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Abstract

We present a bio-inspired calculus for describing 3D shapes moving in a space. A shape
forms a 3D process when combined with a behaviour. Behaviours are specified with a timed
CCS-like process algebra using a notion of channel that models naturally binding sites on the
surface of shapes. Processes can represent molecules or other mobile objects. The calculus
embeds collision detection and response, binding of compatible 3D processes and splitting of
previously established bonds.

1 Introduction

The inspiration for this work mainly originates from the potential that moving objects, 3D-shaped
colliding in a space, may have in modelling the real dynamics of the cell, or of a biological system
in general, towards a personalised virtual physiological human. In a near future, systems biology
will profoundly affect healthcare and medical science. The aim is to design and test “in-silico” drugs
giving rise to individualised medicines that will take into account physiology and genetic profiles [11].
The advantages of performing in-silico experiments by simulating a model, instead of arranging
expensive in-vivo or in-vitro experiments, are evident. But of course the models should be as faithful
as possible to the real system. Takahashi et al. underline, in [18], the importance of considering
space when modelling cellular phenomena and in particular biochemical signal cascades. They
also highlight that macromolecular crowding in a limited space can also deeply affect biochemical
reactions in the cell. Since physical concepts like space occupancy, intra-cellular movement, contacts
(collisions) and shape transformation determine biomolecular interactions and therefore cell life,
there is the need to provide physical characteristics (shape, mass, size, position) to entities. Then,
we can collocate them in the continuum space, allow them to autonomously move and to interact
with their spatial neighbour/colliding entities, reacting accordingly to their specified behaviour in
order to reproduce the emerging behaviour observable in in-vivo and in-vitro experiments.

Many process algebras have been proposed in systems biology for modelling biological sys-
tems [16, 17, 7, 4, 9], accomplishing different kinds of abstractions. The common assumption in
these calculi is that the systems are always well-stirred, which means that the positions become
randomly uniform over a contained volume. This distribution is often generated by several sim-
ulation methods [12] based on the theory of stochastic chemical kinetics. When systems are not
well-stirred, the ideal way to simulate the time evolution of a chemical system would be to use
molecular dynamics, in which the exact positions and velocities of all the molecules in the systems
are tracked. In these cases the concepts of space and time play a fundamental role, and only re-
cently they have been taken into account in process calculi for systems biology. BioAmbients [17]
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Figure 1: An example of a network of 3D processes.

considers space as a set of communicating compartments, while in Spatial CLS [2] and SpacePI [14]
the entities involved are modeled as spheres situated in space. SpacePI [14] proposes an extension of
the π calculus equipped with time and space. In this algebra processes can communicate if they are
sufficiently close, but no shapes are considered. However, in biochemistry, the shape of an enzyme
plays a very important role in biochemical interactions. The behaviour or the function of an enzyme
is mostly determined by its 3D structure (shape).

The paradigm of our calculus goes towards this direction defining 3D processes as entities com-
posed of a 3D shape and a dynamic behaviour. Processes are situated in a space, move accordingly
to specific motion laws (as, for instance, acceleration in a gravitational field or Brownian motion),
collide and possibly bind with others processes becoming compound 3D processes. The binding
depends on channels 〈a,X〉, derived from classical CCS [15] channels, where a is the channel name,
intended as a type for binding certain species, and X is a certain region on the surface of the 3D
process in which the channel is “active”. The binding corresponds to communication on these chan-
nels. It occurs if and only if the surface of collision of two 3D processes belongs to active channels
of both processes and the names of the channels are co-names à la CCS. Compound processes can
split weakly, by non-deterministically releasing a previously established bond, or “react”, by splitting
urgently in as many pieces as the products of the reaction are. If communication (i.e. binding) does
not occur, the collision of two 3D processes is considered elastic, i.e. the shapes bounce and proceed
independently.

In this paper we mainly focus on the definition of the calculus and its semantics proving a basic
correctness property of dynamic well-formedness conservation. The contribution of this work is
twofold. On the theoretical side it is one of the first steps, within concurrency theory, that starts
modelling and reasoning about combined complex aspects such as space, shapes, movement and
collisions (an ongoing work in the framework of π calculus is available in [8]). On the practical
side, it is a fundamental step of formalisation in a design process, on which we have been working
for a few years, of a spatiotemporal simulator [5, 6] that is intended to become the computational
engine of a workbench within which biologists can define, run, monitor, stop, modify and re-run
in-silico experiments. In this (future) scenario the Shape Calculus has to be considered the low-
level executable language of the simulator on which more complex high-level-specified simulations
are mapped. This is because the calculus embeds the minimum set of primitives that are needed
to treat this kind of problems, that is to say it represents a kernel language on which high-level
languages for biological specifications can be built.

The paper is organised as follows. Section 2 gives an overview of the calculus combining graphical
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Figure 2: An example of binding and subsequent weak-splitting of two 3D processes.

intuition with sample pieces of processes in order to understand the basic operators of the calculus
and the reasons behind their introduction. Section 3 introduces more formally 3D shapes, shape
composition, movement, collision detection and collision response. Section 4 defines behaviours and
3D processes giving them full semantics. Section 5 puts all the pieces together and specifies pre-
cisely networks of 3D processes and a general result of dynamic well-formedness is proven. Finally,
Section 6 concludes with ongoing and future work directions. For the sake of readability the proofs
of all the propositions and theorems are placed in Appendices A, B and C.

A short preliminary version of this paper appeared in [3].

2 Overview of the Calculus

In this section we give some intuitions about the objects of the calculus and their possible behaviours.
The general idea of the Shape Calculus is to consider a three-dimensional space in which several
shapes reside, move and interact. Figure 1 shows a possible scenario at a certain time instant: on
the left side there are simple 3D shapes (cubes, cylinders, etc.) or more complex ones, obtainable
by “glueing” two given shapes on a common surface, moving freely in space. The arrows represent
their instant velocity vectors. On the right side there is a composition of shapes enclosing a certain
portion of the space. Their velocity vector is zero and it is intended to remain zero over time. These
shapes can represents walls to the shapes inside and outside the enclosed region. Some of the pieces
of the “walls” can represent doors that could open if some specific object hits them. We will call
network of 3D processes a scenario like the one in figure.

While time flows shapes move according to their velocities, that can change over time both
due to a general motion law - for instance as in a gravitational or in an electromagnetic field, or
Brownian motion - and due to collisions that can occur between two or more shapes. Collisions
can result in a bounce, that is to say elastic collisions. While, as it often happens for biological
objects, colliding objects can bind and become a compound new object moving in a different way
and possibly having a different behaviour. In this case we speak of inelastic collisions.

Naturally, the Shape Calculus can be used to represent a lot of scenarios at different scales in
different fields. We can zoom into the atom, into a cell, into a tissue, into an organ of an organism.
Or we can represent populations of animals, like fishes or birds, and their dynamics and interactions
in a given environment. We can even zoom out and represent planets and their orbits.

However, our first motivation comes from the dynamics of molecules inside a cell, and thus we
will mostly use this scenario in the paper for giving examples. We now let such biological metaphor
guide us to the definition of behaviours of 3D shapes thinking of what it is known to happen in
biochemical reactions. We can think that 3D shapes represent molecules swimming in a portion of a
cell. We could be interested in just a homogeneous portion or, using the “walls”, we could represent
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membranes and different compartments inside the cell. Every species of molecule has a specific
shape and we know from biology that the functions of a molecule are tightly related to its shape.
For instance, in enzymatic reactions the functional sites that are active in the enzyme structure, at
a given time, determine which substrate (one or two metabolites) can bind the enzyme and proceed
to the catalysed reaction.

Figure 2 shows a (2D for simplicity) representation of a possible dynamic of an enzymatic
reaction. Syntactically, we represent the larger shape, in this case playing the role of an enzyme,
with the term S0[B0] where S0 is a term representing the shape and B0 is a term representing
the current behaviour of the shape. These two objects together constitute a 3D process. The
term S1[B1] represents a metabolite that is close to the given enzyme. Note that some surfaces
of the shapes (the geometrical part of the 3D process) are highlighted: they are the channels that
the current 3D processes exhibit to the environment. Channels are specified in the behaviours of
processes and consist of two components: a channel name and an active surface. For instance, in
Figure 2 〈a,X〉 is an open channel of type a on the active site X of process S0[B0]. Note that X
must be a portion of the surface of S0 for 〈a,X〉 to be a valid channel. In this case, the enzyme has
two open channels and the process is specified as follows: S0[〈b, Y 〉.B′0 +〈a,X〉.B′′′0 ]. The operator +
represents the non-deterministic choice between the two possible communications on the channels.
Note that this non-determinism is resolved during the evolution of the system depending on which
3D processes will collide with the enzyme and where.

Following the evolution proposed in the figure, after some time t elapsed (represented by the tran-
sition t−→), after a detection and resolution of an inelastic collision (transition −→i) and after a com-
munication (action τ), we get one compound process represented by the term S0[B′0]〈b,W 〉S1[B′1].
Note that communication is the binding, and it can happen only if there is a collision between two
processes that expose two compatible channels (name and co-name à la CCS) on their surface of
contact. If the channels were not compatible, the collision would have been treated as elastic and
the two 3D processes would have simply bounced. In this case, the surface of contact on which the
bond is established is called W . The name b is a memory for the type of channels that bound.

Note that the component process of shape S1 opened a new channel 〈c, Y1〉. This is possible
because the behaviour of two composed 3D processes is the interleaving of the behaviours of the
components. Indeed, it is B′1 = 〈c, Y1〉.Bother + ω(b, Z).B1 + ρ({〈b, Z〉.B′′1}), that is, the compound
3D process either can accept another communication on the channel 〈c, Y1〉 or can perform a weak-
splitting on the bond established on his previous channel 〈b, Z〉 (the ω action) or can perform a
strong-splitting on the same bond.

The third stage of Figure 2 represents the case in which the non-deterministic weak-splitting was
performed. Note that channels return to the previous situation. This evolution models naturally
the behaviour of an enzyme binding with a substrate: it can happen for some reason that the bond
is loose and the two molecules are free again. Weak-splitting is not an urgent action, thus it can be
delayed of an unspecified time. This is another source of non-determinism in the calculus.

Figure 3 shows another possible evolution of the processes of Figure 2. In this case another
substrate, process S2[B2], binds - with its channel 〈a,X1〉 on the common surface W1 - together
with the previously established compound process. Following our metaphor, in the terminology of
biochemical reactions a final complex has been formed, and in this case the reaction must proceed
and the products must be released. For modelling this behaviour, the calculus provide an urgent
action, that we call strong-splitting. A strong splitting must occur as soon as it is enabled, i.e. all the
involved components can release all the bonds. In this example the involved components are S0B

′
0,

S1[B′1] and S2[B′2] and the set of bonds is L = {〈b,W 〉, 〈a,W1〉}. Indeed, for the strong splitting to

be enabled in this case it must hold that B′0
ρ(a,X)−−−−→, B′0

ρ(b,Y )−−−−→, B′1
ρ(b,Z)−−−−→ and B′2

ρ(a,X1)−−−−−→. Note,
finally, that the enzyme returns to its original state, while the metabolites that are released exhibit
a different behaviour according to what they have become.
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Figure 3: An example of complex formation and subsequent strong-splitting.

