1 sin2SnpDz1

2z0
D

+ V2 sinSnpsDz2 + 2Dz1d
2z0

DsinSnpDz2

2z0
D

+ V3 sinSnpsDz3 + 2Dz1 + 2Dz2d
2z0

DsinSnpDz3

2z0
D + ¯

+ VN sinSnpsDzN + 2Dz1 + 2Dz2 + ¯ + 2DzN−1d
2z0

D
3sinSnpDzN

2z0
DG s2d

and I0 is the modified Bessel function of zero order. For
particular values of theVi’s and theDzi’s, the electrostatic
potential energy of an electron inside the cavity presents,
along thez axis, a series of minima where one can trap the
particles. These are, actually, saddle points since the electro-
static potential provides only the confinement along the axial
direction. To obtain the radial confinement as well, we have
to introduce a homogeneous static magnetic field directed
along thez axis. Thus, we can construct a kind of miniatur-
ized Penning trap centered on each minimum. To obtain, for
example,m minima we can choose the following configura-
tion of trapping electrodes(see Fig. 1). We use 2m+1 ring
electrodes with potentials having alternate signs—i.e.,V1
=−Vt, V2= +Vt, V3=−Vt , . . ., V2m= +Vt, V2m+1=−Vt. The
electrode widths areDzi =aDz for i odd andDzi =Dz for i

even withDz=z0/ fm+asm+1dg and aù1 so that the elec-
trodes at the same potential have also the same width. In this
case, the electrostatic potential energy of an electron has,
along thez axis, minima located, to a good approximation, at
the center of the positive electrodes(see Fig. 2)—that is, at
the positions

z1 = Sa +
1

2
DDz, z2 = S2a +

3

2
DDz, . . . ,

zm = Sma +
2m− 1

2
DDz. s3d

Electrons can be trapped around these equally spaced
minima, separated by a distanced=sa+1dDz. In our design,
the distanced between two neighboring particles ranges
from 1.5mm to 500mm. To better study the form of the
potential, Eq.(1), along thez axis we use an expansion with
respect to a points0,zd:

Vsr,zd = o
i=0

`

Csidfr2 + sz− zd2gi/2PiS z− z

Îsz− zd2 + r2D
= Cs0d + Cs1dsz− zd + Cs2dFsz− zd2 −

r2

2
G

+ Cs3dFsz− zd3 −
3

2
sz− zdr2G

+ Cs4dFsz− zd4 − 3r2sz− zd2 +
3

8
r4G + ¯ , s4d

where

FIG. 1. Schematic drawing of a cylindrical trap with the lateral surface consisting of nine ring electrodes at alternate potentials. This
device reproduces along the axial direction four Penning traps where electrons can be confined.

FIG. 2. Three-dimensional plot showing the electrostatic energy
of the electron in the cylindrical trap sketched in Fig. 1. Electrons
can be stored near the four minima along thez axis.
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Csid =5
s− 1di/2

i! o
n=1

`
An

I0snpr0/z0dSnp

z0
Di

sinSnpz

z0
D , for i even,

s− 1dsi−1d/2

i! o
n=1

`
An

I0snpr0/z0dSnp

z0
Di

cosSnpz

z0
D , for i odd.6 s5d

andPi is the Legendre polynomial of orderi.
Near a minimum, the leading term in the expansion of the

potential, Eq.(4), is the quadratic one, proportional to the
coefficientCs2d. Hence, in a small region around thej th mini-
mum zj, we can approximate the electrostatic potential en-
ergy of an electron of chargee as

eVsr,zd . eCs2dFsz− zjd2 −
r2

2
G , s6d

whereCs2d is given by the expression(5) andeCs2d.0. This
relation represents a quadrupole potential which provides the
axial confinement to the electron.

In this electrode arrangement energy minima not too close
to the cylinder end caps have the following properties. The
values of the coefficientsCsid in the expansion(4) do not
substantially depend on the minimum position. Furthermore,
in the case ofi odd, they are, in good approximation, negli-
gible. These are consequences of the fact that, for minima
located away from the trap end caps, the system is approxi-
mately symmetric with respect to a plane perpendicular to
the z axis and containing the minimum. In this case we can
write, for i even,

Csid =
VtC̄t

sid

di , s7d

where theC̄t
sid’s are dimensionless coefficients depending

only on the geometrical properties of the system—i.e., the
parametersr0/d anda. Their values can be calculated from
Eqs.(2) and (5).

Hence, from Eqs.(6) and (7), the axial oscillation fre-
quency of the trapped electrons confined around these
minima is

vz .Î2eVtC̄t
s2d

med
2 , s8d

with me being the electron mass. This equation describes the
dependence of the electron axial frequency on the trap size
and on the potential applied to the ring electrodes. In our
design the geometrical parametersr0/d and a have ranges,
respectively, of 0.2–0.5 and of 1–2.3, with 0.7& sr0/dds1
+ad&1. This choice givesC̄t

s2d in a range of −25 to −5

with the smallest values ofC̄t
s2d obtained for the smallest

values ofr0/d and the largest values ofa. Thus, with inter-
particle distances ranging from 500mm to 1.5mm we can
easily produce trapping frequencies ranging from

3 MHz to 50 GHz by applying potential differences from
0.05 mV to 25 mV.

With the above geometrical parameters, at a distancedm
from the considered minimum not larger thand/10, the main
correction to the quadrupole potential is given by the octu-
pole term proportional toCs4d. Its size relative to the quadru-
pole term, obtained from Eq.(4), is of the order of

uC̄t
s4d / C̄t

s2dusdm/dd2 with uC̄t
s4d / C̄t

s2du in a range, according to
the chosen geometry, 1–5.

The trapping electrodes permit one to create, together
with the application of a uniform magnetic field in the axial
direction, a linear array of Penning traps, each one having
the same strength. However, as described in the next section,
the implementation of quantum information processing re-
quires a confining device with specific properties. First we
want to control and vary in a suitable range the value of the
octupole term of the trap potential. Second we want to ma-
nipulate the axial frequency of each electron without affect-
ing the other trap parameters. Third we want to selectively
apply to each trap an oscillating electric field. These tasks
can be accomplished by adding to the cylindrical cavity three
additional sets of electrodes.

The first one is composed, in a trap withm minima, by 2m
ring electrodes, each one having widthDzc with Dzc,Dz/2
and held at potentialVc. These electrodes, called decompen-
sating electrodes, permit, by varyingVc, to change the value
of the octupole term in the trap potential. We need to in-
crease the anharmonicity of the axial oscillator in order to
manipulate the quantum information, encoded in the electron
motion, without leaving the computational space. The anhar-
monic corrections make the transition frequencies of neigh-
boring axial energy states distinguishable. Consequently, as
discussed in the next section, an oscillating electric field with
appropriate frequency can selectively act on specific axial
transitions realizing single-qubit gates.

Two decompensating electrodes are inserted at the ends of
each trapping electrode at potentialVt, as illustrated in Fig.
3(c). In practice, this addition requires the shortening of the
positive trapping electrodes by a value of 2Dzc. Inside the
cylindrical cavity the electrostatic potentialVsr ,zd produced
by this electrode arrangement can be written as

Vsr,zd = VTsr,zd + VCsr,zd. s9d

In this relationVTsr ,zd and VCsr ,zd are the potentials ob-
tained from Eq.(1) with, respectively, the trapping electrodes
and the decompensating electrodes only. In particular,
VCsr ,zd is calculated with all the ring electrodes held at zero
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potential except the decompensating electrodes held at po-
tential Vc−Vt [see Fig. 3(a)].

Consequently the coefficients of the expansion(4) for a
minimum not too close to the cylinder end caps can be writ-
ten as

Csid =
VtC̄t

sid

di +
sVc − VtdC̄c

sid

di , s10d

where theC̄c
sid’s are dimensionless coefficients depending on

the geometrical parametersr0/d, a, andDzc/Dz. They can be

obtained from Eq.(5). Again, we suppose that theC̄c
sid’s do

not depend on the minimum position and, for oddi, have
negligible values.

