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NMR-like quantum-information processing. The effective spin-spin coupling is accomplished by applying a
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Moreover, the coupling strength is tunable and under experimental control. Our theoretical predictions take into
account a realistic setting, within the reach of current technology.
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I. INTRODUCTION

In this proposal we bring together the best of two avenues
to quantum-information processing: nuclear magnetic reso-
nance �NMR� �1� and ion trapping �2�. Both approaches have
provided the first experimental demonstrations of fundamen-
tal quantum logic gates and quantum algorithms, although
still limited to few qubits. Actually, it is relatively simple to
build a small NMR quantum computer, useful for a proof-of-
principle test of quantum algorithms, but unable to perform
any real computation, involving hundreds of qubits. Indeed,
the scalability seems to be a rather tough question for NMR
quantum computing. Another disadvantage of NMR quantum
computation is that NMR experiments deal with a large num-
ber of molecules, building up an ensemble of indistinguish-
able quantum computers. This fact brings in relevant theo-
retical and practical implications: from the system
initialization to the debate on the same quantum character of
the computation carried out with such a device. However,
NMR techniques, based on radio frequency �rf� and micro-
wave �mw� pulses, enable one to carefully prepare, manipu-
late, and detect the qubit states with relative ease. Spatial
separation of the qubits is not required, since different qubits
are distinguished using different resonance frequencies.

On the other hand, in ion-trap quantum computation, qu-
bits are stored in isolated quantum systems, arranged to form
strings of trapped particles, spatially separated and singly
addressable with optical radiation �3,4�. Such systems can be
prepared in their motional ground state via sophisticated la-
ser cooling techniques. Coherent manipulation of the qubits
requires strongly focused pulses of controlled intensity,
phase, and duration at optical frequencies. The required setup
is rather involved and the experimental realization challeng-
ing. These technical problems have motivated other propos-
als by Wunderlich et al. to implement a quantum computer,
based on trapped ions in a linear Paul trap, but using long-
wavelength radiation, in the radio frequency or microwave
range �5�. To this end, internal and external degrees of free-
dom of the trapped ion are coupled by means of a magnetic
field gradient. Moreover, in a linear Paul trap, the collective
vibrational modes of a chain of N two-level ions extend this

coupling to different ions. The system is formally analogous
to a collection of spins, interacting through the so-called J
coupling, typical of nuclear spins in molecules �6–8�. How-
ever, the proposal by Wunderlich et al. presents some draw-
backs, especially for the scalability, due to the fact that all
the ions are stored in the same linear trap. A more flexible
design would be based on a string of individually tailored
microtraps, each of them trapping a single ion �9�. These
ideas are versatile and can be adapted to other scenarios.

Our system consists of an array of Penning traps, each of
them confining a single electron. A Penning trap makes use
of static electric and magnetic fields to trap charged particles,
like ions or electrons. In particular, the magnetic field pro-
vides the radial confinement, which, in a Paul trap, is
achieved by means of an oscillating �radio frequency� elec-
tric field. The resulting dynamics of a particle in a Paul trap
is harmonic in all directions, whereas in a Penning trap the
combination of the electric and magnetic fields gives rise to
a more complicated orbital motion, which is the superposi-
tion of the magnetron and cyclotron oscillators. These differ-
ences should be taken into account when describing the ef-
fects of an additional magnetic gradient on the trapped
particle dynamics.

We choose to trap electrons instead of ions, because of
their smaller mass, which results in higher trapping fre-
quency for the quantized external degrees of freedom. In-
deed, the typical resonance frequencies of the resulting elec-
tron motion lie in the radio frequency and microwave
domain, making it possible to employ the same technological
resources and methods developed for NMR experiments.
Moreover, differently from a Paul trap, a Penning trap does
not rely on rf fields, a benefit in terms of stability of the
trapping potential. In turn, this translates into less decoher-
ence affecting the trapped particles. Therefore, electrons
trapped in vacuum seem to be a promising candidate for
quantum-information processing �10,11�, taking advantage of
the techniques and strategies devised both for NMR and ion-
trapping quantum computing.

What we have in mind is a different concept of planar
Penning traps �12�, characterized by an open geometry. The
trap electrodes are deposited on a ceramic substrate by
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means of well-established thin- or thick-film technology,
which allows for a variety of different configurations as well
as dimensions. The trapping mechanism relies, as in conven-
tional Penning traps, on the application of a magnetic field
together with an electrostatic quadrupole potential. A single
trapped electron is confined in vacuum at an adjustable dis-
tance from the trap surface. The same substrate can accom-
modate several traps in order to form a regular one- or two-
dimensional array of trapped particles. Qubits are encoded in
the natural two-level system provided by the electron spin in
the external strong magnetic field, similarly to what happens
for NMR spin-one-half nuclei. The two possible spin orien-
tations �↑� and �↓� represent, respectively, the logic states �1�
and �0�. Here, however, the two spin levels are greatly sepa-
rated in energy, and thermal excitation is completely negli-
gible, especially at the trap cryogenic temperatures. Hence,
the system, after initialization, remains in its ground state,
corresponding to the spin-down state. We have already ob-
served that in order to make the spin qubits distinguishable,
one has to introduce a small magnetic gradient �10�. Actu-
ally, with a judicious choice of the magnetic gradient, which
in our configuration depends on all the spatial coordinates,
we can also build up a moleculelike system. In the present
geometry, the magnetic field gradient is applied across the
substrate in order to differentiate among the spin resonance
frequencies at each trapping site. Therefore, the spin qubits
are distinguishable and can be selectively frequency ad-
dressed via microwave pulses. The same magnetic field gra-
dient, mediated by the long-range Coulomb interaction, en-
ables the effective spin-spin coupling between different
electrons. The resulting system may be regarded as an artifi-
cial molecule suitable for NMR quantum computation. Actu-
ally, we can even envisage applications to simulate other
quantum systems, like the Ising model. Our system offers
obvious advantages in terms of scalability. In addition, the
spin-spin coupling depends on external parameters, like the
strength of the magnetic field gradient, the trapping frequen-
cies, and the trap separation, that can be adjusted to obtain
the optimal performance of the quantum processor. We point
out that this coupling is proportional to 1/d3, with d being
the intertrap distance. Therefore, the spin-spin coupling
strength is relevant only for nearest-neighbor electrons,
while it rapidly decays along the electron chain.