3 3D Shapes

We first introduce three dimensional shapes as terms of a suitable language, allowing simpler shapes
to bind and form more complex shapes. From now on we consider assigned a global coordinate
system in a three dimensional space represented by R3. Let P,V = R3 be the sets of positions and
velocities, respectively, in this coordinate system.

For convenience we use, throughout the paper, relative coordinate systems that will always be
w.r.t. a certain shape S, that is to say the origin of the relative system is a reference point p of S.
We refer to this relative system as the local coordinate system of shape S. Given a point p ∈ P,
expressed in the global coordinates, and a set of points U ⊆ P, expressed in a local coordinate
system whose origin is p, we define global(U,p) = U + p = {(u + p) ∈ P | u ∈ U} , i.e. the set of
points U expressed in the global coordinates. Using the local system we can express parts of S -
such as a certain face, a certain vertex, etc. - independently from the actual global position of the
shape.

Definition 3.1 (Basic Shapes) A basic shape σ is a tuple 〈V,m,p,v〉 where V ⊆ P is either a
sphere, a cone, a cylinder or a convex polyhedron1, m ∈ R+ is the mass of the shape, p ∈ P is the
centre of mass2 of the shape and v ∈ V is the vector representing the current velocity of the shape.

We define the following operators on a basic shape σ: the points P(σ) = V , the velocity V(σ) =
{v}, the massM(σ) = m and the reference point R(σ) = p. The boundary B(σ) of σ is the subset
of points of P(σ) that are on the surface of σ3.

The set of all possible basic shapes, ranged over by σ, σ′, . . ., is denoted by Basic.

Note that we use only very simple basic shapes that can be represented by suitable and efficient data
structures and are handled by the most popular algorithms for motion simulation, collision detection
and collision response [10]. Moreover, note that we consider only convex shapes. Recall that a set
of points U ⊆ P is convex if and only if for every x, y in U the set {(λx+(1−λ)y) ∈ P | 0 ≤ λ ≤ 1}
is contained in U .

Three dimensional shapes of any form can be approximated with arbitrary precision by compos-
ing basic shapes in the following sense: the composition of two shapes corresponds to the construc-
tion of a third shape by “glueing” the two components on a common surface. Consider the shape

1From a syntactical representation point of view, we assume that V is finitely represented by a suitable data
structure, such as a formula or a set of vertices.

2We actually need only a reference point. Thus, any other point in V can be chosen.
3Note that we consider only closed shapes, i.e. they contain their boundary.
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Figure 4: Some examples of 2D composed shapes.

shown in Figure 4(a). It is composed by the basic shape σ1 “glued” with the basic shape σ2 on the
common surface X, called surface of contact. Note that no interpenetration between the composing
shapes is allowed.

This concept can be generalised to the composition of two generic shapes either basic or com-
pound under the same hypotheses, i.e. they bind on a common surface, but they do not interpene-
trate.

Definition 3.2 (3D shapes) The set Shapes of 3D shapes, ranged over by S, S′, . . . is generated
by the grammar S ::= σ

∣∣ S 〈X〉S where σ ∈ Basic and X ⊆ P.

Starting from the same concepts defined for basic shapes, we inductively define the points, the
velocity, the mass and the reference point of a compound shape S = S1 〈X〉S2 as P(S) = P(S1) ∪
P(S2), V(S) = V(S1)∪V(S2),M(S) =M(S1)+M(S2) and R(S) =M(S1)R(S1)+M(S2)R(S2)4.
The boundary of a compound shape S is defined as the surface of the resulting shape and is denoted
by B(S). More formally, B(S1 〈X〉S2) = (B(S1) ∪ B(S2)) \ {x ∈ P | x is interior of P(S1 〈X〉S2)},
where a point x ∈ U ⊆ P is called interior of U if there exists an open ball with centre x which is
completely contained in U .

In this paper we consider only well-formed shapes, i.e. basic shapes or compound shapes in which
X is a surface of contact and the components do not interpenetrate. Moreover, all the components
must have the same velocity.

Definition 3.3 (Well-formed shapes) A basic shape σ is well-formed.
A compound shape S1 〈X〉S2 is well-formed if and only if:

1. both S1 and S2 are well-formed

2. the set X = P(S1) ∩ P(S2) is non-empty and is equal to B(S1) ∩ B(S2), i.e. shapes S1 and
S2 have some points in common, but all these points are on their boundaries. This means, in
other words, that the shapes are in contact, but do not interpenetrate

3. V(S1 〈X〉S2) is a singleton {v}5

Given two well-formed shapes S1 and S2 we say that they interpenetrate iff the set X = P(S1)∩
P(S2) 6= ∅ and X 6⊆ B(S1) ∩ B(S2). Equivalently, we can say that the shapes interpenetrate if there
exists a point x that is interior of both P(S1) and P(S2).

If S = S1 〈X〉S2 is well-formed, we say that X is a surface of contact between S1 and S2. If
x ∈ X we say that x is a point of contact between S1 and S2.

4For simplicity, as above, we use the centre of mass as the reference point. Any other point can be chosen.
5With abuse of notation, throughout the paper, we use V(S) also to refer to the element v of the singleton {v}

as this is not ambiguous when S is well-formed.
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Example 3.5 (A Biological Example)
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Figure 5: A network of 3D processes for describing the first reaction of the glycolysis pathway.

Note that condition 2) of the definition above guarantees that well-formed compound shapes
touch but do not interpenetrate. The concept of touching without interpenetrating will be useful
in the following when we define collision detection and compound 3D processes. By definition, X
is always on the boundary of both S1 and S2. Thus, the set X can be a single point, a segment or
a surface, depending on where the two shapes are touching without interpenetrating. Most of the
time X is a (subset of a) feature of the basic shapes composing the 3D shape, i.e., a face, an edge
or a vertex. Moreover, condition 3) imposes that all the basic shapes forming a compound shape
have the same velocity, i.e., the compound shape moves as a unique body.

Figure 4 shows four examples of compound shapes. Note that while basic shapes are all convex,
compound shapes can be non-convex, as those shown in figure. Shape in Figure 4(b) is composed of
four basic shapes. A well-formed term representing this shape can be ((σ1 〈X1〉σ2) 〈X2〉σ3) 〈X3〉σ4.
Note, for instance, that X1 is exactly the intersection B(σ1)∩B(σ2) and that is equal to one feature
(an edge) of σ1. The surface of contact X2 contains only one point of contact and is subset of
B(σ1 〈X1〉σ2) ∩ B(σ3), i.e. its two immediate sub-components.

Figure 4(c) is an example of a not well-formed shape because there is interpenetration between
S1 and S2.

In Figure 4(d) there is an example of a well-formed shape in which the intersection of (the
boundaries of) the two components S1 and S2, called X in the figure, is not a connected set. Recall
that a set U is connected if and only if the only pair of disjoint closed sets whose union is U is the
pair (∅, U). Note that if the intersection (the boundaries of) two compound shapes is not connected
it is always a finite union of connected sets. In this case we obtain a shape with a hole. We admit
such shapes in the calculus since they can be formed by correct bindings of well-formed shapes.

Given a 3D shape S, it can be represented by arranging the basic shapes and the surfaces of
contact in different ways. The following definition describes a structural congruence relation among
terms representing shapes.

Definition 3.4 (Structural Congruence of Shapes) Structural congruence over Shapes, denoted
by ≡S, is the smallest relation that satisfies the following rules:

1. S1 〈X〉S2 ≡S S2 〈X〉S1

2. (S1 〈X〉S2) 〈Z〉S3 ≡S S1 〈X〉 (S2 〈Z〉S3) provided that Z ⊆ B(S2) ∩ B(S3)

The shape of Figure 4(b) can be represented by structural congruent terms, e.g.
((σ3 〈X2〉σ2) 〈X1〉σ1) 〈X3〉σ4 or σ1 〈X1〉 (σ4 〈X3〉 (σ3 〈X2〉σ2)) etc.

We introduce an example in which of our calculus can be used by modelling a well-known
biological scenario. The glycolysis pathway is part of the process by which individual cells produce
and consume nutrient molecules. It consists of ten sequential reactions, all catalysed by a specific
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enzyme. We focus, in this example, on the first reaction that can be described as glucose, ATP
−−⇀↽−− glucose-6-phosphate, ADP, H+ where an ATP is consumed and a molecule of glucose (GLC)
is phosphorylated to glucose 6-phosphate (G6P), releasing an ADP molecule and a positive hydrogen
ion (Hydron). The enzyme catalysing this first reaction is Hexokinase (HEX). GLC, G6P, ATP,
ADP and H+ are metabolites. Both enzymes and metabolites are autonomous cellular entities that
continuously move within the cytoplasm. The transformation of a metabolite into the one that
follows in the “pipeline” of the pathway (in this case, GLC into G6P) depends on the encounter
(collision in binding sites) of the right enzyme (in this example HEX) with the right metabolites,
in this example GLC and ATP. The order of these bindings does not matter. After this binding
the reaction takes place and the products6 are released in the cytoplasm (i.e. a strong-splitting is
performed). A special case occurs when the enzyme has bound one metabolite and an environmental
event makes it release the metabolite and not proceed to the completion of the reaction (i.e. a weak-
splitting is performed).

We model the shape of HEX, which we denote Sh, by a polyhedron approximating its real shape
and mass, available at public databases (e.g. [1]). Figure 5 shows a network of 3D processes in
which there are two hexokinases 3D processes and some GLC, G6P, ATP and ADP 3D processes.
Note that we use a unique kind of shape for GLC ad G6P, denoted by Sg, and another unique kind
of shape for ATP and ADP, denoted Sa. They are distinguished by their behaviours.

3.1 Trajectories of Shapes

Our shapes are intended to move in space along time. Given a well-formed term S, it represents
shape S at a certain time instant t. The velocity of S in that instant is V(S). One of the choices
to be made for the calculus is how the velocity of each shape changes over time. We believe that
a continuous updating of the velocity, that would be a candidate for an “as precise as possible”
approach of modelling, is not a convenient choice. The main reason is the well-known compromise
between the benefits of approximation and the complexity of precision. Our choice, also common in
the computer graphics field, is to approximate a continuous trajectory of a shape with a polygonal
chain, i.e. a piecewise linear curve in which each segment is the result of a movement with a
constant velocity. The vertices of the chain corresponds to the updates of the velocity of the shape
(see Figure6(b)). To this purpose we define a global parameter ∆ ∈ R+, called movement time step,
that represents the period of time after which the velocity of all shapes is updated. The time domain
T = R+

0 is then divided into an infinite sequence of movement time steps ti such that t0 = 0 and
ti = ti−1 + ∆ for all i > 0. The quantification of ∆ depends on the desired degree of approximation
and also on other parameters connected to collision detection (see Section 3.2).

The updating of the velocities is represented by an operator Move : Shapes × T −→ V that
gives the velocity vector Move(S, t) to assign to shape S at time t, which is intended to be one
of the ti defined above. Note that this approach gives the maximal flexibility for defining motion.
Static shapes can be represented by assigning always the velocity 0 to them. A gravity field can
be simulated by updating the velocities accordingly to the gravity acceleration (see Figure 6(a)).
A Brownian motion can be simulated by choosing a random direction in 3D and then defining the
length of the vector w.r.t. the mass and/or the volume of the shape.

