
Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Open AccessR E S E A R C H
ResearchCombining ontologies and workflows to design
formal protocols for biological laboratories
Alessandro Maccagnan*1,2, Mauro Riva3, Erika Feltrin1, Barbara Simionati3, Tullio Vardanega2, Giorgio Valle1 and
Nicola Cannata4

Abstract
Background: Laboratory protocols in life sciences tend to be written in natural language, with negative consequences
on repeatability, distribution and automation of scientific experiments. Formalization of knowledge is becoming
popular in science. In the case of laboratory protocols two levels of formalization are needed: one for the entities and
individuals operations involved in protocols and another one for the procedures, which can be manually or
automatically executed. This study aims to combine ontologies and workflows for protocol formalization.

Results: A laboratory domain specific ontology and the COW (Combining Ontologies with Workflows) software tool
were developed to formalize workflows built on ontologies. A method was specifically set up to support the design of
structured protocols for biological laboratory experiments. The workflows were enhanced with ontological concepts
taken from the developed domain specific ontology.

The experimental protocols represented as workflows are saved in two linked files using two standard interchange
languages (i.e. XPDL for workflows and OWL for ontologies). A distribution package of COW including installation
procedure, ontology and workflow examples, is freely available from http://www.bmr-genomics.it/farm/cow.

Conclusions: Using COW, a laboratory protocol may be directly defined by wet-lab scientists without writing code,
which will keep the resulting protocol's specifications clear and easy to read and maintain.

Background
High-throughput technology has contributed to the
large-scale studies on the characterization of populations
of biological entities [1]. A variety of "-omics" disciplines,
such as genomics [2], transcriptomics [3], proteomics [4]
and metabolomics [5,6], have begun to emerge, with their
own sets of instruments, techniques, reagents and soft-
ware. The characterization of the "-omes" produces huge
amount of data that would be impossible to process with-
out Information Technology. The work of life scientists is
also rapidly changing. Now a researcher deals not only
with laboratory equipment and in vitro experiments but
also with software and web resources, i.e. in silico experi-
ments. Scientific protocols include a very broad spectrum
of activities (whether manual or automated) to be exe-
cuted at the work bench and/or on the computer. Com-
puters play a central role in data production, collection,

storage, hypothesis formation and experimentation [7].
Several sectors of science are becoming largely auto-
mated [8] and this aspect has been highlighted by the
emergence of "e-Science" [9]. However, to reap the bene-
fits of computers and consequently of automation, it is
essential that scientists change the way in which scientific
knowledge is described, reported and finally stored. In
fact, two of the problems in contemporary life science
research are the interpretation and the reproducibility of
published experimental results. Hence there is urgent
need for a formal representation of scientific knowledge,
including procedures (e.g., laboratory protocols, bioinfor-
matic workflows).

Laboratory protocols and experimental methodologies
are indeed an integral part of research in life sciences.
The way in which protocols are described is decisive in
permitting the reproducibility and the successful replica-
tion of experiments. Normally, the detailed notes about
the kind of experimental procedures and their order, the
type of materials and the variety of methods used by a

* Correspondence: maccagnan@math.unipd.it
1 CRIBI Biotechnology Centre, University of Padua, viale G. Colombo 3, 35121
Padova, Italy
Full list of author information is available at the end of the article
BioMed Central
© 2010 Maccagnan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20416048
http://www.bmr-genomics.it/farm/cow
http://www.biomedcentral.com/

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 2 of 14
researcher are available only inside his research group or
department. The information is then disseminated
through the research community by scientific publica-
tions and as a consequence it becomes available for the
use of scientists who are new to that topic. Every individ-
ual study rests on ad-hoc laboratory protocols, these are
usually included in a "Materials and Methods" which are
defined only in natural languages. This way of describing
laboratory processes has many limitations for their
repeatability, distribution and more importantly automa-
tion. This can lead to ambiguous statements and to vastly
arbitrary interpretations. Textual representation is the
best choice for readability but it does not promote the re-
use of parts of the protocol description and does not give
a global, structured vision of the whole process as well as
not highlighting the numerous resources necessary for
the execution of the experiment.

A researcher can spend weeks or even months to learn,
set up, and apply new experimental techniques or proto-
cols. Thus, a significant amount of time in the laboratory
is spent learning techniques and procedures mainly pub-
lished by other research groups. This is a never ending
process for experimental life scientists since methodolo-
gies and their respective protocols are evolving at a dra-
matic pace. Moreover laboratory automation is becoming
increasingly crucial in many fields of experimental
research. In fact, many wet-lab activities are becoming
dependent on laboratory robots [10]. Bioinformatics
encompasses automation in all the aspects related to bio-
logical data, including data collection, management and
analysis. Two levels of formalization are required: one for
the entities and operations deployed in protocols and
another for the protocols themselves that can combine
manually executed and automated procedures.

Ontology is one of the strategies for the structured and
formalized representation of a chosen knowledge domain
domain in a formal way, helping to remove ambiguity and
redundancy, detecting errors and allowing automated
reasoning. Ontologies describe the entities of the specific
domain but do not specify how these entities should be
used and combined.

Workflows can do this job. A workflow is a representa-
tion of a sequence of operations, declared as the work of a
person, a group of persons, or machines. Workflows per-
mit the description and the orchestration of complex pro-
cesses in a visual form, capturing human-to-machine
interactions within those processes. Several disciplines
adopt workflows systems for the automation of data pro-
cessing through a series of processing stages.

In this paper we propose a method for the formal repre-
sentation of biological laboratory protocols that com-
bines the unambiguous semantic of ontologies with the
expressive power of workflows. Based on this approach,
we have developed COW (Combining Ontology and

Workflow), an add-on for the workflow editor JPEd [11]
to design laboratory protocols, that integrates both ontol-
ogies and workflows. The software allows designers of
protocol-workflows to select concepts from a domain
specific ontology and to include them in their workflows.

Laboratory protocols
Several on-line resources are available for retrieving
information about life-science protocols and experi-
ments. Since 1997, the Science Advisory Board (SAB)
[12] has been working to improve communications
between biomedical scientists and suppliers of laboratory
products and services. SAB also maintain an extensive
database of protocols divided by techniques.

Protocol-Online [13] appeared in 1999 on the web as a
database resource for research protocols in a variety of
life science fields such as cell biology, molecular biology,
developmental biology, and immunology.