Finally, for what concerns the initialization of the system,
or, in other words, how to reset the quantum register to the
state �0�, several strategies could be followed. A possible one
is to apply a transverse oscillating magnetic field resonant
with a frequency difference between the cyclotron motion
and the spin precession. When the magnetic gradient is off,
the transverse field will flip the spin-up state of each particle,
transferring the energy to the corresponding cyclotron mo-
tion, which will release its energy to the environment via
syncrotron radiation.

The paper is organized as follows. In Sec. II we describe
the trap design and how to create a scalable device, putting
several planar traps on the same substrate. The theoretical
framework is developed in Sec. III, where we discuss the
role of the applied magnetic field gradient to achieve the
individual frequency addressability of the qubits �Sec. III A�
and derive an analytical expression for the effective spin-spin

coupling �Sec. III B�. As an example we illustrate how to
implement a set of fundamental quantum logic gates with the
resulting NMR-like molecule, made out of trapped electrons
�Sec. IV�. The concluding remarks and the future perspec-
tives for the system are summarized in Sec. V.

II. THE PLANAR PENNING TRAP

We have tried to design a trap that fulfills the needs of
quantum computation and at the same time ensures the same
amount of control and precision already achieved with con-
ventional traps. To that end we consider a planar Penning
trap, which is shown schematically in Fig. 1. The planar trap
is a Penning trap in the sense that both electric and magnetic
static fields are used to confine three-dimensionally a
charged object. A generic Penning trap generates a
quadrupolar static electric field together with a homogeneous
and static magnetic field aligned in the direction of the sym-
metry axis, which we will assume to be z. The magnetic field
confines a charged particle radially, whereas the electric field
provides the confinement along the z axis �13�. Since the
ideal quadrupole potential depends on the square of the co-
ordinates, the motion in an ideal trap can be decomposed into
three independent harmonic oscillators which are commonly
denominated cyclotron, magnetron, and axial, each of them
having different characteristic frequencies. When the trap is
not ideal, due to imperfectly homogeneous or quadrupolar
fields, respectively, the three eigenmotions couple and can no
longer be described as independent. However, the effects of
such a coupling can be used for a number of applications;
see, e.g., �14–16�.

A. General trap properties

A planar trap is a concept of a trap �12� that allows for
easy access with radiation, because of its open geometry, and
lends itself to forming a two-dimensional array on the same
substrate. In addition, it has the advantage that well-known
methods to produce and miniaturize it are available.

As shown in Fig. 1, it consists of a collection of circular
electrodes printed on an isolating substrate. The simplest pla-
nar structure has two different electrodes to which voltages
of opposite sign are applied. The trap is lying on the x-y
plane and provides an electrostatic potential minimum along
the z axis at a distance z0 from the substrate. A strong homo-
geneous static magnetic field of the order of a few tesla is
aligned in the z direction and provides radial confinement.

An example of a three-dimensional �3D� potential is
shown in Fig. 2 for a configuration having three electrodes.
The potential is obviously asymmetric and this implies that

FIG. 1. �Color online� Simplest configuration of a planar trap
with two electrodes �black� on an isolator substrate �white�.

CIARAMICOLI et al. PHYSICAL REVIEW A 72, 042323 �2005�

042323-2



one needs to fine-tune the applied voltages with more care
than in a cylindrical trap. Another implication of its asym-
metry is that one can move the position of the minimum
along z. By varying the relative strength of the negative elec-
trodes with respect to positive ones, a particle which is
trapped around the minimum will vary its location under the
control of the experimenter. This feature could be useful to
study the problem of decoherence caused by a metallic plate,
which depends on the distance of the particle from the plate
�17�.

The potential along the z axis can, in the case of adjacent
electrodes, be obtained analytically from a Bessel-Fourier
series expansion and reads

��z� = �
i=1

Nelec

Vi� z

	z2 + Ri−1
2

−
z

	z2 + Ri
2
 , �1�

where Ri−1 is the inner radius of the ith electrode �R0�0,
since the first electrode is a disk�. Vi is the voltage applied to
electrode i and Nelec is the number of electrodes �12�. The
minimum of that function cannot be evaluated analytically,
but it can be shown numerically that z0, the minimum posi-
tion, has a value of the order of R1, the radius of the central
electrode.

For electrons lying in the region near the trap axis,
��R1, the potential is well approximated by Eq. �1�. More-
over, Eq. �1� can be used to optimize the trap geometry and
enhance its harmonicity.

