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Abstract. We consider a two-dimensional dilute Bose gas above its superfluid transition temperature. We
show that the t-matrix approximation corresponds to the leading set of diagrams in the dilute limit,
provided the temperature is sufficiently larger than the superfluid transition temperature. Within this
approximation, we give an explicit expression for the wave-vector and frequency dependence of the self-
energy, and calculate the corrections to the chemical potential and the effective mass arising from the
interaction. We also argue that the breakdown of diagrammatic classification scheme for the dilute Bose
gas, which occurs upon lowering the temperature, provides a criterion to estimate an upper bound for the
superfluid critical temperature. The upper bound to the critical temperature identified by this criterion
turns out to coincide with earlier results for the critical temperature obtained by Popov and by Fisher and
Hohenberg using different methods. Extension of this procedure to the three-dimensional case gives good
agreement with recent Monte Carlo data.

PACS. 05.30.Jp Boson systems – 05.70.Fh Phase transitions: general studies – 03.75.Fi Phase coherent
atomic ensembles; quantum condensation phenomena

1 Introduction

Renewed interest in two-dimensional (2D) superfluid sys-
tems has been recently prompted by the discovery of high-
temperature superconductors. Before that, studying 2D
bosonic systems was mainly motivated by experiments on
adsorbed helium monolayers [1] and spin-polarized hydro-
gen recombining on a helium film [2]. More recently, Bose
condensation has been achieved experimentally in dilute
gases of alkali atoms [3] and in atomic hydrogen [4], stim-
ulating active research in this field both experimentally
and theoretically [5].

Even though Bose-Einstein condensation is known not
to occur at finite temperature for the ideal and interacting
boson systems both in one and two dimensions, the ab-
sence of a condensate does not necessarily imply the lack
of a phase transition to a superfluid state for an interacting
2D Bose system [6]. In this system, particles with small
momenta behave like a condensate and are responsible
for the presence of a nonvanishing superfluid density [7].
The critical temperature for the superfluid phase transi-
tion was estimated by Popov [7] using a functional integral
formalism. The same estimate for the critical temperature
was later obtained by Fisher and Hohenberg [8] using a
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renormalization-group approach, with the result

Tc ≈
2πn

m ln ln [1/(nr2
0)]

, (1)

where n is the particle density, m the boson mass, and r0
the range of the interaction potential between bosons (we
set ~ = kB = 1 throughout). In these studies, Popov [7]
and Fisher and Hohenberg [8] approached the phase tran-
sition from the superfluid phase and the normal phase,
respectively.

The present paper studies the 2D dilute Bose gas above
its critical temperature Tc by relying on conventional dia-
grammatic methods. (The criterion for a 2D Bose system
to be “dilute” will be specified below.) In this way, results
for thermodynamic quantities are most readily obtained.
In addition, these results are amenable to extension to
more complex systems, such as the composite bosons oc-
curring in the BCS to Bose-Einstein crossover problem [9].
Finally, our method enables us to treat on equal footing
the dilute Bose gas both in two and three dimensions.

Previous studies of the 2D dilute Bose gas have
considered the superfluid phase either at zero tempera-
ture [10–13] or at finite temperature [7,14]. At finite tem-
perature, the absence of a condensate in 2D required either
the separation of wave-vector integration into rapid and
slow parts [7], or the use of appropriate renormalization
group methods [14]. Previous approaches to the 2D dilute
Bose gas, however, did not address the following issues:
(i) The complete description of the normal phase (above
the critical temperature) by standard diagrammatic
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methods (to obtain the wave-vector and frequency depen-
dence of the self-energy, the effective mass, and the chem-
ical potential); (ii) Upon lowering the temperature, the
detection by these methods of the insurgence of a super-
fluid phase transition not associated with the establishing
of long-range order.

In this respect, standard many-body diagrammatic
methods prove sufficient for a complete description of the
normal phase of the 2D dilute Bose gas. In particular, the
t-matrix approximation for the self-energy will be shown
to provide the correct description for a dilute Bose gas
above Tc, akin to the three-dimensional (3D) case. Both
in 2D and in 3D, an explicit analytic expression for the
self-energy as a function of wave vector and frequency will
be presented.