In 2004, the Nature Publishing Group (NPG) launched
Nature Methods [14], a monthly research journal on
novel methods and significant improvements to labora-
tory techniques in the life sciences and related areas of
chemistry. In addition, Nature Methods includes a Proto-
cols section describing established methods written using
'bench terms'.

In 2006, JoVE [15] started to publish on-line video-pro-
tocols. The user is not required to read through a written
protocol but can simply watch a video. Each video article
includes step-by-step instructions for an experiment, a
demonstration of equipment and reagents, and a brief
discussion, with experts describing possible technical
problems and modifications [16].

In the same year, Nature Protocols [17], became avail-
able as a cutting-edge on-line journal for biological and
biomedical protocols. Protocols, written in natural lan-
guage, are organized into logical categories in order to be
easily accessible to researchers. They are presented in a
'recipe' style providing step-by-step descriptions of pro-
cedures that users can take to the lab bench and immedi-
ately apply to their own research.

As an example of a protocol for in silico experiments,
Huang et al. [18] describe how to use the DAVID bioin-
formatic resources for the analysis of large gene lists
derived from high-throughput genomic experiments,
including how DAVID modules are able to help users to
extract biological meaning from the given gene list and
how individual modules should be used either indepen-
dently or jointly. The reader can find the procedure easier
to follow to reproduce the study.

The approach used for describing a computational pro-
cedure is also adopted for laboratory protocols. For
instance, the protocol suggested by Fiegler [19] is orga-
nized into several sections; first, a list of materials used in
the experiment including equipment, materials and their

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 3 of 14
set up is provided. The second section is a step-by-step
description of the methodology used. Critical steps that
must be performed in a very precise manner and all toxic
or harmful chemicals are highlighted. These warnings are
tagged by the heading
Critical step and Caution
Unlike the articles in the previously cited journals, in
Nature Protocols the author is also asked to report the
timing and possible troubleshooting in order to give an
idea of the duration of the procedure and on how to trou-
bleshoot the most likely problems. Writing protocols
using the same pre-defined template will help to under-
stand the procedure, as well as the critical steps and
implementation of the technique reported in the pub-
lished study.

In laboratory protocols there are numerous examples of
ambiguous sentences. In fact statements that can be
interpreted in different ways can introduce uncertainty as
to how the procedure should be performed. For example
the instruction "Remove the supernatant and dry the pre-
cipitated DNA briefly before washing with 100 μl of 70%
ethanol" introduces an ambiguity of the term "briefly",
which may indicate different lengths of time. It could
mean 30 seconds, 5 minutes, 10 minutes or a longer time.
The term "gentle" in the instruction "Transfer slides into a
solution of 0.1% sodium dodecyl sulphate and incubate
for 5 min with gentle shaking." can be arbitrarily inter-
preted. This problem could be overcome by providing a
single value or a range of admissible values, depending on
the activity performed, which can help reduce the ambi-
guity in the meaning of the term.

Finally, the writing style of Nature Protocols is not
intended to facilitate the automation of procedures. A
computer machine will not be able to read it, interpret it
and then replicate the original experiment.

Ontologies
The need to unambiguously classify the huge amount of
data available as well as precisely define their semantic
relationship has increased the need for formal knowledge
representation. In the 1980's, the ontologies entered the
computer science field as a way to provide a simplified
and well-defined description of a specific domain or an
area of interest. An ontology defines "a set of representa-
tional primitives with which to model a domain of knowl-
edge or discourse" [20]. Ontologies provide a common
shared vocabulary to model a domain, defining the types
of objects and concepts that exist with their properties
and relationships. Ontology can be classified according to
the subject of conceptualization into [21]:

1. general or common ontologies, defining concepts
to represent common sense knowledge, reusable
across domains;

2. top-level ontologies, defining very general concepts
independent of a particular domain such as space,
time, object, event, etc., and providing general
notions from which all root terms in existing ontolo-
gies should be related;
3. domain ontologies, defining concepts within a spe-
cific domain and their relationships; the concepts in
this type of ontology are usually the specialization of
concepts already defined in a top-level ontology;
4. task ontologies, defining concepts related to the
execution of a particular task or activity and provid-
ing a vocabulary of terms used to solve problems
associated with task that may or may not belong to
the same domain;
5. application ontologies, containing all the defini-
tions needed to model the knowledge required for a
particular application.

Recently, we have seen an explosion of interest in ontol-
ogies as models to represent human knowledge. Ontolo-
gies are now extensively used in applications related to
areas such as knowledge management, natural language
processing, e-commerce [22], web services [23], intelli-
gent information integration, bioinformatics [24], educa-
tion, life sciences [25] and medicine [26], and in widely
adopted technologies such as the Semantic Web [27].
There are several reasons for this large scenario of appli-
cations. Ontologies provide a common terminology, over
a domain, necessary for communication between people
and organizations and also provide the basis for interop-
erability between systems. They can be used for making
the content in information sources explicit and serve as
an index to a repository of information [28]. The growing
interest in ontologies, triggered the development of
Ontological Engineering, a novel field concerned with the
ontology development process, the ontology life cycle,
the methods and methodologies for building ontologies,
and the tool suites and languages that support them
[29,30].

Despite the cited advantages, the choice of ontologies
and formal representations incurs considerable costs for
the retooling and upgrade of resources, and for the train-
ing of ontology developers. One serious problem is that
differing ontologies may be developed and applied for the
representation of the same domain. However, the mere
use of ontology obviously does not warrant the elimina-
tion of heterogeneity; instead it can raise heterogeneity
problems to a higher level. Ontology alignment, or ontol-
ogy matching [31], a process that determines correspon-
dences between concepts in different ontologies, can help
to overcome those problems. In biology the heterogeneity
of ontologies represents an emergent issue. In this
respect, the OBO Foundry initiative [32] engages devel-
opers of science-based ontologies in the pursuit of a set of
common principles for ontology development, with the

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 4 of 14
goal of creating a suite of orthogonal interoperable refer-
ence ontologies in the biomedical domain.