Our aim is to increase the value of the octupole term of
the trap potential by applying a not too large voltageVc. At
the same time, we also want to make the change on the
trapping frequencies, produced by the potential of the dec-
ompensating electrodes, as small as possible. From Eq.(10)
we see that these intents can be achieved by choosing a trap

geometry which maximizes the ratiouC̄c
s4d / C̄c

s2du. Indeed, for
any couple of values ofr0/d anda it exists a particular value

of the ratio Dzc/Dz which makesC̄c
s2d equal to zero. This

value, indicated byb0, is, for our geometries, in the range
0.1–0.3. Hence, we can choose decompensating electrodes of
length Dzc.b0Dz in order to minimize their effect on the
trap frequencies. Typical values are listed in Table I. In this

case the corresponding values of theuC̄c
s4du’s, depending on

the parameterr0/d and a, vary in a range 3–350, with the
largest values obtained for the smallest and largest values of,
respectively,r0/d anda.

The second set of electrodes we add to our trapping de-
vice is composed, in the case ofm minima, bym ring elec-
trodes of equal widthDzd with Dzd,Dz. These electrodes,
called detuning electrodes, are used to control and vary the
axial trap frequencies. The selective manipulation of the trap
frequencies is, in our scheme, a fundamental requirement.
When the difference between the axial frequencies of two
trapped electrons is sufficiently large, the particles substan-
tially do not interact. On the other hand, the interaction is
effective when the frequencies are on resonance. Generally
we do not want interactions among all the trapped particles
so we need to differentiate their axial frequencies. At the
same time we should be able to put on and off resonance the
frequencies of two neighboring electrons in order to control
the interaction between them.

Each detuning electrode is inserted at the center of the
trapping electrode with potentialVt. This requires the split-

FIG. 3. Schemes(a) and(b) show the electrode arrangement giving, respectively,VCsr ,zd andVDsr ,zd. Scheme(c) displays the complete
trapping device with the lateral surface consisting of trapping, decompensating, detuning, and driving electrodes.

TABLE I. For given electron distancesd, we indicate the actual
values of the geometrical parameters of the trapping device used in
our simulations to obtain the results shown in Table II.

d smmd r0/d a Dzc/Dz Dzd/Dz

500 0.4 1.5 0.09 0.1

50 0.35 1.5 0.18 0.1

1.5–3 0.2 2.3 0.3 0.1
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ting of each positive trapping electrode into two parts of
lengthsDz−2Dzc−Dzdd /2, as shown in Fig. 3(c). The differ-
entiation of the trap frequencies is simply obtained by apply-
ing to each detuning electrode a different potential. Thus the
voltage applied to the detuning electrode relative to thej th
minimum is indicated withVd,j.

The change in the electrostatic potential of the cavity, due
to the addition of the detuning electrodes, is given by the
potential VDsr ,zd. This potential is calculated by means of
Eq. (1), with all the ring electrodes at zero potential except
the detuning electrodes at potentialsVd,j −Vt [see Fig. 3(b)].
Therefore, the resulting electrostatic potential of the cavity
Vsr ,zd is the sum of three terms

Vsr,zd = VTsr,zd + VCsr,zd + VDsr,zd. s11d

Let us evaluate the effect of the detuning electrodes on the
axial frequency of the trap at thej th minimum. In our design
we choose a ratioDzd/Dz of about 1/100–1/6. To afirst
approximation we can neglect the effects due to the detuning
electrodes centered on other minima. Hence, from Eq.(11)
the coefficient of the quadrupole term in the potential around
the minimumj can be written as

Cs2d =
VtC̄t

s2d

d2 +
sVc − VtdC̄c

s2d

d2 +
sVd,j − VtdC̄d

s2d

d2 , s12d

where C̄d
s2d is a dimensionless coefficient depending on the

geometrical parametersr0/d, a, andDzd/Dz. Its dependence
on the chosen minimum can be neglected for minima not too

close to the trap endcaps. The value ofC̄d
s2d varies in a range

of −5 to −0.1 with the smallest values obtained for the larg-
est values ofDzd/Dz and the smallest values ofr0/d anda.
If vz is the axial frequency at thej th minimum produced by
the trapping electrodes together with the decompensating
electrodes, then the changedvz,j in this frequency due to the
insertion of the detuning electrode around this minimum is

dvz,j . vzSÎ1 +
2esVd,j − VtdC̄d

s2d

med
2vz

2 − 1D . s13d

The application of different potentials to the detuning elec-
trodes centered on the traps close to the minimumj produces
two effects. They shift the minimum position and increase
the value of the terms in the trap potential proportional to
odd powers ofz. With the addition of the detuning elec-
trodes, the coefficients of the expansion(4) with i odd can be
estimated at thej th minimum as

Csid .
sVd,j−1 − Vd,j+1dC̄d,near

sid

di , s14d

whereC̄d,near
sid is a dimensionless coefficient depending on the

geometrical parametersr0/d, a, andDzd/Dz. This relation is
obtained from Eq.(5) by considering all the ring electrodes
at zero potential except the detuning electrodes at minimaj
−1 and j +1. Equation(14) shows that the shifts on the
minima positions, given byCs1d /2Cs2d, and the increase of the
terms Cs3d, Cs5d, Cs7d , . . . areproportional to the differences

between the detuning potentials. However, these effects, with
the typical applied voltages, are negligible.

In order to manipulate the axial dynamics of the electrons,
we need to apply, separately to each trap, an oscillating elec-
tric field. This can be obtained by adding to our device a
third set of electrodes. These electrodes, defined as driving
electrodes, are, in the case ofm minima,m ring electrodes of
width Dzr with Dzr /Dz in a range of about 1/800–1/10. The
driving electrode is inserted, for each trap, next to a decom-
pensating electrode, as shown in Fig. 3(c). Hence, this addi-
tion requires the shortening of the positive trapping elec-
trodes to the width Dz−2Dzc−Dzd−Dzr. The driving
electrodes are generally held at potentialVt. However, when
we apply an oscillating voltageVrstd to the j th driving elec-
trode, the corresponding change in the potential near thej th
minimum zj is

Vjstd .
VrstdC̄r

s1d

d
sz− zjd, s15d

where C̄r
s1d is a dimensionless coefficient depending on the

geometrical parametersr0/d, a, andDzr /Dz. This additional
potential corresponds to an oscillating electric field along the

axial direction. The coefficientC̄r
s1d is obtained from Eqs.(2)

and (5) by considering all the ring electrodes at zero poten-
tial except thej th driving electrode at potentialVrstd. We

have, according to the chosen geometry,uC̄r
s1du in a range of

10−3–0.5. Its value becomes larger asr0/d and a decrease
andDzr /Dz increases.

III. SINGLE-PARTICLE OPERATIONS

When the characteristic frequencies of the trapped elec-
trons are far detuned from each other, we have, to a good
approximation, no mutual interactions. Hence, in this far-off-
resonance regime, the electrons behave basically assingle
particles confined to traditional Penning traps. For the mo-
ment, therefore, we briefly review the motion of an electron
in a Penning trap, neglecting the possible influence of the
other particles. The dynamics of thej th electron is governed
by the Hamiltonian[10]

Hj =
sp j − eA jd2

2me
+ eV−

ge"

4me
s j ·B, s16d

where e, g, and s j ;ssx
s jd ,sy

s jd ,sz
s jdd are, respectively, the

electron charge, giromagnetic factor, and Pauli matrices. The
vector potential is given by

A j =
1

2
B 3 r j , s17d

with B being the uniform magnetic field responsible for the
radial confinement of the electron. The resulting motion can
be described in terms of three independent oscillators: the
cyclotron, the axial, and the magnetron motion[10]. For the
trap geometry under consideration, the most interesting de-
grees of freedom are the axial motion and, of course, the
electron spin. The electron being a spin-1/2 particle, the two
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possible orientationsu↓ l and u↑ l of its spin in the external
magnetic field represent quite naturally the logical statesu0l
and u1l. Problems arise when we want to encode qubits in
multilevel systems, like a harmonic oscillator. This is the
case of the axial oscillator. However, a solution is provided
by small anharmonicities that lift the degeneracy between
different transitions. Hence, for the axial motion it is neces-
sary to introduce small anharmonicities in the quadrupole
field, Eq. (6). Indeed, taking into account the octupole term
in the trap potential and treating it as a small perturbation,
the transition frequency between adjacent axial levels of
quantum numbersk andk+1 is given by[10]

vzskd . vz + deFk + 1 −
2vzsn + l + 1d

vc − vm
G , s18d

where the shift amounts to

de ;
3eCs4d"

me
2vz

2 s19d

and vc, vm, n, and l are, respectively, the frequencies and
excitation numbers of the cyclotron and magnetron motion.