In our approach, an expression like (1) appears as a
lower bound for the validity of the t-matrix as a controlled
approximation for the dilute Bose gas. The ensuing dia-
grammatic classification scheme for the dilute Bose gas
will, in fact, be shown to break down when the tempera-
ture T approaches a lower temperature TL, whose expres-
sion turns out to coincide with the estimate (1) for the
critical temperature given in references [7] and [8]. We
argue that the insurgence of the (superfluid) phase tran-
sition enters the diagrammatic theory for the dilute Bose
gas in this way, since the physical mechanism leading to a
breakdown of diagrammatic perturbation theory can only
be the occurrence of a phase transition. Indeed, the clas-
sification scheme for the dilute Bose gas is based on the
effective range of the interaction being smaller than the
interparticle distance. Its breakdown, therefore, has to be
ascribed to the insurgence of a new length scale which be-
comes increasingly large upon lowering the temperature.
Such an increasing length scale upon lowering the temper-
ature finds a natural explanation as a correlation length
associated to a (second-order) phase transition. The tem-
perature TL is thus expected to provide an upper boundary
of the critical region about the critical temperature Tc.
(From a technical point of view, the coincidence of our
result for TL with the previous result (1) for Tc is due to
the fact that both our approach and the previous ones
discard sublogarithmic corrections to TL and Tc, respec-
tively.) It should be also emphasized that our method,
which holds irrespective of the kind of order parameter
that might be identified below Tc, is able to detect the
occurrence of a phase transition but not to identify its na-
ture. On the other hand, the very fact that our method
does not depend on the kind of an order parameter below
Tc (or even its existence), implies that this method is very
general and that it can be adopted with no modifications
both in 2D and 3D, whereby an order parameter cannot
(D = 2) or can (D = 3) be identified. For the 3D case
we obtain (TL − TBE)/TBE ∼ n1/3a (where TBE is the 3D
Bose-Einstein temperature and a is the scattering length),
in agreement with recent Monte Carlo simulations [15,16]
for the 3D dilute Bose gas which yield for the critical tem-
perature Tc a value which is slightly smaller than what we
obtain for TL.

The paper is organised as follows. Section 2 sets up
the diagrammatic theory for the 2D dilute Bose gas in the
normal phase and calculates the corrections to the chemi-
cal potential and the effective mass due to the interaction.
Section 3 discusses the insurgence of a phase transition for
the dilute Bose gas through the breakdown of the approx-
imation scheme introduced in Section 2. The value of the
breakdown-temperature TL is then calculated both in two
and three dimensions. Section 4 gives our conclusions. In
the Appendix, the full dependence of the t-matrix self-
energy on wave vector and frequency is obtained both in
2D and in 3D, by exploiting the diluteness condition. In
addition, the validity of some approximations, on which
the theoretical arguments of the text rely, is explicitly
tested numerically.

2 T-matrix approximation for a dilute system
of interacting bosons

In this section, we analyze the diagrammatic theory for
the 2D Bose gas in the normal phase and determine the
leading contributions to the self-energy in the dilute limit.
We give an analytic expression for the wave-vector and
frequency dependence of the self-energy, which becomes
asymptotically exact in the dilute limit (as verified in the
Appendix). We further use the zero wave-vector and fre-
quency value of this self-energy to dress the single-particle
Green’s functions of the theory in a self-consistent way.
This step will enable us to identify a lower temperature TL

below which the classification of diagrams for the dilute
Bose system breaks down, as discussed in the next section.
In addition, we obtain the explicit leading corrections to
the chemical potential µ due to interaction, thus recov-
ering an earlier result by Popov [7], and to the effective
mass.

We begin by considering a 2D bosonic system inter-
acting via a short-range two-body potential v(r) with a
finite range r0, which becomes a δ-function when r0 → 0
(cf. Ref. [12]). (For the explicit solution of the t-matrix
integral equation, in the Appendix we shall use a sepa-
rable potential in wave-vector space in the place of the
original short-range potential v(r). This replacement will
be fully justified.) We examine the dilute limit of this sys-
tem, which is initially identified by the condition nr2

0 � 1,
where n is the bosonic density. (A stronger condition on
the parameter nr2

0 will be required below.) We further
consider temperatures above a nominal critical tempera-
ture Tc but lower than an upper temperature of the order
of Tn ≡ 2πn/m, at which quantum effects become impor-
tant [17].

Under these assumptions, the selection of the diagrams
yielding the leading contributions to the self-energy for
the 2D dilute Bose gas in the normal state proceeds along
similar lines as for the 3D dilute Bose gas.

Akin to the 3D case, also in 2D every cycle (defined
as a closed path constructed by a sequence of “bare”
bosonic propagators, with a common wave vector and
Matsubara frequency flow) introduces a Bose function
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Fig. 1. (a) T-matrix approximation for the self-energy of an
interacting Bose gas; (b) particle-hole bubble; (c) particle-
particle bubble.