For the sake of simplicity we do not consider, in this paper, movements by rotations. However,
this kind of movement can be easily added to our shapes by assigning an angular velocity and a
moment of inertia to a shape and then by performing a compound motion of translation and rotation
along the movement time step. Let us define now some useful notation and properties.

Definition 3.6 (Time evolution of a shape) Let S ∈ Shapes and t ∈ T. We define, by induc-
tion on S, the shape S + t, i.e. S after t time units, as 〈V + t · v,m,p + t · v,v〉 if S = 〈V,m,p,v〉
and as S1 + t 〈X + t · V(S)〉S2 + t if S = S1 〈X〉S2.

6In this example we neglect the hydron.

8



smtSMovev /]0,245.0,0[),(
01

smtSMovev /]0,49.0,0[),(
12

smtSMovev /]0,735.0,0[),(
23

smtSMovev /]0,98.0,0[),(
34

Move (S , t
i
) [0,

1

2
g(i 1) ,0]m / s

t
i
t
i 1

0.05 s

S

v [v
x
,v

y
,v

z
]4

v

3
v

2
v

(a) (b)

Figure 6: An example of updating of the velocity and an approximated continuous trajectory of a
shape.

Definition 3.7 (Velocity update of a shape) Let S ∈ Shapes and w ∈ V. We define, by induc-
tion on S, the shape S|[w]|, i.e. S updated with velocity w, as 〈V,m,p,w〉 if S = 〈V,m,p,v〉 and
as S1|[w]| 〈X〉S2|[w]| if S = S1 〈X〉S2.

Proposition 3.8 Let S ∈ Shapes, t ∈ T and w ∈ V. If S is well-formed then S + t and S|[w]| are
well-formed.

In Example 3.5, as we model the molecules at the mesoscale (10−8 - 10−7 m) Brownian motion
is generally considered a good approximation for their motion. Thus, the three kind of shapes Sh,
Sg and Sa all are subject to the Brownian updating of velocity.

Our intent is to represent a lot of shapes moving simultaneously in space as described above.
Inevitably, this scenario produces collisions between shapes when their trajectories encounter.

3.2 Collision Detection

There is a rich literature on collision detection systems, as this problem is fundamental in popular
applications like computer games. Good introductions to existing methods for efficient collision
detection are available and we refer to Ericson [10] and references therein for a detailed treatment.

For our purposes, it is sufficient to define an interface between our calculus and a typical collision
detection system. We can then choose one of them according to their different characteristics, e.g.
their applicability in large-scale environments or their robustness. It must be said, however, that
the choice of the collision detection system may influence the kind of basic (or compound) shapes
we can use, as, for instance, some systems may require the use of only convex shapes to be more
efficient7.

Typically, a collision detection algorithm assumes to start in a situation in which shapes do not
interpenetrate. Then it tries to move all the shapes of a little time step - that we have already
introduced as movement time step ∆ - and check if interpenetrations occurred8. If so, it tries to
consider only half of the original time step and repeat the interpentration check, i.e. it performs
a binary search of the first time of contact t between two or more shapes, with some degree of

7The basic shapes that we consider in Definition 3.1 are typically accepted by most of the collision detection
systems.

8Typically, the major efforts of optimisation are concentrated in this step since the number of checks is, in the
worst case, O(N2) - where N is the number of shapes in the space - but the shapes that are likely to collide are only
those that are very close to each other.
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Figure 7: Some steps to determine the first time of contact between two shapes.

approximation. Figure 7 shows these steps. In case (a) the passage of the whole ∆ results in an
interpenetration. Then, in (b) the passage of ∆/2 is tried resulting into a non-contact. After some
iterations the situation in (c) is reached.

In addition to the first time of contact, a collision detection algorithm usually outputs the shapes
that are colliding, i.e. are touching without interpenetrating after t, and some infomation about the
surfaces or points of contact. We now define precisely what we expect to obtain from a collision
detection system.

Definition 3.9 (First time of contact) Let I be a non-empty finite set of indexes and let {Si}i∈I
be a set of well-formed shapes such that for all i, j ∈ I, Si and Sj do not interpenetrate (Def. 3.2).
The first time of contact of the shapes Si, denoted Ftoc({Si}i∈I), is a number t ∈ T such that:

1. for all t′ ∈ T, 0 ≤ t′ ≤ t and for all i, j ∈ I, Si + t′ and Sj + t′ do not interpenetrate,
i.e., from the starting point to t, shapes, while moving, could possibly touch but they do not
interpenetrate

2. there exist i, j ∈ I, i 6= j, such that B(Si + t) ∩ B(Sj + t) 6= ∅, i.e., some shapes are touching
at t

3. for all ε > 0 there exists δ, 0 < δ < ε, and i, j ∈ I, i 6= j, such that Si+(t+δ) and Sj +(t+δ)
interpenetrate, i.e., in t some shapes are touching and any further movement makes them to
interpenetrate.

Note that such a definition allows shapes that are touching without interpenetrating and with
velocities that do not make them to interpenetrate (e.g., the same velocity) to move without trig-
gering a first time of contact. This possibility will be useful in Section 5 when we split previously
compound shapes. Giving them the same velocity vector after splitting we are guaranteed that the
first time of contact currently in force is not affected by the splitting. Figure 8(a) shows a situation
in which a collision is detected, while in cases (b) and (c) no collision is detected because letting
any time pass, the two shapes will not interpenetrate.

A collision detection system usually returns, together with the first time of contact, some in-
formation useful to determine which shapes are colliding at that time and which are the points or
surfaces of contact between them. We formalise this as follows.

Definition 3.10 (Collision information) Let {Si}i∈I be a set of well-formed shapes and t =
Ftoc({Si}i∈I) be their first time of contact. With colliding({Si}i∈I) ⊆ Shapes × Shapes × ℘(P) we
denote the set of colliding shapes after t. A tuple 〈Si, Sj , X〉 ∈ colliding({Si}i∈I) iff

10
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Figure 8: Some situations in which a collision is detected or not detected.

1. the set X = P(Si + t) ∩ P(Sj + t) is non-empty and is equal to B(Si + t) ∩ B(Sj + t)

2. for all ε > 0 there exists δ, 0 < δ < ε, such that Si + (t+ δ) and Sj + (t+ δ) interpenetrate

Conditions 1) and 2) control that Si and Sj are really colliding after time t.

3.3 Collision Response

In this section, we address the problem of collisions response [13], i.e. how collisions, once detected,
can be resolved. In what follows we distinguish between elastic collisions (those in which there is
no loss in kinetic energy) and perfectly inelastic ones (in which kinetic energy is fully dissipated)9.
After an elastic collision, two shapes will proceed independently to each other but their velocities
will change according to the laws for conservation of linear momentum and kinetic energy (see
Equations (1)-(2) in Definition 3.11). On the other hand, as a consequence of an inelastic collision,
two shapes will bind together and will move as a unique body whose velocity is determined by the
law for conservation of linear momentum only (see Equation (3), again in Definition 3.11).

Definition 3.11 (Elastic and inelastic collisions) Let S1, S2 ∈ Shapes and let X ⊆ P be a
surface of contact between them. If X is neither an edge nor a vertex of the shape S1, we set n to
be the normal of contact away from X ⊆ B(S1) (i.e. n is vector perpendicular to the face of S1 that
contains X). Otherwise, n is defined to be the normal of contact away from the shape S2.

If n is the normal of contact away from S1, the velocities w1 and w2 of shapes S1 and S2 after
an elastic collision in X are given by the following rules:

(1) w1 = V(S1)− λ

M(S1)
· n (2) w2 = V(S2) +

λ

M(S2)
· n

where
λ = 2 · M(S1) · M(S2)

M(S1) +M(S2)
· V(S1) · n− V(S2) · n

n · n
If n is the normal of contact away from S2, the equations are symmetric. In both cases, we write

S1
X←→e S2 to denote the pair of velocities (w1,w2).
If S1 and S2 collide inelastically in the surface of contact X, they will bind together as a unique

body whose velocity (denoted with S1
X←→i S2) is given by:

(3) v =
M(S1)

M(S1) +M(S2)
· V(S1) +

M(S2)
M(S1) +M(S2)

· V(S2)

In Figure 9(a) it is shown an example of collision response to an elastic collision along only one
dimension. In Figure 9(b) there is another example of an inelastic collision.

9Other different kinds of collisions can be easily added to the calculus provided that the corresponding collision
response laws are given.
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Figure 9: Examples of collision response of elastic and inelastic collision.

4 3D Processes

We first introduce the timed process algebra we use to define the internal behaviour of our shapes.
This is a variation of Timed CCS [19], where basic actions provide information about binding
capability and splittings of already established bonds.

We use the following notation. Let Λ = {a, b, · · · } be a countably infinite set of channels names
(names, for short) and Λ = {a | a ∈ Λ} its complementation. Let A = Λ ∪ Λ; by convention we
assume a = a for each name a. Elements in A are ranged over by α, β, · · · .

A channel is a pair 〈α,X〉 where α ∈ A is a channel name and X is a surface of contact. We say
that channels 〈α,X〉 and 〈β, Y 〉 are compatible, written 〈α,X〉 ∼ 〈β, Y 〉, if β = α and X ∩ Y 6= ∅.
Otherwise, 〈α,X〉 and 〈β, Y 〉 are said to be incompatible (written 〈α,X〉 6∼ 〈β, Y 〉). Let C be the
set of all channels, ω(C) = {ω(α,X) | 〈α,X〉 ∈ C} and ρ(C) = {ρ(α,X) | 〈α,X〉 ∈ C} be the sets of
weak-splitting actions and strong-splitting actions, respectively. With an abuse of notation, we say
that two weak-splitting actions ω(α,X) and ω(β, Y ) (as well as two strong-splitting actions ρ(α,X)
and ρ(β, Y )) are compatible if so are the channels 〈α,X〉 and 〈β, Y 〉.

Let Act = C ∪ ω(C) ∪ ρ(C) and and Actτ = Act ∪ {τ} where, as usual in CCS [15], τ denotes
internal activities. Our processes perform basic and atomic actions that belong to the set Actτ
whose elements are ranged over by µ, µ′, · · · . We finally assume a countably infinite collection K of
process name or process constants.

Intuitively, an action of the form 〈α,X〉 represents a binding capability in the surface of contact
X, i.e. a portion of space (usually, a subset of the boundary of a given 3D shape) where the channel
itself is active and where binding with other processes are possible. Moreover, channels’s names
allow us to introduce a notion of compatibility among channels and, hence, to distinguish between
elastic and inelastic collisions (see Section 5).

Actions in ω(C) ∪ ρ(C) have been introduced to represent splitting of shape bonds. These
actions behave differently w.r.t. to time passing. Indeed, while weak-splitting actions can be
arbitrarily delayed, strong-splitting actions (as the internal ones) are urgent and, once enabled,
must be performed before time can pass further.