We suppose that, as in the case of the experiments with a
single electron in a Penning trap[10], the chosen values of
the magnetic and electric trapping fields give the hierarchy
vm!vz!vc. Under this condition, if the cyclotron motion is
cooled to the ground statesn=0d and the magnetron radius is
sufficiently shrunksl !vc/vzd [23], the electrostatic correc-
tion on the axial frequency depends substantially only on the
axial quantum numberk:

vzskd . vz + desk + 1d. s20d

As shown in Eq.(4), the coefficientCs4d determines the size
of the main correction to the quadrupole potential. Its value
depends on the potentialVc of the decompensation electrodes
[see Eq.(10)]. Hence, with an appropriate choice ofVc, we
can make the correctionde larger than the frequency width of
the axial transitions. This allows us to control single axial
transitions by applying electromagnetic pulses with suffi-

ciently narrow bandwidth. Typical values of the voltageVc
used in our simulations are listed in Table II.

The manipulation of the axial states is performed by
means of the driving electrodes. In particular, to act on the
axial motion of a specific trapped electron, we apply an os-
cillating potential on the closest driving electrode. Hence, we
add to the voltageVt of this electrode a component
Vr cossṽt−bd so that the electron energy is perturbed by the
term

ezCr
s1d cossṽt − bd =

eCr
s1d

2
Î "

2mevz
saz + az

†dfeisṽt−bd

+ e−isṽt−bdg, s21d

where we used the relation

z=Î "

2mevz
saz + az

†d s22d

and, from Eq.(15), Cr
s1d=VrC̄r

s1d /d.
When the driving frequencyṽ is close to the axial fre-

quencyvz the relevant part of the Hamiltonian of the system
can be written, in the interaction picture and in rotating-wave
approximation, as

Hz < "
V

2
saz

†eib + aze
−ibd, s23d

whereV;eCr
s1d /Î2me"vz. If the oscillating potential is ap-

plied for a timet and has a sufficiently narrow bandwidth
centered around the valuevzsk=0d=vz+de, it produces the
transformations

u0lz → cosSVt

2
Du0lz − ieib sinSVt

2
Du1lz, s24d

TABLE II. For a given trap distanced and axial frequencynz=vz/2p we give the axial frequency detuning in the nonresonant regime
between neighboring electronsdd/2p, the maximum axial frequency detuning in the resonant regime between neighboring electronsdr /2p,
the anharmonic correctionde/2p (of the same order ofdm/2p), the trapping potentialVt, the decompensating potentialVc, the strength of
the magnetic bottleB1, the swapping timetex (of the same order of the gate operation time for a single electron), and the estimated
decoherence timetd at T=80 mK due to thermal noise in the electrode surfaces. We assume a spin frequencyvs/2p of 160 GHz. The
corresponding geometrical parameters of the trap are presented in Table I. The estimated error probabilities in the swapping gate and in the
single electron gates are, in caseA, smaller than 10−2 and, in caseB, smaller than 10−4.

d smmd nz (MHz) dd/2p (MHz) dr /2p (kHz) de/2p (MHz) Vt (mV) Vc (V) B1 sT/mm2d tex smsd td (s)

500 3.5 1 1.5 0.3 0.05 0.15 10−6 16 2100

A 50 100 24 45 9 0.5 0.15 10−3 0.55 90

1.5 223103 5000 9000 1800 5 0.05 40 0.003 0.05

500 10 2.3 0.05 0.9 0.5 5.7 5310−6 55 3500

B 50 360 70 1.4 30 5 4.6 10−2 1.7 160

3 243103 5000 100 1900 25 1.1 50 0.025 0.22
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u1lz → cosSVt

2
Du1lz − ie−ib sinSVt

2
Du0lz. s25d

Hence, the driving field can be used to realize any single-
qubit gate, when considering the axial statesu0lz and u1lz as
the logical statesu0l and u1l. We refer to the interaction pro-
duced by the Hamiltonian(23), applied for a timet, as a
pzsVt ,bd pulse.

As described in[8,9], the manipulation of the electron
spin is performed by applying a small transverse oscillating
magnetic field resonant with the spin precession frequency
vs;gueuB/ s2med:

bstd = bfî cossvt + ud + ĵ sinsvt + udg. s26d

In this case the relevant part of the system Hamiltonian be-
comes, in the interaction picture and rotating-wave approxi-
mation,

HIP
sspind . "

x

2
ss+e−iu + s−eiud, s27d

where x;gueub/ s2med and s± ;ssx± isyd /2. If the small
magnetic field is applied for a timet, it produces a spin-state
rotation

u↓l → cosSxt

2
Du↓l − ie−iu sinSxt

2
Du↑l, s28d

u↑l → cosSxt

2
Du↑l − ieiu sinSxt

2
Du↓l. s29d

It can be shown that with an appropriate combination of
these operations, one can perform any single-qubit gate on
the spin qubit. We define the interaction produced by the
Hamiltonian(27), applied for a timet, as apssxt ,ud pulse.

However, in order to perform logic operations on a system
storing quantum information in both the axial motion and the
electron spin, we need an interaction between these two de-
grees of freedom. A possible way to accomplish this task
relies on the application of an inhomogeneous static mag-
netic field. Indeed, with an appropriate dependence on the
spatial coordinates, a static magnetic field can induce shifts
on the axial transition frequencies depending on the spin-
cyclotron state and vice versa. The same mechanism is al-
ready used to perform the measurement of the electron state,
extracting all the relevant information on the spin and cyclo-
tron motion from the value of the axial oscillation frequency
[10]. If we consider this additional static magnetic field

B1 = B1FSz2 −
x2 + y2

2
Dk̂ − zsxî + yĵ dG , s30d

we obtain, treating it as a perturbation, the transition frequen-
cies

vzsn,s,kd . vz + desk + 1d + dmSn +
1

2
+

g

4
sD , s31d

vsskd . vs + dmSk +
1

2
D , s32d

where

dm ;
"vzueuB1

2me
2vcvm

. s33d

The frequency shiftsde and dm refer, respectively, to the
electrostatic and magnetic corrections. In deriving the above
transition frequencies we supposed that, as in the derivation
of Eq. (20), vm!vz!vc and l !vc/vz.

Equations.(31) and (32) clearly show the dependence of
the axial and spin transition frequencies on the quantum
numbers describing the state of the electron. If during the
computation we keep the cyclotron oscillator in its ground
state and the magnetron radius sufficiently small, we can
precisely address any axial transition, without populating en-
ergy levels outside the computational space. These are rea-
sonable assumptions, since the magnetron motion can be
cooled down[10] and, at the trap temperature of 80 mK, the
cyclotron remains in its ground state[11].

Having several electrons, we should also be able to singly
address each of them. The individual axial frequencies are
made distinguishable by applying different voltages at the
detuning electrodes. As far as the single addressability of the
spin qubits, one can differentiate among them by inserting a
small magnetic field gradient along thez axis.

We are now in the position to discuss the implementation
of conditional dynamics between the spin and axial motion
of the electron. Rotations of the spin state, controlled by the
axial qubit, can be realized with just one pulse. Indeed, if we
apply the oscillating magnetic field, Eq.(26), on resonance
with the frequencyvssn=0,k=1d, the spin state is modified
only if the axial state isu1lz. This opens up the possibility to
implement a controlled-NOT (CNOT) gate having the spin qu-
bit as a target and the axial qubit as a control. This two-qubit
operation requires the following two pulses: apssp ,p /2d
pulse on resonance with the frequencyvssn=0,k=1d, which
flips the spin only if the axial state isu1lz—that is,

u1lzu↓l → − u1lzu↑l, s34d

u1lzu↑l → u1lzu↓l, s35d

without affecting the other states of the computational basis.
A pzs2p ,bd pulse on resonance with the frequencyvzsn
=0,k=1,s=1d to correct the minus sign in Eq.(34):

− u1lzu↑l → u1lzu↑l. s36d

To implement the otherCNOT gate, with the axial qubit as a
target and the spin qubit as a control, we have to apply two
pulses: The driving pulsepzsp ,−p /2d on resonance with the
frequencyvzsn=0,k=0,s=1d which acts on the transition
u0lz↔ u1lz only if the spin state isu↑ l,

u0lzu↑l → − u1lzu↑l, s37d
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u1lzu↑l → u0lzu↑l, s38d

and the driving pulsepzs2p ,bd on resonance with the fre-
quency vzsn=0,k=1,s=1d which changes only the phase
factor of the stateu1lzu↑ l, as illustrated in Eq.(36).