B. Harmonicity

In an imperfect electrostatic field one is interested in cool-
ing the electrons as much as possible so that they remain in
the region near the minimum, where the potential is most
resembling a quadrupolar one. A typical helium bath will
thermalize electrons to a temperature of �4 K and a dilution
refrigerator at �100 mK can drive them, on average, to the

�200th energy level of their axial motion, for frequencies of
�10 MHz �which is the case when Vi�0.01 V, R1�1 mm�.
The latter temperature corresponds to an axial amplitude of
�20 �m and radial amplitude of the same order of magni-
tude. The amplitude of motion is thus much smaller than the
characteristic trap size R1. Further cooling by pulses can be
used in order to reduce the width of the axial oscillation.

Detection of the electron axial motion can be performed
by pickup of the induced image current in the central trap
electrode, via a tuned resonance circuit of high quality factor
Q. A Fourier transform analysis of the induced current shows
a peak at the electron oscillatory frequency, whose
width ��z is given by the inverse time cooling constant due
to the resistivity R of the detection electronics �18�. With
values for the tank circuit such as Q=300, C=7.5 pF, and for
�z /2�=10 MHz we have ��z /2��1 kHz. Inside that peak,
a dip is found, due to the electron which resonantly absorbs
energy from the thermal noise in the circuit. Such a dip has a
frequency width given by the axial anharmonicity. From nu-
merical estimates we expect such a frequency width, for
electrons that are thermalized to an environmental tempera-
ture of about 100 mK, to be at least two orders of magnitude
narrower than that of the tank circuit �12�.

Moreover, to prevent detrimental effects on the computa-
tion due to electronic noise fed into the system, it is possible
to decouple the axial motion of the electron from the detec-
tion circuit during gate operations. This is achieved by de-
tuning either the external circuit or the axial oscillator. Only
at the end of the computation is the axial frequency brought
into resonance with the detection circuit in order to perform
the final readout of the qubit states.

A superconducting solenoid provides the magnetic field
along the z axis. A field strength of the order of a few tesla
gives a cyclotron frequency of approximately 100 GHz,
which ensures that electrons will radiate their cyclotron en-
ergy, via synchrotron emission, in the time scale of 0.1 s �see
Ref. �19��. Experimental observation of a trapped electron
cooled down to its cyclotron ground state via radiation and in
equilibrium with its cryogenic environment has been re-
ported by Gabrielse and co-workers �20� under conditions
similar to those mentioned here.

Furthermore there is a way of coupling the spin motion to
the axial one in order to know the spin state from a shift in
the axial frequency. Such a coupling is realized when a qua-
dratic magnetic gradient is applied. The method is well
known and has been experimentally demonstrated for detec-
tion of the electron spin state in a hydrogenlike ion �13�. In
the next sections we will show that a gradient, which is lin-
ear in the coordinates, can be used to provide an effective
spin-spin coupling between different electrons. Therefore, if
one desires to couple electrons and at the same time observe
their spin state through measuring the axial frequency, both
linear and quadratic gradients are needed. It is not a problem,
in general, to tailor the required magnetic field. A ring made
of magnetic material, such as Ni, has been already used for
g-factor experiments. Such a ring provides a quadratic gra-
dient when seen from its symmetry center. If the ring is
displaced with respect to the trap axis, linear components
will be seen by the trapped electrons in addition to quadratic
ones. Other configurations are possible with the use of addi-
tional coils.

FIG. 2. �Color online� Electrostatic potential with three elec-
trodes �V1=3V, V2=−10V, V3=3V�. One can see that the local po-
tential minimum, in the z direction around �=0, is almost quadru-
polar even with the intrinsic asymmetry of the trap.
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With a typical nickel ring, the magnetic gradient is such
that the electron axial resonance frequency suffers a shift of
approximately 10 Hz depending on the spin state. Consider-
ing the parameters for the tank circuit given above, a dip
shift of 10 Hz inside a broad peak of 1 kHz is easily detect-
able, even when the absorption linewidth is 10 Hz—which is
our case.

C. Array of planar traps

The planar structure of this trap strongly suggests a 2D
array of such traps, as schematically illustrated in Fig. 3.
Thin-film technology can be used to place gold electrodes on
an isolating surface with resolution much below the millime-
ter scale. A large number of traps can be embedded in a
common isolating substrate and controlled electronically
from the rear side. Ideally each trap is filled with a single
electron, which interacts with neighboring particles via the
Coulomb force. This provides a natural multiparticle sce-
nario similar to the case of ions in a linear Paul trap, with the
advantage of controlling each trap parameter independently
�interparticle distance, coordination number, electron reso-
nance frequencies, etc.�. With the planar trap this is imple-
mented in a very straightforward way.

The substrate shown in Fig. 3 has the size of a coin and
each trap a dimension of order 1 mm. This size gives an
axial frequency up to 500 MHz for applied voltages of a few
volts. The space between traps has to be filled with a com-
mon grounded electrode, so as to isolate the potentials of
each trap from the others and also to prevent charging up of
the isolating substrate. Thin-layer techniques allow one to
produce electrodes which are almost monocrystalline, and so
to reduce significantly the decoherence effect due to patch
fields. On the other hand, quantitative measurements of de-
coherence caused by proximity to the electrodes could be
performed by moving the electron along the z axis �see �12��.

Currently, we are testing a prototype of planar trap. The
idea is to have only one trap, with a radius of 2 cm, printed
with thick-layer technology over an Al2O3 substrate. A mag-
netic field of 100 G is foreseen. This preliminary trap will try
to demonstrate confinement and also the possibility of excit-
ing each degree of freedom of the electrons. Figure 4 shows
the design of such a test trap. It can be seen that there is a
split electrode, which will provide quadrupolar excitation.

