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Trapped electrons in vacuum for a scalable quantum processor
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We describe in detail a theoretical scheme to trap and manipulate an arbitrary number of electrons in vacuum
for universal quantum computation. The particles are confined in a linear array of Penning traps by means of
a combination of static electric and magnetic fields. Two-electron operations are realized by controlling the
Coulomb interaction between neighboring particles. The performances of such a device are evaluated in terms
of clock speed, fidelity, and decoherence rates.
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I. INTRODUCTION nance, they may exchange a quantum of excitafidj. If

In the search for the implementation of quantum computV€ aré dealing with the lowest Fock states of the axial
ing, different schemes based on a variety of quantum systenfgotion—i.e., [0), and |1),—this operation amounts to a
have been proposqd_]_ In the case of trapped ionS, for ex- Swapplng gate. This ab|||ty, combined with the universal set
ample, there are already promising experimental demonstr&f quantum gates on every single electron, allows us to
tions [2-5]. However, we are still at the proof-of-principle implement conditional dynamics between different particles.
stage, where operations are limited to a small number ofhe final qubit readout can be performed by either axial fre-
qubits. In the long run towards a winning technology for quency detection, as in traditional Penning trgp8], or by
quantum computation, it is, hence, worthy to investigate nevgapacitance and charge measurements, as in semiconductor
systems. quantum dotg19].

Our recent proposdb] showed the possibility to realize a  In this paper we present a detailed description and analy-
scalable quantum computer with trapped electrons irgis of our system. In particular, we estimate its performances
vacuum. This idea, extending previous scherfiesd], has and efficiency when all the main error and decoherence
been encouraged by the impressive results obtained in trgources are taken into account. The results of this investiga-
experiments with a single electron in a Penning {rip-12 tion are very encouraging. They demonstrate that, in our
and by the recent advancements in three-dimensi8@  Scheme, error probabilities per gate less tharf 4@ within
microtrap costructiori13]. the reach of present technology. Hence, fault tolerant com-

By using electrons in vacuum we combine the low- putation should be actually feasible.
decoherence environment and experimental accuracy typical The paper is organized as follows. We first describe the
of ion traps[14,15 with the high clock speed, compactness, trapping structurgSec. 1), where the electrons are held. In
and scalability of solid-state devic¢$6,17. In comparison  Sec. lll, we sketch how to implement universal computation
with rf ion traps[14,15, we have, at least, three major ad- With the qubits stored in each electron. In this section we
vantages(i) faster clock frequency of 2—3 orders of magni- also evaluate the fidelity of single-particle quantum gates.
tude due to the smaller mass of the electr@in, weaker The following section, Sec. IV, is devoted to the analysis of
decoherence effects due to reduced field fluctuations, ariéhe swapping gate between qubits of neighboring electrons.
(i) dense coding with more qubits per site. Furthermore\We describe this operation in detail and estimate its fidelity.
with respect to solid-state proposdtss,17, vacuum traps This gate allows for two-particle universal operations, as
for electrons minimize the environmental influence found inshown in Sec. V. In Sec. VI we deal with the final qubit
semiconductor devices and could create more accurate strugadout. The most relevant decoherence processes and their
tures[13]. effects are analyzed in Sec. VII. Finally, we summarize our

More specifically our system consists of a set of electrongnain results in Sec. VIII.
confined in vacuum within an innovative trapping arrange-
ment. Our schemg reproduces a linear array of Penning traps Il LINEAR ARRAY OF PENNING TRAPS
with interparticle distances ranging from 1.&n to 500um.

Quantum information is encoded in the different quantized In this section we present a scheme for the implementa-
degrees of freedom of the electron motion as well as in théion of a scalable quantum processor consisting of a linear
two states of the spin. The gate operations on single particlesrray of electrons. Our aim is to confine the particles inside
are performed by means of appropriate electromagnetithe same physical device, creating a periodic potential that
pulses. They permit, when combined with specific static indocally well approximates the typical quadrupole potential,
homogeneous fields, one to achieve universal computationsed in traditional Penning trap20]. Ideally, each electron
on the qubits of each single electron. In order to realize uniis confined to a small region, where the applied electrostatic
versal gates between qubits of different electrons we exploipotential plus a homogeneous magnetic field reproduce the
the Coulomb interaction in the following way. Each trap con-usual field configuration of a Penning trap.

fines a single electron which oscillates with its own axial The device able to realize such a periodic confining struc-
frequency. When two neighboring particles are put into resoture consists of a cylindrical trap of radiug and lengthz,,.

1050-2947/2004/13)/03230116)/$22.50 70032301-1 ©2004 The American Physical Society



CIARAMICOLI, MARZOLI, AND TOMBESI PHYSICAL REVIEW A 70, 032301(2004

Zy
d @v,
2r0 D'\It
mo

oAz

FIG. 1. Schematic drawing of a cylindrical trap with the lateral surface consisting of nine ring electrodes at alternate potentials. This
device reproduces along the axial direction four Penning traps where electrons can be confined.

The bases of this cylinder are composed of flat electrodes &ven with Az=z,/[m+a(m+1)] and =1 so that the elec-
zero potential, whereas the lateral surface is made up by a sgbdes at the same potential have also the same width. In this
of N ring electrodes of widtlAz, held at different potentials case, the electrostatic potential energy of an electron has,
V; and separated by thin dielectric layers. Note that no elecalong thez axis, minima located, to a good approximation, at
trode is interposed between the electrons of the array, ithe center of the positive electrodesee Fig. 2—that is, at

order to prevent the electrostatic shielding. the positions

The electrostatic potential inside this cavity can be ana- 1 3
Iytically calculated[21,22. To this end, we choose a set of 7= <a+ —)Az, 2= <2a+ —)Az, o
cylindrical coordinates with the origin on the left basis of the 2 2

cylinder and thez axis along the symmetry axis. With this

choice, the potential inside the cylinder is given by the rela- _ 2m-1
tion [21,22 Zm= | Ma Az. 3
“ _(nmz)\ lo(nmrizy) Electrons can be trapped around these equally spaced
V(r,2) = 2 A, sin 2 ) onarolzy)” (1) minima, separated by a distande(a+1)Az In our design,
n=1

the distanced between two neighboring particles ranges

where the expansion coefficients are given by from 1.5um to 500um. To better study the form of the
potential, Eq(1), along thez axis we use an expansion with
A, = i{vl Sin2<n7’_AZl) respect to a point0,?):
nm 2z, w
. . z-{

n A +2A A V r"Z = C(') r2+ z- 2 I/2P_<—>

+V2 Sin( ’7T( 22 Zl))sin( n 22> ( ) E) [ ( g) ] 1 \’(Z_£)2+r2
2 27,
r2
=0 4 V(5 (2 -2 — —
vy sin< nm(Azg+ 2Azl+2A22))Sin( mrAz3> . =CO+cW(z- g +C [(z 0 2}
27, 2z,
_ (nw(AzN+ 207+ 20z, + -+ + 2AzN_1)) +C(3{(z— 03 - §(z— Qrz}
+Vy sin 2
2z,
3

A D (7= N3 =3r2z- N2+ =4
Xsin(mﬂ @ +C {(z 0" =3 z=0 g ]+ . (4

229

where

and |, is the modified Bessel function of zero order. For
particular values of th&/;'s and theAz’s, the electrostatic
potential energy of an electron inside the cavity presents,
along thez axis, a series of minima where one can trap the-ev,
particles. These are, actually, saddle points since the electrc
static potential provides only the confinement along the axial ¢
direction. To obtain the radial confinement as well, we have

to introduce a homogeneous static magnetic field directec ey,
along thez axis. Thus, we can construct a kind of miniatur-
ized Penning trap centered on each minimum. To obtain, for
example,m minima we can choose the following configura-
tion of trapping electrodeésee Fig. 1L We use M+1 ring

electrodes with potentials having alternate signs—\g., FIG. 2. Three-dimensional plot showing the electrostatic energy
==V, Vo=+V, Vi=-V,, ..., Vo=+V,, Vom1=—V.. The  of the electron in the cylindrical trap sketched in Fig. 1. Electrons
electrode widths aré\z=aAz for i odd andAz=Az for i can be stored near the four minima along #hais.
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_ i = i
) > An (mT> sin(r%g), for i even,

ol = il 2o lo(narglzp) \ z4 )

(_ 1)(i—l)/2 ” An (n_ﬂ')l {n_w@) ]
. Elo(nmolz()) . co 2 )" for i odd.

andP; is the Legendre polynomial of order 3 MHz to 50 GHz by applying potential differences from
Near a minimum, the leading term in the expansion of thed.05 mV to 25 mV.
potential, Eq.(4), is the quadratic one, proportional to the  With the above geometrical parameters, at a distahce

coefficientC®. Hence, in a small region around tfte mini-  from the considered minimum not larger tha1.0, the main
mum z;, we can approximate the electrostatic potential encorrection to the quadrupole potential is given by the octu-
ergy of an electron of chargeas pole term proportional t¢?. Its size relative to the quadru-
5 pole term, obtained from Eq(4), is of the order of
ev(r,2) ~ eC(Z){(z—zj)z—r—] © 1CPIC?|(dn/d)? with |CV/C?)| in a range, according to
2 the chosen geometry, 1-5.