Let us evaluate the minimum operation time of one- and
two-qubit gates described in this section. In order to avoid
degenerate transitions and have electrostatic and magnetic
corrections of the same size we can chooseB1 andVc so that
dm=de/2. The corresponding frequency resolution required
in the pulse application isde/2. Indeed, this quantity is the
difference between neighboring frequencies corresponding to
specific axial and spin transitions conditioned on, respec-
tively, spin and axial states[see Eqs.(31) and(32)]. To pro-
duce conditional dynamics between the axial and spin states
we should havex ,V!de/2. Indeed, this condition makes
undesired transitions highly improbable. Since the pulse du-
ration is of the order ofp /V andp /x, its minimum value is
inversely proportional to the frequency resolution. The fidel-
ity of the two-qubit gates is, forx ,V!de/2, of the order of
1−s2x /ded2 for the spin transitions and of the order of 1
−s2V /ded2 for the axial transitions(see the Appendix). The
maximum axial frequency shift we use to realize conditional
dynamics is 5de/2 obtained in Eq.(31) for vzsn=0,k=1,s
=1d. Hence, by choosing 5de/2.vz/5 we obtain gate opera-
tion times varying from about 100ms to 5 ns with fidelities
ranging roughly from 1–10−2 to 1–10−4. The corresponding
values of b and Vr vary in a range of, respectively,
s10−3–10−7d T and s10−4–10−7d V.

The schemes described so far allow to perform arbitrary
one- and two-qubit gates on a single electron. However, to
make the system computationally universal, we should be
able to realize conditional dynamics—i.e.,CNOT gates—
between qubits belonging to different electrons. This task can
be accomplished by considering the electrostatic interaction
between neighboring electrons in the array, as we are going
to explain in the next two sections.

IV. SWAPPING GATE

In this section we describe how the Coulomb interaction
between neighboring trapped electrons makes it possible to
realize the swapping operation on the axial qubits. By adjust-
ing the external voltage applied to the detuning electrodes,
we can put on and off resonance the axial motion of two
electrons. When in resonance, the two coupled harmonic os-
cillators can exchange a quantum of excitation, whereas out
of resonance they basically behave as independent systems.

A. Gate description

Let us consider two electronse1 and e2 separated by an
average distanced (see Fig. 4). By choosing the origin of our
coordinates in the center of the trap confining the electrone1,
we can write the Hamiltonian of the two particles as

H = H1 + H2 + Hint. s39d

In Eq. (39), Hj, with j =1, 2, is the single-particle Hamil-
tonian, Eq.(16), of the trapped electronej, whereasHint rep-

resents the electrostatic interaction between the two electrons
(we neglect the small interaction between the spin motions),

Hint =
e2

4pe0
Îsx1 − x2d2 + sy1 − y2d2 + sz1 − z2d2

, s40d

which we can recast as

Hint = VF1 −
2fz1 − sz2 − ddg

d
+

fz1 − sz2 − ddg2

d2 +
sx1 − x2d2

d2

+
sy1 − y2d2

d2 G−1/2

, s41d

whereV;e2/ s4pe0dd. If the oscillation amplitude of the two
electrons is much smaller than the average separationd be-
tween them, we can expand the interaction Hamiltonian, Eq.
(41), in a power series. To this end, we are going to evaluate
the value of the displacement of the two particles with re-
spect to the trap center. The axial displacementuz1−sz2−ddu
is of the order of the axial oscillation amplitudeDze

;Îkz2l.Î"s1+2kd / s2mevzd, wherek is the axial excitation
number. When the two electrons are in the first excited state
we obtain, in our simulations,Dze/d varying from 1/325 to
1/45. The displacementsux1−x2u anduy1−y2u are of the order
of the radial amplitude of the single-particle motion,Dre

;Îkx2l=Îky2l. This value can be estimated by using the
relations x=Î" / s2mevcdsac+am+ac

†+am
† d and y

= iÎ" / s2mevcdsac−am−ac
†+am

† d whereac andam are the lad-
der operators of, respectively, the cyclotron and magnetron
oscillators[10]. Hence we obtainDre.Î"s1+n+ ld / smevcd,
wheren and l are, respectively, the cyclotron and magnetron
quantum numbers. For the cyclotron motion in the ground
state and the magnetron motion cooled tol .103 the ratio
sDre/dd2 ranges, in the case ofvc/2p.160 GHz, from 5
310−7 to 5310−2. Thus, we can expand in a seriesHint and
retain terms up to the second order:

Hint . VH1

d
fz1 − sz2 − ddg +

1

2d2h2fz1 − sz2 − ddg2 − sx1 − x2d2

− sy1 − y2d2jJ , s42d

where we neglected the constant termV. From the above
expression, we see that in the HamiltonianHint the dynamics
in the z direction is not coupled to that involving the trans-
verse variablesx and y. Then, the axial motion of the two

FIG. 4. Schematic drawing of two electronse1 ande2 confined
in neighboring microtraps separated by a distanced.
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electrons can be studied by considering only the axial part of
H:

Hz .
p1z

2

2me
+

p2z
2

2me
+

1

2
meṽ1z

2 sz1 + d1d2 +
1

2
meṽ2z

2 sz2 − d − d2d2

−
2V
d2 sz1 + d1dsz2 − d − d2d, s43d

where we defined

ṽ jz
2 = v jz

2 +
2V

med
2, with j = 1,2, s44d

d1,2= d
Vv2,1z

2

2Vsv1z
2 + v2z

2 d + mev1z
2 v2z

2 d2 . s45d

Note thatṽ1z and ṽ2z are the axial frequencies of the elec-
trons modified by the electrostatic interaction, whereas the
quantitiesd1 and d2 represent the displacement of the elec-
trons due to the Coulomb repulsion. Let us suppose that
v1z<v2z. If we indicate with « the ratio of the Coulomb
energy,V, to the potential energy of the second electron with
respect to the first trap,mev1z

2 d2/2, we obtain sṽ jz

−v jzd2/v jz
2 .« and, for«!1, di /d.« /2. In our simulations

the quantity« is always smaller than 10−2; hence, there are
very small changes both in the frequencies and trap dis-
tances.

When we introduce the ladder operators

ã1z =Îmeṽ1z

2"
sz1 + d1d + iÎ 1

2"meṽ1z

p1z, s46d

ã2z =Îmeṽ2z

2"
sz2 − d − d2d + iÎ 1

2"meṽ2z

p2z, s47d

we can recast the Hamiltonian, Eq.(43), in the form

Hz . "ṽ1zã1z
† ã1z + "ṽ2zã2z

† ã2z

−
"V

med
2Îṽ1zṽ2z

sã1z + ã1z
† dsã2z + ã2z

† d. s48d

From the above equation we see that the strength of the
electrostatic interaction between the two particles in fre-
quency units is given byj;V / smed

2Îṽ1zṽ2zd. This quantity,
if «!1, is much smaller than the values of the trapping
frequencies—i.e.,j.«v1z/2. Thus, in this case, we can ap-
ply to the Hamiltonian(48) the rotating-wave approximation,
obtaining in interaction picture, whenv1z=v2z,

Hz
IP . − "jsã1zã2z

† + ã1z
† ã2zd. s49d

This is the Hamiltonian describing the electrostatic interac-
tion between two neighboring trapped electrons with the
axial frequencies tuned on resonance.

The corresponding Schrödinger equation produces, for the
lower Fock states of the axial oscillators of the two particles,
the temporal evolution

u0lz1u0lz2 → u0lz1u0lz2, s50d

u0lz1u1lz2 → cossjtdu0lz1u1lz2 + i sinsjtdu1lz1u0lz2, s51d

u1lz1u0lz2 → cossjtdu1lz1u0lz2 + i sinsjtdu0lz1u1lz2, s52d

u1lz1u1lz2 → coss2jtdu1lz1u1lz2

+
i

Î2
sins2jtdsu0lz1u2lz2 + u2lz1u0lz2d. s53d

It is easy to see that when the resonant interaction acts for a
time tex;p / s2jd, it produces, apart from phase factors, a
swapping operation on the axial qubits. Indeed, it exchanges
the information stored in the axial qubits of the trapped elec-
trons. Notice that the inverse operation is realized when the
resonant interaction is on for a time 3tex. Depending on the
electron distanced, we can have a swapping timetex ranging
from 55 ms to 3 ns(see Table II).