In a further step, we plan to build a miniaturized array of
several traps �three for example� in a cryogenic environment
of about 100 mK with a magnetic field of 7 T. The traps will
have a diameter of around 0.5 mm. The biggest challenges
will be those of coherent and accurate control over each elec-
tron plus a sufficient suppression of all sources of decoher-
ence, both haunting every experiment in quantum computa-
tion.

III. BUILDING AN ARTIFICIAL MOLECULE

A. The magnetic gradient

Let us consider a planar trap at a distance x0 from the
center of the substrate along the x direction. We choose the
origin of our reference frame at the substrate center and the z
axis orthogonal to the substrate plane �see Fig. 5�. Now sup-
pose we add the inhomogeneous magnetic field

FIG. 3. Two-dimensional array of planar traps consisting of
printed electrodes on a base substrate made of isolating material.
Each trap is supposed to be loaded with an electron cloud which is
afterwards reduced to a single electron via a sequence of pulses.

FIG. 4. �Color online� Test trap with total diameter of 35 mm.
Black regions denote electrodes and white regions denote isolating
surface. As said before, the isolating surface has been mostly cov-
ered by electrodes to avoid charging up. This configuration has
three active electrodes plus an external grounded one. The �red�
circle in the center is a hole through which electrons are loaded
from the rear side.

FIG. 5. Schematic drawing of a planar trap at the distance x0

from the center of the substrate.
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B1 = b�zk̂ −
x

2
î −

y

2
ĵ
 . �2�

This field produces a linear magnetic gradient and has rota-
tional symmetry with respect to the z axis.

The total magnetic field acting on the trapped particle is
B=B0+B1 where B0 is the uniform confining field directed
along the z axis. Hence, the total field B acting on the trap
center is the sum of the uniform field B0 along the z direction
and the magnetic gradient −bx0 /2 along the x direction.
Consequently B, at the trap center, has modulus
Bc�	B0

2+ �b2x0
2� /4 and direction forming an angle with the z

axis. Note that Bc depends on the distance �x0� of the trap
from the substrate center. Now we rotate the reference frame
around the y axis so that the new z axis corresponds to the
direction of the total magnetic field B at the trap center. With
this rotation, if b�x0� /2B0�1, the total field with respect to
the new coordinates can be written, in good approximation,
as

B 
 ��Bc + bz�k̂ −
b�x − x0�

2
î −

by

2
ĵ
 . �3�

The vector potential of the total magnetic field B applied to
the electron is

A 

1

2
�Bc + bz���x − x0�ĵ − yî� . �4�

We suppose working with a uniform field B0 of a few tesla, a
magnetic gradient b of about 50 T/m, and a trap substrate
with length of the order of 10−2 m. Consequently we have
b�x0� /2B0�10−1.

Let us write the Hamiltonian of the trapped electron. By
taking into account the trapping potential we have

H =
�p − eA�2

2me
+ eV −

ge	

4me
� · B , �5�

where V, me, e, g, and 
i are, respectively, the trapping po-
tential, electron mass, electron charge, gyromagnetic factor,
and Pauli matrices. In the limit b�x0� /2B0�1 we can neglect
the changes in the quadrupole potential form due to the ro-
tation of the reference frame around the z axis and write

V 

V0

�2 �z2 −
�x − x0�2 + y2

2

 . �6�

We can define the axial frequency �z�	2eV0 / �me�
2� in

terms of the applied potential difference V0 and of the char-
acteristic trap size �, and recast the z part of the spatial
Hamiltonian of the electron as

Hz 

pz

2

2me
+

1

2
me�z

2z2. �7�

The presence in the Penning trap of the magnetic gradient
along the z direction makes the cyclotron frequency depend
on the particle z position. Indeed, we define the cyclotron
frequency as

�c�z� �
�e��Bc + bz�

me
�8�

and introduce, respectively, the cyclotron and magnetron lad-
der operators

ac =
1

2
�	m�̃c

2	
��x − x0� − iy� +	 2

	m�̃c

�py + ipx�
 ,

�9�

am =
1

2
�	m�̃c

2	
��x − x0� + iy� −	 2

	m�̃c

�py − ipx�
 ,

�10�

obeying the commutation relation �ai ,aj
†�=�i,j, with i , j

=c ,m. The frequency �̃c is defined as

�̃c�z� � 	�c
2 − 2�z

2, �11�

so it depends on the z coordinate too.
The part of the spatial Hamiltonian of the electron involv-

ing x-y coordinates is

Hxy 

1

2me
�px +

e�Bc + bz�
2

y
2

+
1

2me
�py −

e�Bc + bz�
2

��x − x0�
2

−
1

4
me�z

2��x − x0�2 + y2� . �12�

By using the ladder operators Eqs. �9� and �10�, we can write

Hxy = − 	�m�am
† am +

1

2

 + 	�c��ac

†ac +
1

2

 , �13�

where we have introduced, respectively, the magnetron and
cyclotron frequencies

�m�z� �
��c − �̃c�

2
, �14�

�c��z� �
��c + �̃c�

2
, �15�

both depending, by means of relations �8� and �11�, on the z
coordinate. Notice that we indicate the explicit dependence
of the frequencies �c, �̃c, �c�, and �m on the coordinate z
only in the definition formula.

The uniform magnetic field of a few tesla that we suppose
is applied gives a cyclotron frequency at the trap center of
the order of 100 GHz. This choice permits us to have ther-
malization with a trap environment at about 100 mK, the
cyclotron motion in the lowest-energy state �20�. Further-
more we choose the axial frequency in the range of mega-
hertz, giving a magnetron frequency at the trap center of the
order of hundreds of hertz.