(e(q2/(2m)−µ)/T − 1)−1, which appears after the summa-
tion over the common frequency running along the cycle
is performed. This function, in turn, cuts off the integral
over the remaining wave-vector variable approximately at
|q| ' (mT )1/2, which is much smaller than the cutoff 1/r0
introduced by the potential (owing to the the diluteness
condition and the assumption T ∼ Tn).

Accordingly, the description of the dilute Bose gas re-
tains only those diagrams with a minimal number of cy-
cles, that is, just one cycle. These diagrams are shown in
Figure 1a and constitute the so-called t-matrix approxi-
mation for the self-energy [7,18].

At T ∼ Tn higher-order diagrams can be estimated by
replacing the bare potential by the t-matrix itself and as-
signing to each additional cycle a factor t0Πph(0). Here, t0
and Πph(0) are the zero frequency and wave-vector values
of the t-matrix and of the particle-hole bubble (Fig. 1b),
respectively. It will further be shown below that the prod-
uct t0Πph(0) ∝ 1/ ln[1/(nr2

0)]� 1 in the dilute limit.

We will discover, however, that the classification of di-
agrams based on the cycle argument breaks down upon
lowering the temperature down to a value TL. More pre-
cisely, we will find that the t-matrix correctly describes the
dilute Bose gas in the temperature range TL . T . Tn,
in the sense that no other diagrams besides the t-matrix
itself need to be included.

The self-energy corresponding to the set of diagrams
depicted in Figure 1a reads:

Σt(q) = −T
∑
ων′

∫
d2q′

(2π)2
G(q′)

[
t

(
q′ − q

2
,
q′ − q

2
, q + q′

)

+ t

(
q− q′

2
,
q′ − q

2
, q + q′

)]
(2)

where the t-matrix t(p,p′, P ) is defined by the integral
equation

t(p,p′, P ) = v(p− p′)− T
∑
ων

∫
d2q

(2π)2
v(p− q)

×G
(
P

2
− q
)
G

(
P

2
+ q

)
t(q,p′, P ) (3)

with the notation q ≡ (q, iων) (ων = 2πνT - ν integer -
being a bosonic Matsubara frequency) [19].

To lowest order in the density, all single-particle
Green’s functions G in equations (2) and (3) are consid-
ered to be bare ones. Quite generally, self-energy insertions
in the Green’s functions become relevant when a phase
transition is approached. It is shown in the Appendix that,
in the dilute limit, the dependence of the self-energy Σt(q)
on q can be disregarded when calculating physical quan-
tities, so that one may set Σt(q) ' Σt(0) in all single-
particle Green’s functions entering equations (2) and (3)
and re-absorb the constant Σt(0) by a shift of the chemi-
cal potential. In this way, when the chemical potential is
expressed in terms of n and T , one obtains

µ−Σt(0) = µ0 (4)

where µ0 = µ0(n, T ) is the chemical potential of the 2D
ideal Bose gas [21].

In the following, we shall consider all Green’s functions
in equations (2) and (3) to be self-consistently dressed by
the self-energy (2) with q = 0, resulting in an “improved”
t-matrix approximation which can be adopted to approach
the critical region more closely.

An explicit expression of Σt(q) for arbitrary values
of q is given by equation (A.7) of the Appendix, which is
asymptotically valid in the dilute limit. From that expres-
sion, the shift of the chemical potential due to interaction
as well as the relevant effective mass can be obtained. For
the chemical potential, it is sufficient to know the value of
Σt(0), which from equation (A.7) becomes [20]:

Σt(0) ≈ 8πn
m ln [1/(m|µ0|r2

0)]
· (5)

By entering in this expression the analytic form of the
chemical potential µ0 [21], we obtain eventually

Σt(0) ≈ 8πn/m
ln(1/[mTr2

0| ln(1− e−Tn/T )|])

≈ 8πn/m
ln[1/(nr2

0)] + ln[Tn/(2πT )]− ln | ln(1− e−Tn/T )|

≈ 8πn
m ln [1/(nr2

0)]
(6)

the last result holding for Tn/ ln[1/(nr2
0)] � T . Tn,

which includes the temperature range TL . T . Tn of
physical interest (the explicit expression of TL being ob-
tained in the next Sect.). Equation (6) provides the leading
self-energy term for the 2D dilute Bose gas in the normal
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phase, from which the shift of the chemical potential is
obtained as µ = µ0 +Σt(0).