The resonant interaction is switched on when the fre-
quency detuning is much smaller than the interaction
frequency—that is,uṽ1z−ṽ2zu!j. On the contrary we are in
the off-resonant regime whenuṽ1z−ṽ2zu@j. Hence, to
switch on and off the resonant interaction between neighbor-
ing electrons we have to modify their axial frequencies. This
is achieved by varying the voltages applied to the detuning
electrodes of the two electrons, as described in Sec. II. The
corresponding energy variation of the system should satisfy
the following conditions:(i) it must occur in a timeDt much
smaller than the swapping timetex, and(ii ) it must be suffi-
ciently slow in order to make the adiabatic theorem valid;
i.e., it must occur in a timeDt such thatDt@ tad with tad
;uDEu / s"vz

2d. The termDE represents the energy variation
due to the changeDvz in the axial frequency—i.e.,DE
."Dvz. Thus, the switching operation should be performed
in a time window with sizetex/ tad@1.

B. Gate fidelity

In our analysis of the swapping gate we made some ap-
proximations. Hence, undesired corrections may affect the
dynamics of the two electrons. However, if these effects are
sufficiently small, we can neglect them and efficiently per-
form the swapping gate. In the following we estimate the
size of these undesired corrections and, at the same time,
describe their dependence on the various parameters of the
system. The general approach to calculate the gate fidelity
and the error probability is illustrated in the Appendix. The
performance of the swapping gate is mainly affected by four
kinds of effects: anharmonicities in the trap potential, ne-
glected terms in the interaction Hamiltonian, detuning and
tuning accomplishment, and switching operation.

Electrostatic anharmonicities give, in Eq.(39), for the
Hamiltonian of each electron, a correction term of the form

Han . eCs3dSz3 −
3

2
zr2D + eCs4dSz4 − 3z2r2 +

3

8
r4D , s54d

where we have set the origin of the coordinates in the trap
center and considered only the main anharmonic corrections.

The rotating-wave approximation allows us to neglect the
odd anharmonic correction when its strength in frequency
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units, of the order ofeCs3dDse
3/" with Dse=maxhDze,Drej, is

much smaller than the axial frequencyvz. Indeed, in this
case, if we express this correction by means of the operators
az, ac, and am we obtain, in the interaction picture, terms
oscillating very rapidly and affecting the dynamics in a neg-
ligible way. This approximation gives errors, when
eCs3dDse

3/"!vz, with a probability of the order of
seCs3dDse

3/"vzd2. Differently the even anharmonic term is
negligible if its size in frequency units, of the order of
eCs4dDse

4/", is much smaller than the interaction strengthj.
In this condition we have a corresponding error for this ap-
proximation, with a probability of the order of
seCs4dDse

4/"jd2. According to our simulations, one can keep
the probability for the above corrections sufficiently small by
carefully choosing the electrode potentials.

Another source of errors for the swapping gate are the
higher-order terms of the Coulomb potential expansion we
neglected in Eq.(42). They produce in the interaction Hamil-
tonian the correction

HCoulomb.
V
d3FDz1,2

3 −
3

2
Dz1,2sDx1,2

2 + Dy1,2
2 dG +

V
d4FDz1,2

4

− 3Dz1,2
2 sDx1,2

2 + Dy1,2
2 d +

3

8
sDx1,2

2 + Dy1,2
2 d2G ,

s55d

whereDz1,2;z1−sz2−dd, Dx1,2;x1−x2, andDy1,2;y1−y2.
As in the case of the odd anharmonic corrections we can

neglect the cubic term with the rotating-wave approximation,
if its strength in frequency units, of the order ofVDse

3/"d3, is
much smaller thanvz. In this case the error probability is of
the order ofsVDse

3/"d3vzd2. The effects due to the quartic
term in Eq.(55) are negligible if its strength is small with
respect to the magnitude of the quadratic term proportional
to V /d2. In this condition the corresponding errors have a
probability of the order ofsDse/dd4.

We also recall that in deriving Eq.(49) we neglected, by
applying the rotating-wave approximation, the terms of Eq.
(48) proportional toã1z

† ã2z
† and ã1zã2z. The errors made by

this approximation have a probability, forj!vz, of roughly
sj /vzd2.«2/4. As shown in Table II, the probabilities of all
the above errors due to the neglected terms in the Coulomb
interaction can be kept, by an appropriate choice of the sys-
tem parameters, sufficiently small.

The next kind of errors we analyze are those produced by
the nonperfect tuning and detuning conditions. In order to
evaluate them we consider the axial dynamics of the elec-
trons when their frequencies are generally not resonant—i.e.,
v2z−v1z=d. In this case the Hamiltonian(48) can be written,
in the interaction picture with respect to"ṽ1zsã1z

† ã1z

+ ã2z
† ã2zd,

Hz,d
IP . "dã2z

† ã2z − "jsã1zã2z
† + ã1z

† ã2zd. s56d

The corresponding Schrödinger equation produces, for the
first Fock states of the axial oscillators, the dynamics

u0lz1u0lz2 → u0lz1u0lz2, s57d

u0lz1u1lz2 → e−isdt/2dFcossJtd − i
d sinsJtd

2J
Gu0lz1u1lz2

+ ie−isdt/2dj sinsJtd
J

u1lz1u0lz2, s58d

u1lz1u0lz2 → e−isdt/2dFcossJtd + i
d sinsJtd

2J
Gu1lz1u0lz2

+ ie−isdt/2dj sinsJtd
J

u0lz1u1lz2, s59d

u1lz1u1lz2 → e−idt

4J2fd2 + 4j2 coss2Jtdgu1lz1u1lz2 −
Î2je−idt

4J2

3f− d + d coss2Jtd − 2iJ sins2Jtdgu0lz1u2lz2

−
Î2je−idt

4J2 fd − d coss2Jtd − 2iJ sins2Jtdg

3u2lz1u0lz2, s60d

whereJ;Îj2+d2/4. In the resonance condition—i.e., when
d!j—the above dynamics reduces, apart from phase factors
of the order ofdt /2, to that described by Eqs.(50)–(53). On
the contrary, whend@j, Eqs. (57)–(60) give substantially
the identity transformation apart from global phase factors.

From the above relations we can estimate the fidelity of
the swapping gate by considering nonperfect tuning and de-
tuning conditions. The fidelity is defined asukCsstd uCstdlu2

where uCsstdl is the state obtained with the ideal swapping
gate anduCstdl is the state obtained from Eqs.(57)–(60) for
finite values ofd. Hence, if we indicate bydr and dd the
detuning, respectively, in and out of resonance, we have,
when dr !j and dd@j, a fidelity for the swapping gate of
about 1−sdr /jd2−sj /ddd2.

The change in the axial frequencies of the particles we
make to switch on and off the resonant interaction should
have, as described before, the following properties. It should
be slow enough to occur adiabatically with respect to the
single-oscillator dynamics and, at the same time, it should be
quick if compared to the typical time of the resonant dynam-
ics. Hence to obtain the swapping gate we made both the
adiabatic and sudden approximation. This approximation re-
quires that the time interval of the frequency changeDt sat-
isfy the conditiontad!Dt! tex. In this case the fidelity of the
swapping gate, taking into account the corrections due to the
above approximations, can be estimated as follows. The
probability of undesired transitions during the adiabatic evo-
lution is, whenDt@ tad, of the order ofstad/Dtd2 (see[24]).
Differently undesired transitions in the sudden transforma-
tion occur, whenDt! tex, with a probability of the order of
sDt / texd2. Hence we have a fidelity of the order of 1
−sDt / texd2−stad/Dtd2.

V. TWO-PARTICLE OPERATIONS

To implement theCNOT gate between the qubits of differ-
ent electrons, we rely on the swapping operation described in
the previous section.
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Let us consider, first, the case of two neighboring elec-
tronse1 ande2. To perform theCNOT gate having the spin of
the first electron as a target and the axial qubit of the second
one as a control, we follow this procedure:(i) We swap the
information between the axial qubits;(ii ) we perform the
CNOT operation between the spin and the axial qubits of the
same particle, according to the prescription given in Sec. III;
and(iii ) we swap back the information contained in the axial
qubits. It is straightforward to verify that the above sequence
of operations produces the desired gate.