The use of the word ontology within biology is rela-
tively recent. Initially, computer scientists recognized in
biological data a domain in which ontologies were needed
in order to solve problems of heterogeneity. The second
phase saw the adoption of bio-ontology by the biological
community itself as a mean to consistently annotate dif-
ferent features, from genotype (e.g nucleotide sequences,
proteins) to phenotype (e.g. diseases) [33]. Later, with the
beginning of genome-scale sequencing projects and the
diffusion of high-throughput experiments the amount of
accessible biological data started to grow exponentially.
Data are now dispersed throughout several different
databases and their interpretation and analysis require
sophisticated tools for data management and information
processing. Organized in this way biological information
is encapsulated within database schemes and is not easily
available to scientist. Instead knowledge can be better
captured and made available to both humans and com-
puters thanks to ontologies Bio-ontologies are indeed
fundamental components in biological data integration
and annotation. In the last decade, several groups have
been developing controlled vocabularies and descriptors
mainly for the annotation of this kind of data. For
instance, the Metabolomics Standards Initiative (MSI)
ontology working group is developing an ontology to
facilitate the consistent annotation of metabolomics
experimental data [34]. Besides the well known Gene
Ontology [24] there are many other initiatives focused on
standardization and ontology development that may be
cited, such as MIAME [35] and PRIDE [36]. These are
mainly centred on the development of ontologies and
bioinformatic tools for biological data annotation. How-
ever, only a few projects have been developed for the rep-
resentation and formalization of the experimental
protocols and the automatic operations producing such
experimental data. A formal definition of scientific exper-
imental design, laboratory entities and operations is
undoubtedly important, also in the case of manually exe-
cuted experiments. The development of an ontology of
experiments is a fundamental step in the formalization of
science, since experimentation is one of the most charac-
teristic feature of science.

In this regard, the EXPO ontology of scientific experi-
ment has been developed to formalize generic knowledge
about scientific experimental design, methodology and
representation of results [37]. The Ontology for Biomedi-
cal Investigations (OBI) addresses the need for controlled
vocabularies not only for the experimental data annota-
tion but also for the representation of investigations in
the Biological and Biomedical Sciences [38]. Ontology
represents the design of an investigation, the protocols

and instrumentation used, the material used, the data
generated and the type of analysis performed.

EXACT [39] is an ontology of experimental actions that
can be used as a formalism suitable for a structured rep-
resentation of laboratory protocols. The core of this
structured vocabulary is a hierarchical classification of
experimental actions based on goals of actions: the goal
of separation, the goal of transformation and the goal of
combination.

Exploiting the properties of EXACT in representing
protocols, we expand and then combine its formalism
with another, that of workflows to define a strategy that
can be more expressive and efficient in protocol formal-
ization.

Workflows
In the workflow context, a process can be considered as
the set of activities performed by different entities and
their execution ordering through different constructors,
which permit flow of execution control (e.g. sequence,
choice, parallelism and join synchronization). An elemen-
tary activity is an atomic piece of work [40].

A workflow is therefore the structured definition of a
process used for the automatic management of particular
activities. The formalization of a process (workflow
schema) involves the definition of activities, the specifica-
tion of their order of execution (i.e. the routing or control
flow) and of the responsible actors. Other features should
be taken into account too, e.g. the data flow [40] or the
various ways in which resources are represented and uti-
lized in workflows [41].

There are three well established formalisms applied for
the specification/modelling of processes: Business Pro-
cess Execution Language (BPEL), Business Process Mod-
elling Notation (BPMN), XML Process Definition
Language (XPDL).

BPEL [42] is an execution language based on XML
specification for the formal description of business pro-
cesses based on Web Services.

BPMN [43] is a graphical notation based on intuitive
flowcharts for the definition of business processes. Origi-
nated from the Business Process Management Initiative,
in 2005 it was merged into OMG [44] and in 2007 the ver-
sion 1.1 became a standard.

XPDL [45] is a markup language created to ensure
interoperability among different workflow management
tools in order to handle workflow processes. It was
designed to permit the exchange of process definitions,
addressing both the graphical and the semantic notations
of the relevant workflow. Born as a support for serializa-
tion of BPMN constructs, it also incorporates also infor-
mation relating to the graphical representation (e.g. the
position of blocks in the workflow). XPDL was developed
by the Workflow Management Coalition (WfMC) [46], a

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 5 of 14
consortium formed to define standards for the interoper-
ability of workflow management systems.

In the last few years the interest for workflow develop-
ment has seen a considerable growth in the scientific
community [47]. Scientific workflows can be considered
as the executable description of scientific processes [48].
Similar in nature to business workflow, they have the dis-
tinct characteristic of operating on large amounts of het-
erogeneous data. In particular, they are generally data-
flow oriented instead of being event-based, and very ver-
satile in composing flows of execution. In bioinformatics,
in particular, workflows are extremely valuable for pro-
gramming the steps of in silico experiments in a visual
intuitive manner. However workflows are still not com-
monly adopted in the formalization of protocols for bio-
logical laboratory experiments.

There are several available tools for workflow design
and enactment [49], for instance JPEd [11], an open-
source visual editor for general-purpose workflows. Tav-
erna [50], developed by the myGrid project, is the work-
flow platform most commonly used for the systematic
analysis of vast amounts of data, but it does not allow
description of laboratory experimental procedures. Tav-
erna workflows can be shared among the scientific com-
munity thanks to Web 2.0 initiatives like myExperiment
[51]. This social web site enables scientists to publish
their workflows and in addition to execute, reuse and
share workflows of other groups. In this way myExperi-
ment contributes in reducing time-to-experiment, in
sharing knowledge and expertise and in avoiding reinven-
tion [52].

The proposed approach
We propose to combine ontologies and workflows for
formalizing protocols used in biological laboratories.
Workflows permit an intuitive representation of proto-
cols, allowing the synchronization of different executors.
Our workflow specifications can be stored and shared
using the XPDL standard interchange language [45]. By
means of ontologies, laboratory knowledge can be
directly embedded into the workflow model and shared
using the standard OWL model, the Ontology Web Lan-
guage [53]. In this manner the precise constraints defined
in the ontologies are transferred to the protocol building
blocks.

To allow the integration of workflow and ontologies we
have developed the COW tool, an add-on for the JPEd
workflow editor that permits an easy and intuitive design
of "ontologized" workflows. This allows a formal repre-
sentation of laboratory protocols dealing with specific
equipment and operations.

Results
Combining Ontologies and Workflows
Our starting point is the EXACT ontology. We advocate
its intrinsic value for describing protocols in a precise and
unambiguous way and compared to OBI, it seems to be a
better choice. The former describes the most typical enti-
ties of biomedical investigations undertaken by humans
and not directly relevant to protocols. The latter is
designed to specifically define experimental actions that
can be performed by both scientists and machines and
therefore it is more suitable for automation. Relying on
ontologies, laboratory domain knowledge can be effiec-
tively shared among the scientific community including
scientists, computers and robots. The value of clearly
describing protocols is demonstrated by the ability to
exchange and compare them [39]. Ontologies provide the
human and machine-understandable universal language
for such a shared understanding. Using the EXACT
vocabulary, the protocols become unambiguous and key
elements of actions are precisely identified. For instance
in an EXACT Move action, "what is moved?", "from
where?" and "to where?" can be precisely defined.