Note that the expression (6) is temperature indepen-
dent in the temperature range TL . T . Tn we are con-
sidering. The only temperature dependence of µ thus orig-
inates from µ0. In particular, if we substitute the value of
Tc from equation (1) into the expression (6), we obtain:

µ(Tc) = µ0(Tc) +Σt(0)

≈ − 2πn
m ln [1/(nr2

0)]
1

ln ln[1/(nr2
0)]

+
8πn

m ln [1/(nr2
0)]

≈ 8πn
m ln [1/(nr2

0)]
, (7)

provided ln ln(1/(nr2
0) is sufficiently larger than unity (di-

lute limit). This result coincides with the value of the
chemical potential obtained in references [7] and [8], where
the critical temperature was approached from below.

The effective mass can eventually be calculated after
analytic continuation of Σt(q) given by equation (A.7).
The result is:

m∗

m
= 1 +

1
4 ln ln[1/(nr2

0)]
, (8)

which holds for TL . T . Tn. Details of the derivation of
equation (8) are reported in the Appendix.

3 Breakdown of the t-matrix approximation

We pass now to show that the selection of diagrams made
in the previous section, which was based on the cycle
argument, breaks down upon lowering the temperature.
Specifically, consideration of the temperature at which the
particle-hole diagrams (which where discarded by the cy-
cle argument) are no longer negligible in comparison with
the particle-particle diagrams, will lead us to identify a
lower temperature TL, whose expression turns out to coin-
cide with the critical temperature (1) determined in refer-
ences [7] and [8] (apart from sublogarithmic corrections).

To determine the range of validity of the t-matrix ap-
proximation, it is enough to compare the particle-particle
bubble Πpp of Figure 1c (which constitutes the build-
ing block of the t-matrix of Figure 1a) with the particle-
hole bubble Πph of Figure 1b. This statement follows
from the classification of diagrams we have made be-
cause t0 ' Πpp(0)−1 in the dilute limit (cf. Eqs. (A.2)
and (A.4)), yielding Πph(0)/Πpp(0) as the small param-
eter of the theory at T ∼ Tn. The ratio Πph(0)/Πpp(0)
grows, however, upon lowering the temperature below Tn
and reaches the value of unity at the temperature TL in-
troduced above.

The particle-particle bubble is given by

Πpp(0) = T
∑
ων

∫ r−1
0 d2q

(2π)2
G(q) G(−q) (9)

where G(q) = (iων − q2/(2m) + µ0)−1 according to the
arguments above. With the notation ξ(q) = |q|2/(2m) −
µ0, we obtain:

Πpp(0) =
∫ r−1

0 d2q
(2π)2

1 + 2nB(ξ(q))
2ξ(q)

≈ m

4π
ln
(

1
2m|µ0|r2

0

)
+

1
2π

∫ r−1
0

0

d|q| |q|nB(ξ(q))
ξ(q)

≈ m

4π
ln
(

1
2m|µ0|r2

0

)
(10)

where nB(x) = (ex/T − 1)−1 is the Bose function and
the last asymptotic equality holds in the dilute limit
nr2

0 � 1 and for temperatures of the order of Tn (such
that |µ0| ∼ Tn).

The particle-hole bubble for q = 0 is, as usual, given by
Πph(0) = ∂n/∂µ. For the two dimensional Bose gas the
chemical potential is known analytically for all tempera-
tures and densities [21], yielding

∂n

∂µ
=
m

2π
eµ0/T

1− eµ0/T
· (11)

At T ∼ Tn, µ0(n, Tn) ∼ Tn and ∂n/∂µ ∼ m, such that the
ratio Πph(0)/Πpp(0) ≈ 1/ ln[1/(nr2

0)] � 1 in the dilute
limit. When T � Tn, on the other hand, |µ0| � T and
∂n/∂µ ≈ mT/(2π|µ0|), which is much larger than the
corresponding value at T ∼ Tn. A lower temperature TL

can thus be reached, such that the ratio Πph(0)/Πpp(0)
equals unity when

1
2

ln
1

2m|µ0|r2
0

=
TL
|µ0|
· (12)

Entering the asymptotic expression |µ0| ≈ T e−Tn/T ,
which holds for T � Tn, yields eventually

TL ≈
Tn

ln ln[1/(nr2
0)]

(13)

that is valid under the assumption ln ln[1/(nr2
0)] � 1

(which defines the diluteness condition in 2D). Our ex-
pression (13) for TL coincides with the estimate (1) for
the critical temperature given by Popov [7] and by Fisher
and Hohenberg [8].

Note that the double-log dependence of TL on nr2
0 origi-

nates, on the one hand, from the log dependence of Πpp(0)
on |µ0| and, on the other hand, from the exponential de-
pendence of µ0 on T at low temperatures. Note also that
the more stringent diluteness condition ln ln[1/(nr2

0)� 1]
(in the place of the original nr2

0 � 1) is required to get a
finite temperature range (TL . T . Tn), where self-energy
diagrams can be selected by the diluteness condition.