Definition 4.1 (Shape behaviours) The set B of shape behaviours is generated by the following
grammar

B ::= nil
∣∣ τ.B ∣∣ 〈α,X〉.B ∣∣ ω(α,X).B

∣∣ ρ(L).B
∣∣ ε(t).B ∣∣ B +B

∣∣ K
where 〈α,X〉 ∈ C, L ⊆ C (non-empty) whose elements are pairwise incompatible (i.e. for each

pair 〈α,X〉, 〈β, Y 〉 ∈ L it is 〈α,X〉 6∼ 〈β, Y 〉), t ∈ T and K is a process name in K.
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Nilt
nil

t−→ nil
Preft

〈α,X〉.B t−→ 〈α,X〉.B

Splitt
ω(α,X).B t−→ ω(α,X).B

Delayt
t′ ≥ t

ε(t′).B t−→ ε(t′ − t).B

Choicet
B1

t−→ B′1 B2
t−→ B′2

B1 +B2
t−→ B′1 +B′2

Deft
B

t−→ B′

K
t−→ B′

if K def= B

Table 1: Temporal behaviour of B’s terms

A brief description of our operators now follows. nil is the Nil-behaviour, it can not perform any
action but can let time pass without limits. A trailing nil will often be omitted, so e.g. we write
τ + 〈a,X〉.ω(a,X). to abbreviate τ.nil + 〈a,X〉.ω(a,X).nil

µ.B, with µ ∈ C ∪ ω(C)∪ {τ}, is the action-prefixing known from CCS and represents a shape’s
behaviour that can perform a µ-action and then evolve in B. In particular, a term like 〈α,X〉.B
represents the behaviour of a shape that exhibits a binding capability along the channel 〈α,X〉;
while ω(α,X).B models the behaviour of a shape that, before evolving in B, wants to split a single
bond established via the channel 〈α,X〉. As in [19], we assume that internal actions are urgent and,
hence, can not let time pass.

The strong-splitting operator ρ(L).B is used to represent simultaneous strong-splittings of a set
of shapes’s bonds. Indeed, a behaviour like ρ(L).B can evolve in B only if all the bonds established
via channels in L can be simultaneously parted. Moreover, since each of such actions is urgent, we
assume that a term like ρ(L).B does not allow time passing.

ε(t).B is the delay-prefixing operator (see [19]) that introduces time delays in 3D processes;
t ∈ T is the amount of time that has to elapse before the idling time is over (see rules Delayt and
Delaya in Tables 1 and 2). Finally, B1 + B2 models a non-deterministic choice between B1 and
B2 and K is a process definition.

In what follows we use terms in the set B to define the internal behaviour of 3D shapes. For this
reason we assume that the behaviours of such shapes, and in particular sites in binding capabilities
and in weak and strong splitting actions are expressed w.r.t. a local coordinate system whose origin
is the reference point of the shape where they are embedded in.

Definition 4.2 (Temporal Behaviour of B-terms) Let t ∈ T. The SOS-rules defining the tran-
sition relations t−→⊆ (B×B) are given in Table 1. These transitions, also called temporal transitions,
describe how B-terms evolve by letting time t pass. As usual, we write B t−→ B′ if (B,B′) ∈ t−→ and
B

t−→ if there exists a B′ ∈ B such that (B,B′) ∈ t−→. Similar conventions will apply later on.

Definition 4.3 (Functional Behaviour of B-terms) The SOS-rules defining the transition re-
lations µ−→⊆ (B × B) for µ ∈ Actτ (the action transitions, define which basic actions that a shape’s
behaviour can perform) are given in Table 2.

Rules in Table 1 are quite similar to those provided in [19]) and need no further explanations.
Rules Reaca1 and Reaca2 in Table 2 state that a term like ρ(L).B can do an action ρ(α,X)
provided that the channel 〈α,X〉 ∈ L and then evolves in either B (whenever L = {〈α,X〉}) or
ρ(L\{〈α,X〉}).B (otherwise). Rule Reaca3 allows us to describe the evolution via ρ(α,X)-action
of nested terms as for instance ρ({〈a,X}).ρ({〈b, Y }).B. Other rules are as expected.
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Prefa
µ ∈ C ∪ ω(C) ∪ {τ}

µ.B
µ−→ B

Reaca1

L = {〈α,X〉}

ρ(L).B
ρ(α,X)−−−−→ B

Reaca2

{〈α,X〉} ⊂ L

ρ(L).B
ρ(α,X)−−−−→ ρ(L\{〈α,X〉}).B

Reaca3

B
ρ(α,X)−−−−→ B′

ρ(L).B
ρ(α,X)−−−−→ ρ(L).B′

Delaya
B

µ−→ B′

ε(0).B
µ−→ B′

Choicea
B1

µ−→ B′

B1 +B2
µ−→ B′

Defa
B

µ−→ B′

K
a−→ B′

if K def= B

Table 2: Functional behaviour of B-terms

Now we are ready to define our 3D processes that are simply or compound shapes with a given
behaviour expressed as a B-term.

Definition 4.4 (3D processes) The set 3DP of 3D processes is generated by the grammar:

P ::= S[B]
∣∣ P 〈a,X〉P

where S ∈ Shapes, B ∈ B, a ∈ Λ and X is a non-empty subset of P. If P is a 3D process, we
define shape(P ) ∈ Shapes by induction on P as follows:

Compound: shape(P 〈a,X〉Q) = shape(P ) 〈X〉 shape(Q)
Basic: shape(S[B]) = S

We also define V(P ) = V(shape(P )) and B(P ) = B(shape(P )). Finally, we define Move(P, t) =
P |[Move(shape(P ), t)]|. Moreover, we often write P

X←→i Q and P
X←→e Q as shorthands for

shape(P ) X←→i shape(Q) and for shape(P ) X←→e shape(Q), respectively.
If v ∈ V, we denote with P |[v]| the 3D process we obtain by updating P ’s velocity with v ∈ V.

P |[v]| can be defined by induction on P as follows:

Compound: (P 〈a,X〉Q)|[v]| = (P |[v]|) 〈a,X〉 (Q|[v]|)
Basic: (S[B])|[v]| = (S|[v]|)[B]

We say that a basic process S[B] is well-formed if and only if the shape S is well-formed and, for each
channel 〈α,X〉 and for each action ω(α,X) that syntactically occurs in B it is global(X,R(S)) ⊆
B(S) = B(P ). A compound process P 〈a,X〉Q is well-formed iff P and Q are well-formed processes
with the same velocity (i.e. V(P ) = V(Q)) and the site X (expressed w.r.t a global coordinate system)
is a non-empty subset of B(P ) ∩ B(Q). Notice that this also means that the set P(P ) ∩ P(Q) is
non-empty and equal to B(P )∩B(Q). Later on in this paper we only consider well-formed processes.

The following result easily follows from definitions of shapes and 3D processes well-formedness.

Proposition 4.5 If P ∈ 3DP well-formed then shape(P ) is a well-formed 3D shape.

Example 4.6 (3D Processes for HEX, GLC and ATP) Let us model the molecules involved
in the reaction introduced in Example 3.5 as 3D processes. Hexokinase is modeled as Sh[HEX]
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Basicτ
B

τ−→ B′

S[B] τ−→ S[B′]
Basicch

B
〈α,X〉−−−→ B′ p = R(S)

S[B]
〈α,global(X,p)〉−−−−−−−−−→ S[B′]

Basicw
B

ω(α,X)−−−−→ B′ p = R(S)

S[B]
ω(α,global(X,p))−−−−−−−−−−→ S[B′]

Basics
B

ρ(α,X)−−−−→ B′ p = R(S)

S[B]
ρ(α,global(X,p))−−−−−−−−−−→ S[B′]

Compa1

P
µ−→ P ′ µ ∈ {τ} ∪ ω(C) ∪ ρ(C)

P 〈a,X〉Q µ−→ P ′ 〈a,X〉Q
Compa2

P
〈α,Xp〉−−−−→ P ′ Xp ⊆ B(P 〈a,X〉Q)

P 〈a,X〉Q 〈α,Xp〉−−−−→ P ′ 〈a,X〉Q

Basict
B

t−→ B′

S[B] t−→ (S + t)[B′]
Compt

P
t−→ P ′ Q

t−→ Q′ v = V(P )

P 〈a,X + (t · v)〉Q t−→ P ′ 〈a,X〉Q′

Table 3: Functional and temporal behaviour of 3DP-terms

where HEX = 〈atp, Xha〉.HA + 〈glc, Yhg〉.HG. The surfaces Xha and Yhg are those shown in Fig-
ure 5 on the internal part of the hexokinase shape. The process Sh[HEX] can, for instance, bind
a 3D process P iff P has a channel 〈atp, X ′〉 and P collide with it in such a way that X ′ has
at least a point in common with Xha. An example of this process is that modelling ATP, i.e.,
Sa[〈atp, Xah〉.ε(tatp).(ρ({〈atp, Xah〉}).ADP + ω(atp, Xah).ATP )]. Here the surface Xah is intended
to be the whole boundary B(Sa). After a binding, the ATP process has to wait a delay tatp that
model an internal activity of adjusting and then can either non-deterministically release the estab-
lished bond on its channel - and thus return free as ATP - or participate in the reaction and become
an ADP. The process modelling the GLC is very similar: Sg[〈glc, Xgh〉.ε(tglc).(ρ({〈glc, Xgh〉}).G6P+
ω(glc, Xgh).GLC)]. To conclude we specify the rest of the behaviour of HEX:
HA = ω(〈atp, Xha)〉.HEX + (〈glc, Xhg〉.ρ({〈atp, Xha〉, 〈glc, Yhg〉}).HEX), i.e., it can either choose to
do a weak split and come back to HEX or if the binding with a GLC occur then a reaction must occur
- because ρ is an urgent action - as soon as all the component involved in the split are ready. The
result is the splitting of the complex in the three original shapes with the same behaviour for HEX
and different behaviours for ATP and GLC. HG is similar and we leave unspecified the behaviours
G6P and ADP.

We are now ready to define the timed operational semantics of 3D processes.

Definition 4.7 (Temporal and Functional Behaviour of 3DP-terms) Rules in Table 3 de-
fine the transition relations t−→⊆ (3DP × 3DP) and µ−→⊆ 3DP × 3DP for t ∈ T and µ ∈ Actτ ,

respectively. We often write P 6 ρ−→ and P 6 ω−→ as a shorthands for P 6 ρ(α,X)−−−−→ and P 6 ω(α,X)−−−−→ for any
〈α,X〉 ∈ C. Two processes P and Q are compatible (written P ∼ Q) if there exist two compatible

channels 〈α,X〉, 〈α, Y 〉 ∈ C such that P
〈α,X〉−−−→ and Q

〈α,Y 〉−−−→; otherwise, P and Q are said to be
incompatible that we denote with P 6∼ Q.

Rules in Table 3 say that a 3D process inherits its functional and temporal behaviour from
the B-terms we use to describe its internal behaviour. We only remark that now sites of binding
capabilities and splitting actions are expressed w. r. t. a global coordinate system.

The following proposition (whose proof has been moved to Appendix B) is needed to prove that
processes well-formedness is closed with respect to transitions µ−→ and t−→.
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Proposition 4.8 Let P,Q ∈ 3DP with P well-formed; let, moreover, t ∈ T and µ ∈ Actτ .

