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Abstract 

In this paper we analyze Ko’s Theorem 3.4 in [9]. We extend point (b) of Ko’s Theorem by showing that 
P I_he&JP n co-UP) = UP rl co-UP. As a corollary, we get the equality P,,&JP n co-UP) = P,.,,,,(LJP n co-UP), which is, 
to our knowledge, a unique result of type P,_,,, (‘Z?‘) = P,,,&@), for a class B that would not be equal to P. With regard to 

point (a) of Ko’s Theorem, we observe that it also holds for the classes Up, and for FewP. In spite of this, we prove that 
point (b) of Theorem 3.4 fails for such classes in a relativized world. This is obtained by showing the relativized separation 
of UP2 n CO-VP, from PI_he,p (NP n co-NP). Finally, we suggest a natural line of research arising from these facts. 
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1. Introduction 

Schijning [lo] proposed a notion of an oracle set 
helping the computation of a language. He intro- 
duced the basic concept of a robust machine, that is, 
a deterministic oracle Turing machine that always 
recognizes the same language, independent of the 
oracle that is used. The oracle is only for possibly 
speeding up the computation. Precisely, a language 
L is said to be recognized in polynomial time with 
the help of an oracle H if there is a robust machine 
A4 recognizing L such that M with oracle H runs in 
polynomial time. The first basic result obtained by 
SchBning states that the class Phelp of languages 
recognized in polynomial time with the help of some 
oracle is equal to NP fl co-NP. Thus, the nontrivial 

languages which can be helped belong to the quite 

* Corresponding author. Email: silvestri@dsi.uniromal .it. 

narrow and little known domain NP n co-NP - P. 

This fact led Ko [9] to introduce a notion of partial 
helping, called one-sided helping, in which the ora- 
cle is requested to speed up the computation only 
when the input belongs to the language. Ko proved 
that the class P,_he,p of languages recognized in poly- 
nomial time with the one-sided help of some oracle 
is equal to NP (see [71 for a recent survey). In this 
work we consider Theorem 3.4 in [9] and point out 
some questions about it. 

Theorem 1 (Ko 193, Theorem 3.4). 

(a) UP C P,.,,,,@JF9. 
(b) UP n co-UP = P,,,,(UP n co-UP). 

Here, for a given class L? of oracle languages, 
P,,,,(g) (P,.,,,,(E’)) denotes the class of languages 
recognized in polynomial time with the help (one- 
sided help) of some oracle in B. We extend point (b) 
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of the theorem by proving that it holds for one-sided 

helping, that is P,_,,,,(UP n co-UP) = UP fl co-UP 
giving as a corollary P,_,,,,(UP fl co-UP) = Phelp(UP 
n co-up), or equivalently, P,_,,,,(UP n co-UP) = 
co-P,_,,,,(UP n co-UP). This is to our knowledge the 

only case in which P,.,,,,(L7) = P,+,(e’>, for a class 
$Y that would not be equal to P. For point (a) of 
Theorem 3.4 [9], we observe that the original proof 
also works for the classes UP, and FewP, that is 

UP, G P,_he,p(UP~) and FewP C P,.,,,,(FewP). These 
give the inclusions VP, n CO-UP, c P,+,(UP,) and 
FewP rl co-FewP G P,,,,(FewP). The question of va- 

lidity of the inverse inclusion of point (a) of Theo- 

rem 3.4 is open, as any of those listed above. How- 
ever it has been proved that there exist oracles for 

which these inclusions are proper [5,6]. The exis- 
tence of an oracle for which UP is properly included 
in P,_,,,,(UP) has also been proved in [4]. We prove 
here the existence of an oracle for which Up, fl co- 

UP, is not contained in P,.,,,,(NP rl co-NP), which 
implies the relativized separations of UP, rl co-UP, 

from P,,,,(UP~ n co-UP,), for every k 2 2, and of 
FewP n co-FewP from P,,,,(FewP n co-FewP). 
These facts show that point (b) of Theorem 3.4 in [9] 
fails for the classes VP, and FewP, at least in a 
relativized world. Finally, we suggest a natural line 
of research arising from our results. 

2. Notations and preliminaries 

Let 2 = (0, 1) be the binary alphabet. For any 
word x E Z: *, let I x 1 be the length of x. For any II, 
let 2” be the set of all the words of length n over 
2. We denote the usual pairing functions by 

;:; 
.):Z* x2* +_Z* and 

., .):X*xZ*xZ*-,Z*. 