The spatial Hamiltonian Eq. �13� is formally equivalent to
the corresponding part of the Hamiltonian describing an
electron in a conventional Penning trap, without any mag-
netic gradient �21�. However, we point out that, with respect
to the case of a trap without magnetic gradient, there is a
dependence of the magnetron and cyclotron frequencies on
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the z coordinate. Hence, we have a coupling between the
axial motion and the cyclotron and magnetron motions. Fur-
thermore, as we shall see, the magnetic gradient introduces
an interaction between the spatial motion and the spin
motion of the electron. This coupling between the external
and internal degrees of freedom becomes evident by consid-
ering the part of the electron Hamiltonian involving the spin
motion,

Hs 

ge	

4me
� · B =

g	

4
�c
z −

g	�e�b
8me

�
xx + 
yy� . �16�

We generally suppose, in our system, the axialization of the
electron motion. This condition has been experimentally ob-
tained with ions confined in a Penning trap �22�. The motion
of the electron is axialized when its amplitude in the x-y
direction is much smaller than that in the z direction. The
axialization permits us to neglect, in the above Hamiltonian,
the term proportional to 
xx+
yy. Indeed, with the typical
values chosen for b and B0, the spin-state transition probabil-
ity due to this term is negligible in the axialization condition.
This can be proved by applying time-dependent perturbation
theory.

Hence, the global Hamiltonian �5� of the electron can be
rewritten as

H 
 − 	�m�am
† am +

1

2

 + 	�c��ac

†ac +
1

2



+
pz

2

2me
+

1

2
me�z

2z2 +
g	

4
�c
z, �17�

where the frequencies �m, �c�, �c, and �̃c, as defined in Eqs.
�8�, �11�, �14�, and �15�, depend on the z coordinate.

We suppose that, throughout the electron motion, the con-
ditions �z��c and b�z� /2B0�1 are verified. Hence, by pos-
ing �c�
�c, �m
�z

2 /2�c, and expanding the cyclotron and
magnetron frequencies in terms of the coordinate z, we write
the above Hamiltonian as

H 
 − 	�m0am
† am + 	�c0ac

†ac + 	�zaz
†az +

	

2
�s0
z

+ 	�z
�az + az
†���m0

�c0
am

† am + ac
†ac +

g

4

z
 , �18�

where we have introduced the ladder operator

az �	me�z

2	
z + i	 1

2	me�z
pz, �19�

the parameter


 �
�e�b

me�z
	 	

2me�z
, �20�

and the frequencies �c0���e�Bc� /me, �m0��z
2 /2�c0,

�s0��g�c0� /2.
In Hamiltonian �18� we have also redefined the equilib-

rium position of the electron in the z direction, as a conse-
quence of the shifts due to the zero-point energy of the cy-
clotron and magnetron oscillators.

The parameter 
 gives, substantially, the ratio between the
change in the electron spin energy due to the magnetic gra-
dient and the trapping energy in the z direction. Indeed we
can write


 

	�z�s�z

	�z
, �21�

where

�z�s �
g�e�b
2me

�22�

and

�z �	 	

2me�z
�23�

is the amplitude of the electron axial motion in the ground
state. Hence �z�s�z is roughly the spin frequency variation
due to the magnetic gradient when the electron axial motion
is in the ground state.

Note that the frequencies �c0, �m0, and �s0 depend on
the position of the planar trap on the substrate. Indeed, they
depend on the distance x0 of the trap center from the sym-
metry axis of the magnetic gradient. For instance, when
the magnetic gradient b
50 T/m, two electrons in neigh-
boring traps, separated by a distance of the order of 10−3 m,
are characterized by spin resonance frequencies that differ
from each other by a few megahertz. This value, though
small in comparison with the typical spin frequency
�s0 /2��100 GHz of a single electron, is enough to indi-
vidually address the spin qubits via microwave radiation.
Moreover, the same substrate can accommodate tens of qu-
bits, with frequencies spread over a range of hundreds of
megahertz.

If the electron motion is axialized and the cyclotron
oscillator remains always in the ground state, we can
neglect, in Hamiltonian �18�, the term proportional to
�az+az

†����m0 /�c0�am
† am+ac

†ac�. Hence, under these condi-
tions, we can write the Hamiltonian of the system as

H 
 − 	�m0am
† am + 	�c0ac

†ac + 	�zaz
†az

+
	

2
�s0
z +

g

4
	�z
�az + az

†�
z, �24�

showing the coupling between the axial and the spin degrees
of freedom.

B. Effective spin-spin coupling

We now move to a linear array of N electrons confined in
planar Penning traps along the x axis. If we add a linear
magnetic gradient, the Hamiltonian of the system can be
written as

H = �
i=1

N � �pi − eAi�2

2me
+ eVi −

ge	

4me
�i · Bi
 + �

i�j

N
e2

4��0�ri − r j�
,

�25�

where the subscript i refers to the ith electron of the array.
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Hence the magnetic field Bi, with vector potential Ai, acts
on the electron trapped in the ith site. This field is the sum of
the uniform confining field orthogonal to the planar trap sub-
strate and the inhomogeneous field producing a linear mag-
netic gradient �see derivation of Eq. �3� in the previous sub-
section�

Bi 
 ��Bc,i + bzi�k̂ −
b�xi − xi,0�

2
î −

byi

2
ĵ
 . �26�

In the above equation Bc,ik̂ is the total field Bi at the center
of the ith trap and xi,0 is the x coordinate of the center of the
ith trap. The origin of our reference frame is at the center of
the trap substrate and the z axis is the symmetry axis of the
magnetic gradient. We have Bc,i=	B0

2+ �b2xi,0
2 � /4 where �xi,0�

is the distance between the symmetry axis of the magnetic
gradient and the center of the ith site. In writing Eq. �26� we
assumed that b�x0,i� /2B0�1 for any i=1,2 , . . . ,N.