The trapping electrodes permit one to create, together
with the application of a uniform magnetic field in the axial
8irection, a linear array of Penning traps, each one having

whereC? is given by the expressiofb) andeC®>0. This
relation represents a quadrupole potential which provides th
axial confinement to the electron.

. . (I) . .
valt;Jets ?.f Itlhe d coeff(ljuentti n t.he expan_?lor(4l): d?h Not \vant to control and vary in a suitable range the value of the
substantially depend on the minimum position. Fur ermore()ctupole term of the trap potential. Second we want to ma-

in the case of odd, they are, in good approximation, negli- nipulate the axial frequency of each electron without affect-

gible. These are consequences of the fact that, for m'n'mﬁ"lg the other trap parameters. Third we want to selectively

located away from the trap end caps, the system is approxgpply to each trap an oscillating electric field. These tasks

mately symmetric W.'th respect to a plane perpendlcular Qan be accomplished by adding to the cylindrical cavity three
thgz aX|s.and containing the minimum. In this case we can, qditional sets of electrodes.
write, fori even, The first one is composed, in a trap withminima, by 2n
ring electrodes, each one having widtl, with Az, <Az/2
@) and held at potentia¥;.. These electrodes, called decompen-
sating electrodes, permit, by varyiM, to change the value
_ of the octupole term in the trap potential. We need to in-
where theat')’s are dimensionless coefficients dependingcrease the anharmonicity of the axial oscillator in order to
only on the geometrical properties of the system—i.e., thenanipulate the quantum information, encoded in the electron
parameters,/d and . Their values can be calculated from motion, without leaving the computational space. The anhar-
Egs.(2) and(5). monic corrections make the transition frequencies of neigh-
Hence, from Eqs(6) and (7), the axial oscillation fre- boring axial energy states distinguishable. Consequently, as
quency of the trapped electrons confined around thesdiscussed in the next section, an oscillating electric field with

minima is appropriate frequency can selectively act on specific axial
transitions realizing single-qubit gates.
2th6§2) Two decompensating electrodes are inserted at the ends of
Wz = ma? (8) each trapping electrode at potentig] as illustrated in Fig.

3(c). In practice, this addition requires the shortening of the
with m, being the electron mass. This equation describes thBOSitive trapping electrodes by a value aiZ. Inside the
dependence of the electron axial frequency on the trap sizgYlindrical cavity the electrostatic potentidlr,z) produced
and on the potential applied to the ring electrodes. In ouPY this electrode arrangement can be written as
design the geometrical parameteggd and « have ranges,
respectively, of 0.2-0.5 and of 1-2.3, with &Try/d)(1 V(r,2) = V4(r,2) + Vc(r,2). (9)
+a)=<1. This choice givei:f) in a range of -25 to -5
with the smallest values oﬁz) obtained for the smallest In this relationV+(r,z) and V(r,z) are the potentials ob-
values ofry/d and the largest values ef. Thus, with inter-  tained from Eq(1) with, respectively, the trapping electrodes
particle distances ranging from 5@0n to 1.5um we can and the decompensating electrodes only. In particular,
easily produce trapping frequencies ranging fromVc(r,z) is calculated with all the ring electrodes held at zero
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FIG. 3. Scheme&) and(b) show the electrode arrangement giving, respectiwéyr ,z) andVp(r,z). Schemdc) displays the complete
trapping device with the lateral surface consisting of trapping, decompensating, detuning, and driving electrodes.

potential except the decompensating electrodes held at pthe parametery/d and «, vary in a range 3-350, with the

tential V.~ V, [see Fig. 8)]. largest values obtained for the smallest and largest values of,
Consequently the coefficients of the expansidnfor a  respectivelyro/d and a.

minimum not too close to the cylinder end caps can be writ- The second set of electrodes we add to our trapping de-
ten as vice is composed, in the case wfminima, bym ring elec-
trodes of equal widtm\z; with Azy;<<Az. These electrodes,
v.cl) . —V)a” ca!led detuning ele_ctrodes, are u_sed to (;ontro_l and vary the
e vre (10) axial trap frequencies. The selective manipulation of the trap
d d frequencies is, in our scheme, a fundamental requirement.
When the difference between the axial frequencies of two
where theC!'s are dimensionless coefficients depending ontrapped electrons is sufficiently large, the particles substan-
the geometrical parametearg/d, o, andAz./Az. They can be tially do not interact. On the other hand, the interaction is
obtained from Eq(5). Again, we suppose that tr@'s go  effective when the frquenues are on resonance. Gengrally
not depend on the minimum position and, for oitcjmave we do not want interactions among "?‘" the ”apped particles
negligible values. o) We_need to differentiate their axial frequencies. At the
Our aim is to increase the value of the octupole term ofS3M€ time we should _be ablg to put on an_d off resonance the
the trap potential by applying a not too large voltage At freqyenues_ of two neighboring electrons in order to control
the same time, we also want to make the change on th@e |nteract|on_between the”!- .
trapping frequencies, produced by the potential of the dec- Ea'ch detuning elgctrode IS msertgd at the center qf the
ompensating electrodes, as small as possible. Froni1By. trapping electrode with potentidd. This requires the split-

we see that these intents can be achieved by choosing a trap TABLE I. For given electron distancek we indicate the actual
geometry which maximizes the rat@c“)/aﬂ_ Indeed, for Vvalues of the geometrical parameters of the trapping device used in
any couple of values afy/d and« it exists a particular value our simulations to obtain the results shown in Table II.

of the ratio Az./Az which makesacz) equal to zero. This
value, indicated byg,, is, for our geometries, in the range 9 (M ro/d @ Az/Az Azy/Az
0.1-0.3. Hence, we can choose decompensating electrodes of ggg

o0 =

. oo ; 0.4 1.5 0.09 0.1
length Az.= B,Az in order to minimize their effect on the
t £ b Tvpical val listed in Table 1. In thi 0.35 1.5 0.18 0.1
rap frequencies. Typical values are listed in Table I. In this | . 0.2 )3 0.3 o1

case the corresponding values of d@“ﬂ’s, depending on
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ting of each positive trapping electrode into two parts ofbetween the detuning potentials. However, these effects, with
length(Az-2Az.-Azy)/2, as shown in Fig. @). The differ-  the typical applied voltages, are negligible.
entiation of the trap frequencies is simply obtained by apply- In order to manipulate the axial dynamics of the electrons,
ing to each detuning electrode a different potential. Thus thave need to apply, separately to each trap, an oscillating elec-
voltage applied to the detuning electrode relative tojthe tric field. This can be obtained by adding to our device a
minimum is indicated withVy ;. third set of electrodes. These electrodes, defined as driving
The change in the electrostatic potential of the cavity, dueelectrodes, are, in the caserofminima, mring electrodes of
to the addition of the detuning electrodes, is given by thewidth Az with Az /Azin a range of about 1/8601/10. The
potential V5(r,z). This potential is calculated by means of driving electrode is inserted, for each trap, next to a decom-
Eg. (1), with all the ring electrodes at zero potential exceptpensating electrode, as shown in Figc)3Hence, this addi-
the detuning electrodes at potenti®g; —V; [see Fig. )].  tion requires the shortening of the positive trapping elec-
Therefore, the resulting electrostatic potential of the cavitytrodes to the width Az—2Az—-Azy—Az. The driving

V(r,2) is the sum of three terms electrodes are generally held at potentialHowever, when
we apply an oscillating voltag¥,(t) to the jth driving elec-
V(r,2) = V(r,2) + Vc(r,2) + Vp(r,2). (1) trode, the corresponding change in the potential neajtthe
Let us evaluate the effect of the detuning electrodes on thg"nimumaz; 1
axial frequency of the trap at thjéh minimum. In our design v (t)al)
we choose a ratiddzy/Az of about 1/108-1/6. To afirst V() = %(z—zj), (15)

approximation we can neglect the effects due to the detuning
electrodes centered on other minima. Hence, from (Ed).
the coefficient of the quadrupole term in the potential aroun
the minimumj can be written as

(Yvhere Cﬁl) is a dimensionless coefficient depending on the
geometrical parameterg/d, «, andAz/Az. This additional

potential corresponds to an oscillating electric field along the
V@Z) (V- Vt)E(CZ) (Vg — Vt)af) axial direction. '_I'he_coefficier(tﬁ_l) is obtained from Eqg2)

= 7 + @ + @ , (12 a_md(5) by Cons_ldermg_ all the ring electrodes at zero poten-
tial except thejth driving electrode at potentiadV,(t). We

whereC!? is a dimensionless coefficient depending on thehave, according to the chosen geomel@f!| in a range of
geometrical parameters/d, «, andAzy/Az. Its dependence 107°-0.5. Its value becomes larger ggd and a decrease
on the chosen minimum can be neglected for minima not to@nd Az /Az increases.

close to the trap endcaps. The value@‘? varies in a range
of =5 to —0.1 with the smallest values obtained for the larg-
est values ofAzy/Az and the smallest values of/d and «.