1. P t−→ Q implies shape(Q) = shape(P ) + t;

2. P µ−→ Q implies shape(Q) = shape(P );

3. If P t−→ Q or P µ−→ Q then Q well-formed.

Note that, at this stage, the functional behaviour of a compound process is obtained as the
interleaving of the behaviours of its components and no synchronisations between such components
are possible. Actually, both binding of compatible processes and splitting of processes’ bonds require
synchronisation among 3D processes. Synchronisation due to binding of compatible processes will
be introduced in Section 5 (see Rules inel in Table 7). This mainly originates from the fact that
this kind of synchronisations occurs only as a consequence of collisions between two compatible 3D
processes. In a more detail, if P and Q are compatible processes (i.e. if there are two compatible

channels 〈α,Xp〉, 〈α,Xq〉 ∈ C such that P
〈α,Xp〉−−−−→ P ′ and Q

〈α,Xq〉−−−−→ Q′) that collide in the site X =
Xp ∩Xq, then the result of such a collision will be a compound shape of the form (P ′ 〈a,X〉Q′)|[v]|
where a ∈ Λ such that α ∈ {a, a} and v = P

X←→i Q = shape(P ) X←→i shape(Q) . Vice versa, if P
and Q are not compatible (i.e. if no synchronisation between compatible channels is possible) any
possible collision between P and Q is considered to be an elastic collision. Thus, P and Q (actually,
the processes we obtain by changing the velocities of P and Q according to Equations (1) and (2)
in Definition 3.11 - see Rule Elas in Table 6) will proceed independently to each other.

On the other hand, the bond 〈a,X〉 of the compound process P 〈a,X〉Q can be strongly
splitted only if its components P and Q are able to synchronise on the execution of two com-
patible actions ρ(α,Xp) and ρ(α,Xq), with α ∈ {a, a} and X = Xp ∩ Xq. As an example,
assume P = Sp[ρ({〈a,Xp〉}).B], Q = Sq[ρ({〈a,Xq〉}).B′] and consider the compound process
P 〈a,Xp ∩ Xq〉Q. Furthermore, the result of such a splitting operation will be that of produc-
ing two independent 3D processes, i.e. a network (see again Section 5 for the definition of networks
of 3D processes) that consists of the processes Sp[B] and Sq[B′]. Similarly, bonds are weakly split-
ted only due to synchronisations among compatible ω(-) actions. Moreover, also weak splitting
operations produce, as a result, networks of 3D processes.

To properly define this kind of behaviours some technical details are needed. First, we define two

transition relations
ρ(a,X)⇒ and

ω(a,X)⇒ in order to allow synchronisation on compatible ρ(-) and ω(-)
actions, respectively. Basically we want that, if P and Q are the same processes we have considered

above, then P 〈a,Xp∩Xq〉Q
ρ(a,X)⇒ Sp[B] 〈a,Xp∩Xq〉Sq[B′]. Now, to obtain the network of processes

we are interested in, it still remains to remove the bond 〈a,X〉. This can be done by exploiting the
function split over 3D processes we provide in the next section.

Definition 4.9 (Semantics of strong and weak splittings for 3D processes) Let ρ(a,X) ∈
ρ(C). The SOS-rules that define the transition relations

ρ(a,X)⇒ ⊆ 3DP × 3DP are given in Table 4;
additionally, there is a symmetric rule for StrPar for ρ(-) actions of Q.

For the sake of simplicity we omit the SOS-rules defining the transition relations
ω(a,X)⇒ ⊆ 3DP×

3DP for ω(a,X) ∈ ω(C). These can be obtained by replacing each occurrence of a ρ(-) action in
Table 4 with the corresponding ω(-) action.

We final observe that strong-splittings of multiple shape bonds must be performed simultane-
ously, i.e. can only be performed if the involved components are all together ready to synchronise on
a proper set of compatible ρ(-) actions. If this is the case, we say that the 3D process we are con-
sidering is able to complete a reaction, i.e. it can satisfy all the “pending strong-splitting requests”.
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Otherwise, i.e. if there is at least a synchronisation partner that is not currently able to contribute,
such shapes’s bonds can not be splitted at all. We formalise these concepts as follows.

Definition 4.10 (Bonds of 3DP-terms) The function bonds : 3DP → ℘(C) returns the bonds
currently established in a given 3D process. It can be defined by induction on P ∈ 3DP as follows:

Compound: bonds(P 〈a,X〉Q) = bonds(P ) ∪ bonds(Q) ∪ {〈a,X〉}
Basic: bonds(S[B]) = ∅

We say that P ∈ 3DP is able to complete a reaction, written P ↘, iff either

1. P 6 ρ−→, or

2. P
ρ(a,X)⇒ Q, for some ρ(a,X) ∈ ρ(C), and Q↘.

Example 4.11 Consider P = Sp[ ρ({〈a,Xp〉, 〈b, Yp〉}).nil ], Q = Sq[ ρ({〈a,Xq〉}).nil ] and R =
Sr[τ.ρ({〈b, Yr〉}).nil ], and the compound 3D process (P 〈a,X〉Q) 〈b, Y 〉R where X = Xp ∩Xq 6= ∅
and Y = Yp ∩ Yr 6= ∅. (P 〈a,X〉Q) 〈b, Y 〉R is not able to complete a reaction because the com-
ponent R is not able to synchronise with P on the execution of ρ(b, Y ). More formally (according

to Definition 4.10): (P 〈a,X〉Q) 〈b, Y 〉R ρ(a,X)⇒ (Sp[ρ({〈b, Yp〉})] 〈a,X〉Sq[nil]) 〈b, Y 〉R = P ′ with P ′

not able to complete a reaction (it can still perform the action ρ(b, Yp) but no synchronisations are
possible). But, after performing the R’s internal action, we obtain a 3D process

(P 〈a,X〉Q) 〈b, Y 〉 (Sr[ρ({〈b, Yr〉}).nil])
ρ(a,X)⇒

(Sp[ ρ({〈b, Yp〉}).nil ] 〈a,X〉Sq[nil]) 〈b, Y 〉 (Sr[ρ({〈b, Yr〉}).nil]
(b,Y )⇒

(Sp[nil] 〈a,X〉Sq[nil]) 〈b, Y 〉Sr[nil] ↘

So we have that (P 〈a,X〉Q) 〈b, Y 〉 (Sr[ρ({〈b, Yr〉}).nil])↘.

We also use a structural congruence over 3D processes to be defined below.

Definition 4.12 (Structural congruence over 3D processes) Structural congruence over pro-
cesses in 3DP, denoted by ≡P , is the smallest relation that satisfies the following axioms:

- S[B] ≡P S′[B] provided that S ≡S S′;

- P 〈a,X〉Q ≡P Q 〈a,X〉P ;

- P ≡P Q implies P 〈a,X〉R ≡P Q 〈a,X〉R;

- (P 〈a,X〉Q) 〈b, Y 〉R ≡P Q 〈a,X〉 (Q 〈b, Y 〉R) provided that Y ⊆ B(Q) ∩ B(R)

The following result allows us to state that the function split we define in Section 5 (up to
structural congruence over 3D processes) is well-defined.

StrSync
P

ρ(α,Xp)−−−−−→ P ′ Q
ρ(α,Xq)−−−−−→ Q′ α ∈ {a, a} X = Xp ∩Xq

P 〈a,X〉Q ρ(a,X)⇒ P ′ 〈a,X〉Q′

StrPar
P

ρ(b,Y )⇒ P ′

P 〈a,X〉Q ρ(b,Y )⇒ P ′ 〈a,X〉Q

Table 4: Transitional semantics for strong-splitting actions for 3D processes
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Proposition 4.13 Let P ∈ 3DP well-formed. If 〈a,X〉 ∈ bonds(P ) there are Q,R ∈ 3DP well-
formed such that X ⊆ B(Q) ∩ B(R), V(Q) = V(R) = V(P ), and P ≡P Q 〈a,X〉R.

We also need to following closure result.

Proposition 4.14 Let P,Q ∈ 3DP with P well-formed, and µ ∈ ω(C) ∪ ρ(C). Then:

1. P µ⇒ Q implies shape(Q) = shape(P );

2. P µ⇒ Q implies Q well-formed.

5 Networks or 3D processes

Now we can define a network of 3D processes as a collection of 3D processes that freely moving in
the same 3D space.

Definition 5.1 (Networks of 3D processes) The set N of networks of 3D processes is generated
by the grammar

N ::= Nil
∣∣ P ∣∣ N ‖N

where P ∈ 3DP. We say that a network N is well-formed iff each 3D process composing the
network is well-formed and, for each pair of distinct processes P and Q in the network, shape(P )
and shape(Q) do not interpenetrate. Moreover, we extend the definition of Move on networks in the
natural way, i.e. such that each process of the network is updated simultaneously.

In our running example we construct a network of processes containing a proper number of
HEX, ATP and GLC processes in order to replicate the conditions in a portion of cytoplasm.

Definition 5.2 (Splitting bonds) Let P ∈ 3DP and C ⊆ C. We define split(P,C) as follows:

split(P,C) =

{
split(Q,C) ‖ split(R,C) if ∃〈a,X〉 ∈ C ∩ bonds(P ) s.t. P ≡ Q 〈a,X〉R

P otherwise

Note that we do not change the velocities of splitted shapes. Thus, they maintain the same
velocity until the next occurrence of a movement time step. As we mentioned above, this is not a
problem because they will not trigger a collision and, thus, a shorter first time of contact.

Proposition 5.3 Let P ∈ 3DP well-formed and C ⊆ C. Then split(P,C) is a well-formed network
of 3D processes.

Definition 5.4 (Semantics of weak and strong splittings) Let P ∈ 3DP with P able to com-
plete a reaction, and N ∈ N. We write that P ρ−→ N ∈ N iff there is a non empty set of channels

C = {〈a1, X1〉, · · · , 〈an, Xn〉} ⊆ bonds(P ) such that P = P0
ρ(a1,X1)⇒ P1 · · ·

ρ(an,Xn)⇒ Pn 6
ρ−→ and

N = split(Pn, C).

Let P ∈ 3DP and N ∈ N. We write that P ω−→ N iff there exists 〈a,X〉 ∈ bonds(P ) such that

P
ω(a,X)⇒ Q and N = split(Q, {〈a,X〉}).

Recall that bonds of a given shape can be weakly parted as a consequence of a synchronisation
between just a pair of 3D processes. For this reason, when defining semantics of weak splittings, we

do not need to require that P is able to complete a reaction, but the condition P
ω(a,X)⇒ Q suffices

for our aims.
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Emptyt
Nil

t−→ Nil
Part

N
t−→ N ′ M

t−→M ′

N ‖M t−→ N ′ ‖M ′
Para

N
µ−→ N ′

N ‖M µ−→ N ′ ‖M

Table 5: Temporal and functional behaviour of networks of 3D processes

Example 5.5 As an application of the definitions given so far, let us consider the 3D process
P = H 〈atp, Xa〉 (A 〈glc, Yg〉 G) where:

H = Sh[ ρ({〈atp, Xha〉, 〈glc, Yhg〉).HEX ],

A = Sa[ ρ({〈atp, Xah〉}).ADP + ω(atp, Xah).ATP ],

G = Sg[ρ({〈glc, Ygh〉}).G6P + ω(glc, Ygh).GLC]

and Xha ∩Xah = Xa 6= ∅ and Yhg ∩ Ygh = Yg 6= ∅. Then:
P

ρ(atp,Xa)⇒ Sh[ρ({〈glc, Yhg〉}).HEX] 〈atp, Xa〉 (Sa[ADP] 〈glc, Yg〉 G) = Q
ρ(glc,Yg)⇒ Sh[HEX] 〈atp, Xa〉 (Sa[ADP] 〈glc, Yg〉Sg[G6P]) = R

with R 6 ρ−→. By Definition 5.4, R, Q and, hence, P are able to complete a reaction. Moreover,
split(R, {〈atp, Xa〉, 〈glc, Yg〉}) = Sa[HEX] ‖ split(Sa[ADP] 〈glc, Yg〉Sg[G6P], {〈atp, Xa〉, 〈glc, Yg〉}) =
Sh[HEX] ‖ (Sa[ADP] ‖Sg[G6P]) implies that P ρ−→ Sh[HEX] ‖ (Sa[ADP] ‖Sg[G6P]).