The implementation of theCNOT gate between the axial
qubits is, instead, realized as follows:(i) We swap the infor-
mation between spin and axial qubits of the same electron by
means of an appropriate sequence of pulses[25]; (ii ) we
perform theCNOT operation having the spin qubit as a target
and the axial qubit as a control by applying the sequence
described before; and(iii ) we swap the information between
the spin and axial qubits again.

We now consider theCNOT gate having the spin qubit as a
control and the axial qubit as a target. This gate can be
achieved with the following operations:(i) We swap the in-
formation between the spin and the axial qubits of both elec-
trons; (ii ) we perform theCNOT operation having the axial
qubit as a control and the spin qubit as a target(see above);
and (iii ) we apply a swapping gate between the spin and
axial qubits of each electron.

The implementation of theCNOT gate between the spin
qubits is realized with the following steps:(i) We swap the
information between the spin and the axial qubit of one elec-
tron; (ii ) we perform theCNOT operation having the axial
qubit as a control and the spin qubit as a target(see above);
and(iii ) we swap back the information between the spin and
axial qubits.

Let us now generalize the procedure to electrons that are
not necessarily first neighbors. For example, theCNOT gate
involving the axial qubit of thenth electron as a control and
the spin qubit of the first one as a target is obtained as fol-
lows: (i) We write the information, stored in the axial qubit
of the nth electron onto the same qubit of the second elec-
trons, by means of a sequence ofn−2 swapping operations
between neighboring electrons;(ii ) we perform theCNOT op-
eration between the axial qubit of the second electron and the
spin of the first one, according to the prescription explained
before; and(iii ) we apply once again the sequence ofn−2
swapping gates to bring back the information to thenth elec-
tron of the array. Obviously the same strategy can be ex-
tended to any other two-qubit gate between any pair of par-
ticles in the array. Hence, we are able to perform anyCNOT

operation between qubits of different electrons. Notice that
the number of swapping operations required to implement
theCNOT gate between the electronse1 anden grows linearly
with n. Thus the average number of pulses, required to per-
form aCNOT gate, grows linearly with the number of trapped
electrons—i.e., with the number of qubits in the network.
Therefore, an efficient quantum algorithm, if implemented
with this quantum processor, preserves its efficiency.

VI. QUBIT READOUT

In order to measure the final qubit state of our quantum
processor we have to detect the axial and spin states of each

trapped particle. We recall that, in the experiments with a
single electron in a Penning trap, the spin-cyclotron state is
routinely measured by applying a magnetic field similar to
that of Eq.(30), also called a magnetic bottle, and then de-
tecting the shift produced by this field on the axial frequency
[10]. A similar technique should permit to measure the spin-
cyclotron states of the trapped electrons in our system. As in
the case of a single Penning trap we couple the cylindrical
cavity to an external circuit. The oscillating electrons con-
fined in the linear array of traps induce alternate image
charges in the cavity electrodes, which in turn cause a cur-
rent to flow through the circuit. The frequency spectrum of
this current presents maxima centered at values correspond-
ing to the axial frequencies of the trapped electrons. If we
apply to each microtrap a magnetic bottle, we obtain a shift
of the axial frequency of each electron depending on its cy-
clotron and spin quantum numbers. Hence, by measuring
these shifts we can detect the spin-cyclotron state of each
trapped electron.

However, in our system we need to measure the spin-axial
states of the particles. This can be accomplished by applying
appropriate electromagnetic pulses and then measuring the
spin-cyclotron states. Let us consider a single electron. The
magnetic bottle produces a shift on its cyclotron frequency
depending on the axial quantum number. Its value, obtained
by treating the magnetic bottle field as a small perturbation,
is dmsk+1/2d with dm proportional to the magnitude of the
magnetic bottle according to Eq.(33). As described in[8,9] a
linearly polarized electromagnetic field can induce transi-
tions between cyclotron energy levels. If this field is applied
for an appropriate time interval with a frequency close to
vc+3dm/2, it produces the transformationu0lc↔ u1lc (apart
from a phase factor) only if the axial state isu1lz. By assum-
ing that the cyclotron motion is initially in the ground state,
we can use this pulse to substantially “copy” the information
of the axial qubit to the cyclotron qubit. Hence, to perform
the qubit readout we just have to apply the above field and
then detect the spin-cyclotron state of the electron by remem-
bering that the cyclotron stateu0lcsu1lcd corresponds to the
axial stateu0lzsu1lzd.

Let us consider the spin-cyclotron state detection. The
magnetic bottle produces a shift, Eq.(31), on the axial fre-
quency given bydmsn+1/2+gs/4d. Unfortunately, because
of the smallness of the electron anomaly, to our knowledge it
is not yet possible to resolve between the shifts produced by
the states:u1lcu↓ l andu0lcu↑ l. To circumvent this problem we
can adopt different strategies. For example, we can detect,
through a quantum-nondemolition observation[11], the
eventual quantum jumps to the cyclotron ground stateu0lc.
Indeed, the spin state is substantially stable while the cyclo-
tron motion relaxes after few seconds to its ground state[10].
Another method relies on the application, after detecting the
frequency shift, of apssp ,p /2d pulse which flips the spin
state. In this case the spin-cyclotron state can be detected
with a second axial frequency measurement. If the frequency
shift detected by this second measurement increases(de-
creases) of a quantitydm with respect to its previous value,
then the spin state was initially in the state “down”(“up” ).

If no error occurred during the quantum computation, we
should detect, for each electron, one of the spin-cyclotron
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statesu0lcu↓ l, u0lcu↑ l, u1lcu↓ l, and u1lcu↑ l. Hence, another
method relies on the application of an appropriate sequence
of electromagnetic pulses producing the transformationu1lc
→ u2lc. This can be achieved by taking advantage of the rela-
tivistic corrections on the cyclotron frequency as indicated in
[8,9]. At this point the four spin-cyclotron states are mapped
onto, respectively, the states:u0lcu↓ l, u0lcu↑ l, u2lcu↓ l, and
u2lcu↑ l. It is easy to verify that these states correspond to
distinguishable axial frequency shifts.

In this section we have carefully analysed the qubit detec-
tion by means of axial frequency measurements. Moreover,
to perform the qubit readout we can also apply capacity and
charge measurement devices as in semiconductor quantum
dots [19].

VII. DECOHERENCE SOURCES

In this section we analyze qualitatively and quantitatively
the main decoherence mechanisms which, in principle, can
affect the performances of our quantum processing device.
We distinguish two main decoherence sources: thermal noise
in the electrode surfaces and voltage fluctuations induced by
the electronic apparatus controlling the gate dynamics. Ther-
mal noise in the electrode surfaces is a fundamental phenom-
enon, in principle not eliminable and depending, for a given
electrode arrangement, only on the temperature of the trap-
ping device. Differently the noise fed into the system by the
electronic apparatus depends on the properties of its elec-
tronic components, their temperature, and the characteristics
of any noise reduction device. Therefore, this noise source
can be, in principle, reduced, though it is difficult to estimate
the ultimate technological limit. This decoherence source
need to be considered since the computation in our device is
performed by continuosly changing the electrode voltages.
Hence, the electronic apparatus controlling these switching
operations can introduce additional noise in the electrode
voltages.

Thermal noise in the electrode surfaces produces fluctu-
ating electric and magnetic fields at the position of the
trapped electrons. These fluctuating fields, in turn, induce
decoherence and heating in the energy eigenstates of the
axial and spin electron motion. The effects on the axial mo-
tion can be analyzed with the following model[26,27]. The
Hamiltonian for an electron trapped in a harmonic well sub-
ject to a fluctuating, uniform(nongradient) electric fieldEstd
is

Hzstd =
pz

2

2me
+

1

2
mevz

2z2 + eEstdz. s61d

By defining the ladder operatoraz;Îmevz/ s2"dz
+ iÎ1/s2"mevzdpz we can write

Hzstd = "vzaz
†az + eEstdÎ "

2mevz
saz + az

†d. s62d

From second-order perturbation theory we derive a master
equation for the reduced density operatorrz of the axial elec-
tron motion [29]. This equation, describing the dynamics
when the fluctuations of the electric fieldEstd are traced over,
can be written as

ṙz = −
g+

2
saz

†azrz + rzaz
†az − 2azrzaz

†d −
g−

2
sazaz

†rz + rzazaz
†

− 2az
†rzazd, s63d

where g± ;e2SEs±vzd / s2"mevzd and SEsvd=e−`
+`dteivtkEst

+tdEstdl is the spectral density of the electric-field fluctua-
tions at the electron position. From the above master equa-
tion we obtain the rates of the transitions between axial
states. Indeed, if we define the quantitiesrzij;zki urzu jlz, we
have

ṙz00 = − g−rz00 + g+rz11, s64d

ṙz01 = −
3g− + g+

2
rz01 + Î2g+rz12. s65d

Equation (64) shows that the transitionu0lz→ u1lz su1lz

→ u0lzd occurs with a rateg−sg+d, whereas Eq.(65) gives the
decay rate of the coherences between the lowest trap levels.
Its value is similar to that of the level transition rates.