If w, is the axial frequency at thgh minimum produced by When the characteristic frequencies of the trapped elec-
the trapping eleCtrOdeS together W|th the decompensaﬂngons are far detuned from each other' we have' to a good
electrodes, then the change,; in this frequency due to the approximation, no mutual interactions. Hence, in this far-off-
insertion of the detuning electrode around this minimum is yesonance regime, the electrons behave basicallgirage
=2 particles confined to t(aditionql Penning t'raps. For the mo-
S = o ( \/1 N 2e(Vgj; — VCy B 1) (13) ment, therefore, we briefly review the motion of an electron
zl z medza)§ ' in a Penning trap, neglecting the possible influence of the

other particles. The dynamics of tljgn electron is governed
The application of different potentials to the detuning elec-hy the Hamiltoniar{10]

trodes centered on the traps close to the mininjysroduces

c®@

IIl. SINGLE-PARTICLE OPERATIONS

two effects. They shift the minimum position and increase H _( [~ eA)? RV geh
the value of the terms in the trap potential proportional to 2m,

odd powers ofz. With the addition of the detuning elec- 0

trodes, the coefficients of the expansidhwith i odd can be Where e, g, and o= (o, ,03),02”) are, respectively, the
estimated at th¢th minimum as electron charge, giromagnetic factor, and Pauli matrices. The

vector potential is given by

_ Vaja- Va, 1+0)Clnear

(i) 1
¢t d (14) Aj=2B X, 17)
whereggi)near is a dimensionless coefficient depending on thewith B being the uniform magnetic field responsible for the

geometrical parameterg/d, «, andAzy/ Az This relation is  radial confinement of the electron. The resulting motion can
obtained from Eq(5) by considering all the ring electrodes be described in terms of three independent oscillators: the
at zero potential except the detuning electrodes at mirjima cyclotron, the axial, and the magnetron motjd®]. For the

-1 and j+1. Equation(14) shows that the shifts on the trap geometry under consideration, the most interesting de-
minima positions, given bg/2¢C?, and the increase of the grees of freedom are the axial motion and, of course, the
termsC®, ¢®, ¢, ... areproportional to the differences electron spin. The electron being a spin-1/2 particle, the two
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TABLE Il. For a given trap distancd and axial frequency,=w,/ 27 we give the axial frequency detuning in the nonresonant regime
between neighboring electrodg/ 27, the maximum axial frequency detuning in the resonant regime between neighboring eléat@ans
the anharmonic correctio,/ 27 (of the same order of,,/27), the trapping potentiaV;, the decompensating potentl, the strength of
the magnetic bottldB,, the swapping timd,, (of the same order of the gate operation time for a single elegtanmd the estimated
decoherence timey at T=80 mK due to thermal noise in the electrode surfaces. We assume a spin fregquéReyof 160 GHz. The
corresponding geometrical parameters of the trap are presented in Table I. The estimated error probabilities in the swapping gate and in the
single electron gates are, in casgsmaller than 17 and, in caséB, smaller than 1.

d(um) v,(MHz) &/2m (MHz) &/27 (kHz)  Su/2m (MHz) Vi (MV) Vo (V) By (T/um?)  tee(us)  74(S)

500 3.5 1 15 0.3 0.05 0.15 10 16 2100
A 50 100 24 45 9 0.5 0.15 19 0.55 90
15 22x 10° 5000 9000 1800 5 0.05 40 0.003 0.05
500 10 2.3 0.05 0.9 0.5 5.7 51076 55 3500
B 50 360 70 14 30 5 4.6 18 1.7 160
3 24X 10° 5000 100 1900 25 11 50 0.025 0.22

possible orientations|) and | 1) of its spin in the external ciently narrow bandwidth. Typical values of the voltagg
magnetic field represent quite naturally the logical stédgs used in our simulations are listed in Table I1.

and|1). Problems arise when we want to encode qubits in The manipulation of the axial states is performed by
multilevel systems, like a harmonic oscillator. This is themeans of the driving electrodes. In particular, to act on the
case of the axial oscillator. However, a solution is providedaxial motion of a specific trapped electron, we apply an os-
by small anharmonicities that lift the degeneracy betweertillating potential on the closest driving electrode. Hence, we
different transitions. Hence, for the axial motion it is neces-add to the voltageV; of this electrode a component
sary to introduce small anharmonicities in the quadrupoleV, cogwt—G) so that the electron energy is perturbed by the
field, Eq.(6). Indeed, taking into account the octupole termterm

in the trap potential and treating it as a small perturbation,

the transition frequency between adjacent axial levels of ) 7
quantum numberk andk+1 is given by[10] exY cogwt - B) = 2“ 7 /2 (a,+a))[e@ P
Mew,

2w, (n+1+1 .
w,(K) = w,+ 8| k+1 - Zofn+1+1) , (19 +e 1A, (21)

We — Wy

where the shift amounts to where we used the relation
3eC ¥z,

5= —r (19) %
mie? z=1/ o (a,+a)) (22)

and w;, oy, N, and| are, respectively, the frequencies and
excitation numbers of the cyclotron and magnetron motion.

We suppose that, as in the case of the experiments with ) ol .
single electron in a Penning trdf0], the chosen values of When the driving frequency is close to the axial fre-

the magnetic and electric trapping fields give the hierarch)guerg)cy“’?the fe_'evtf”F part Of_ the Hamllton:ja_n of thg system
W< 0, < wy. Under this Condition, if the CyClOtron motion is can be written, in the Interaction picture and In rotating-wave

cooled to the ground state=0) and the magnetron radius is 2PProximation, as

sufficiently shrunk(l < w./w,) [23], the electrostatic correc-

tion on the axial frequency depends substantially only on the - Q . i8 g

axial quantum numbek: H, =% 2 (a,e”+ae™), (23)

and, from Eq(15), c=v,c¥/d.

w/K) = w,+ 5k +1). (20) 1, ———
) o @ ) ] WhereQEed )/\e’2mehwz. If the oscillating potential is ap-
As shown in Eq(4), the coefficienC'” determines the size pjieq for a timet and has a sufficiently narrow bandwidth

of the main correction to the quadrupole potential. Its valu&antered around the valug,(k=0)=w,+ ,, it produces the
depends on the potentid, of the decompensation electrodes ., n<formations S

[see Eq(10)]. Hence, with an appropriate choice &, we

can make the correctiof}, larger than the frequency width of

the axial transitions. This allows us to control single axial |0y, — cos(g>|0> —jeiB sin(g)lb (24)
transitions by applying electromagnetic pulses with suffi- z 2 z 2 .
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1), — cos(%) |1),—ie”# sin(%)b)z. (25 wy(K) = wg+ 5m(k+ %) , (32

Hence, the driving field can be used to realize any singlewhere
qubit gate, when considering the axial sta®s and|1), as

the logical state$0) and|1). We refer to the interaction pro- ho,le|B;
duced by the Hamiltoniari23), applied for a timet, as a m = Mo
p,(Qt, B) pulse. ererm

AS. described in[8,9), the manipulation of the eleqtron The frequency shifts, and &, refer, respectively, to the

tic field ¢ with th . ion f %lectrostatic and magnetic corrections. In deriving the above
magnetic neid resonant wi € Spin precession requUenCy ansition frequencies we supposed that, as in the derivation