Similarly to the single-electron case, we also have

Ai 

1

2
�Bc,i + bzi���xi − xi,0�ĵ − yiî� �27�

and

Vi 

V0

�2 �zi
2 −

�xi − xi,0�2 + yi
2

2

 . �28�

Now, as already done for a single electron in a planar trap in
the presence of a magnetic gradient, we define the frequen-
cies �c,i�zi���e��Bc,i+bzi� /me and �̃c,i�zi��	�c,i

2 −2�z
2 and

introduce the operators

ac,j =
1

2
�	me�̃c,j

2	
��xj − xj,0� − iyj�

+	 2

	me�̃c,j

�py,j + ipx,j�
 , �29�

am,j =
1

2
�	me�̃c,j

2	
��xj − xj,0� + iyj�

−	 2

	me�̃c,j

�py,j − ipx,j�
 , �30�

az,j =	me�z

2	
zj + i	 1

2	me�z
pz,j �31�

obeying the commutation relation �ai ,aj
†�=�i,j, with

i , j=c ,m ,z.
If we indicate with HNC the part of Hamiltonian �25� not

including the Coulomb interaction, we can write

HNC 
 �
i=1

N �− 	�m0,iam,i
† am,i + 	�c0,iac,i

† ac,i + 	�zaz,i
† az,i

+
	

2
�s0,i
z,i
 + �

i=1

N
g

4
	�z
�az,i + az,i

† �
z,i, �32�

where we have introduced the frequencies

�c0,i���e�Bc,i� /me, �m0,i��z
2 /2�c0,i, �s0,i��g�c0,i� /2,

and assumed that, throughout the electron motion, the
conditions �z��c,i and b�zi� /2B0�1 are satisfied for any
i=1,2 , . . . ,N. The parameter 
 has been defined in Eq. �20�.
In writing Hamiltonian �32� we have also supposed that all
the electron motions are axialized and that the cyclotron os-
cillator remains always in the ground state.

Let us consider the part of Hamiltonian �25� involving the
Coulomb interaction between the two electrons at the sites i
and j. By indicating it with Hi,j

C we have

Hi,j
C =

e2

4��0
	�xi − xj�2 + �yi − yj�2 + �zi − zj�2

, �33�

which we can recast as

Hi,j
C =

e2

4��0di,j
�1 +

2��xi − �xj�
di,j

+
��xi − �xj�2

di,j
2

+
�yi − yj�2

di,j
2 +

�zi − zj�2

di,j
2 
−1/2

, �34�

where �xi�xi−xi,0 and di,j = �xi,0−xj,0�.
If the oscillation amplitude of the two electrons is much

smaller than the average separation di,j between them, we
can expand the interaction Hamiltonian Eq. �34� in a power
series and retain the terms up to the second order,

Hi,j
C 
 −

e2

4��0di,j
2 ��xi − �xj� +

e2

8��0di,j
3 �2��xi − �xj�2

− �yi − yj�2 − �zi − zj�2� . �35�

Furthermore, if we suppose that the electron motions are
axialized, we have

Hi,j
C 
 −

e2

4��0di,j
2 ��xi − �xj� −

e2

8��0di,j
3 �zi − zj�2. �36�

The first term in Hamiltonian �36� gives a displacement of
the equilibrium position of the electrons along the x axis.
This small shift is of order e2 / �4��0di,j

2 me�c0,i
2 � and is a con-

sequence of the Coulomb repulsion. Hence we can effec-
tively remove the first term in Hamiltonian �36� by redefin-
ing the centers of the two traps. We also recall that, actually,
this effect is more pronounced for electrons placed at the
extremities of the array. Indeed, as a consequence of the
symmetry of the system, particles trapped near the center of
the array undergo much smaller shifts.

The second term in Hamiltonian �36�, involving the z co-
ordinate of the electrons, represents an effective dipole-
dipole interaction between the ith and jth electrons. By de-
veloping the square we have terms proportional to zi

2 and zj
2.

They produce small shifts on the axial frequencies of the two
electrons. Therefore we can take into account these terms by
appropriately redefining the axial frequencies of the two
electrons. The remaining term, proportional to zizj, represents
the Coulomb coupling between the axial motions of the two
electrons. After having appropriately redefined the trap cen-
ters and frequencies we can write
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Hi,j
C 


e2

4��0di,j
3 zizj = 	�i,j�az,i + az,i

† ��az,j + az,j
† � , �37�

where

	�i,j �
e2

4��0di,j
��z

di,j

2

, �38�

with �z being the ground-state amplitude of the axial oscil-
lator, introduced in Eq. �23�.

Now we perform, on the global Hamiltonian of the system
H=HNC+�i�j

N Hi,j
C , the unitary transformation H�=eSHe−S �5�

with

S = �
i=1

N



g

4
�az,i

† − az,i�
z,i. �39�

The transformed axial operators are

az,i → az,i − 

g

4

z,i. �40�

Let us consider the transformed part of the Hamiltonian �25�
not including the Coulomb terms. It can be written, after
dropping constant terms, as

H�NC 
 �
i=1

N �− 	�m0,iam,i
† am,i + 	�c0,iac,i

† ac,i

+ 	�zaz,i
† az,i +

	

2
�s0,i
z,i
 . �41�

Note that, with the unitary transformation, we have formally
removed the interaction between the axial and spin motions.
Differently, the Coulomb terms in Hamiltonian �25� involv-
ing the electrons i and j transform as

H�i,j
C = 	�i,j�az,i + az,i

† − 

g

2

z,i
�az,j + az,j

† − 

g

2

z,j
 .