Now, we define the temporal and functional behaviour of networks of 3D processes. Here, we
assume that a network of 3D processes performs basic actions that belong to set {ω, ρ, τ}, where we
use ω and ρ to denote, respectively, weak and a strong splittings of 3D process bonds as a unique
action (at a network level we only see if shape bonds can be splitted or not). In the following, we
also let elements of the set {ω, ρ, τ} ∪ T to be ranged over by ν, ν ′, · · · .

Definition 5.6 (Temporal and Functional Behaviour of N-terms) Rules in Table 5 (plus an
additional rule symmetric of Para for actions of M) defines the transition relations t−→⊆ N×N for
t ∈ T and µ−→⊆ N×N for µ ∈ {ω, ρ, τ}. A timed trace from a net N is a finite sequence of steps of
the form

N = N0
ν1−→ N1

ν2−→ · · · νn−→ Nn = M

We finally write that N t⇒M if there exists a timed trace N = N0
ν1−→ N1

ν2−→ · · · νn−→ Nn = M such

that t =
n∑
i=0
{νi | νi ∈ R+}.

Proposition 5.7 Let P ∈ 3DP, N ∈ N with P and Q well-formed; let, moreover, t ∈ T.

1. P ω−→ N and P ρ−→ N implies N ∈ N well-formed.

2. N t−→M implies M well-formed;

3. N t⇒M implies M well-formed.
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elas≡
N ≡ N ′ N ′

〈P,Q,X〉−−−−−→e M

N
〈P,Q,X〉−−−−−→e M

elas
P

X←→e Q = (vp,vq)

(P ‖Q) ‖N 〈P,Q,X〉−−−−−→e (P |[vp]| ‖Q|[vq]|) ‖N

Table 6: Reaction rules for elastic collisions

inel≡
N ≡ N ′ N ′

〈P,Q,X〉−−−−−→i M

N
〈P,Q,X〉−−−−−→i M

inel
P
〈α,Xp〉−−−−→ P ′ Q

〈α,Xq〉−−−−→ Q′ α ∈ {a, a} X = Xp ∩Xq 6= ∅ P
X←→i Q = v

(P ‖Q) ‖N 〈P,Q,X〉−−−−−→i ((P ′ 〈a,X〉Q′)|[v]|) ‖N

Table 7: Reaction rules for inelastic collisions

5.1 Collision response

In this subsection, we describe the semantics we use to address the problem of collisions response.
To this aim, we introduce two different kinds of reduction relations over networks of 3D processes:
〈P,Q,X〉−−−−−→e and

〈P,Q,X〉−−−−−→i, where P,Q are 3D processes and X i a surface of contact. Intuitively,

if N
〈P,Q,X〉−−−−−→e M (N

〈P,Q,X〉−−−−−→e M) then M is the network we obtain once an elastic (respectively
inelastic) collisions between P and Q in the surface of contact X has been resolved. These reduction
relations (given in Definition 5.9) use the structural congruence over nets of 3D processes defined
below.

Definition 5.8 (Structural congruence over nets of 3D processes) We define the structural
congruence over terms in N, we denote with ≡, is the smallest relation that satisfies the following
axioms:

- Nil ‖N ≡ N , N ‖M ≡M ‖N and N ‖ (M ‖R) ≡ (N ‖M) ‖R;

- P ‖N ≡ Q ‖N provided that P ≡P Q.

Let I a finite set of indexes. We often write (‖Pi)i∈I to denote the network that consists of
all 3D processes Pi such that i ∈ I (If I = ∅, (‖Pi)i∈I = Nil). Finally, for N = (‖Pi)i∈I
we define colliding(N) to be the set of all tuples 〈P,Q,X〉 such that 〈shape(P ), shape(Q), X〉 ∈
colliding({shape(Pi)}i∈I).

Definition 5.9 (Resolving elastic and inelastic collisions) Let N ∈ N and 〈P,Q,X〉 a tuple

in colliding(N). We write that N
〈P,Q,X〉−−−−−→ M if either P ∼ Q and N

〈P,Q,X〉−−−−−→e M or P 6∼ Q and

N
〈P,Q,X〉−−−−−→i M . We write that N ↔ M if there a finite sequence of reduction of reduction steps of

the form N = N0
〈P1,Q1,X1〉−−−−−−−→ N1 · · ·

〈Pk,Qk,Xk〉−−−−−−−→ Nk = M where:

1. for each i ∈ [1, k] it is 〈Pi, Qi, Xi〉 ∈ colliding(Ni−1)

2. colliding(Nk) = ∅.
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A brief description of rules in Tables 6 and 7 now follows. As already discussed, collisions
among incompatible processes are treated as inelastic ones and, hence, resolved by means of the

reaction relations
〈P,Q,X〉−−−−−→e. Rules elas in Table 6 simply changes velocities of two colliding and

incompatible processes as stated by Equations (1) and (2) in Definition 3.11. Moreover in Rule
elas≡ we also consider structural congruence over nets of processes.

On the other hand, rules in Table 7 describe how inelastic collision (i.e. collisions between two
compatible processes P and Q) can be resolved. Rule inel joins two compatible processes P and Q
to obtain a compound process whose velocity is given by Equation (3) in Definition 3.11. Note that
we force P and Q to synchronise on the execution of two compatible actions 〈α,Xp〉 and 〈α,Xq〉
before joining them.

Let also note that, at any given time t, colliding(N) can be obtained from the set of all the
pairs of processes in N that are touching at that time. This set and hence colliding(N) is surely
finite and changes only when we resolve some inelastic collision (this is because, after an inelastic
collision one or more binding sites can possibly become internal points of a compound process, and
hence are not available anymore). Moreover a collision between pairs of processes with the same
shape can not be resolved twice. This is either because two processes P and Q have been bond in a
compound process as a consequence of an inelastic collision, or because P and Q collide elastically
and their velocities have been changed according to Equations (1) and (2) in Definition 3.11 in order
to obtain two processes that do not collide anymore (see Proposition 6.4 in Appendix C). Thus,
we can always decide if there is a finite sequence of reduction steps that allows us to resolve all
collisions listed in colliding(N) and hence obtain a network M with colliding(M) = ∅.

Proposition 5.10 Let N ∈ N, P,Q ∈ 3DP and X a not-emptyset subset of R3. Then N well-

formed and N
〈P,Q,X〉−−−−−→M implies M ∈ N well-formed.

Iterative applications of Proposition 5.10 (see Appendix C for the proof) allow us to state that
following result.

Lemma 5.11 Let N,M ∈ N, P,Q ∈ 3DP. Then N well-formed and N ↔ M implies M well-
formed.

We are now ready to define how a network of 3D processes evolves by performing an infinite
number of movement time steps, where each movement time step describes the evolution of the
system when we let time ∆ pass.

Definition 5.12 (Movement time steps and system evolution) Let N,M ∈ N and t ∈ T.
We say that (N, t) ∆⇒ (M, t+ ∆) iff one of the following two conditions holds:

1. there is a finite sequence of n+ 1 (with n ≥ 0) steps from N = N0 of the form

N0
t0⇒M0 ↔ N1

t1⇒M1 ↔ N2 · · · Nn
tn⇒Mn

such that: (1) ∆ =
∑n

i=0 ti, (2) for i ∈ [0, n − 1], ti = Ftoc(Ni) and tn = ∆ −
∑n−1

i=0 ti <

Ftoc(Nn) (note that, whenever n = 0, t0 = ∆ < Ftoc(N0) and N0
t0⇒ M0, i.e. we have no

collisions to resolve), and (3) M = Move(Mn, t+ ∆).

2. there is a finite sequence of n+ 1 (with n ≥ 0) steps from N = N0 of the form

N0
t0⇒M0 ↔ N1

t1⇒M1 ↔ N2 · · · Nn
tn⇒Mn ↔ Nn+1

such that: (1) ∆ =
∑n

i=0 ti, (2) for i ∈ [0, n], ti = Ftoc(Ni) (in this case, if n = 0 then
t0 = Ftoc(N0) = ∆ and N0

t0⇒ N ′0 ↔ N1), and (3) M = Move(Nn+1, t+ ∆).
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A system evolution is a infinite sequence of movement time steps of the form: (N0, 0) ∆⇒
(N1,∆) ∆⇒ (N2, 2∆) · · · (Ni, i∆) ∆⇒ (Ni+1, (i+ 1)∆) ∆⇒ · · · .

In order to make sure that processes in the network will never interpenetrate during a system
evolution, a movement time step consists actually of a finite sequence of intermediate steps of
the form Ni

ti⇒ Mi ↔ Ni+1 along which we first calculate the next first time of contact (i.e.
ti = Ftoc(Ni)), and then resolve all the collisions that happen after that time ti. Notice that, at
the end of each movement time step, we also apply the changes suggested by the function Move(-)
as described in Section 3.1.

We can prove the following basic property of the Shape Calculus stating that any system evolu-
tion does not introduce space inconsistencies like interpenetration of 3D processes or not well-formed
processes.

Theorem 5.13 (Closure w.r.t. well-formedness) Let N be a well-formed network of 3D pro-
cesses. If (N, t) ∆⇒ (M, t+ ∆) then M is well-formed.

Proof: The statement follows easily because, by Proposition 5.7-3 and Lemma 5.11, Ni well-formed
and Ni

ti⇒Mi ↔ Ni+1 implies Ni+1 well-formed. 2

6 Conclusions and Future Work

We have defined a Shape Calculus that takes into account space, time, shapes, movement and
collisions among shapes. The features and the expressiveness of the calculus are shown with several
examples in the biological domain. We proved a correctness property of the calculus regarding the
conservation of well-formedness during the evolution of the system. We are currently working on an
implementatio of a simulator whose basic low-level language is the Shape Calculus. As future work
we intend to study the possibility to include in the calculus some new useful, but in some cases
complex, concepts such as re-shaping, message passing of values, and communication by perception
of a compatible process in the neighbourhood.
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Appendix A: some useful properties

Proposition 6.1 Let S ∈ Shapes well-formed, t ∈ T. Then:

1. V(S + t) = V(S) andM(S + t) =M(S);

2. R(S + t) = R(S) + t · V(S);

3. P(S + t) = P(S) + t · V(S);

4. B(S + t) = B(S) + t · V(S).

Proof: Item 4 follows directly from Item 3. We prove Items 1, 2 and 3 all together by induction
on S ∈ Shapes well-formed.