(33

ws=gle[B/ (2my): of Eg. (20), on< w,<w; and| < w./ w,.
R . Equations(31) and(32) clearly show the dependence of
b(t) = b[i codwt + 0) +] sin(wt + 6)]. (26)  the axial and spin transition frequencies on the quantum

numbers describing the state of the electron. If during the
computation we keep the cyclotron oscillator in its ground
state and the magnetron radius sufficiently small, we can
precisely address any axial transition, without populating en-
ergy levels outside the computational space. These are rea-
Hfgpin)zﬁ)—((me—ihg_eiﬂ), (27) sonable assumptions, since the magnetron motion can be
2 cooled down10] and, at the trap temperature of 80 mK, the
. cyclotron remains in its ground stafi&1].
where x=glelb/(2my) and o, = (o, ticy)/2. If the small Having several electrons, we should also be able to singly
magnetic field is applied for a timie it produces a spin-state  5q4ress each of them. The individual axial frequencies are
rotation made distinguishable by applying different voltages at the
detuning electrodes. As far as the single addressability of the
1) — co{—)ll} —ie '%m(—)ﬁ), (28)  spin qubits, one can differentiate among them by inserting a
2 2 small magnetic field gradient along thexis.
We are now in the position to discuss the implementation
At o (xt of conditional dynamics between the spin and axial motion
[Ty — COS<E>|T> - Ie'aSII’I(E)H)- (290  of the electron. Rotations of the spin state, controlled by the
axial qubit, can be realized with just one pulse. Indeed, if we

It can be shown that with an appropriate combination of2PPly the oscillating magnetic field, ER6), on resonance
these operations, one can perform any single-qubit gate ofith the frequencyw(n=0,k=1), the spin state is modified
the spin qubit. We define the interaction produced by the®nlY if the axial state i$1),. This opens up the possibility to
Hamiltonian(27), applied for a time, as apg(xt, ) pulse. |mplement a controlledlo_T (CNOT_) gate having the_ spin qu-
However, in order to perform logic operations on a systerTP't as a target a_nd the axial qu_blt as a control. This two-qubit
storing quantum information in both the axial motion and the@Peration requires the following two pulses:pg(, 7/2)
electron spin, we need an interaction between these two d@ulse on resonance with the frequenayn=0,k=1), which
grees of freedom. A possible way to accomplish this tasKliPs the spin only if the axial state i4),—that s,
relies on the application of an inhomogeneous static mag-

In this case the relevant part of the system Hamiltonian be
comes, in the interaction picture and rotating-wave approxi
mation,

netic field. Indeed, with an appropriate dependence on the DALy — =141, (34

spatial coordinates, a static magnetic field can induce shifts

on the axial transition frequencies depending on the spin- 1)1 — [1))1) (35)
Z| Z ]

cyclotron state and vice versa. The same mechanism is al-

ready used to perform the measurement of the electron stalg;inoyt affecting the other states of the computational basis.
extracting all the relevant information on the spin and cyclo-p p,(27,B) pulse on resonance with the frequenay(n
tron motion from the value of the axial oscillation frequency _ |Z(:1 ,s: 1) to correct the minus sign in Eq34):

[10]. If we consider this additional static magnetic field
- |1>Z|T> - |1>Z|T> (36)

X2 + Y2
By = Bl{<22_ 2 To implement the othecNOT gate, with the axial qubit as a
target and the spin qubit as a control, we have to apply two
we obtain, treating it as a perturbation, the transition frequenpulses: The driving pulsp,(7,—-7/2) on resonance with the
cies frequency w,(n=0,k=0,s=1) which acts on the transition
|0),<+|1), only if the spin state i$1),

>|2 - 2(xi + yj“)] , (30)

B 1.9
wzm,s,k)—wz+5e<k+1>+5m(n+2+48>’ (31) 10),I1) — = 1)]1), (37)
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|l>z|T> - |O>Z|T>1 (39)

and the driving pulse,(27,8) on resonance with the fre-
quency w,(n=0,k=1,s=1) which changes only the phase
factor of the statél),| 1), as illustrated in Eq(36).

Let us evaluate the minimum operation time of one- and
two-qubit gates described in this section. In order to avoid
degenerate transitions and have electrostatic and magnetic
corrections of the same size we can choBgsandV, so that
dm=0./2. The corresponding frequency resolution required i _ _

FIG. 4. Schematic drawing of two electroesande, confined

in the pulse application i$./2. Indeed, this quantity is the _ _ ; .

difference between neighboring frequencies corresponding t§ N€'ghboring microtraps separated by a distasce

specific axial and spin transitions conditioned on, respec-

tively, spin and axial statefsee Eqs(31) and(32)]. To pro-  resents the electrostatic interaction between the two electrons

duce conditional dynamics between the axial and spin statd¥ve neglect the small interaction between the spin mojions

we should havey,Q2<5,/2. Indeed, this condition makes &2

undesired transitions highly improbable. Since the pulse du- Hine = : . (40
ration is of the order ofr/Q and/y, its minimum value is 4mreq\ (X1 = Xo)* + (Y1~ Y2)* + (21— 2)°
inversely proportional to the frequency resolution. The fidel-, ...

ity of the two-qubit gates is, fox,{) < 5./2, of the order of which we can recast as

1-(2x/ 8,)? for the spin transitions and of the order of 1 ~ Az,- (-] [z (-2 (X3 —Xp)?
-(201/68,)? for the axial transitiongsee the Appendix The Him=V|1- d + d? + d?
maximum axial frequency shift we use to realize conditional 21112

dynamics is 5,/2 obtained in Eq(31) for w,(n=0,k=1,s + Y1—¥2) } (41)
=1). Hence, by choosing&/2= w,/5 we obtain gate opera- d? ’

tion times varying from about 10fs to 5 ns with fidelities

ranging roughly from 1-16 to 1-10* The corresponding
values of b and V, vary in a range of, respectively,
(10°%-107) T and(104-107) V.

The schemes described so far allow to perform arbitrar
one- and two-qubit gates on a single electron. However, t
make the system cor_n_putationally _unive_rsal, we should b?s of the order of the axial oscillation amplitudaz,
able to reah;e condlt_lonal d.ynam|cs—|.e:NOT gates—  _ @: [i(1+ 20/ (2meey), wherek is the axial excitation
between qubits belonging to different electrons. This task can " \ ’ . i .

umber. When the two electrons are in the first excited state

be accomplished by considering the electrostatic interactiof} btain. i imulati /d ing f 1/325 t

between neighboring electrons in the array, as we are goinge obtain, in our simula ionsdze/d varying from 0

to explain in the next two sections. /45. The displacements, —x,| and|y, | are of the order
of the radial amplitude of the single-particle motioft,

E\<x2>:\/<y_2>. This value can be estimated by using the
IV. SWAPPING GATE relations  x=\%/(2mwo)(ac+ay+al+al)  and y

In this section we describe how the Coulomb interaction=1 1%/ (2Mewo)(ac—an—ai+ay) wherea; anday, are the lad-
between neighboring trapped electrons makes it possible @€ operators of, respectively, the cyclotron and magnetron
realize the swapping operation on the axial qubits. By adjustoscillators[10]. Hence we obtairre= \A(1+n+1)/(Mmew),
ing the external voltage applied to the detuning electrodesvheren andl are, respectively, the cyclotron and magnetron
we can put on and off resonance the axial motion of twoquantum numbers. For the cyclotron motion in the ground
electrons. When in resonance, the two coupled harmonic ogtate and the magnetron motion cooledl to10° the ratio
cillators can exchange a quantum of excitation, whereas olfAre/d)® ranges, in the case ab./27=160 GHz, from 5

of resonance they basically behave as independent systems.107" to 5X 1072 Thus, we can expand in a seridg, and
retain terms up to the second order:

1

whereV=€?/(4meyd). If the oscillation amplitude of the two
electrons is much smaller than the average separdtiog-
tween them, we can expand the interaction Hamiltonian, Eq.
41), in a power series. To this end, we are going to evaluate
he value of the displacement of the two particles with re-
%pect to the trap center. The axial displaceniept (z,—d)|

A. Gate description

Hint = V{ g[zl —(z-d)]+ {2z, (o= )P = (% = Xp)?