As pointed out in the Introduction, the breakdown of
the diagrammatic classification in terms of a small pa-
rameter (as explicitly seen above) finds a natural expla-
nation as being due to the proximity to a phase transi-
tion [22]. For the 2D interacting Bose gas one knows that
a Kosterlitz-Thouless superfluid transition occurs at finite
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temperature [6]: the breakdown temperature TL is thus
expected to provide an upper estimate for the superfluid
critical temperature Tc.

The fact that the upper boundary TL turns out to be
very close to Tc is further confirmed by applying the same
sort of arguments to the 3D dilute Bose gas, for which
Monte Carlo results are available [15,16]. In this case, the
particle-particle and particle-hole bubbles are given, re-
spectively, by

Πpp(0) ≈ m

2π2r0
=

m

4πa
(14)

where a is the scattering length, and

Πph(0) =
∂n

∂µ
≈ 2mn1/3

3ζ(3/2)4/3

TBE

T − TBE
(15)

since µ0 ' −9ζ(3/2)2(T − TBE)2/(16πTBE) for the chem-
ical potential of the ideal Bose gas (valid near the Bose-
Einstein temperature TBE = 2π/ζ(3/2)2/3n2/3/m). The
temperature at which these contributions coincide then
defines the 3D breakdown temperature T 3D

L . One obtains:

T 3D
L − TBE

TBE
=

8π
3ζ(3/2)4/3

n1/3a ' 2.33n1/3a . (16)

This result for the breakdown temperature TL is re-
markably close to the value for the critical tempera-
ture of the 3D hard-core Bose gas in the dilute limit
obtained by Monte Carlo simulations [16], which yields
(Tc − TBE)/TBE = (2.3 ± 0.25)n1/3a, and coincides with
the analytic result of reference [23], which was obtained by
a completely different method. Very recent Monte Carlo
simulations [24,25] have found instead a smaller value 1.3
for the coefficient of the linear dependence of the shift
of the critical temperature on the gas parameter n1/3a.
It has been pointed out, however, in reference [26] that,
while in reference [16] the coefficient of the linear depen-
dence has been calculated after carefully taking the limit
n1/3a → 0, in references [24] and [25] the coefficient has
been obtained by direct extrapolation of the results ob-
tained at finite density. According to reference [26], this
procedure is affected by subleading logarithmic contribu-
tions, which are negligible only at densities much smaller
than those explored in references [24] and [25]. In any case,
we remark that both the results of references [24] and [25],
as well as of reference [16], are consistent with our claim
that TL constitutes an upper boundary for the actual Tc.

The result (16) should be regarded as altogether non
trivial, since previous analytic treatments of the 3D di-
lute Bose gas resulted either in different dependences of
(Tc − TBE)/TBE on the parameter n1/3a, e.g., of the type
(n1/3a)1/2 [cf. Ref. [27]] or (n1/3a)2/3 [cf. Ref. [28]], or in
the same linear dependence on the parameter n1/3a, but
with a different proportionality coefficient [29–31]. In our
approach, the linear dependence on the parameter n1/3a
of the temperature shift has been directly related to the
quadratic dependence of the free-boson chemical potential
on T − TBE near TBE in 3D.

4 Concluding remarks

In this paper, we have considered the two-dimensional
dilute Bose gas in the normal phase, in the interest-
ing temperature region ranging from an upper tempera-
ture Tn (below which quantum effects become important)
to a lower temperature TL (which we have identified as
an upper limit to the critical temperature). In this tem-
perature region we have analyzed the ordinary diagram-
matic theory and organized it in powers of the parameter
1/ ln[1/(nr2

0)], which was assumed to be small compared
to unity.

In this way, the standard t-matrix has been identified
as yielding the dominant set of diagrams for the self-energy
when nr2

0 � 1. Further analysis of the theory to define
the temperature range where the t-matrix approximation
holds has, however, led us to consider the stronger con-
dition ln ln[1/(na2)] � 1 as characteristic of the “dilute”
Bose gas in two dimensions, thus confirming the crite-
rion introduced by Fisher and Hohenberg [8] via different
methods.