For any class of languages g, let co-E? = {L 1 z E 
@, where z denotes the complement of L. For any 
integer k > 1, UP, is the class of languages accepted 
by nondeterministic polynomial-time Turing ma- 
chines which, for every input, have at most k accept- 
ing paths [3]. In particular, UP = UP,. FewP is the 
class of languages accepted by nondeterministic 
polynomial-time Turing machines such that for some 
fixed polynomial q and for every input x the ma- 
chine has at most q( 1 x 1) accepting paths [ 11 (for 
more on these classes see [SD. 

If M is a Turing machine, L( M > is the language 
accepted by M. A robust machine is a deterministic 
oracle Turing machine M such that for every oracle 
A, L(MA>=L(MO). We say that an oracle A helps 

a robust machine M if MA runs in polynomial time. 
We denote by P,,,,(A) the class of languages ac- 
cepted by robust machines helped by oracle A, and 
we let P,,,,(LY) := lJ A E 8 P,,,,,(A), for a class g 

[lo]. An oracle A one-sidedly helps a robust ma- 
chine M if there exists a polynomial p such that for 
every xEL(MO), MA(x) halts in p(I xl) steps. 

We denote by P,_,,,(A) the class of languages ac- 
cepted by robust machines one-sidedly helped by 

oracle A, and we let P,_h,_,p(%?) := U A f gP,.,,,,(A), 
for a class S? [9]. 

3. UP rl co-UP, helping and one-sided helping 

First, we list two well-known results, Theorem 2 
and Fact 3: Theorem 2 is contained in [9]. 

Theorem 2 (Ko [9]>. For any complexity class ‘37 

closed with respect to the < F-reducibility, 

%I,,,( g’> c g’. 

Fact 3. The class UP n co-UP is closed w.r.t. < 7p, 
or equivalently, Pup n c0-up c UP n co-UP. 

Now we are in position to extend point (b) of 
Theorem 1 to one-sided helping. 

Theorem 4. P,.,,,,(UP n co-UP) = UP n co-UP. 

Proof. ( C) It follows from the fact that UP n co-UP 
is closed w.r.t. < ,7p, as stated in Fact 3, and from the 
fact that any class $7 closed w.r.t. Q F is such that 

P,.,,,&E”> c %‘, as stated in Theorem 2. 
( 2) It follows from P,,,,(UP n co-UP) c 

P ,_,,_&JP n co-UP) and from Theorem l(b). 0 

From the above result and Theorem 1 we immedi- 
ately obtain the following. 

Corollary 5. 
(a> P,.,,,,(UP n co-up) = P,,,,(UP n co-UP). 

(b) P ,_he,p(UP n CO-UN = CO-P,,,,,WP n CO-UP). 
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Examining the proof of UPC P,_,,,,(UP) in [9], 

we deduce that the same idea works in proving the 
following theorem that also follows from a stronger 
result obtained by Yamakami in an unpublished 
manuscript [ 111. 

Theorem 6. 
(a> For any k > 1, Up, C P, _,,+,(UPk) 
(b) FewP C P,.,,,,,(FewP). 

The other directions of all the inclusions relating 

to Theorems 1 and 6 are open, however it has been 
proved that there exist oracles for which all of these 
inclusions are proper [4-61. Given that P,,,(%‘) = 

P,.,,,,(%?) fl co-P,.,,,,(%?) for any class %, Theorem 
6 implies that, for every k > 1, Up, rl co-UP, c 

P,,,(UP,) and FewP fl co-FewP c P,,,,(FewP). In 
the next section we prove that there exist oracles for 
which also these inclusions are proper. 

4. Relativized separations 

In this section we prove the existence of an 
oracle for which UP* n CO-VP, is not contained 
in P ,++(NP n co-NP). From this we get the rela- 

tivized separations of VP, n CO-UP, from P,,&JP~ 
n co-UP,), for every k 2 2, and of FewP n co-FewP 
from P,,,,(FewP n co-FewP), that is, point (b) of 
Theorem 1 fails for the classes UP, and FewP, at 
least in a relativized world. 