Hence, changes in the first Fock-state population and de-
coherence processes take place in a timetdz of the order of
1/maxfg−,g+,s3g−+g+d /2g.

The spectral densitySEs±vzd can be estimated by using
the microscopic model described in[26,27]. Though this
analysis considers a simple geometry of an infinite plane
electrode, its results allow us to roughly evaluatetzd in our
system. From this model we have

SEsvd . F "v3

3p«0c
3s1 − e−"v/kBTdG

3F2 +
3ds

2

8k̂de
3
Î1

2
+Î1

4
+

de
4

ds
4G , s66d

where k̂;uvu /c, ds;Îs2c2«0%d / uvu is the skin depth of an
electrode with resistivity% and de is the distance between
electron and electrode surface.

The above relation gives the spectral density of the
electric-field fluctuations in the “quasistatic” limit, where

k̂de!1 and when the resistivity is sufficiently small so that

k̂ds!1. Both these conditions are verified in our system if
we consider copper electrodes atT=80 mK. From Eq.(66)
we see that the free space spectral density, given by the
blackbody field, is modified by the presence of the electrode
surface. By using this equation we obtain values in our sys-
tem fortdz ranging from 3500 s to 0.05 s(they coincide with
the values oftd in Table II).

Together with a fluctuating electric field, thermal noise in
the electrode surface produces a fluctuating magnetic field.
This latter field induces both decoherence and heating in the
spin states of the electron. The Hamiltonian for the spin mo-
tion of the trapped electron in the presence of a fluctuating

magnetic fieldb̄std is
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Hsstd =
"

2
vssz +

ge"

4me
s · b̄std, s67d

where vs is the spin precession frequency of the trapped
electron. By introducing the operatorss± ;ssx± isyd /2, Eq.
(67) can be rewritten as

Hsstd =
"

2
vss2s+s− − 1d +

ge"

4me
fss+ + s−dbxstd

− iss+ − s−dbystd + s2s+s− − 1dbzstdg. s68d

By using a perturbative approach we derive from the above
Hamiltonian a master equation describing the dynamics of
the density operatorrs of the electron spin motion[29]:

ṙs = − G+ss+s−rs + rss+s− − 2s−rss+d − G−ss−s+rs

+ rss−s+ − 2s+rss−d − 2sG+ + G−dsss+s−d2rs

+ rsss+s−d2 − 2s+s−rss+s−d, s69d

with G± ;g2e2Sbs±vsd / s16me
2d and where Sbsvd

=e−`
+`dteivtkbzst+tdbzstdl is the spectral density of the

magnetic-field fluctuations along thez direction at the elec-
tron position. In deriving the master equation we have as-
sumed that the noise in the componentsbxstd, bystd, andbzstd
of the fluctuating field has the same strength but no correla-
tion. From Eq.(69) we can obtain the transition and deco-
herence rates of the electron spin states. Indeed, by defining
the matrix elementsrsij;ki ursu jl with i , j = ↑ ,↓ we have

ṙs↓↓ = − 2G−rs↓↓ + 2G+rs↑↑, s70d

ṙs↓↑ = − 3sG− + G+drs↓↑. s71d

From Eqs. (70) and (71) we see that the transitionu↓ l
→ u↑ l su↑ l→ u↓ ld occurs with a rate 2G−s2G+d and the co-
herencesrs↓↑ decay with a rate 3sG−+G+d. Hence, these pro-
cesses take place in a time not smaller thantds.1/f3sG−

+G+dg.
As in the case of the fluctuating electric field the spectral

density of the fluctuating magnetic field for the simple ge-
ometry of an infinite plane electrode can be analytically cal-
culated [27]. From this calculation we obtain, when the
wavelength associated with the spin transition frequencyvs
is much larger than the distance between the electrons and
trap electrodes,

G7 . ± F g2e2"vs
3

48p«0me
2c5s1 − e7"vs/kBTdG

3F1 +
3

8k̂s
3ds

2de

S1 +
2de

3

3ds
3D−1G , s72d

wherek̂s;uvsu /c.
By using the above relation to estimate the decoherence

time tds for the electron in our system, we obtain values
ranging from 53107 s to 8 s. These values are always
much larger than the corresponding values oftdz. Hence, in
our device, the decoherence effects due to thermal noise in
the electrode surface affect much more quickly the axial qu-
bit than the spin qubit. If, in our processing device, thermal

noise in the electrode surfaces is the main source of decoher-
ence, then we can perform roughly 107–108 coherent opera-
tions (see Table II). However, the effects of the additional
noise produced by the electronic apparatus controlling the
gate switching can also be important. We estimate them with
the following analysis.

Generally noise in the electrode voltage induces fluctua-
tions, at the electron position, both in the electric field and in
the electric-field gradient. Heating and decoherence of the
electron axial states due to the electric-field noise induced by
the electronic apparatus take place in a timetdz

el of the order
of 2me"vz/ fe2SE

elsvzdg, whereSE
elsvd is the spectral density of

the electric-field noise produced by the electronic apparatus.
We suppose that this noise affects only the voltage of the
detuning, driving, and decompensating electrodes. Indeed,
the potential applied to these electrodes needs to be continu-
osly changed in a controlled manner in order to perform the
quantum processing operations. We also suppose that each
detuning electrode, each driving electrode, and the decom-
pensating electrodes are affected by independent noise
sources having the same strength.

The electric-field fluctuationsdEjstd on the electron in the
j th trap depend mainly on the potential fluctuations of the
nearby detuning and driving electrodes so that

dEjstd .
1

d
o

i=j−1

j+1

fc̃d,idVd,istd + c̃r,idVr,istdg, s73d

wheredVd,istd anddVr,istd indicate the potential fluctuations,
respectively, on the detuning and driving electrodes at theith
trap and the geometric coefficientsc̃d,i, c̃r,i can be calculated
by using Eq.(5). From the above relation we obtain the noise
spectral density

SE
elsvd .

SV
elsvd
2d2 o

i=j−1

i=j+1

suc̃d,iu2 + uc̃r,iu2d, s74d

whereSV
elsvd is the spectral density of the differential poten-

tial noise produced by the electronic apparatus.
Good room-temperature electronics have typicallySV

elsvzd
of the order of 10−18 V2/Hz. However, low-temperature elec-
tronics could haveSV

elsvzd<10−21 V2/Hz [16], giving values
for tdz

el corresponding to a capability for our system of
104–106 coherent operations. These estimates are obtained
by considering the geometries of Table I with the following
choices:Dzd/Dz ranging from 1/10 to 1/100 andDzr /Dz in
a range of 1/80–1/800, 1/30–1/300, and 1/10–1/150 for
d, respectively, equal to 500ms, 50ms, and 1.5–3ms.