On the other hand, defining protocols only by means of
formal ontologies presents important limitations. Fully
formalized protocols usually span many pages of text and
the production of such descriptions by hand results
labour intensive, error-prone and uninspiring [39]. The
modular structure of laboratory processes is not well
identified, and this does not facilitate the reuse of well
defined "building blocks". Furthermore, in our case the
command actions currently defined by EXACT are mini-
mal not allowing loops and other complex constructs.

It would be very problematic and almost impossible, for
human users to read and fully understand protocols
defined only in formal languages. A synthetic description
in natural language of each activity should remain associ-
ated with its formal description. This would make each
step understandable at first sight also to non-ontology
experts. In general for human scientists it would be desir-
able to have a tool that permits a visual overview of the
whole protocol. This would allow an easy identification of
the constituting blocks, of the flow of execution and of
the executors of each activity. In addition the tool would
permit the retrieval of detailed information for each sin-
gle block (i.e. parameters of an action or the structure of a
subprotocol).

Therefore we developed a domain-specific language
(DSL) [54], together with software supporting it, that
allows laboratory protocols to be expressed more clearly
than the pre-existing languages presently allow. Keeping
the advantages of ontologies, we adopt a more expressive
formalism able to describe different aspects of laboratory

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 6 of 14
protocols (i.e. execution flow and error handling). Among
the existing models we opted for workflows which com-
bine higher expressivity at the flow control level with
higher comprehensibility for human beings. The combi-
nation of ontologies and workflows gave us the possibility
of defining laboratory protocols in terms of workflows
enriched with ontological knowledge.

Among the various standards available in the workflow
community, we adopted XPDL which is the standard
defined to facilitate interoperability between business
processes and to promote serialization of the graphic
BPMN notation.

We chose the EXACT ontology because it defines pre-
cise semantics for laboratory activities, while workflows
are mainly designed to orchestrate them. In the literature,
there was no evidence about methods specifically devel-
oped for building workflows based on ontologies. Our
idea consists in taking elements of the EXACT Action
class as building blocks (i.e. activities) of workflows, and
using the EXACT Equipment class as parameters of the
actions. Actions are executed using XPDL Applications
(ranging from a text editor to custom built applications)
to execute the whole protocol.

For integrating these two formalisms we applied the
principles of model driven engineering (MDE) [55]). In
MDE there are three kinds of models: model, metamodel
and metametamodel. "A metametamodel (also called M3)
is a model that is its own reference model (i.e. it conforms
to itself). A metamodel (M2) is a model such that its ref-
erence model is a metametamodel. A terminal model
(M1) is a model such that its reference model is a meta-
model" [56]. The real-world manifestation of a model is
also called M0. Our idea was to relate the two metamod-
els, XPDL and EXACT, to establish semantic correspon-
dences between respective elements.

XPDL can be considered as our first metamodel
defined in XSD, which is its metametamodel (Figure 1).
Therefore the XPDL language constructs, including
Application and Activity, belong to the M2 level. In M1
we place Application definitions and invocations and
Activity instances. An Activity represents an action
which will be performed by a combination of resources
and/or computer applications. One of the ways to imple-
ment an XPDL Activity is by using an XPDL Tool defined
as a set of Applications. The latter are the description of
programming language interfaces which may be invoked
to support the Activity. The definition of Application
reflects the interface that should be used to call the spe-
cific services that execute the Activity, including any
parameters to be passed [57].

Our second metamodel is EXACT that has OWL as its
metametamodel (Figure 1). In EXACT, the Action class
contains concepts describing what an action can do on
the basis of the goal of the actions. These concepts repre-

sent the effect of an action but do not give any informa-
tion about how to obtain this effect. Therefore Action
subclasses are abstractions of actions and do not repre-
sent the real-world actions.

Following this interpretation, the Action individuals
belong to the M1 level. Since EXACT and XPDL are both
placed at the M2 level, we applied a model-to-model
transformation from the EXACT meta-model to the
XPDL meta-model that permits their integration.

The concept of function in programming languages can
help to understand the relationship between EXACT and
XPDL. The function definition and invocation belong to
the M1 level, whereas the grammar rules applied for writ-
ing the function are at the M2 level. In our case, instances
of the Action class can be thought as functions, and the
Action class as meta-function since it describes what a
function is and does; for the same reason an Application
is a meta-function and its instances are functions. Estab-
lishing a relationship between the EXACT Action class
and XPDL Application allows the integration of the
semantic of the ontology into workflows.

In EXACT each action, included in the Action class, has
a list of ad hoc defined properties that specify which (and
how) objects are to be manipulated in the action. In this
way the formal parameters required for each Action class
are specified at the class level, while the actual parameters
are passed at the instance level. An example is the Move
action, defined as "an experiment action to change a spa-
tial location of an entity from a start location to an end
location". For creating a Move instance we need to define
the actual parameters: a start location, an end location
and an object that is changing location. This formaliza-
tion has a limitation: for each action reported in a labora-
tory protocol, we have to create a particular instance of
the action specifying the actual parameters to be passed.

XPDL uses a well known standard mechanism for pass-
ing parameters based on IN, OUT and INOUT modes.
Both formal and actual parameters are respectively speci-
fied and passed at the instance level. Starting from the
above consideration EXACT can not be directly inte-
grated into XPDL due to the different mode of parame-
ters handling.

In order to permit the integration we have extended
EXACT in two ways: adding a new ontology layer named
UnGap and enriching the Equipment class with new sub-
classes. Starting from the Action class, we develop
UnGap, an ontology layer that gives a new structure for
parameter definition, so that ontology actions can corre-
spond to XPDL Applications. The resulting mapping is
represented in Figure 1. As a result each action is charac-
terized by a list of input parameters (ParamIN), a list of
output parameters (ParamOUT) and a list of parameters
both of input and output (ParamIN_OUT).