To relativize the notion of a robust machine, we 
consider deterministic Turing machines that have 
access to two oracles (for instance, by two separate 
oracle tapes). For any two oracles X and Y, we 
denote by IV**’ the machine M having access to the 
oracles X and Y. We say that M is an X-robust 
machine if for every oracle Y, L(MxVy ) = L(MXsO ). 
An oracle H one-sidedly helps an X-robust machine 
M if there exists a polynomial p such that for every 
~EL(M”*~), MXTH(x) halts in p( I x I> steps. Let 

P,!,,,,,(g) be the cl ass of languages accepted by 
X-robust machines one-sidedly helped by oracles in 
the class g’. 

In order to obtain the above separations it is 
convenient to characterize the class P,.,,,,(NP n 
co-NP) and its relativizations in terms of simple 
Turing machines. The characterization is similar to 

that given in [2] for general helping classes. 

Theorem 7. For every oracle X, a language L is in 

P,$,,,((NP n co-NP)* ) if and only if there exist two 

polynomial-time deterministic oracle Turing trans- 

ducers R,, R, and a polynomial p such that the 
following holds: 

(a) 
(i) 

(ii) 

(iii) 

(b) 
(i) 

(ii) 

Proof. 

x E L implies 

El!y,DyJl y, I = I y2 I = P(l x I) A 
R~((x, y,, y2))= 11 ’ (unambigzdy), 
WY,, y2)[R,X((x, Y,, ~2)) + Or\ 

Rf(( x, y,)> # 01 (correctness), 

WY,, y2)[R:(h Y,, ~2))= 1 * 

Rf((x, y,>> = 11 (heredity). 

x GZ L implies 

(3!y,X3y,N y, I = I Y, I = P(I x I) A 
Rf(( x, y,, y, )I = 01 (unambiguity) 

(Vy,, yJR:((x, Y,, ~2))f 1 A 

Rf(( x, y,)) # 11 (correctness). 

Let L E P,&((NP n co-NP)*) via an X- 

robust machine M with one-sided helper HE (NP n 

co-NP)X. Let q be a polynomial such that for every 
x E L, MX,“(x) halts in q( I x I) steps. Without loss 
of generality, we assume that there is a polynomial t 
such that M, on every input x, makes only queries 
of length t( I x I) to the second oracle. Since H E 

(NP n co-NP)*, there exists a polynomial-time de- 
terministic oracle Turing transducer S and a polyno- 
mial r such that, for every x, 

x~H~(3z)[]z]=r(lxl)AS*(x, z)=l] 

and 

x~H~(3z)[lzl=r(lxl)AS*(x, z)=o]. 

Let p be the polynomial such that p(n) = q(n). 
r(t(n>) for every n. Define R, and R, as follows: 

R;((x, y,. y2%= if ly,I +p(lxl)or Iy21 + 
p( I x I), then output “#“. Otherwise, let y2 = 

ZlZ2 *. . Z,(lxl) with I z, I = . . . = I z,(lxl) I = 
r(t( I x I)) and simulate M’(x), for at most q( I x I) 
steps, answering the ith query wi to the second 
oracle by the ith symbol of y,, and check the 
correctness of the answer by the ith certificate, for 
H, contained in y,, that is, check whether or not 

’ The quantifier “3!” means ‘there exists a unique’. 
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Sx( wi, zi> = ith symbol of y,. Let m be the number 
of queries to the second oracle made during this 
simulation. If either there is a j > m such that the jth 
symbol of y, is not 0 or some check is not success- 
ful, then output “#“. Otherwise, if the simulated 

computation M’(x) halts and accepts, then output 

“l”, or else output “0”. 

R,((x, yr)>:= if I y, I +p(I xl> then output 
“ “. Otherwise, simulate M’(x), for at most # 
q( I x I > steps, answering the ith query to the second 
oracle by the ith symbol of y,. Output “1” if 

A4’( x) halts and accepts, output “# ” otherwise. 

We have to prove that R,, R,, and p satisfy the 
conditions above. Let m be the number of queries 

that Magi makes to H within q( I x I> steps and 
let wi be the ith of such queries. Let K be the word 
such that the ith symbol of K is equal to H(Wi) if 
i Q m and it is equal to 0 otherwise. For every 

i= l,..., m let zi be a word such that I zi I = 
r(t( I x I)) and Sx(wi, zi) = H(wi). Let 

yZ = z, . . . Z,OP(IXI)-m~r(‘(l~l)). 