The electric-field gradient noise induced by the electronic
apparatus produces fluctuations in the effective spring con-
stant of the electron trap. Its effects can be estimated as
follows. The Hamiltonian of an electron confined in a trap
having a spring constant with a fluctuationẽstd is

Hzstd =
pz

2

2me
+

1

2
mevz

2f1 + ẽstdgz2, s75d

which can be rewritten as
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Hzstd = "vzaz
†az +

"vzẽstd
4

saz
†2 + az

2 + 2az
†az + 1d. s76d

This noise induces both decoherence in the superpositions of
the first Fock axial states and heating with transitionsu0lz
→ u2lz. The heating rateR0→2 can be estimated by using the
first-order time-dependent pertubation theory[28]

R0→2 . Smevz
2

2"
DE

−`

+`

dte2ivztkẽstdẽst + tdluzk0uz2u2lzu2

=
vz

2

8
Sẽs2vzd, s77d

where Sẽsvd;e−`
+`dteivtkẽstdẽst+tdl is the spectral density

of the noiseẽstd.
The rate of decoherence in the first Fock state superposi-

tion can be estimated by considering in Eq.(76) only the
effect due to the term proportional toẽstdaz

†az. The corre-
sponding master equation, obtained by using a perturbative
approach, for the density operatorrz describing the axial
electron motion is[29]

ṙz = −
Sẽsvzdvz

2

8
fsaz

†azd2rz + rzsaz
†azd2 − 2az

†azrzaz
†azg.

s78d

From the above equation we can derive the equation for the
coherencerz01:

ṙz01 = −
Sẽsvzdvz

2

8
rz01. s79d

We suppose that the noise spectrum has the same strength at
frequencies 2vz andvz. Consequently the effects of heating
and decoherence due to the noise in the spring constant of
the electron trap occur roughly at the same rate.

By assuming that in our system the noise produced by the
electronic apparatus does not affect the trapping electrodes
we have

1

2
mevz

2ẽstd .
e

d2fC̄c
s2ddVc

elstd + C̄d
s2ddVd

elstdg, s80d

wheredVc
elstd and dVd

elstd are the potential fluctuations pro-
duced by the electronic apparatus on, respectively, the com-
pensating and detuning electrodes of the specific electron
trap.

If we consider these two voltage noise sources indepen-
dent and having the same strength, we obtain, from the
above relation,

Sẽsvd .
2e2

me
2vz

4d4SV
elsvdfuC̄c

s2du2 + uC̄d
s2du2g. s81d

An estimate of the decoherence and heating time due to elec-
tric field gradient noise, given by 1/R0→2, can be obtained
from Eq. (77) by using the above relation. Its value in our
system, if we considerSV

elsvd<10−21 V2/Hz, is always larger
or of the same order of the decoherence timetdz

el due to the
electric field noise.

Hence, with voltage fluctuations of the electronic appara-
tus of the order of 3310−2 nV, our processing device can
perform 104–106 coherent operations. This corresponds to an
error probability per gate below the threshold for fault-
tolerant computation. Moreover, since the fundamental upper
limit of the decoherence time depends only on thermal noise,
the number of coherent operations can be, in principle, fur-
ther increased.

VIII. CONCLUSION

In this paper we have shown that a system consisting of
trapped electrons in vacuum can be a valid candidate for a
scalable quantum computer. This arrangement presents three
major advantages: high clock speed, low decoherence, and
scalability. In particular, in our design several electrons are
confined in a linear array of Penning trap by means of an
innovative trapping device. Quantum information is encoded
in the axial and spin motion of each single particle. Universal
computation is performed by applying electromagnetic
pulses in combination with static fields and by controlling
the Coulomb interaction between neighboring electrons. The
qubit readout can be achieved by axial frequency measure-
ments as in traditional Penning traps or by capacitance and
charge measurements as in semiconductor quantum dots.

The results of an in-depth analysis of the main error and
decoherence sources demonstrate that the system permits
fault-tolerant computation(error probabilities per gate of
about 10−6–10−4) within current experimental capabilities. A
fundamental requirement of our scheme is the ground-state
cooling of the axial motion. Though not yet experimentally
demonstrated, this task should be, by applying specific tech-
niques [10,12,30], within the reach of present technology.
Furthermore, at temperatures of tens of mK, for interelectron
distances smaller than 20mm and axial trapping frequencies
in the GHz range, thermalization with the trap environment
brings the axial oscillator to its ground state without any
external cooling.

Our current and future work on the system will mainly
concern two areas of research. First, we should further ana-
lyze and improve the qubit detection technique. For example,
the time required to measure the axial frequency in experi-
ments with a single electron[11] is not fast when compared
to the estimated decoherence times. We recall that though
fast measurement capability is not an essential prerequisite
for quantum error correction, it reduces the number of re-
quired gate operations[31]. Furthermore, detection tech-
niques based on charge and capacitance measurements as in
semiconductor quantum dots should be also applicable to our
system. They could improve the detection capabilities in
terms of efficiency and speed.

The other direction of our future research work will con-
cern the possibility to increase the clock speed of the system
in order to perform a larger number of gate operations within
the decoherence time. The clock frequency of our current
scheme is limited by the strength of the frequency correc-
tions produced by static inhomogeneous fields—i.e., anhar-
monic electrostatic field and magnetic bottle. These correc-
tions are much smaller than the axial frequencies. Therefore,
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the potentiality related to the high trapping frequencies of the
electrons is not fully exploited. A possible scheme, able to
avoid the use of the anharmonic corrections and then in-
crease the clock speed, could exploit the technique of com-
posite pulses already used in NMR[32] and ion-trap systems
[5].
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APPENDIX

In this appendix we describe how to estimate the fidelity
and error probability of the gate operations, when we include
corrective effects neglected in the limit of the approxima-
tions made to obtain the “ideal” dynamics shown in the pa-
per.

In particular, the transformations realizing single-qubit
and two-qubit operations on a single electron are obtained by
making the following approximations. We neglect in the in-
teraction Hamiltonian terms which oscillate very rapidly
(rotating-wave approximation) and do not consider the pos-
sibility to leave the computational space. Moreover, the reso-
nant dynamics producing the swapping gate is obtained by
neglecting anharmonic corrections in the electron trapping
potential, higher-order terms in the Coulomb energy, and ef-
fects due to the change in the axial frequency.

In general the real dynamical evolution of the system,
during gate operations, is different from the “ideal” dynam-
ics obtained with the above approximations. Consequently
deviations from the ideal dynamics can lead to errors in the
gate operations.

Let us suppose that the global Hamiltonian of the system
can be written as

Hstd = H0 + H8std, sA1d

whereH0 is time independent andH8std is the Hamiltonian,
in general time dependent, of the interaction producing the
specific gate operation. The state vectoruCstdl of the system
satisfies the Schrödinger equation

i"
]uCstdl

]t
= HstduCstdl. sA2d

If we indicate byEk
s0d and uCk

s0dl, respectively, the eigenval-
ues and orthonormal eigen-vectors of the unperturbed Hamil-
tonianH0, we can write

uCstdl = o
k

ckstduCk
s0dle−iEk

s0dt/", sA3d

whereuckstdu2= ukuCk
s0duCstdlu2 is the probability of finding the

system in the stateuCk
s0dl.

By substituting the expansion(A3) into the Schrödinger
equation(A2) and then taking the scalar product with a vec-
tor uCb

s0dl we find

ċbstd =
1

i"
o
k

Hbk8 stdckstdeivbkt, sA4d

whereHbk8 std=kCb
s0duH8stduCk

s0dl andvbk=sEb
s0d−Ek

s0dd /".
The set of equations(A4) for all b constitues a system of

first-order coupled differential equations strictly equivalent
to the Schrödinger equation(A2).

In order to estimate the errors due to the specific approxi-
mations made in the interaction dynamics we proceed as fol-
lows. We insert the approximated solutionsck

appstd, describ-
ing the “ideal” gate dynamics shown in the paper, on the
right-hand side of Eq.(A4) and integrate over time, obtain-
ing

cb
actstd .

1

i"
o
k
E

t0

t

Hbk8 st8dck
appst8deivbkt8dt. sA5d

The normalized coefficientcb
actstd /Îokuck

actstdu2 represents a
more precise estimate ofcbstd with respect tocb

appstd.
The fidelity Fstd of the gate operation is defined as

Fstd = ukCappstduCstdlu2, sA6d

where uCappstdl is the state vector of the system obtained
with the approximated solutions describing the “ideal” gate
dynamics anduCstdl is the state vector describing the actual
dynamical evolution. Hence the error probability is defined
asPestd=1−Fstd.

In order to estimateFstd we use the relationsuCappstdl
=okck

appstduCk
s0dle−iEk

s0d
t/" and uCstdl.okfck

actstd /

Îokuck
actstdu2guCk

s0dle−iEk
s0d

t/", obtaining

Fstd .
uok

ck
*appstdck

actstdu2

ok
uck

actstdu2
. sA7d

In general, in the cases considered,Fstd is always, during the
system evolution, not smaller than a valueFmin. Hence in the
paper we always choose as a fidelity and error probability the
time-independent values, respectively, ofFmin and 1−Fmin.
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