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 7 of 14
In the new layer we also define the new class Datatype
specifying the available types of parameters. This class
contains the EXACT Equipment class and owl:Dataty-
peProperty. The former contains objects that can be
manipulated by actions; the latter scalar values that can
be requested from actions (e.g. μl to be added). The
instances of these subclasses can be used as actual param-
eters of XPDL Applications. The purpose of the UnGap
layer is actually that of "closing the gap" between EXACT
and XDPL. Thanks to the UnGap definition, EXACT and
XPDL elements are now compatible. Therefore, action
individuals correspond to XPDL Applications and action
datatypes to XPDL datatypes. A relationship can be
established between instances of Action and Application.
In this way we can transform every instance of Action
into the corresponding Application.

This translation mechanism provides a set of XPDL
Application constructs that are invokable by workflow
block activities. The invoked Application requires the
complete specification of its formal parameters. This is
obtained filling them with actual parameters defined as
variables of subtype of the Datatype class. In this case we
follow the same considerations for models and metamod-
els applied for the EXACT Action-XPDL Application

mapping. We obtain a mapping between the UnGap
Datatype class and XPDL DataType (Figure 2).

To exploit the advantages of ontologies in describing
domain knowledge we decided to maintain Datatype
instead of translating it into an XPDL construct. We
linked each Datatype subclasses to new custom data-
types. In XPDL this can be conveniently implemented in
the DataType using xpdl:ExternalReference construct.

Following this strategy, the UnGap layer permits us to
reap the advantages of both ontologies and workflows
and makes EXACT semantically and operationally inte-
grable with XPDL. Now in order to execute an activity we
can invoke a specific instance of Action (e.g.
add_reagent_to_container) through the corresponding
XPDL Application that has been translated with COW
(Figure 3).

Following the rules defined in UnGap, we can develop
domain specific ontology (DSO) defining equipment and
actions that are specific to a given laboratory. Figure 4
presents the modified DSO structure and its new
included concepts: ActiveEntity, describing the entities
able to perform actions and PassiveEntity, corresponding
to objects of actions. As a result, we enrich the Equip-

Figure 1 Mapping between the two metamodels: EXACT Action and XPDL Application.

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 8 of 14
ment class with new concepts common in laboratory pro-
tocols like thermoblock and swab.

In this way we defined a mechanism for the automatic
transformation between elements of our two base meta-
models: EXACT Action corresponds to XPDL Applica-
tion and individuals of Action correspond to instances of
Application.

The protocols formalized with our method will be
translated into workflows written in XPDL and their
activities will be formalized by EXACT actions and saved
in an OWL file.

A COW protocol for paternity test
In order to discuss the novelty and the advantages of our
proposal we present how the methodology and the devel-
oped tool have been used for formalising a laboratory
protocol developed by our group.

In our laboratory we apply a protocol for paternity test-
ing (Figure 5). The objective of the test is to confirm or
exclude paternity relationship among the donors of two
DNA samples. The protocol was set up and is followed by
the wet-lab staff of our laboratory. It is composed of sev-
eral detailed steps, required to perform a series of opera-
tions and involves various instruments to execute these

operations. The first three steps of the protocol written in
natural language are reported in the first row of Figure 6.
These steps describe a series of actions which require
specific preconditions and parameters for their execu-
tion.

In order to represent the protocol as a workflow, the
first operation consists in accurately examining each sen-
tence of the textual protocol which can be divided into
numerous independent steps (first row of Figure 6). Read-
ing step by step, we extract ontology concepts for Action
and Datatype classes that should be included in our
model (second row of Figure 6). In the textual form, the
verbs (e.g. Cut, Add, Incubate) describe the nature of the
action to be executed, the objects (e.g. Eppendorf, Ther-
moblock, SwabHead) represent the required equipment,
and the parameters of actions (1.5 ml, 30 minutes)
become owl:DatatypeProperty.

Each identified verb is a candidate for being included as
an ontological action in our DSO. For any action not yet
existing in the DSO, a new concept specific for that action
is then inserted as an Action subclass. Following the
EXACT rules, the newly defined Action subclasses can be
classified, according to their nature, among the separa-
tion actions, the transformation actions or the combina-

Figure 2 Mapping between the two metamodels: UnGap Datatype and XPDL DataType.

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 9 of 14
tion actions. This solution permits us to define instances
of Action subclasses. As defined in the UnGap ontology
layer, for each instance of the Action class it is required to
specify ad-hoc parameters among the types listed in the
Datatype class.

In our ontology all the instances of the Action class
share the properties of the class but can be distinguished
by the specified parameters, as commonly applied in
object-oriented programming (OOP). In Figure 3, the
Add class has two instances: add_labware_to_container
and add_reagent_to_container. The
add_reagent_to_container instance corresponds to step 2
of our protocol and differs from the
add_labware_to_container in the paramIN, paramOUT,
paramIN_OUT parameters. The paramIN parameters
include the Pipette and Reagent as Equipment classes and
the volumeQuantity_ul as a owl:DatatypeProperty. It is
worth underlining that the add_reagent_to_container is a
"template" that is defined just once at the beginning of the
formalization process. As a result it can be re-used to

model every step in the protocol that requires the addi-
tion of a reagent to a container.

Using the COW tool, all the concepts and properties
described in the DSO and UnGap layers can be used to
design a workflow (third row of Figure 6). The resulting
workflow is characterized by a flow of execution where
activity blocks refer to the respective action in the corre-
sponding protocol step. To specify a single block, e.g. the
Add activity of step 2, we have to define workflow vari-
ables (myPipette, myLysisBuffer) that permit us to instan-
tiate the add_reagent_to_container template. Such
variables are instances of DSO classes, respectively
Pipette and Reagent and they are actual parameters of the
XPDL Application corresponding to the template. This
method is repeated for each single protocol step obtain-
ing a workflow completely defined by XPDL elements.
The execution of the protocol formalized using COW can
then be delegated to an independent XPDL-compliant
run-time environment. The execution can also be con-
currently distributed among several computational units

Figure 3 Description of the system proposed for designing a formal laboratory protocol. Add and add_reagent_to_container are respectively
an Action subclass and one of its instances. Pipette is an Equipment subclass and is a formal parameter (paramIN) in add_reagent_to_container. myPi-
pette is an OWL individual of Pipette class and it is also an actual parameter of the add_reagent_to_container XPDL Application.

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 10 of 14
interfaced with robotized stations or laboratory opera-
tors.