Let us consider two electrorey and e, separated by an 2d?
average distancg (see Fig. 4. By choosing the origin of our
coordinates in the center of the trap confining the eleation —(y. - yz)Z}} , (42
we can write the Hamiltonian of the two particles as
H=Hy+Hy+H,,. (39) where we neglected the constant tetin From the above

expression, we see that in the Hamiltontdg, the dynamics
In Eqg. (39), Hj, with j=1, 2, is the single-particle Hamil- in the z direction is not coupled to that involving the trans-
tonian, Eq.(16), of the trapped electrog, whereasH;, rep-  verse variablex andy. Then, the axial motion of the two
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electrons can be studied by considering only the axial part of |0),1/1) o, — COL&L)|0),4| 1) o + i SIN(EL)[1) 4|00, (52)
H:
2 2 12|02 — cog)[1)]0)2 + i SIN(ED)[0)21| 10, (52)
p p 1 _ 1 _ | z11V¥/ 22 z11¥/22 z1|-+/22
= ﬁ + ﬁ *5 Wz + )+ Emewgz(zz —d-dy)?

z

11),1/1),2 — cog2&0)[1)4|1)

2V .
~patd)z-d-dy, (43 +ésin<2§t>(|0>21|2>zz+|2>21|0>22>. (59

where we defined ) , )

It is easy to see that when the resonant interaction acts for a

- L time te,= 7/ (2€), it produces, apart from phase factors, a

Wi, = Wiz + med?’ with j=1,2, (44) swapping operation on the axial qubits. Indeed, it exchanges
the information stored in the axial qubits of the trapped elec-
trons. Notice that the inverse operation is realized when the

(45) resonant interaction is on for a timé.3 Depending on the

2 2 2 242 . . . .

2V(w7, + w5) + Mewy,w5,d electron distancé, we can have a swapping tinig ranging

~ ~ . . from 55 us to 3 ns(see Table I).
Note thata,, and @,, are the axial frequencies of the elec- The resonant interaction is switched on when the fre-

trons modified by the electrostatic interaction, whereas th%]uency detuning is much smaller than the interaction
quantitiesd; andd, represent the displacement of the eIec—f equency—that isja,— @y, <& On the contrary we are in
trons due to the Coulomb repulsion. Let us suppose that [* « ° =~ regimezzwhédﬁlz—a)zz|>§- Hence, to
w1, ~ wy. If we indicate withe the ratio of the Coulomb o uen' o0 and off the resonant interaction between neighbor-
energy,, to the poltentlal energyzofzthe second e'?c”B” WIthing electrons we have to modify their axial frequencies. This
respect to the first trapmewy,d/2, we optaln (f"jz is achieved by varying the voltages applied to the detuning
-w,)?l w?=¢ and, fore <1, di/d=¢/2. In our simulations ; :
iz jz e S o electrodes of the two electrons, as described in Sec. Il. The
the quantitye is always smaller than 18 hence, there are corresponding energy variation of the system should satisfy
very small changes both in the frequencies and trap disge following conditions(i) it must occur in a time\t much
tances. _ smaller than the swapping timg, and(ii) it must be suffi-
When we introduce the ladder operators ciently slow in order to make the adiabatic theorem valid;
Mmoo 1 i.e., it must occur in a time\t such thatAt>t,4 with tyy
Ay, = 2ﬁlz(zl+ d)+iy\/———py,  (46) =|AE|//(hwd). The termAE represents the energy variation
2hMewy, due to the changé\w, in the axial frequency—i.e.AE
=hAw, Thus, the switching operation should be performed

o 1 in a time window with size,,/t,4> 1.
B \| e (g d - dp) +i | Py (47) e fad
Zh Zﬁme(UZZ
B. Gate fidelity

2
Vs 1,

di o=

we can recast the Hamiltonian, E@.3), in the form ) ]
In our analysis of the swapping gate we made some ap-

H,= ha')lz”é{z”élz+hz)zz”é£z§22 proximations. Hence, undesired corrections may affect the
hY dynamics of the two electrons. However, if these effects are

_ T@lﬁélz)(ézﬁa;z)- (48) sufficiently small, we can neglect them and efficiently per-
M0\ ®1,0,, form the swapping gate. In the following we estimate the

size of these undesired corrections and, at the same time,

From the _abc_)ve equation we see that the str_ength_ of thSescribe their dependence on the various parameters of the
electrostatic interaction between the two particles in fre'system. The general approach to calculate the gate fidelity
quency units is given by=V/(m.d?\@,,w,,). This quantity,

) . h ller th h | h ._and the error probability is illustrated in the Appendix. The
if e<1, is muc smatler than the values of the trappingpe formance of the swapping gate is mainly affected by four
frequencies—i.e.§=ew,,/2. Thus, in this case, we can ap- yings of effects: anharmonicities in the trap potential, ne-
ply to the Hamiltoniar(48) the rotating-wave approximation, gjected terms in the interaction Hamiltonian, detuning and
obtaining in interaction picture, whem,=w,,, tuning accomplishment, and switching operation.
HP = - 5@ AL +30 3. 49 Electrostatic anharmonicities give, in E(9), for the
z e “49) Hamiltonian of each electron, a correction term of the form
This is the Hamiltonian describing the electrostatic interac- 3 3
tlo_n between .two neighboring trapped electrons with the Hyp, = ec(s)(zs_ —zr2) +eC(4)(z4—322r2+ —r4), (54)
axial frequencies tuned on resonance. 2 8
The corresponding Schrodinger equation produces, for the . . .
lower Fock states of the axial oscillators of the two particles,Where we have .SEI the origin of the coordmatgs in the .trap
: center and considered only the main anharmonic corrections.
the temporal evolution X N
The rotating-wave approximation allows us to neglect the
10),1]0) 0 — [0)1]0)2, (50) odd anharmonic correction when its strength in frequency
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units, of the order 08CPAS3/7 with As,=maxAz,, Arg}, is B . . Osin(Bt

much smaller than the axial frequenay. Indeed, in this |0)4[1),, — €™¥?] cog ) _'sz) 0)21|1)

case, if we express this correction by means of the operators ' -

a, a., anda, we obtain, in the interaction picture, terms +ie‘i("”2)§ sm(Et)|1> 0) (58)

oscillating very rapidly and affecting the dynamics in a neg- = Atz

ligible way. This approximation gives errors, when

eCOASY/fi<w, with a probability of the order of , 5 sin(St)

(eC®AS’/hw,)?. Differently the even anharmonic term is |1>zl|0>224’e_l(&lz)[coiat)+i2—::||1>21|0>22

negligible if its size in frequency units, of the order of -

eCWAs?/#, is much smaller than the interaction strength i & SIN(EY)

In this condition we have a corresponding error for this ap- tle = 004D, (59)

proximation, with a probability of the order of

(eCWAs/7€)?. According to our simulations, one can keep st I gariot

the probability for the above corrections sufficiently small by |1),4|1),, — e—_2[52 + 48 Cog2E1)]|1),1]1),0 - %

carefully choosing the electrode potentials. 4= 4=
~Another source of errors for the swapping gate are the X[~ 8+ 8 Cog2Et) - 2iE sin(2E1)]|0)1/2),

higher-order terms of the Coulomb potential expansion we Eg i

neglected in Eq42). They produce in the interaction Hamil- vage —_ e

tonian the correction T=E [6- 6 cod2ED - 25 sin2=1)]

X[2),1/0)2, (60)

Heoul b:K AZ —§A212(Ax2 +Ay? )}+Z[Az“
oulomb™ 3| T2 T TRATILZ T TILE | gd T2 whereZ = &+ /4. In the resonance condition—i.e., when

3 o< &—the above dynamics reduces, apart from phase factors
- 3AZ J(AXE ,+ AYZ ) + —(AX] ,+ Ayiz)z] of the order ofét/2, to that described by Eq&0)~(53). On
8 the contrary, whens> ¢, Eqgs. (57)—«60) give substantially
(55) the identity transformation apart from global phase factors.
From the above relations we can estimate the fidelity of
whereAz, ,=2,-(z,~d), AX; 2=X1=Xp, andAy; ;=Y1~-Y>.  the swapping gate by considering nonperfect tuning and de-
As in the case of the odd anharmonic corrections we cafuning conditions. The fidelity is defined &sP(t)|W(t))|2
neglect the cubic term with the rotating-wave approximationyyhere [W(t)) is the state obtained with the ideal swapping
if its strength in frequency units, of the orderYz)Asg/hd3, is gate and¥ (1)) is the state obtained from Eq&7)~(60) for
much smaller tham,. In this case the error probability is of it values ofs. Hence, if we indicate by, and &, the
the order of(VAS}/hd®w,). The effects due to the quartic detuning, respectively, in and out of resonance, we have,

term in Eq.(55) are negligible if its strength is small with \\hen 5, <¢ and 8, ¢, a fidelity for the swapping gate of
respect to the magnitude of the quadratic term proportionalpq ¢ 1481 8%— (&1 8y)>.