Basic: S = 〈V,m,p,v〉] In such a case S+t = 〈V +(t ·v),m,p+(t ·v),v〉. So V(S+t) = v = V(S),
M(S + t) = m = M(S) and R(S + t) = p + (t · v) = R(S) + (t · v). Moreover P(S + t) =
V + (t · V(S)) = P(S) + (t · V(S)).

Compound: S = S1 〈X〉S2 and S + t = (S1 + t) 〈X + (t · V(S))〉 (S2 + t). By induction hypothesis:

1. V(Si + t) = V(Si) = V(S) andM(Si + t) =M(Si) for i = 1, 2. Thus V(S + t) = V(S)
andM(()S + t) =M(S1 + t) +M(S2 + t) =M(Si) +M(S2) =M(S).
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2. R(Si + t) = R(Si) for i = 1, 2. Thus R(S + t) = M(S1 + t) · R(S1 + t) +M(S2 + t) ·
R(S2 + t) =M(S1) · R(S1) +M(S2) · R(S2) = R(S).

3. P(S + t) = P(S1 + t) ∪ P(S2 + t) = P(S1) ∪ P(S2) = P(S).

2

Proposition 3.8 Let S ∈ Shapes, t ∈ T and w ∈ V. If S is well-formed then S + t and S|[w]| are
well-formed.

Proof: We prove these statement by induction in S ∈ Shapes.

Basic: S = 〈V,m,p,v〉. In such a case, S + t = 〈V + t · v,m, p+ t · v,v〉 and S|[w]| = 〈V,m,p,w〉
are well-formed shapes.

Compound: S = S1 〈X〉S2. By Definitions 3.6 and 3.7 S + t = S1 + t 〈X + t · V(S)〉S2 + t and
S|[w]| = S1|[w]| 〈X〉S2|[w]|. By induction hypothesis both S1 + t and S2 + t are well-formed.
By Prop. 6.1, we have also that: (1) the set X + t · V(S) = P(S1 + t)∩P(S2 + t) = (P(S1) +
t · V(S1))∩ (P(S2) + t · V(S2)) = (P(S1) + t · V(S))∩ (P(S2) + t · V(S)) ⊆ B(S1 + t)∩B(S2 + t),
(2) V(S1 + t 〈X + t · V(S)〉S2 + t) is the singleton v = V(S).

Again by induction hypothesis we have that S1|[w]| and S2|[w]| are well-formed shapes. More-
over, for i = 1, 2 it is P(Si|[w]|) = P(Si). Thus, X = P(S1)∩P(S2) = P(S1|[w]|)∩P(S2|[w]|) is
a non-empty subset of B(S1)∩B(S2) = B(S1|[w]|)∩B(S2|[w]|). Finally V(S1|[w]| 〈X〉S2|[w]|) =
{w}.

2

Proposition 4.5 If P ∈ 3DP well-formed then shape(P ) is a well-formed 3D shape.

Proof:

Basic: P = S[B]. In such a case, trivially, P well-formed implies shape(P ) = S well-formed.

Compound: P = P1 〈a,X〉P2. In such a case shape(P ) = shape(P1) 〈X〉 shape(P2). By induction
hypothesis shape(Pi) is a well-formed shape for i = 1, 2. Moreover, P well-formed implies
X ⊆ P(S1) ∩ P(S2) ⊆ B(S1) ∩ B(S2) and V(shape(P )) = {v} where v = V(P1) = V(P2).

2

Appendix B: Proofs of Section 4

In this section we prove the results stated in Section 4.

Proposition 4.8 Let P,Q ∈ 3DP with P well-formed; let moreover t ∈ T and µ ∈ Actτ . Then:

1. P t−→ Q implies shape(Q) = shape(P ) + t;

2. P µ−→ Q implies shape(Q) = shape(P );

3. either P t−→ Q or P µ−→ Q imply Q well-formed.

Proof: We first prove Items 1 and 2 by induction on P ∈ 3DP.
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Basic: P = S[B].

1. P t−→ Q implies B t−→ B′ and Q = (S + t)[B′]. In such a case shape(Q) = (S + t) =
shape(P ) + t.

2. P µ−→ Q implies Q = S[B′] for a proper B′ ∈ B (see rules in table 3). Then: shape(Q) =
S = shape(P ).

Compound: P = P1 〈a,X〉P2.

1. P t−→ Q implies P1
t−→ P ′1, P2

t−→ P ′2, and Q = P ′1 〈a,X ′〉P ′2 where X ′ = X + (t · V(P )). In
such a case, by induction hypothesis, we have that shape(Q) = shape(P ′1) 〈X ′〉 shape(P ′2) =
(shape(P1) + t) 〈X ′〉 (shape(P2) + t) = shape(P ) + t.

2. P µ−→ Q implies either P1
µ−→ P ′1 and Q = P ′1 〈a,X〉P2 or P2

µ−→ P ′2 and Q = P1 〈a,X〉P ′2.
Let us consider the former case (the latter one is similar). Then, again by induction
hypothesis, shape(Q) = shape(P ′1) 〈X〉 shape(P2) = shape(P1) 〈X〉 shape(P2) = shape(P ).

Now we prove that P well-formed and P t−→ Q imply Q well-formed. We proceed by induction on
P .

Basic: P = S[B]. P t−→ Q implies B t−→ B′ and Q = (S + t)[B′]. In such a case, S well-formed
implies shape(Q) = S + t well-formed. Moreover for each 〈α,X〉 and ω(α,X) that occurs
in B′ and, hence, in B we have that global(X,R(P )) ⊆ B(P ). Thus, global(X,R(Q)) =
global(X,R(P ) + (t · V(P )) = global(X,R(P )) + (t · V(P )) ⊆ B(P ) + (t · V(P )) = B(Q) by
Proposition 6.1-4. Thus, we can conclude Q is well-formed.

Compound: P = P1 〈a,X〉P2 with Pi well-formed for i = 1, 2 and X ⊆ B(P1) ∩ B(P2).

P
t−→ Q implies P1

t−→ P ′1, P2
t−→ P ′2, and Q = P ′1 〈a,X ′〉P ′2 where X ′ = X + (t · V(P )). By

induction hypothesis, both P ′1 and P ′2 are well-formed. Moreover, since X ⊆ B(P1) ∩ B(P2),
we also have X ′ = X + (t · V(P )) ⊆ (B(P1) ∩ B(P2)) + (t · V(P )) = (B(P1) + (t · V(P ))) ∩
(B(P2) + (t · V(P ))) = B(P ′1) ∩ B(P ′2).

It remains to prove that P well-formed and P µ−→ Q imply Q well-formed. We proceed, again, by
induction on P .

Basic: P = S[B]. P
µ−→ Q implies B µ′

−→ B′ for a proper µ ∈ Actτ (see rules in Table 3) and
Q = S[B′]. P well-formed implies S well-formed. Moreover, for each 〈α,X〉 and ω(α,X) that
occurs in B we have global(X,R(P )) ⊆ B(P ) = B(S) = B(Q). Thus, the well-formedness of
Q follows since each 〈α,X〉 and ω(α,X) that occurs in B′ must also occurs in B.

Compound: P = P1 〈a,X〉P2 with Pi well-formed for i = 1, 2 and X ⊆ B(P1) ∩ B(P2).

P
µ−→ Q implies either P1

µ−→ P ′1 and Q = P ′1 〈a,X〉P2 or P2
µ−→ P ′2 and Q = P1 〈a,X〉P ′2. Let us

consider the former case (the latter one is similar). By induction hypothesis, P ′1 is well-formed
and by Proposition 6.1 we have also shape(P ′1) = shape(P1) and, hence, B(P ′1) = B(P1).

Thus, we can conclude that both P ′1 and P2 are well-formed and X ⊆ B(P1) ∩ B(P2) =
B(P ′1) ∩ B(P2) and, hence, that Q is well-formed.

2

Proposition 4.13 Let P ∈ 3DP well-formed. If 〈a,X〉 ∈ bonds(P ) there are Q,R ∈ 3DP well-
formed such that X ⊆ B(Q) ∩ B(R), V(Q) = V(R) = V(P ), and P ≡P Q 〈a,X〉R.
Proof: By induction on P
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Basic: P = S[B]. Not possible since bonds(P ) = ∅

Compound: P = P1 〈b, Y 〉P2 with Pi well-formed for i = 1, 2 and Y ⊆ B(P1) ∩ B(P2).

If 〈a,X〉 = 〈b, Y 〉 the statement follows easily (indeed we can choose Q = P1 and R =
P2). Assume that 〈a,X〉 ∈ bonds(P1) (whenever 〈a,X〉 ∈ bonds(P2) the statement can be
proved similarly). Then, by induction hypothesis, there exist Q1, R1 ∈ 3DP well-formed
such that X ⊆ B(Q1) ∩ B(R1), V(Q1) = V(R1) = V(P1), and P1 ≡P Q1 〈a,X〉R1. Thus
P = P1 〈b, Y 〉P2 ≡P (Q1 〈a,X〉R1) 〈b, Y 〉P2. At this point, we can distinguish two possible
subcases: (1) Y ⊆ B(R1) and (2) Y ⊆ B(Q1).

In the former case we have that P ≡P Q1 〈a,X〉 (R1 〈b, Y 〉P2) and we choose Q = Q1 and
R = R1 〈b, Y 〉P2. Moreover:

- we prove that X ⊆ B(Q)∩B(R) = B(Q1)∩B(R) by contradiction. Let x ∈ X such that
x /∈ B(Q1) ∩ B(R). Since B(R) = (B(R1) ∪ B(P2))\{z | z is interior of P(R1) ∪ P(P2)}
and X ⊆ B(Q1) ∩ B(R1), then x /∈ B(Q1) ∩ B(R) implies that x is an interior point
of P(R1) ∪ P(P2). Moreover x ∈ X ⊆ B(Q1) ∩ B(R1) implies x interior of P1 ≡P
Q1 〈a,X〉R1 and hence x can not be interior of P(P2) (otherwise P1 and P2 interpenetrate
and P could not be a well-formed process.) Thus we can conclude that x must be an
interior point of P(R1). But this is impossible since no point can be (at the same time)
an interior point and a boundary point of a 3D shape.

- we already know that Q = Q1 is well-formed; moreover, since both R1 and P2 are well-
formed, to prove that R is well-formed too, we have to prove that Y ⊆ B(R1) ∩ B(P2).
We proceed by contradiction. Thus let y ∈ Y such that y /∈ B(R1) ∩ B(P2) i.e. (since
Y ⊆ B(R1)) such that y /∈ B(P2). Then y /∈ B(P1) ∩ B(P2). But this is impossible
because Y ⊆ B(P1) ∩ B(P2).

- Let v = V(P ); then V(Q) = V(P1) = v; moreover, V(R1) = V(P1) = V(P2) = v implies
V(R) = v.

Now let Y ⊆ B(Q1). In such a case, P ≡P (Q1 〈a,X〉R1) 〈b, Y 〉P2 ≡P (R1 〈a,X〉Q1) 〈b, Y 〉P2

≡P R1 〈a,X〉 (Q1 〈b, Y 〉P2) and we can choose Q = R1 and R = Q1 〈b, Y 〉P2. The proof is
omitted because it is similar to the above one.