Discussion
Laboratory automation is becoming increasingly crucial
in many fields of experimental research. For instance,
biological sample preparation often relies on robotic han-
dling, while bioinformatics can greatly benefit from auto-

matic procedures for analysis and management of data.
We defined a method to construct workflows built on
ontologies and designed it for the specific representation
of laboratory protocols. The first part of our work results
in the improvement of EXACT vocabulary and structure
and in the creation of the UnGap layer. The latter permits
us to apply a transformation from EXACT to XPDL and
therefore to design an ontologized workflows. Later, for
the implementation of our method we developed the
COW tool (version 1.0) and validated it on the Paternity
Test protocol used in our laboratory.

The formal definition of laboratory entities and opera-
tions, also in the case of manually executed experiments,
presents undeniable advantages. Our method permits to
obtain a structured representation of laboratory proto-
cols, exploiting the advantages of both domain specific
ontologies (DSO) and workflows. In particular, the adop-
tion of a formal language defined in DSO helps to remove
ambiguity and redundancies as well as contributing to
exchange and comparison of laboratory knowledge.
Moreover, by integrating the ontologies, the workflows
permit us to define protocol execution flows by graphi-
cally designing the activities and their transitions. This

Figure 4 The Equipment class. A) In the EXACT ontology the Equip-
ment class does not have any child term. B) In our Domain Specific On-
tology the original Equipment class is, together with the
owl:DatatypeProperty, a subclass of the new defined Datatype class.
Equipment has been enriched with new defined concepts usually ad-
opted in textual laboratory protocol (e.g. Thermoblock, Swab and Pi-
pette).

Figure 5 The Paternity Test protocol (a fragment) in textual form.

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 11 of 14
approach allows the repeatability of experiments and
enables the reliable interchange of experimental methods
[37].

A critical point in the development of our method has
been the choice of the formal language for use in the
specification of experiments. The choice needs to strike a
good balance between the desire for high expressivity and
the need to avoid untenable computational complexity.
We chose OWL-DL, which is especially designed to pro-
vide the maximum expressiveness possible while retain-
ing computational decidability, we overcome calculability
issues. Moreover, our ontology has a limited number of
classes, which also have modest computability needs.
There are several factors that complicate also the defini-
tion and the application of a domain specific language
(DSL). It initially requires domain and language develop-
ment expertise and only very few people have both. Other
limitations include the development of training material,
language support and maintenance [58]. Another limita-
tion of our approach is the formalization of the legacy
protocols that can be labour intensive and require the
collaboration of both wet-lab and computer scientists.
These aspects lead to challenging and time-consuming
stages of the project development.

At the time of this writing the EXACT-XPDL mapping
is not yet complete because not all the EXACT constructs
have been mapped to the XPDL corresponding ones.
Consequently, the currently mapped constructs are insuf-
ficient to formalise and represent a laboratory protocol in
all its aspects. Moreover the DSO lacks additional con-

cepts necessary for complete coverage of the entire labo-
ratory domain. For example, our ontology includes
concepts about actions and equipment, but does not yet
represent concepts like pre- and post- conditions of
actions. Further work is therefore needed to complete
both the mapping and the ontology to finally allow for a
comprehensive representation of laboratory protocols.

The effort required by a scientist to represent an exper-
iment using our proposed platform ultimately depends
on the available level of formalized laboratory knowledge.
Undoubtedly the set-up of the platform requires ontology
building skills and precise knowledge of the domain. Our
system has been tested by some wet-lab scientists who
provided suggestions and feedback for possible improve-
ments. At this stage, the user needs preliminary training
from COW developers. The trainers should provide sup-
port for designing the protocol, mostly by ensuring that
all required parameters, dependences and constrains are
captured and set. However, once the platform has been
tested by a sufficient number of wet-lab users and
improved based on their feedback, the procedure for the
modelling of experiment protocols will be considerably
simplified and external support will no longer be needed.
Using COW, the protocol definition may be done directly
and easily by wet-lab scientists who are typically non-pro-
grammers - though this need not be the case - but are
instead more conversant with laboratory domain knowl-
edge. They may write protocols without writing code,
which keeps the resulting specification clear and easy to
read and makes maintenance much easier. The final

Figure 6 The Paternity Test protocol represented using COW. The first row represents the first three steps of the textual protocol. The second row
represents the ontological concepts retrieved from the textual protocol. The third row displays an "ontologized" workflow where a single block cor-
responds to an action reported in the textual protocol. A single step (e.g. STEP 1) can be represented by more than one activity block.

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 12 of 14
objective of our project is actually the development of an
integrated environment for the design, analysis, tracing
and simulation/execution of laboratory protocols. At run
time, the execution platform would eventually orches-
trate software and robotized stations. We envision the
existence of a compiler able to translate protocols forma-
lised using the COW tool into executable systems. The
definition of such a compiler is still in progress and for
this reason, the automation of experiments has not yet
been tested. In our system we also plan to introduce
dynamic management of resources during the execution
of experiments, considering the availability and the work-
load of multiple executors that are able to perform a
scheduled activity. To foster protocol interoperability
among laboratories, it is essential to avoid dependency on
execution environments. During design therefore, the
user should provide the protocol structure as a set of
actions without specifying any environment-dependent
parameters such as the exact kind of machine that can be
used.

Conclusion
Using COW, a laboratory protocol may be directly
defined by wet-lab scientists without writing code, which
will keep the resulting protocol's specifications clear and
easy to read and maintain. Further work is required to
finally allow a comprehensive representation of labora-
tory protocols and therefore we are currently working to
improve the COW tool with the implementation of static
code analysis functionalities and with a new graphical
user interface. At the same time we are working on a
compiler able to translate a protocol defined by means of
COW tool in an executable version that takes in account
also platform specific details.

Methods
The COW software
COW comes in the form of a wizard and a plugin and
uses ontologies modelled in OWL. Our software has been
developed in Java (version 1.5). Protégé (version 3.4) has
been used for the modification of EXACT and the cre-

Figure 7 The COW tool. Architecture of the system proposed for designing formal laboratory protocols. The COW add-on interfaces the JPEd work-
flow editor with laboratory ontologies. Add and add_reagent_to_container represent respectively an example of a domain specific Action subclass
and one of its instances.

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 13 of 14
ation of UnGap layer and DSO. The COW tool is distrib-
uted as an add-on for JPEd with minor changes provided
by us (version: 2.0.1-SNAPSHOT). In the wizard, ontol-
ogy concepts are transformed into XPDL version 1.0 (Fig-
ure 7).