5 . o X
to V/d<. In this condition the corresponding errors have a 1pq change in the axial frequencies of the particles we

probability of the order O(As_e/_d)4- make to switch on and off the resonant interaction should
We also recall that in deriving Eq49) we neglected, by  haye, as described before, the following properties. It should

applying the rotating-wave approximation, the terms of Eqpe slow enough to occur adiabatically with respect to the

(48) proportional toa] 8}, anda;a,,. The errors made by  gingle-oscillator dynamics and, at the same time, it should be

this approximation have a probability, fgr< w,, of roughly  quick if compared to the typical time of the resonant dynam-

(él w,)?*=€?/4. As shown in Table Il, the probabilities of all jcs Hence to obtain the swapping gate we made both the

the above errors due to the neglected terms in the Coulomfgiabatic and sudden approximation. This approximation re-

interaction can be kept, by an appropriate choice of the sysyuires that the time interval of the frequency changesat-

tem parameters, sufficiently small. isfy the conditiont,y<At<t,,. In this case the fidelity of the
The next kind of errors we analyze are those produced b¥wapping gate, taking into account the corrections due to the

the nonperfect tuning and detuning conditions. In order toapove approximations, can be estimated as follows. The

evaluate them we consider the axial dynamics of the elecprobability of undesired transitions during the adiabatic evo-

trons when their_frequencies are.gen_erally not reson_ant—i.ehmon is, whenAt>t,4, of the order of(t,g/ At)? (see[24]).

g~ W= 0. In this case the Hamiltonia@8) can be written,  pifterently undesired transitions in the sudden transforma-

in_the interaction picture with respect t6o1,@ 3, tion oceur, whenAt<t,,, with a probability of the order of

+aZza22), (At/te)%. Hence we have a fidelity of the order of 1

_ 2_ 2

HEy= ho, - e A, . se A

. . . V. TWO-PARTICLE OPERATIONS
The corresponding Schrédinger equation produces, for the

first Fock states of the axial oscillators, the dynamics To implement thecNOT gate between the qubits of differ-
ent electrons, we rely on the swapping operation described in
0)4/0),2 — [0),1] 02, (57)  the previous section.
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Let us consider, first, the case of two neighboring electrapped particle. We recall that, in the experiments with a
tronse; ande,. To perform thecNOT gate having the spin of single electron in a Penning trap, the spin-cyclotron state is
the first electron as a target and the axial qubit of the secontutinely measured by applying a magnetic field similar to
one as a control, we follow this procedu(e: We swap the that of Eq.(30), also called a magnetic bottle, and then de-
information between the axial qubitsij) we perform the tecting the shift produced by this field on the axial frequency
CNOT operation between the spin and the axial qubits of thg10]. A similar technique should permit to measure the spin-
same particle, according to the prescription given in Sec. Ilicyclotron states of the trapped electrons in our system. As in
and(iii ) we swap back the information contained in the axialthe case of a single Penning trap we couple the cylindrical
qubits. It is straightforward to verify that the above sequenceavity to an external circuit. The oscillating electrons con-
of operations produces the desired gate. fined in the linear array of traps induce alternate image

The implementation of theNoT gate between the axial charges in the cavity electrodes, which in turn cause a cur-
qubits is, instead, realized as follow) We swap the infor-  rent to flow through the circuit. The frequency spectrum of
mation between spin and axial qubits of the same electron bthis current presents maxima centered at values correspond-
means of an appropriate sequence of pulss; (i) we ing to the axial frequencies of the trapped electrons. If we
perform thecCNOT operation having the spin qubit as a targetapply to each microtrap a magnetic bottle, we obtain a shift
and the axial qubit as a control by applying the sequencef the axial frequency of each electron depending on its cy-
described before; ang@ii) we swap the information between clotron and spin quantum numbers. Hence, by measuring
the spin and axial qubits again. these shifts we can detect the spin-cyclotron state of each

We now consider theNoT gate having the spin qubit as a trapped electron.
control and the axial qubit as a target. This gate can be However, in our system we need to measure the spin-axial
achieved with the following operation) We swap the in- states of the particles. This can be accomplished by applying
formation between the spin and the axial qubits of both elecappropriate electromagnetic pulses and then measuring the
trons; (ii) we perform thecNOT operation having the axial Spin-cyclotron states. Let us consider a single electron. The
qubit as a control and the spin qubit as a taigee above magnet!c bottle prodyces a shift on its cyclotron freque_ncy
and (iii) we apply a swapping gate between the spin andlepending on the axial quantum number. Its value, obtained
axial qubits of each electron. by treating the magnetic bottle field as a small perturbation,

The implementation of thenoT gate between the spin IS dm(k+1/2) with &, proportional to the magnitude of the
qubits is realized with the following stepé) We swap the magnetic bottle according to E(3). As described i8,9] a
information between the spin and the axial qubit of one eleclinearly polarized electromagnetic field can induce transi-
tron; (i) we perform thecNOT operation having the axial tions between cyclotron energy levels. If this field is applied
qubit as a control and the spin qubit as a taigee abovg  for an appropriate time interval with a frequency close to
and(iii ) we swap back the information between the spin andvc*38y/2, it produces the transformatidf).—|1). (apart
axial qubits. from a phase factgonly if the axial state i$1),. By assum-

Let us now generalize the procedure to electrons that arég that the cyclotron motion is initially in the ground state,
not necessarily first neighbors. For example, theoT gate ~ We can use this pulse to substantially “copy” the information
involving the axial qubit of theith electron as a control and ©f the axial qubit to the cyclotron qubit. Hence, to perform
the spin qubit of the first one as a target is obtained as foltheé qubit readout we just have to apply the above field and
lows: (i) We write the information, stored in the axial qubit then detect the spin-cyclotron state of the electron by remem-
of the nth electron onto the same qubit of the second elecbering that the cyclotron stai@)(|1)) corresponds to the
trons, by means of a sequencernf2 swapping operations axial state/0),(|1),).
between neighboring electror(g;) we perform thecNOT op- Let us consider the spin-cyclotron state detection. The
eration between the axial qubit of the second electron and thenagnetic bottle produces a shift, E81), on the axial fre-
spin of the first one, according to the prescription explainedquency given bys,(n+1/2+gs/4). Unfortunately, because
before; and(iii) we apply once again the sequencenef2  of the smaliness of the electron anomaly, to our knowledge it
swapping gates to bring back the information totitieelec-  is not yet possible to resolve between the shifts produced by
tron of the array. Obviously the same strategy can be exthe states|1)|) and|0)| ). To circumvent this problem we
tended to any other two-qubit gate between any pair of parcan adopt different strategies. For example, we can detect,
ticles in the array. Hence, we are able to perform angT  through a quantum-nondemolition observati¢hl], the
operation between qubits of different electrons. Notice thatventual quantum jumps to the cyclotron ground si@lg
the number of swapping operations required to implementndeed, the spin state is substantially stable while the cyclo-
thecNoOT gate between the electroegande, grows linearly  tron motion relaxes after few seconds to its ground Steie
with n. Thus the average number of pulses, required to perAnother method relies on the application, after detecting the
form acNoOT gate, grows linearly with the number of trapped frequency shift, of apy(w,7/2) pulse which flips the spin
electrons—i.e., with the number of qubits in the network.state. In this case the spin-cyclotron state can be detected
Therefore, an efficient quantum algorithm, if implementedwith a second axial frequency measurement. If the frequency
with this quantum processor, preserves its efficiency. shift detected by this second measurement increédes
creasepof a quantity 5,, with respect to its previous value,
then the spin state was initially in the state “dow(fiip”).

In order to measure the final qubit state of our quantum If no error occurred during the quantum computation, we
processor we have to detect the axial and spin states of eashould detect, for each electron, one of the spin-cyclotron

VI. QUBIT READOUT
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states|0)| | ), [0)d| 1), |1)|l), and|1)J1). Hence, another Yo s o Y- N
method relies on the application of an appropriate sequencefz= "~ E(azazpﬁ P;8, = 28,p8,) = E(azazpz"' p2872;

of electromagnetic pulses producing the transformalion

—2).. This can be achieved by taking advantage of the rela- - 2alp,a,), (63)
tivistic corrections on the cyclotron frequency as indicated in

[8,9]. At this point the four spin-cyclotron states are mappedwhere v, = €S.(xw,)/ (2imw,) and Se(w)=J""dme (&t
onto, respectively, the statef)c||), [0)J1), [2)c|l), and  +7)&(t)) is the spectral density of the electric-field fluctua-
2] 7). It is easy to verify that these states correspond tQions at the electron position. From the above master equa-
distinguishable axial frequency shifts. tion we obtain the rates of the transitions between axial