Now, it is easy to see that Rf(( x, E, y2)) = L(x) 
and that if for some y’ and. y” it holds that 
Rf(( x, y’, y”)) = L(x) then y’ =x. This shows 
that the two unambiguity conditions are satisfied. 
The verification of the validity of the other condi- 

tions is routine. 
Conversely, let L, R,, R,, and p satisfy the 

above conditions. Define 

AR,x((x, uu, Y>) = I]}. 

Since R, satisfies the unambiguity conditions, for 
every x there is a unique word yx of length p( I x I) 
for which (3y)[ I y I = p( I x I) A Rt(( x, Y,. Y)) = 
L(x)]. To show that H belongs to (NP n CO-NP~~ it 
suffices to observe that a polynomial-time non- 
deterministic Turing machine with oracle X, on 
input (x, u>, can guess yx (together with a y such 
that Rf((x, yx, y>> E (0, l)), successively if 
Rt(( x, y,, y)) = 1 and u is a prefix of y, then 

outputs “I”, otherwise outputs “0”. Now, an X- 
robust machine M that recognizes L can be defined 

as follows: MXgA on input x does a prefix search, by 
the second oracle A, to compute a word y of length 
p( I x I), successively if Rf(( x, y)) = 1 then halts 

and accepts, otherwise uses R, to compute L(x). 
Since R, and R, satisfy the correctness and unambi- 
guity conditions, it is easy to see that M is indeed an 
X-robust machine. When the second oracle of M is 
H, the word computed by the prefix search is equal 
to y,. Moreover, if x E Z_. then R, and R, satisfy the 

heredity condition which means that Rf(( x, y,>) = 
1. It follows that H one-sidedly helps M. Cl 

Now, we are ready to prove the following. 

Theorem 8. There exists an oracle A such that 

( UP2 n co-up,) * g P&.,J (Np n COW) “). 

Proof. For the sake of convenience, we consider 
oracles as functions from 2 * to (0, 1, #}. For any 
n E N, U,U E (0, 1)” with I UI = I uI =n, b E 
{O, 1, 

It 

}, and for any oracle function A : 2 * + 
(0, 1, ), we denote by Ab,[ u] the oracle function 
defined as follows: 

i 

b if x=u, 

Ab,[u]( x) := # if 1x1 =nand x#u, 

A( x) otherwise. 

Likewise, we denote by Ab,[u, u] the oracle function 
defined as follows: 

i 

b if x=u or x=v, 

Ab,[u, v](x) := # if Ixl=nand xfu,u, 

4 x> otherwise. 

For any oracle E, word x, and for any oracle Turing 
machine R, we denote by Q< RE( x>) the set of 
queries made by the computation RE(x). 

Let (CR,, RZ)iJiao be a list of all the pairs of 
polynomial-time deterministic oracle Turing trans- 
ducers. For any pair (R,, R,ji, let pi be a polyno- 
mial such that, for any n, p,(n) bounds the running 
time of Rf(( x, y>> and RF(( x, y, z)> for all words 
x, y, z with 1 x 1 = 1 y I = I z I = n and for all ora- 
cles E. Without loss of generality, we assume that 

Q(RF(( x, y))> C Q< R;(( x, y, z))) for all words 
x, y, z. For every oracle function E we define the 
following language: T(E) := (0” 13~ 1 y I = n A 
E(y) = 1). We will construct an oracle A in such a 
way that for every positive integer n, 1 Q I{ y I 
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Iyl=nAA(y)Z#}Ig2,andforany y,, y,,with 
ly,l=lyZI, A(y,)=l~AA(y2)+0. Thiswillen- 
sure that T(A) E (Up, n co-UP,)A. The construction 
of the oracle will be done by stages. At any stage k 

we diagonalize against the pair CR,, R,), defining a 
suitable oracle function A,. 

Begin Construction 

Stage 0. Let A, be the oracle function such that, for 
every n, AO(O”) = 0, A,(Y) = 0, and A,(y) = # 
elsewhere. Let I(O) := 0. 
Stage k. Let 2(k) be large enough so that 
(1) pk._ ,(l(k - 1)) < E(k), 
(2) 2’ck) - pk( I( k)) < 2’(k)(2’(k) + 1)/2. 