�42�

From the above Hamiltonian we see that the unitary trans-
formation produces terms of the form 	�g2 /4�
2�i,j
z,i
z,j,
which represent an effective coupling between the spin mo-
tion of different particles.

By applying another unitary transformation, similar to Eq.
�39�, also the extra terms in Hamiltonian �42�, proportional
to 
z,i�az,j +az,j

† �, result in additional spin-spin coupling
terms. As a consequence we would have corrections to the
coupling strength of the spin-spin interaction of the order of
	
2�i,j

3 /�z
2. However, we assume �i,j ��z, so that the effect

due to the terms proportional to 
z,i�az,j +az,j
† � is negligible.

Since in our scheme quantum information is encoded only
in the spin motion of the particles, we do not consider the
spatial part of the transformed Hamiltonian, but just the spin
part, given by

Hs� 
 �
i=1

N
	

2
�s0,i
z,i + �

i�j

N
	

2
�Ji,j
z,i
z,j . �43�

Note that the above Hamiltonian is analogous to the nuclear
spin Hamiltonian of the molecules used to perform NMR
quantum computation �1�. Consequently, with our system,
we can implement universal quantum processing by using
the same techniques developed in NMR experiments �see
next section�.

In Hamiltonian �43� the spin frequencies are

�s0,i 

geB0

2me
�1 +

b2xi,o
2

8B0
2 
 �44�

and the coupling constants, defined as in NMR experiments,
are

Ji,j �
g2

2�
�i,j


2 =
g2

2�	

e2

4��0di,j
��z

di,j

2�	�z�s�z

	�z

2

�
b2

�z
4di,j

3 .

�45�

Hence, by changing specific system parameters, fully under
the control of the experimenter, we can adjust both the spin
frequencies and the coupling constants. Indeed, according to
the above relations, the spin frequencies of the particles and,
consequently, their detunings depend on the uniform mag-
netic field intensity, the magnetic gradient strength, and the
distance of the electrons from the substrate center. Similarly,
the coupling constants can be modified by changing the gra-
dient strength, the axial frequency, and the distance between
the particles. We also note that the coupling constants are
proportional to 1/di,j

3 . Hence, if the particles are equally
spaced in the array, we obtain a uniform coupling strength
for nearest-neighbor electrons, while the spin-spin interac-
tion decreases rapidly with the increase of their distances.
For instance, the coupling strength between two electrons,
that are a distance 2d apart from each other is just 1 /8 of the
one for nearest-neighbor electrons. In the considered dipole
limit, we achieve the same uniform interaction strength be-
tween neighboring electrons and reduction for non-nearest-
neighbor J couplings of Ref. �9�, where, however, this result
requires a careful adjustment of both the interion separation
and end-trap strength.

IV. UNIVERSAL QUANTUM LOGIC GATES

In this section we describe how to implement, in our sys-
tem, universal quantum computation.

As mentioned in the previous section, Hamiltonian �43� is
substantially analogous to the one describing NMR mol-
ecules �1�. The only difference is the fact that in the NMR
systems we have nuclear spins instead of electron spins.
Therefore, universal quantum processing with trapped elec-
trons, in the presence of a magnetic gradient, can be per-
formed by using techniques similar to those already devel-
oped in NMR experiments �1�.

In particular, Hamiltonian �43� represents a set of N elec-
tron spins, each one having a different precession frequency,
which interact by mutual couplings. If we encode a qubit in
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the spin degree of freedom of each particle, we can use elec-
tromagnetic pulses with appropriate frequencies to selec-
tively manipulate the information stored in the spin state of
each electron. Hence, the detuning between the different
electron frequencies plays the same role as the chemical shift
in NMR molecules.

Universal two-qubit gates, in our system, are achieved by
means of the mutual coupling between the electron spins.
Indeed, this interaction has the same form of the J coupling
between nuclear spins in NMR molecules and can be used in
a similar way to perform two-qubit gates.

The set of unitary transformations consisting of single-
qubit gates plus controlled-NOT �CNOT� gates is computation-
ally universal. Let us describe, in detail, how to perform
these operations in our system. If we apply a small transverse
oscillating magnetic field resonant with the spin precession
frequency �s0,j of the jth electron

Bd�t� = Bd�î cos��s0,jt + �� + ĵ sin��s0,jt + ��� , �46�

the relevant part of the system Hamiltonian becomes, in the
interaction picture with respect to the unperturbed Hamil-
tonian Hs0=�i=1

N �	 /2��s0,i
z,i and in the rotating wave ap-
proximation,

HIP
�spin� 
 	

�

2
�
+,je

−i� + 
−,je
i�� , �47�

where ��g�e�Bd / �2me� and 
±,j ��
x,j ± i
y,j� /2.
In the derivation of the above Hamiltonian we neglected

the spin-spin coupling terms present in Hamiltonian �43�,
since we assume Ji,j �� for any i , j=1,2 , . . . ,N. Further-
more we suppose that the oscillating field is so small that
Bd�bdi,j for any i , j=1,2 , . . . ,N. This last condition, giving
a Rabi frequency � much smaller than the detuning between
the spin frequencies of the ith and jth electrons, allows for
the selective frequency addressing of each particle.