~ In this section we have carefully analysed the qubit detecsates. Indeed, if we define the quantitigg= (i|p,Jj),, we
tion by means of axial frequency measurements. Moreovep, o, /o

to perform the qubit readout we can also apply capacity and
charge measurement devices as in semiconductor quantum

dots[19]. P200= = Y-P00+ V+Pz1, (64)
VIl. DECOHERENCE SOURCES
- - . L - 3y-tvy 5
In this section we analyze qualitatively and quantitatively Px01="— T+pzol+ V2Y4pn2- (65)

the main decoherence mechanisms which, in principle, can

affect the performances of our quantum processing device. _ N

We distinguish two main decoherence sources: thermal noideduation (64) shows that the transition0),—[1), (|1),

in the electrode surfaces and voltage fluctuations induced by>|0),) occurs with a ratey_(y,), whereas Eq(65) gives the

the electronic apparatus controlling the gate dynamics. Thedecay rate of the coherences between the lowest trap levels.
mal noise in the electrode surfaces is a fundamental phenonfis value is similar to that of the level transition rates.

enon, in principle not eliminable and depending, for a given Hence, changes in the first Fock-state population and de-
electrode arrangement, only on the temperature of the trasoherence processes take place in a tigyeof the order of
ping device. Differently the noise fed into the system by thel/maxy-,y.,(3y-+vy,)/2].

electronic apparatus depends on the properties of its elec- The spectral densit$-(+w,) can be estimated by using
tronic components, their temperature, and the characteristithe microscopic model described [26,27. Though this

of any noise reduction device. Therefore, this noise sourcanalysis considers a simple geometry of an infinite plane
can be, in principle, reduced, though it is difficult to estimateelectrode, its results allow us to roughly evaluaigin our

the ultimate technological limit. This decoherence sourcesystem. From this model we have

need to be considered since the computation in our device is

performed by continuosly changing the electrode voltages. 5ol

Hence, the electronic apparatus controlling these switching Se(w) = { 3 rolkgT ]

operations can introduce additional noise in the electrode 3mec(1-€ )

voltages. 3 1 1 d
Thermal noise in the electrode surfaces produces fluctu- X|2+— 33 > + Z+ gﬁ , (66)
ating electric and magnetic fields at the position of the 8kd, s

trapped electrons. These fluctuating fields, in turn, induce

depoherencr—; and heating .in the energy eigenstate§ of t%ereﬁz|w|/c, 8= \'/—(202809)/|w| is the skin depth of an
axial and spin electron motion. The effects on the axial MOy|ecirade with resistivitye and d. is the distance between
tion can be analyzed with the following mod&l6,27. The electron and electrode surface.

Hamiltonian for an electron trapped in a harmonic well sub-

) f . ” i lectric field The above relation gives the spectral density of the
ject to a fluctuating, uniforntnongradientelectric field€(t)  gjectric-field fluctuations in the “quasistatic” limit, where
is

ﬁde<1 and when the resistivity is sufficiently small so that

P i, k55< 1. Both these conditions are verified in our system if
2m, ¥ 2mewZZZ+ et(v)z. (62) we consider copper electrodesTat 80 mK. From Eq.(66)

we see that the free space spectral density, given by the
y —=""3 . blackbody field, is modified by the presence of the electrode
+iy1/(2hmew,)p, we can write surface. By using this equation we obtain values in our sys-

P tem for 74, ranging from 3500 s to 0.05(¢hey coincide with
H,(t) = fiw,ala, + e£(t) 2m (a,+al). (62)  the values ofry in Table ).
Wz

Together with a fluctuating electric field, thermal noise in
From second-order perturbation theory we derive a mastdfe electrode surface produces a fluctuating magnetic field.
equation for the reduced density Operaigof the axial elec- This latter field induces both decoherence and heating in the
tron motion [29] This equation, describing the dynamics Spin states of the electron. The Hamiltonian for the Spin mo-
when the fluctuations of the electric fiefidt) are traced over, tion of the trapped electron in the presence of a fluctuating
can be written as magnetic fieldb(t) is

H,(t) =

By defining the ladder operatora,=+mew,/(2%)z
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A geh  — noise in the electrode surfaces is the main source of decoher-
Hs(t) = 50Tzt R‘" -b(b), (67)  ence, then we can perform roughly’:a( coherent opera-
tions (see Table I. However, the effects of the additional
where wg is the spin precession frequency of the trappednoise produced by the electronic apparatus controlling the
electron. By introducing the operatoss = (oytioy)/2, Eq.  gate switching can also be important. We estimate them with

(67) can be rewritten as the following analysis.
A geh Generally noise in the electrode voltage induces fluctua-
Ho(t) = —w20,0_— 1) + =—[ (0, + o_)by(t) tions, at the electron position, both in the electric field and in
2 4me the electric-field gradient. Heating and decoherence of the

(o, - a)by(t) + (20,0- - Db()].  (68) electron axial states due to the electric-field noise induced by
] ) . the electronic apparatus take place in a tiflgof the order
By using a perturbative apprloach we Q¢r|ve from the abov%f 2mdhw,/ [ (w,)], whereS(w) is the spectral density of
Hamiltonian a master equation describing the dynamics ofne electric-field noise produced by the electronic apparatus.

the density operatqps of the electron spin motiof29: We suppose that this noise affects only the voltage of the
ps= T (0,0_ps+ psTs0- — 20_psas) = T (004 ps detuning, driving, and decompensating electrodes. Indeed,
) the potential applied to these electrodes needs to be continu-

+ pso-0y = 20, psor) = 20 + T )((0,.0-)"ps osly changed in a controlled manner in order to perform the
+ pd0,0)% = 20,0_pso,0), (69)  quantum processing operations. We also suppose that each

detuning electrode, each driving electrode, and the decom-
with  T.=g’’S(*twy)/(16m3) and where S(w) pensating electrodes are affected by independent noise
=[I7dre“b(t+ b)) is the spectral density of the sources having the same strength.
magnetic-field fluctuations along tledirection at the elec- The electric-field fluctuationsE;(t) on the electron in the
tron position. In deriving the master equation we have asjth trap depend mainly on the potential fluctuations of the
sumed that the noise in the componelnj®), by(t), andb,(t)  nearby detuning and driving electrodes so that
of the fluctuating field has the same strength but no correla-

tion. From Eq.(69) we can obtain the transition and deco- i1

herence rates of the electron spin states. Indeed, by defining () = az [CaioVai(t) +C i oVri(H)], (73
the matrix elementpg;=i|pdj) withi,j=1,| we have =1
ps;| == 2 _pg |+ 2T.pg1, (70) Wherea\_/d,i(t) andéV, (1) ir_1dicate the_ potential fluctuations,
respectively, on the detuning and driving electrodes attthe
ps1 == 3T_+T)pg;- (72) trap and the geometric coefficieftg;, C,; can be calculated

- by using Eq(5). From the above relation we obtain the noise
From Egs.(70) and (71) we see that the transitioh| ) spectral density

— |1 (|T)—11)) occurs with a rate P_(2I',) and the co-

herencegs; decay with a rate @_+I",). Hence, these pro- S}'(w)i:jﬂ
cesses take place in a time not smaller thap=1/[3(T'- Sw) = o > ([P + 6, (74)
+I',)]. i=j-1

As in the case of the fluctuating electric field the spectra
density of the fluctuating magnetic field for the simple ge-
ometry of an infinite plane electrode can be analytically cal
culated [27]. From this calculation we obtain, when the
wavelength associated with the spin transition frequengy
is much larger than the distance between the electrons a
trap electrodes,

k/vhere%'(w) is the spectral density of the differential poten-
tial noise produced by the electronic apparatus.
" Good room-temperature electronics have typicﬁ‘ywz)
of the order of 10*® V2/Hz. However, low-temperature elec-
ri{]onics could haveS)(w,) =~ 1072 V?/Hz [16], giving values
or Tg'z corresponding to a capability for our system of
10*~1C coherent operations. These estimates are obtained
o~ gzezﬁwi by considering the geometries of Table | with the following
| 48megmicS(1 — e edkeT) choices:Azy/ Az ranging from 1/10 to 1/100 antlz,/Azin

3\ 1 a range of 1/861/800, 1/36-1/300, and 1/181/150 for
«| 1+ 3 (1 +2_de> (72) d, respectively, equal to 50Qs, 50us, and 1.5—3us.
8Ak§62d 35‘2 ' The electric-field gradient noise induced by the electronic
sTe apparatus produces fluctuations in the effective spring con-
whereksz|ws| /c. stant of the electron trap. Its effects can be estimated as
By using the above relation to estimate the decoherenc®llows. The Hamiltonian of an electron confined in a trap
time 7, for the electron in our system, we obtain valueshaving a spring constant with a fluctuatieft) is
ranging from 5<10’s to 8 s. These values are always
much larger than the corresponding valuesgf Hence, in
our device, the decoherence effects due to thermal noise in
the electrode surface affect much more quickly the axial qu-
bit than the spin qubit. If, in our processing device, thermalwhich can be rewritten as