The EXACT ontology represents the kernel of labora-
tory formalized knowledge. On top of this a second onto-
logical layer named UnGap has been added. It extends the
concept of Action enriching it with a precise schema for
uniformly managing the generic list of parameters for
each possible action (i.e. paramOUT, paramIN_OUT,
paramIN). A user can develop his own DSO over UnGap.
In DSO, in particular, the Action class can be specialized
according to the specific nature and needs of the labora-
tory. The wizard component of the add-on translates
each subclass of Datatype into a XPDL DataType.

Furthermore, each individual of the Action ontology
class is transformed into XPDL as an Application con-
struct.

Workflows in XPDL can contain variables of the stan-
dard types (e.g. integer, strings) but also of any user
defined type. Therefore, as the wizard automatically con-
verts a subclass of Datatype into XPDL DataType, the
plugin allows the declaration of workflow variables of a
type coming from the ontology. Users can create such
types of variable also on the fly, thanks to the Protégé API
[59]. They enable the use of the Protégé GUI modules for
dealing with the OWL model and populating the DSO
with individuals, simultaneously with the workflow
development.

When beginning a new protocol definition, the user is
required to provide the location of the DSO to be used.
An ontology Action, mapped into a XPDL Application,
can be retrieved in the JPEd Application Panel. Choosing
a specific application from the shown list, it is possible to
see a general description of the application, including its
parameter list with related type. An application can
finally be invoked from an Activity block of a workflow
process. COW enables us to save the protocols as "ontol-
ogized" workflows, creating an OWL file for ontology
individuals as well as the usual XPDL file.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
NC, GV, BS conceived the research project. AM and MR identified the technical
solutions for combining ontologies and workflows as well as designing the
architecture of the COW tool. AM and MR developed the UnGap layer and
COW under the supervision of NC and TV. EF worked on the domain specific
ontology and on the case study. EF, AM, MR, NC drafted the manuscript. All
authors critically revised and approved the final document.

Acknowledgements
We thank Dr. Georgine Faulkner for carefully reading the manuscript and help-
ing us to improve its style and form. Funding: AM has a PhD fellowship from
the University of Bologna.

Author Details
1CRIBI Biotechnology Centre, University of Padua, viale G. Colombo 3, 35121
Padova, Italy, 2Department of Pure and Applied Mathematics, University of
Padua, via Trieste 63, 35121 Padova, Italy, 3BMR Genomics, Via Redipuglia 21/a,
35131 Padova, Italy and 4Department of Mathematics and Computer Science,
University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy

References
1. Joshua L, Alexa M: "Ome Sweet "Omics-A Genealogical Treasury of

Words. -- AccessMyLibrary -Promoting library advocacy. The Scientist
2001.

2. Tyers M, Mann M: From genomics to proteomics. Nature 2003,
422:193-197. 10.1038/nature01510

3. Baldi P, Hatfield GW, Hatfield WG: DNA Microarrays and Gene Expression:
From Experiments to Data Analysis and Modeling 1st edition. Cambridge
University Press; 2002.

4. Fields S: PROTEOMICS: Proteomics in Genomeland. Science 2001,
291:1221-1224. 10.1126/science.291.5507.1221

5. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB:
Metabolomics by numbers: acquiring and understanding global
metabolite data. Trends Biotechnol 2004, 22:245-252. 10.1016/
j.tibtech.2004.03.007

6. Shulaev V: Metabolomics technology and bioinformatics. Briefings in
Bioinformatics 2006, 7:128. 10.1093/bib/bbl012

7. Muggleton S: 2020 Computing: Exceeding human limits. Nature 2006,
440:409-410. 10.1038/440409a

8. Steering the future of computing. Nature 2006, 440(7083):383.
9. De Roure D, Hendler JA: E-Science: the grid and the Semantic Web.

Intelligent Systems, IEEE 2005, 19:65-71.
10. King RD, Rowland J, Oliver SG, Young M, Aubrey W, Byrne E, Liakata M,

Markham M, Pir P, Soldatova LN, Sparkes A, Whelan KE, Clare A: The
Automation of Science. Science 2009, 324:85-89. 10.1126/
science.1165620

11. JaWE based process editor [http://www.jped.org]
12. Science Advisory Board [http://www.scienceboard.net/]
13. Protocol-online [http://www.protocol-online.org]
14. Nature Methods [http://www.nature.com/nmeth/index.html]
15. Journal of Visualized Experiments [http://www.jove.com]
16. Kritikou E: Watch and learn. Nat Rev Mol Cell Biol 2007, 8:4 [http://

www.nature.com/nrm/journal/v8/n1/full/nrm2097.html]. 10.1038/
nrm2097

17. Nature Procotols [http://www.nature.com/nprot/index.html]
18. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources.
Nature protocols 2008, 4:44-57. 10.1038/nprot.2008.211

19. Fiegler H, Redon R, Carter N: Construction and use of spotted large-
insert clone DNA microarrays for the detection of genomic copy
number changes. Nat Protocols 2007, 2:577-587. 10.1038/nprot.2007.53

20. Liu L, Özsu MT: Encyclopedia of database systems. 2009.
21. Malucelli A, Palzera D, Oliveiraa E: Ontology-based Services to help

solving the heterogeneity problem in e-commerce negotiations.
Electronic Commerce Research and Applications 2006, 5:29. 10.1016/
j.elerap.2005.08.002

22. Hecker M, Dillon T, Chang E: Privacy Ontology Support for E-Commerce.
IEEE Internet Computing 2008, 12:54-61. 10.1109/MIC.2008.41

23. Hepp M, De Leenheer P, De Moor A: Ontology Management: Semantic
Web, Semantic Web Services, and Business Applications (Semantic Web and
Beyond) Volume 7. 1st edition. Springer; 2007.