Our identification of the lower temperature TL rests on
the finding that the diagrammatic classification scheme for
the 2D dilute Bose gas breaks down at this lower temper-
ature, in the sense that additional diagrams (besides the
t-matrix) become also important at TL and the hierarchy
established for the dilute gas no longer holds. In this re-
spect, it may be worth mentioning that by our scheme
the critical temperature cannot be obtained via the usual
criterion which defines Tc(n) as the temperature where
the equation µ(n, Tc) = Σ(q = 0;n, Tc) is satisfied. Solv-
ing, in fact, for this equation would require one to rely
on an approximation for the self-energy which is valid
even at Tc. We have seen, however, that in our case the
t-matrix approximation for the self-energy breaks down
before reaching Tc, as soon as the critical region above Tc

is approached.
The finding that an upper boundary to the superfluid

critical temperature can be obtained from ordinary dia-
grammatic methods in the normal phase, both in two and
three dimensions, constitutes per se a nontrivial result, es-
pecially because the nature of the (superfluid) transition
in two and three dimensions is quite different (involving,
respectively, quasi-long-range order and true long-range
order).

In addition, our approach is rather straightforward
and amenable to direct implementation to more com-
plex physical situations. In this respect, a possible ap-
plication of our results may be the normal state of
high-temperature cuprate superconductors, which are
quasi-two-dimensional systems. Experiments related to
the normal [32,33] and superconducting [34] state in these
systems suggest, in fact, that a correct description of their
properties might require an intermediate (crossover) ap-
proach between the Fermi liquid theory (weak-coupling)
and the dilute Bose gas approach (strong-coupling). For
this reason, crossover theories have been considered by
several authors, both for the normal state [35,36] and the
broken-symmetry phase [37,38]. Since a reliable study of
the crossover problem should require a good knowledge of
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at least the extreme (weak- and strong-coupling) limits,
the approach developed in this paper might shed light on
the strong-coupling limit of these theories [9].

We are indebted to C. Castellani, P. Nozières, and F. Pistolesi
for helpful discussions. I.T. gratefully acknowledges financial
support from the Italian INFM under contract No. PRA-
HTSC/96-99.

Appendix A

In this Appendix, we obtain an analytic expression for the
t-matrix self-energy, which is valid above TL in the dilute
limit. From this expression, the effective mass (at q = 0)
is calculated. In addition, the approximation

Σt(q) ' Σt(0) (A.1)

(which is crucial for the arguments presented in the text)
will be justified theoretically and checked numerically.
Both two-dimensional and three-dimensional cases will be
considered for completeness.

A1. Two dimensions

It is convenient to parametrize the short-range poten-
tial appearing in the t-matrix integral equation (3) by
a separable potential in wave-vector space, by letting
v(p−p′)→ v0wpwp′ with wp = θ(k0−|p|) and k0 = r−1

0 .
The use of a separable potential in the t-matrix integral
equation (3) is justified for |p|, |p′| � k0, because in this
range both the original potential and the separable po-
tential are constant and equal to v0. For a dilute Bose
gas, at T ∼ Tn, the relevant wave vectors, in fact, are
smaller or at most of the order of n1/D � k0 = 1/r0,
thus justifying the use of a separable potential within this
wave-vector range. Equation (3) can therefore be readily
solved to yield t(p,p′, P ) = wpwp′t(P ), with

t−1(P ) =

v−1
0 + T

∑
ων

∫
d2q

(2π)2
w2

qG

(
P

2
− q
)
G

(
P

2
+ q

)
, (A.2)

where G(q) = (iων − q2/2m + µ0)−1, consistently with
the assumption (A.1) and the ensuing equation (4). This
choice of G(q) will lead us to verify the key assump-
tion (A.1) in a self-consistent manner. The frequency sum
in equation (A.2) can be performed explicitly, yielding

T
∑
ων

∫
d2q

(2π)2
w2

q G

(
P

2
− q
)
G

(
P

2
+ q

)
=

∫
d2q

(2π)2
w2

q

1 + nB(ξP/2−q) + nB(ξP/2+q)
P2/(4m) + q2/m− 2µ0 − iΩν

· (A.3)

In the dilute limit (nr2
0 � 1) and for TL . T . Tn,

the Bose functions appearing in the above expression can

be neglected, since they yield contributions smaller by a
factor Tr2

0 � 1 with respect to the term retained. The
integration over the wave vector q then yields

t−1(P ) =
1
v0

+
m

4π
ln
[
k2

0/m+ 2|µ0|+ P2/(4m)− iΩν
2|µ0|+ P2/(4m)− iΩν

]
(A.4)

where ln stands for the principal branch of the complex
logarithm. The t-matrix self-energy is obtained by insert-
ing expression (A.4) into equation (2) which, for a sepa-
rable potential, becomes

Σt(q, ων) = −2 T
∑
Ων′

∫
d2q′

(2π)2
w2

(q′−q)/2

×G(q′, Ων′ − ων)t(q + q′, Ων′). (A.5)