2

Proposition 4.14 Let P,Q ∈ 3DP with P well-formed, and µ ∈ ω(C) ∪ ρ(C). Then:

1. P µ⇒ Q implies shape(Q) = shape(P );

2. P µ⇒ Q implies Q well-formed.

Proof: We only prove the statement for µ = ρ(a,X) ∈ ρ(C) (if µ =∈ ω(C) the proof is similarly).

Basic: P = S[B]. This case is not possible since P 6 ρ(a,X)⇒ .

Compound: P = P1 〈b, Y 〉P2 with Pi well-formed for i = 1, 2 and X ⊆ B(P1) ∩ B(P2). We distin-
guish two possible subcases:

- 〈b, Y 〉 = 〈a,X〉, P1
ρ(α,X1)−−−−−→ P ′1, P2

ρ(α,X2)−−−−−→ P ′2 (with α ∈ {a, a} and X = X1 ∩X2), and
Q = P ′1 〈a,X〉P ′2.
1. In this case, by Proposition 4.8-2, shape(P ′i ) = shape(Pi) for i = 1, 2 and, hence,

shape(Q) = shape(P ′1) 〈X〉 shape(P ′2) = shape(P1) 〈X〉 shape(P2) = shape(P ).
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2. By induction hypotheses, Pi well-formed implies P ′i well-formed, for i = 1, 2. More-
over X ⊆ B(P1)∩B(P2) and (again by Proposition 4.8-2) shape(P ′i ) = shape(Pi) for
i = 1, 2 imply also X ⊆ B(P ′1) ∩ B(P ′2). So we can conclude that Q is well formed.

- P1
ρ(a,X)⇒ P ′1 and Q = P ′1 〈a,X〉P2.

1. In this case, by Item 1, shape(P ′1) = shape(P1) and, as above, we can prove that
shape(Q) = shape(P ).

2. By induction hypotheses, P1 well-formed implies P ′1 well-formed. Moreover, since
(by Item 1) shape(P ′1) = shape(P1), X ⊆ B(P1) ∩ B(P2) = B(P ′1) ∩ B(P2). We can
conclude that Q is well formed.

2

Appendix C: Proofs of Section 5

Proposition 6.2 Let P ∈ 3DP well-formed, C ⊆ C and N = split(P,C) ∈ N. If N contains the 3D
process Q ∈ 3DP (i.e. if N ≡ Q ‖M for a proper net M) then we have that either Q = P or Q is a
component of P such that bonds(Q) ∩ C = ∅.

Proof: By induction on the number of channels in bonds(P ) ∩ C.

bonds(P ) ∩ C = ∅ . In such a case split(P,C) = P contains a 3D process Q only if Q = P .

〈a,X〉 ∈ bonds(P ) ∩ C 6= ∅ . By Proposition 4.13, there exist two well-formed P1, P2 ∈ 3DP such
that P ≡P P1 〈a,X〉P2. As a consequence, bonds(P ) = bonds(P1) ∪ {〈a,X〉} ∪ bonds(P2)
and, hence, |bonds(P1) ∩ C|, |bonds(P2) ∩ C| < |bonds(P ) ∩ C|. Moreover, split(P,C) =
split(P1, C) ‖ split(P2, C).
Now, if Q is contained insplit(P,C) we have either Q in split(P1, C) or Q in split(P2, C).
Assume Q in split(Pi, C) (for i = 1, 2). By induction hypothesis we have that either Q = Pi
(this also means that bonds(Pi) ∩ C = ∅) or Q is a component of Pi (and, hence, of P ) such
that bonds(Q) ∩ C = ∅.

2

Proposition 5.3 Let P ∈ 3DP well-formed and C ⊆ C. Then split(P,C) is a well-formed network
of 3D processes.

Proof: By induction on the number of channels in bonds(P ) ∩ C.

bonds(P ) ∩ C = ∅ . In such a case split(P,C) = P that is a well-formed network of processes by
definition.

〈a,X〉 ∈ bonds(P ) ∩ C 6= ∅ . Again by Proposition 4.13, there exist two well-formed P1, P2 ∈ 3DP
such that P ≡P P1 〈a,X〉P2 and split(P,C) = split(P1, C) ‖ split(P2, C) = N1 ‖N2. By induc-
tion hypothesis Ni is a well-formed network of 3D processes for i = 1, 2. Now, in order to
prove that split(P,C) is a well-formed network, it still remains to prove that if Q1 and Q2 are
two 3D processes contained, respectively, in N1 and N2 then Q1 and Q2 do not interpenetrate.
Assume, towards a contradiction, that there Q1 and Q2 in N1 and N2, respectively, such that
Q1 and Q2 interpenetrate. By Proposition 6.2, we have either that, for i = 1, 2, either Qi = Pi
or Qi is a component of Pi. Now, if Q1 and Q2 interpenetrate, there is at least a point x that
is an interior point of both P(Q1) ⊆ P(P1) and P(Q2) ⊆ P(P2) and, thus, also P1 and P2

interpenetrate. But this is not possible since P ≡P P1 〈a,X〉P2 and P is well-formed.

2
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Proposition 6.3 Let N,M ∈ N, P,Q ∈ 3DP and t ∈ T such that N t−→ M and P
t−→ Q. The

network N contains P iff M contains Q.

Proof: By induction on N ∈ N.

N = Nil. N t−→ Nil and Nil does not contain any 3D process.

N = P with P ∈ 3DP. By our operational semantics, N t−→M iff M = Q and P t−→ Q.

N = N1 ‖N2. N
t−→ M1 ‖M2 = M iff Ni

t−→ Mi for i = 1, 2. Thus, P is contained in N iff P is
contained either in N1 or in N1 iff (by induction hypothesis) and Q is contained either in M1

or in M1, i.e. iff Q is contained in M .

2

Proposition 5.7 Let P ∈ 3DP, N ∈ N with P and N well-formed; let, moreover, t ∈ T.

1. P ω−→ N and P ρ−→ N implies N ∈ N well-formed.

2. N t−→M implies M well-formed;

3. N t⇒M implies M well-formed.

Proof: Item 1 can be proved by iterative applications of Proposition 4.14-2 and due to Proposi-
tion 5.3. Moreover, by Definition 5.6, Item 3 follows directly from Items 1 and 3. In what follows
we prove Item 2 by induction on N ∈ N.

N = Nil. In such a case N t−→M implies M = Nil that is always well-formed.

N = P with P ∈ 3DP. In such a case the statement follows by Proposition 4.8-3.

N = N1 ‖N2. By our operational rules, N t−→ M implies that Ni
t−→ Mi, for i = 1, 2, and

M = M1 ‖M2. By induction hypothesis we have that bothM1 andM2 are well-formed. Now,
to prove that M is well-formed, it still remains to prove that if Q1 and Q2 are 3D processes
that compose the networks M1 and M2, respectively, then Q1 and Q2 do not interpenetrate.
We proceed by contradiction.

Thus, let us assume that there are Q1 inM1 and Q2 inM2 such that Q1 and Q2 interpenetrate.
By Proposition 6.3, Mi contains Qi iff Ni contains Pi for some Pi ∈ 3DP such that Pi

t−→ Qi.
Moreover, by Proposition 4.8-1, shape(Qi) = shape(Pi) + t. Thus, we can conclude that if Q1

and Q2 interpenetrate the same do P1 and P2. But this not possible since N is well-formed.

2

Proposition 6.4 Let N,M ∈ N, 〈P,Q,X〉 ∈ colliding(N) such that N
〈P,Q,X〉−−−−−→ M . If P ′ and

Q′ are two processes in M with shape(P ′) = shape(P ) and shape(Q′) = shape(Q), 〈P ′, Q′, Y 〉 /∈
colliding(M) for any Y ⊆ R3.

Proof: Let us assume N = (P ‖Q) ‖N ′. By rules in Table 6, N
〈P,Q,X〉−−−−−→e M implies M ≡

(P |[vp]| ‖Q|[vq]|) ‖N ′ where (vp,vq) = P
X←→e Q. Moreover, Equations (1) and (2) in Definition 3.11

and the velocities they provide ensure that P |[vp]| and Q|[vq]| (the only processes in M that have
the same shapes of P and Q respectively) can not collide anymore.
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If, otherwise, N
〈P,Q,X〉−−−−−→i M then there exist 〈α,Xp〉, 〈α,Xq〉 ∈ C, with α ∈ {a, a}, such

that P
〈α,Xp〉−−−−→ P ′, Q

〈α,Xq〉−−−−→ Q′ and M ≡ ((P ′ 〈a,X〉Q′)|[v]|) ‖N ′ where X = Xp ∩ Xq 6= ∅ and
P

X←→i Q = v. In such a case the statement follows easily because there no processes P ′ and Q′ in
M with shape(P ′) = shape(P ) and shape(Q′) = shape(Q).

2

Proposition 5.10 Let N ∈ N, P,Q ∈ 3DP andX a not-emptyset subset of R3. Then N well-formed

and N
〈P,Q,X〉−−−−−→M implies M well-formed.

Proof:
Assume N = (P ‖Q) ‖N ′. By Definition 5.1, N well-formed implies P , Q and N ′ well-formed.

Moreover, both P and Q do not interpenetrate with any 3D process that compose the network N ′

Now, if N
〈P,Q,X〉−−−−−→e M then M ≡ (P |[vp]| ‖Q|[vq]|) ‖N ′ where (vp,vq) = P

X←→e Q and P |[vp]|
and Q|[vq]| well-formed (this is because so are both P and Q). Moreover shape(P |[vp]|) = shape(P )
and shape(Q|[vq]|) = shape(Q). Thus, as P and Q, P |[vp]| and Q|[vq]| do not interpenetrate with
any 3D process that compose the network N ′. Finally we can conclude that the network M is
well-formed.

Now assume that N
〈P,Q,X〉−−−−−→i M . Then, according to Rule inel, there are 〈α,Xp〉, 〈α,Xq〉 ∈ C,

with α ∈ {a, a}, such that P
〈α,Xp〉−−−−→ P ′, Q

〈α,Xq〉−−−−→ Q′ and M ≡ ((P ′ 〈a,X〉Q′)|[v]|) ‖N ′ where
X = Xp ∩Xq 6= ∅ and P

X←→i Q = v. By Proposition 4.8-3, P and Q well-formed implies P ′ and
Q′ well-formed. Moreover:

- P (Q) well-formed and P
〈α,Xp〉−−−−→ P ′ (Q

〈α,Xq〉−−−−→ Q′) implies Xp ⊆ B(P ) (Xq ⊆ B(Q), respec-
tively) – see Rules Basicch and Compa2 in Table 3. Thus X = Xp ∩Xq ⊆ B(P )∩B(Q), and
P ′ 〈a,X〉Q′, as well as (P ′ 〈a,X〉Q′)|[v]|, is well-formed.

- shape((P ′ 〈a,X〉Q′)|[v]|) = shape(P ′ 〈a,X〉Q′) = shape(P ′) 〈X〉 shape(Q′) = P(P ′) ∪ P(Q′) =
P(P )∪P(Q) (this is because Proposition 4.8-2 implies shape(P ′) = shape(P ) and shape(Q′) =
shape(Q)), implies that (P ′ 〈a,X〉Q′)|[v]| can not interpenetrate any 3D process that compose
the network N ′ (otherwise either P or Q would interpenetrate the same process).

Finally, we can conclude that M is well-formed.
2
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