2

HAD = 2 4 {1 +&(0]2, (75)

Pz
2m,
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5 N Hence, with voltage fluctuations of the electronic appara-
+a;+2a,8,+1). (76)  tus of the order of %X 1072 nV, our processing device can
perform 163—1 coherent operations. This corresponds to an
This noise induces both decoherence in the superpositions efror probability per gate below the threshold for fault-
the first Fock axial states and heating with transiti¢®)s tolerant computation. Moreover, since the fundamental upper
—|2),. The heating rat®, ., can be estimated by using the limit of the decoherence time depends only on thermal noise,

hw,e(t
H,(t) = ﬁwzalaz + %()(a;rz

first-order time-dependent pertubation the{2g] the number of coherent operations can be, in principle, fur-
2\ oo ther increased.
. .
Ro-2= (mgﬁ ) f dre! (&(tE(t + )| (0/7[2),f
- VIIl. CONCLUSION
W2 . .
= ESE(Z(OZ)’ (77) In this paper we have shown that a system consisting of

trapped electrons in vacuum can be a valid candidate for a

where Sy(w) = [*7dre ((t)e(t+7) is the spectral density Scalable quantum computer. This arrangement presents three
of the noise&(t). major advantages: high clock speed, low decoherence, and

The rate of decoherence in the first Fock state superpos?—cal"."bi”ty.' In p_articular, in our design several electrons are
tion can be estimated by considering in E@6) only the ponflneq In-a Imear array of Pennmg trap bY means of an
effect due to the term proportional T‘dt)a;ra The corre- innovative trapping device. Quantum information is encoded

.

sponding master equation, obtained by using a perturbativ'erz] the axial and spin motion of each single particle. Universal

. o . computation is performed by applying electromagnetic
:r;rért?gghrh;ggmgzgt]ansny operatpy describing the axial pulses in combination with static fields and by controlling

the Coulomb interaction between neighboring electrons. The

_ Se(wz)w§ o - : ; qubit readout can be achieved by axial frequency measure-

pz=" T[(azaz) P2+ pA3,3)° — 28,8,p,8,3,]. ments as in traditional Penning traps or by capacitance and
charge measurements as in semiconductor quantum dots.

(78) The results of an in-depth analysis of the main error and

ecoherence sources demonstrate that the system permits

From the above equation we can derive the equation for th : -~
ault-tolerant computatior(error probabilities per gate of

coherence,o:: . . o
P01 about 106-107%) within current experimental capabilities. A
_ Siw)w? fundamental requirement of our scheme is the ground-state
P01~ T g Por (79 cooling of the axial motion. Though not yet experimentally

demonstrated, this task should be, by applying specific tech-
We suppose that the noise spectrum has the same strengthnéues[10,12,3Q, within the reach of present technology.
frequencies @, and w,. Consequently the effects of heating Furthermore, at temperatures of tens of mK, for interelectron
and decoherence due to the noise in the spring constant distances smaller than 20m and axial trapping frequencies
the electron trap occur roughly at the same rate. in the GHz range, thermalization with the trap environment
By assuming that in our system the noise produced by therings the axial oscillator to its ground state without any
electronic apparatus does not affect the trapping electrodesxternal cooling.
we have Our current and future work on the system will mainly
concern two areas of research. First, we should further ana-
}mewzzé(t) ~ %[EEZ)&/ZHG) + Esz)é\/gl(t)]' (80) lyze _and impn_)ve the qubit detection t_echnique. For_examplt_a,
2 d the time required to measure the axial frequency in experi-
ments with a single electroiil] is not fast when compared

where 8Ve(t) and 8VE\(t) are the potential fluctuations pro- . .
c(V a(V P P n?; the estimated decoherence times. We recall that though

duced by the electronic apparatus on, respectively, the co
pensating and detuning electrodes of the specific electro ; i
or quantum error correction, it reduces the number of re-

trap. . . .
ﬁ‘we consider these two voltage noise sources indepenquwed gate operation§31]. Furthermore, detection tech-

dent and having the same strength, we obtain, from thgiqu.es based on charge and capacitance measurements as in
above relation ' ' Semiconductor quantum dots should be also applicable to our

system. They could improve the detection capabilities in
_ | —212 4 (<22 terms of efficiency and speed.

Silw) = m§w4d4$(w)[|c° #+1C1"]- (81) The other direction of our future research work will con-
z cern the possibility to increase the clock speed of the system

An estimate of the decoherence and heating time due to elein order to perform a larger number of gate operations within
tric field gradient noise, given by Rj_,,, can be obtained the decoherence time. The clock frequency of our current
from Eq. (77) by using the above relation. Its value in our scheme is limited by the strength of the frequency correc-
system, if we conside®(w) ~ 1072 V?/Hz, is always larger tions produced by static inhomogeneous fields—i.e., anhar-
or of the same order of the decoherence tirffledue to the  monic electrostatic field and magnetic bottle. These correc-
electric field noise. tions are much smaller than the axial frequencies. Therefore,

st measurement capability is not an essential prerequisite
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the potentiality related to the high trapping frequencies of the W (b)) = D Ck(t)|q,(k0)>e—iEf(o)t/ﬁ, (A3)
electrons is not fully exploited. A possible scheme, able to K

avoid the use of the anharmonic corrections and then in-

crease the clock speed, could exploit the technique of comwhere|c(t)[2=|( W2 W(1))|2 is the probability of finding the
posite pulses already used in NMB2] and ion-trap systems system in the stat{elff(o)).

[5]. By substituting the expansiofA3) into the Schrddinger

equation(A2) and then taking the scalar product with a vec-
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R whereH, ()=, [H' (0|, and vy = (Ey ~E[) /4.

APPENDIX The set of equationg?4) for all b constitues a system of

In this appendix we describe how to estimate the fideIity{'(:‘c’ttr'lgrgirhfbpdl;ﬁgeedr ggfjeartei;;e;) equations strictly equivalent

and error probability of the gate operations, when we include In order to estimate the errors due to the specific approxi-

corrective effects neglected in the limit of the approxima-___.. ; ) . X
. . " . : mations made in the interaction dynamics we proceed as fol-
tions made to obtain the “ideal” dynamics shown in the pa- . . C aon .
per lows. We insert the approximated solutiocf$"(t), describ-

. ing the “ideal” gate dynamics shown in the paper, on the

In particular, the transformations realizing single-qubit . ) . ) .
and two-qubit operations on a single electron are obtained b ght-hand side of Eq(A4) and integrate over time, obtain-

making the following approximations. We neglect in the in-

teraction Hamiltonian terms which oscillate very rapidly 1 t o
(rotating-wave approximatiorand do not consider the pos- i) = EE f Hy (1) CEPA(t ) el ondt dt. (A5)
sibility to leave the computational space. Moreover, the reso- k “to

nant dynamics producing the swapping gate is obtained by, - o000 coefficient2®(t)/ \=,|c2°(t)|? represents a
neglecting anharmonic corrections in the electron trappmqﬂore precise estimate ot,(t)bwith \re;pekzct {acP1)
b .

otential, higher-order terms in the Coulomb energy, and ef- oo L .
Ifoects due togthe change in the axial frequency. oy The fidelity F(t) of the gate operation is defined as

In general the real dynamical evolution of the system, E(t) = (¥ P (1)[2 A
during gate operations, is different from the “ideal” dynam- (= KW ap OO, ()
ics _ob_tained with th_e above approximations. ConseqL_Jentvahere |‘Ifapp(t)> is the state vector of the system obtained
deviations from the ideal dynamics can lead to errors in thevith the approximated solutions describing the “ideal” gate

gate operations. - dynamics and¥(t)) is the state vector describing the actual
Let us suppose that the global Hamiltonian of the systengynamical evolution. Hence the error probability is defined
can be written as asP(t)=1-F(t).
H(t) = Ho+ H' (1), (A1) In order 'E::)J) e§t|£?atd:(t) we use the relannQIfapp(t))
=2 )W B and W () =2, [cg(t)/

whereH, is time independent and’(t) is the Hamiltonian, I N .
in general time dependent, of the interaction producing the 2 (D7 W, )e B, obtaining
specific gate operation. The state vedtbtt)) of the system “aDBe B 2
satisfies the Schrodinger equation F() = |2, PO
2, el

PO
A In general, in the cases considere¢) is always, during the
If we indicate byE\” and|¥”), respectively, the eigenval- system evolution, not smaller than a vafg,,. Hence in the
ues and orthonormal eigen-vectors of the unperturbed Hamipaper we always choose as a fidelity and error probability the
tonianH,, we can write time-independent values, respectively,Fafi, and 1.

(A7)
HO[W (D). (A2)
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