To perform the frequency sum in equation (A.5) we exploit
the analytic properties of t(P, z). From equation (A.4),
after the replacement iΩν′ → z, it can be readily verified
that t(P, z) has a simple pole for z = P2/(4m) + 2|µ0|+
k2

0/[m(1 − e−1/ṽ0)] (with ṽ0 = mv0/(4π)) and a branch
cut along the real axis for P2/(4m) + 2|µ0| < Re(z) <
P2/(4m) + 2|µ0| + k2

0/m. The frequency sum in equa-
tion (A.5) can be then performed by a contour integration,
yielding three distinct contributions: one from the simple
pole of the Green’s function G(q′, z), one from the simple
pole of the t-matrix, and one from the integration along
the cut of t(q+q′, z). The term originating from the simple
pole of the t-matrix, which occurs for Re(z) > k2

0/m, is ex-
ponentially suppressed by the Bose factor 1/(exp(βz)−1)
and is thus negligible. The term associated with the inte-
gration along the cut can be estimated to be smaller than
the term from the simple pole of the Green’s function by
a factor 1/ ln[1/(nr2

0)], and is also negligible in the dilute
limit. We are thus left with the expression:

Σt(q, ων) = 2
∫

d2p
(2π)2

w2
q/2

eβ[ (q−p)2
2m +|µ0|] − 1

[
1
v0

+
m

4π

× ln
k2

0/m+ |µ0|+ q2/(2m)− p2/(4m)− iων
|µ0|+ q2/(2m)− p2/(4m)− iων

]−1

·

(A.6)

Note that the Bose factor in equation (A.6) is peaked
about p = q with a width of order T 1/2, which is smaller
than the range of p over which the log-term in the denomi-
nator of equation (A.6) varies appreciably. When perform-
ing the integration over p in equation (A.6), we can then
approximate p = q in the logarithm, which is in this way
factored out of the integral, yielding the following asymp-
totic expression for the self-energy:

Σt(q)
2n

≈ w2
q/2

{
1
v0

+
m

4π
ln
[
k2

0/m+ |µ0|+ q2/(4m)− iων
|µ0|+ q2/(4m)− iων

]}−1

·

(A.7)
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Fig. 2. Σ(q, ων) (units of Tn) for a 2D dilute Bose gas at
T = Tn and nr2

0 = 1.6 × 10−3. Numerical results for ν =
10 (diamonds) and ν = 100 (squares) are compared with the
analytic expression (A.7) (full and dotted lines, respectively).

The analytic expression (A.7) can be compared with the
numerical calculation for the t-matrix self-energy, ob-
tained by retaining all contributions to equation (A.5).

We have found that the asymptotic expression (A.7)
reproduces extremely well the numerical results for (A.5)
when the diluteness parameter is sufficiently small. As an
example, in Figure 2 the analytic expression for Σt(q) is
compared with the numerical results for the choice of pa-
rameters T = Tn, mv0/(4π) = 1, and nr2

0 = 1.6 × 10−3.
One can see that in this case the agreement is excellent.

The expression (A.7) for the self-energy can also be
used to verify that, when evaluating physical quantities
(such as the density n), the wave-vector and frequency
dependence of Σt(q) is actually irrelevant, so that one
can approximate Σt(q) ' Σt(0) as anticipated in equa-
tion (A.1). This is because the presence of the logarithm
in equation (A.7) makes the dependence of Σt(q) on q
rather slow. The approximation Σt(q) ' Σt(0) is thus
justified over a large portion of q space and can be ex-
ploited to evaluate physical quantities. In particular, for

T = Tn we have obtained numerically that the relative
error when evaluating n = −T

∑
ν

∫
d2q

(2π)2 G(q) alterna-
tively with G(q) = [iΩν −q2/(2m) +µ−Σt(q)]−1 or with
G(q) → G0(q) = [iΩν − q2/(2m) + µ − Σt(0)]−1 is less
than 1% for nr2

0 . 10−2.
Finally, the t-matrix self-energy (A.7) can be exploited

to calculate the effective mass for the dilute Bose gas.
Recall that, once the retarded self-energy is known, the
effective mass can be calculated as [39]

m∗

m
=
(

1− ∂ReΣ(|q|, ω)
∂ω

)[
1 +

m

|q|
∂ReΣ(|q|, ω)

∂|q|

]−1

,

(A.8)

where the derivatives are meant to be calculated at the
quasi-particle pole defined by the equation

ωq =
q2

2m
− µ+ ReΣ(q, ωq). (A.9)

In general, the effective mass m∗ depends on q. Here we
are interested in its value at q = 0, which is relevant at
low temperatures.