Let R,, R, be the two transducers of the kth pair 
and let n = I(k). If there exists a word u of length n 

such that Rp:[“] and R$[“] do not satisfy conditions 
(a) and (b) of Theorem 7 w.r.t. 0” and T( Aju]), 
then we simply set A, := A:[ U] and go to the next 
stage. 

Otherwise, for any word u E C” we denote by 
y,(u) and y2(u) two words in Z” for which 
R$[“l((O”, y,(u), y&u))) = 1. Let G, = (V,,, E,) be 
the directed graph defined as: 

v, := Z:“, 

E,, := {(u, u) 1 

UE Q(R;Li”l((o”, Y,(U), Y*(U))))). 

Every vertex u has at most p,(n) outgoing edges 
and I V, I = 2”. Thus I E, I d 2”p,(n) which is less 
than I V, I( I V,, I + 1)/2, that is, the number of all the 
unordered pairs of vertices of V,,. Hence, there exist 
two vertices u, u (possibly u = u) for which (u, V) 
g E,, and (u, u) I E,,. Now two cases can occur: 

Case 1: y,(u) # y,(u). In this case the unambigu- 
ity of condition (a) is violated, because 

R;~~U*U1((O”, y,(u), y2( u))) = 1 and 

R;LIU*U1((On, y,( u), yz( u))) = 1. 

So we set A, := A’,[u, u]. 

Case 2: y,(u) = y,(u). Observe that 

u E Q(R:“t”l((O”, Y,( +)) and 

u E Q( R;4iru1((O”, y,(u)>)). 

Furthermore, R ;9:[“1((0”, y,(u))> = 1 by the heredity 
of condition (a). We claim that 

u E Q( R;4:IU1((O”. y,(u)>)). 

Suppose the contrary and consider the computation 
RAnrU1((O”, y,(u))). It makes a first set of queries all 
di,fferent from u, since (u, u) e E,, and all receiving 
answer “ # “, then it queries u. But this first part of 
the computation must be equal to that of 
R;4~r”1((0”, y,(u))), because y,(u) = y,(u). so 
Rtb[‘l((O”, y,(u))> queries u, contradicting 
the fact that (u, u) e E,. This implies that 
RA~[u*ul((On, y,(u)>) = 1, which violates the correct- 
ndss of condition (b) w.r.t. 0” and T( At[u, u]). So 

we set A, := A:[ U, u]. 

End Construction 

Set A := lim, A,. This limit exists since for any 
x there is an h such that, for any k B h, A,(x) = 

A,(x). Moreover, it is easy to verify that 

T(A) l (Ul’~nco-UP~)~ 

- P,fh,,,( (NP n COW) “). cl 

Corollary 9. There exists an oracle A for which 

6) (UP, n CO-UP,)~ g P,!he,p((UP~ n co-UP,)A), 
for euery k > 2, 

(ii) (FewP n co-FewPjA g 
P,!,,,,((FewP n co-FewP)A). 

Clearly, this implies the analogous separations for 
two-sided helping. 

5. Comments and open questions 

We feel that these results, although easy, can 
stimulate new lines of research, like the search for 
other classes Z? for which P,_he,p(%T) = P,,,,,(S), or 
prove that for any other class not equal to UP n 
co-UP, this is not true, at least in a relativized world. 
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Since 

PL,,,p( 6 ” g2’2) = PI-help( 6) ” P,.,,,p( g2’2) 9 

it makes sense to search for the largest class Z for 
which P,_,,,(9) = P,,,,(g). At the present, we only 
know that this class is included between UP fl co-UP 
and NP n co-NP. 

The equality P,_,,,r(@) = P,,,(g) is equivalent to 
P,&.,r(@ = co-P,_,,,,(@, so 

P,_he,p( UP fl CO-UP) = co-P,,,,,(uP n CO-UP). 

For this result, the property of being closed with 
respect to the < r P-reducibility does not seem to be 
crucial: for example, it could be the case that 

P,_,,,r( Np n CO-Np) z CO-P,,,,,( Np n CO-~) . 

It seems natural to search for sufficient conditions on 
a class 8 which make P,_,,,,(g) = co-P,,,,,(@ true. 

Finally, we propose the following questions: is it 
true that, for any class %Y, 

g= P,,,(V * p= P,-Mp(~) or 

Pll,,r(S) = PLh&3 =$ g= PI&V 
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