24. Gene Ontology [http://www.geneontology.org/]
25. Bard J, Rhee S: Ontologies in biology: design, applications and future

challenges. Nature reviews Genetics 2004, 5:213-222. 10.1038/nrg1295
26. Brewster C, O'Hara K, Fuller S, Wilks Y, Franconi E, Musen M, Ellman J, Shum

S: Knowledge Representation with Ontologies: The Present and Future.
IEEE Intelligent Systems 2004, 19:72-81. 10.1109/MIS.2004.1265889

27. Arndt R, Troncy R, Staab S, Hardman L, Vacura M: COMM: Designing a
Well-Founded Multimedia Ontology for the Web. ISWC/ASWC
2007:30-43. 10.1007/978-3-540-76298-0_3

Received: 20 October 2009 Accepted: 23 April 2010
Published: 23 April 2010
This article is available from: http://www.aejournal.net/content/2/1/3© 2010 Maccagnan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Automated Experimentation 2010, 2:3

http://www.aejournal.net/content/2/1/3
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12634792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11233445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19342587
http://www.jped.org
http://www.scienceboard.net/
http://www.protocol-online.org
http://www.nature.com/nmeth/index.html
http://www.jove.com
http://www.nature.com/nrm/journal/v8/n1/full/nrm2097.html
http://www.nature.com/nrm/journal/v8/n1/full/nrm2097.html
http://www.nature.com/nprot/index.html
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14970823

Maccagnan et al. Automated Experimentation 2010, 2:3
http://www.aejournal.net/content/2/1/3

Page 14 of 14
28. Lambrix P, Habbouche M, Pérez M: Evaluation of ontology development
tools for bioinformatics. Bioinformatics 2003, 19:1564. 10.1093/
bioinformatics/btg194

29. Perez AG, Corcho O, Lopez MF: Ontological Engineering: with examples
from the areas of Knowledge Management, e-Commerce and the Semantic
Web. (Advanced Information and Knowledge Processing) First edition.
Springer; 2004.

30. de Nicola A, Missikoff M, Navigli R: A software engineering approach to
ontology building. Information Systems 2009, 34:258. 10.1016/
j.is.2008.07.002

31. Euzenat J, Shvaiko P: Ontology Matching 1st edition. Springer; 2007.
32. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,

Eilbeck K, Ireland A, Mungall CJ, OBI Consortium, Leontis N, Rocca-Serra P,
Ruttenberg A, Sansone SAA, Scheuermann RH, Shah N, Whetzel PL, Lewis
S: The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature biotechnology 2007,
25(11):1251-1255.

33. Bodenreider O, Stevens R: Bio-ontologies: current trends and future
directions. Briefings in bioinformatics 2006, 7:256-274. 10.1093/bib/
bbl027

34. Metabolomics Standards Initiative [http://msi-
ontology.sourceforge.net/]

35. Minimum Information About a Microarray Experiment [http://
www.mged.org/Workgroups/MIAME/miame.html]

36. PRoteomics IDEntifications database [http://www.ebi.ac.uk/pride/]
37. Soldatova L, King R: An ontology of scientific experiments. Journal of

The Royal Society Interface 2006, 3:795. 10.1098/rsif.2006.0134
38. Courtot M, Bug W, Gibson F, Lister A, Malone J, Schober D, Brinkman R,

Ruttenberg A: The OWL of Biomedical Investigations. Proceedings of the
Fifth OWLED Workshop on OWL: Experiences, 2008 2008.

39. Soldatova L, Aubrey W, King R, Clare A: The EXACT description of
biomedical protocols. Bioinformatics (Oxford, England) 2008, 24:i295-303.
10.1093/bioinformatics/btn156

40. Russell N, Hofstede AH, Edmond D, der Aalst WM: Workflow Data Patterns:
Identification, Representation and Tool Support, Berlin/Heidelberg: Springer-
Verlag, Volume 3716 2005 chap Volume Chapter 23. Springer-Verlag;
2005:353-368.

41. Russell N, Aalst WMP van der, ter Hofstede AHM, Edmond D: Workflow
Resource Patterns: Identification, Representation and Tool Support, Heidelberg
Springer Berlin; 2005:216-232.

42. Business Process Execution Language [http://www.bpelsource.com/]
43. BPMI [http://www.bpmi.org]
44. The Object Management Group [http://www.omg.org]
45. XML Process Definition Language [http://www.wfmc.org/xpdl.html]
46. Workflow Management Coalition [http://www.wfmc.org/]
47. Deelman E, Gannon D, Shields M, Taylor I: Workflows and e-Science: An

overview of workflow system features and capabilities. Future
Generation Computer Systems 2009, 25:528. 10.1016/j.future.2008.06.012

48. Shawn CB, Bowers S, Jones MB, Ludäscher B, Schildhauer M, Tao J:
Incorporating Semantics in Scientific Workflow Authoring. In
Proceedings of the 17th International Conference on Scientific and Statistical
Database Management (SSDBM'05) 2005.

49. Romano P: Automation of in-silico data analysis processes through
workflow management systems. Brief Bioinform 2008, 9:57-68.

50. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T,
Glover K, Pocock M, Wipat A, Li P: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics (Oxford, England)
2004, 20:3045-3054. 10.1093/bioinformatics/bth361

51. myExperiment [http://www.myexperiment.org/]
52. de Roure D, Goble C: Software Design for Empowering Scientists. IEEE

Software 2009, 26:88-95. 10.1109/MS.2009.22
53. Ontology Web Language [http://www.w3.org/TR/owl-ref/]
54. van Deursen A, Klint P, Visser J: Domain-specific languages: an

annotated bibliography. SIGPLAN Not 2000, 35(6):26-36.
55. France R, Rumpe B: Model-driven Development of Complex Software: A

Research Roadmap. In FOSE '07: 2007 Future of Software Engineering
Washington, DC, USA: IEEE Computer Society; 2007:37-54.

56. Jouault F, Bezivin J: KM3: a DSL for Metamodel Specification. Lecture
Notes In Computer Science 2006, 4037:171-185.

57. Shapiro R, Marin M: Workflow Management Coalition Workflow
StandardProcess Definition Interface- XML Process Definition Language. The

Workflow Management Coalition, 99 Derby Street, Suite 200 Hingham, MA
02043 USA 2008.

58. Mernik M, Heering J, Sloane AM: When and how to develop domain-
specific languages. ACM Comput Surv 2005, 37(4):316-344.

59. Protege Application Programming Interface [http://
protege.stanford.edu/plugins/owl/api/]

doi: 10.1186/1759-4499-2-3
Cite this article as: Maccagnan et al., Combining ontologies and workflows
to design formal protocols for biological laboratories Automated Experimen-
tation 2010, 2:3

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17989687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899495
http://msi-ontology.sourceforge.net/
http://msi-ontology.sourceforge.net/
http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html
http://www.ebi.ac.uk/pride/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18586727
http://www.bpelsource.com/
http://www.bpmi.org
http://www.omg.org
http://www.wfmc.org/xpdl.html
http://www.wfmc.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.myexperiment.org/
http://www.w3.org/TR/owl-ref/
http://protege.stanford.edu/plugins/owl/api/
http://protege.stanford.edu/plugins/owl/api/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