The self-energy (A.7) can be analytically continued via
the replacement iωn → ω + i0+. The quasi-particle-pole
equation (A.9) at q = 0 can then be solved asymptotically,
to yield

ω0 = −µ+Σt(0)
(

1− 2
ln ln[1/(nr2

0)]
ln(1/(nr2

0)]

)
(A.10)

as it can be verified by inserting the value (A.10) for ω0

in the quasi-particle-pole equation and by discarding sub-
leading terms in the dilute limit nr2

0 � 1. The derivatives
of Σ(q, ω) at (q = 0, ω = ω0) can also be readily calcu-
lated. The effective mass at q = 0 is then given by

m∗

m
≈ 1 + 1/(2 ln ln[1/(nr2

0)])
1− 1/(4 ln ln[1/(nr2

0)])

≈ 1 + 1/(4 ln ln[1/(nr2
0)]). (A.11)

Note the occurrence of the same double-log dependence
characteristic of the temperature TL.

A2. Three dimensions

The three-dimensional case can be treated in a parallel
fashion to the two-dimensional case. By considering the
same separable potential adopted in 2D, and by follow-
ing the same steps which lead to equation (A.4), we now
obtain:

t−1(P ) =
1
v0

+
m

2π2

[
k0 −m1/2

√
−2µ0 +

P2

4m
− iΩν

× arctan
k0/m

1/2√
−2µ0 + P2

4m − iΩν

]
(A.12)
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where the complex arctan is defined, as usual, in terms of
the principal branch of the complex logarithm as follows:

arctan z =
i
2

ln
1− iz
1 + iz

· (A.13)

Like in 2D, the t-matrix t(P, z) has a branch cut along
the real axis for P2/(4m) + 2|µ0| < Re(z) < P2/(4m) +
2|µ0|+k2

0/m, and a simple pole located along the real axis
for Rez > P2/(4m) + 2|µ0| + k2

0/m. Upon transforming
the frequency sum in (A.5) into a contour integration, the
t-matrix simple pole contribution will be again strongly
suppressed by the Bose factor, while the term associated
with the integration along the cut can now be proven to
be smaller than the term originating from the simple pole
of the Green’s function by a factor (nr3

0)1/2. In the dilute
limit, only the simple pole of the Green’s function there-
fore contributes to the contour integration. By the same
argument leading to equation (A.7), we obtain the follow-
ing asymptotic expression for the t-matrix self-energy:

Σt(q)
2n

≈ w2
q/2

[
1
v0

+
m

2π2

(
k0 −

√
|µ0|+

q2

4m
− iων

×m1/2 arctan
k0/m

1/2√
|µ0|+ q2

4m − iων

)]−1

· (A.14)

The asymptotic expression (A.14) has also been checked
against numerical calculation of equation (A.5) in three
dimensions. In Figure 3 the analytic expression (A.14)
is compared with the numerical results for the choice of
parameters T = Tn, (2π2)/(mv0k0) → 0, and n1/3r0 =
1× 10−2. Even in 3D the agreement is excellent.

The approximation Σt(q) ' Σ(0) has further been
checked by evaluating the particle density. In this case,
we have found that the error introduced by the approxi-
mation (A.1) in the estimate for the density is less than
1% when nr3

0 . 5× 10−3.
Finally, the solution of the quasi-particle-pole equa-

tion (A.9) at q = 0 in 3D is given by

ω0 = −µ+Σt(0) = |µ0|, (A.15)

while the retarded self-energy near the quasi-particle pole
is given by

Σ(q, ω) =
2n

m
4πa − i m2π2A(q, ω)

[
π
2 + i

2 ln π/(2aA(q,ω))+1
π/(2aA(q,ω))−1

]
(A.16)

with A(q, ω) =
√
ω − q2/(4m)− |µ0| and where we

have introduced the scattering length a via the relation
m/(4πa) ≈ (mk0)/(2π2). By using the definition (A.8),
the effective mass at q = 0 can be readily calculated,
leading to the result:

m∗

m
≈
[
1 +

8πna3

m

(
1 +

4
π2

)][
1 +

4πna3

m

(
1 +

4
π2

)]−1

≈ 1 +
4πna3

m

(
1 +

4
π2

)
· (A.17)
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Fig. 3. Σ(q, ων) (units of Tn) for a 3D dilute Bose gas at
T = Tn and n1/3r0 = 1 × 10−2. Numerical results for ν =
10 (diamonds) and ν = 100 (squares) are compared with the
analytic expression (A.14) (full and dotted lines, respectively).

Note that the interaction increases the (quasi)-particle
mass both in 3D and in 2D with respect to its bare value.
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