If a small transverse magnetic field is applied for a time t,
it produces a rotation on the spin state of the jth particle,

�↓� j → cos��t

2

�↓� j − ie−i� sin��t

2

�↑� j , �48�

�↑� j → cos��t

2

�↑� j − iei� sin��t

2

�↓� j . �49�

It can be shown that with an appropriate combination of
these operations, one can perform any single-qubit gate on
the spin qubit of the jth electron. We define the interaction
produced by the Hamiltonian �47�, applied for a time t, as a
ps,j��t ,�� pulse. Hence, we can perform single-qubit gates on
each electron, in a selective way, by appropriately tuning the
frequency of the oscillating magnetic field.

Let us now consider the implementation of CNOT gates. A
natural way to perform this two-qubit gate is to use a three-
gate circuit. In particular, we apply, in sequence, a Hadamard
gate on the target qubit and a controlled � phase-shift gate
followed by another Hadamard gate on the target qubit.
However, it is preferable to avoid Hadamard gates, as they
are difficult to implement. Hence, the Hadamard gates are

conveniently replaced by an inverse pseudo-Hadamard gate
and a pseudo-Hadamard gate �1�. These two gates are real-
ized by applying, respectively, a ps�� /2 ,� /2� pulse and a
ps�� /2 ,−� /2� pulse. The controlled � phase-shift gate can
be achieved in different ways by applying appropriate se-
quences of ps pulses. For example, in a two-qubit system,
one possible sequence for implementing this gate consists of
four ps pulses and two appropriately timed periods of free
evolution �1�. In particular, we apply a free evolution of the
system for a time of 1/4J1,2, a ps�� ,0� pulse, another free
evolution of the system for a time of 1/4J1,2, a ps�� /2 ,0�
pulse, a ps�� /2 ,� /2� pulse, and a ps�� /2 ,0� pulse. All the
above pulses should be applied to both electron spins and the
application time of each ps pulse should be much smaller
than the time duration of each free-evolution period.

With systems having more than two qubits, the efficient
implementation of CNOT gates requires the application of
more complicated sequences of operations. This is necessary
in order to avoid errors due to the couplings with electrons
not involved in the gates. Indeed, from Hamiltonian �43� we
see that there are mutual couplings among all the particles of
the system. However, the sequence required to efficiently
implement the CNOT gates, when we have more than two
qubits, consists only of ps pulses acting on specific particles
and appropriately timed periods of free evolution �23,24�. In
the NMR context this technique is known as refocusing.

We also remark that in our system the coupling strength
decreases rapidly with the increase of the interparticle dis-
tance. Indeed, from Eq. �45� we have Ji,j �1/di,j

3 . This fact
permits us to simplify the refocusing sequences since the
interaction between distant electrons can be neglected
�23,25�. We recall that in this case the logic gates between
distant electrons can be performed by means of swap gates,
which move the quantum information among the particles. A
swap gate is realized by applying three CNOT gates, where
the two qubits play alternatively the roles of target and con-
troller.

Let us give realistic estimates for the values of the
electron detunings and spin-spin couplings achievable
in our system. We consider a linear array of ten electrons
with interparticle distance of the order of 1 mm. We suppose
applying a uniform magnetic field of a few tesla, giving
�s /2��100 GHz, a magnetic gradient of about 50 T/m,
and assume an axial frequency �z /2��10 MHz. In these
conditions we obtain a frequency detuning between neigh-
boring particles of a few megahertz and a spin-spin coupling
with strength J�20 Hz. These values for the detuning and
the coupling strength are of the same order of the corre-
sponding quantities in NMR systems.

V. CONCLUSION

The concept of an open planar Penning trap makes it pos-
sible to design and build up a scalable system for quantum
computation, consisting of trapped electrons in vacuum.
Single particles are confined in a linear array of traps depos-
ited on the same substrate. A magnetic field gradient across
the traps allows for frequency addressing of each qubit
stored in the electron spin as in NMR quantum computers.
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Moreover, the magnetic field gradient couples internal �spin�
and external �motional� degrees of freedom of the same par-
ticle. Thanks to the Coulomb interaction among the charged
particles, this coupling effectively amounts to a direct spin-
spin interaction, with tunable coupling strength. In the limit
of relatively large interelectron spacing and small axial os-
cillation amplitude, we obtain an analytical expression for
the J coupling, which allows for an immediate evaluation of
the interaction strength in terms of the relevant system pa-
rameters �trap distance, axial frequency, and applied
magnetic gradient�. We emphasize that the J coupling is pro-
portional to 1/d3, where d is the intertrap distance, thus
greatly reducing the interaction between non-nearest-
neighbor electrons.

In this way, the system of singly trapped electrons is for-
mally identical to a NMR molecule suitable for quantum-
information processing. Hence, the well-established and de-
veloped techniques of NMR spectroscopy can be extended
and applied to our system. Qubit manipulation is achieved
via appropriate sequences of microwave pulses. The qubit
readout is performed either by axial frequency detection, as
in conventional Pennning traps, or by capacity and charge
measurements as in semiconductor quantum dots.

The advantages over NMR systems are obvious: the num-
ber of qubits is not limited either by the molecule size—the
same substrate can easily accommodate a large number of
microtraps—or by the frequency range—the typical spin
resonance frequency lies in the gigahertz range, whereas the
detuning between neighboring particles is of the order of a
few megahertz, and the system is truly quantum and, at the
same time, well isolated from the environment. In addition,
the geometry of the system can be designed and optmized at
will, using more complicated two-dimensional arrays, with
possible applications to the study and the simulation of quan-
tum systems like the Ising model. Finally, Penning traps
could be loaded with protons as well, allowing the same
NMR spectroscopy experiments with hydrogen, but in a
much more controlled and clean environment.
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