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We analyze the growth of a crystal from its supercooled liquid in acloseddomain (constrained growth),
taking into account the effects due to the different densitiesrs andrl of the solid and liquid phases. We assume
rl .rs, i.e., the liquid expands upon solidification. Then, the growth is contrasted by an increasing pressure,
which results in a continuous decrease of the coexistence temperature and the effective supercooling. These
phenomena have been simulated in two dimensions through a modified version of the classic phase-field
model. We observe that for spherical growth the interface temperature reflects almost instantaneously the
change of the coexistence temperature. For dendritic growth, we observed a relaxation time for the dendrite tip
velocity and the tip radius which is comparable to the characteristic time of the process; however, after the first
fast transient, the growth dynamics seems to follow the changing pressure with no appreciable lag. The onset
of the morphological instability is slightly anticipated in respect to free growth.
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I. INTRODUCTION

Solidification from a supercooled melt is generally ad-
dressed as a diffusion controlled process, as the latent heat
released at the solid-liquid interface must be rejected away
from the advancing front[1]. In this sense, the only external
parameter available to control the process is the supercooling
imposed at infinityD=CsT0−T`d /L0, whereC is the specific
heat,T0 represents the coexistence temperature of the solid
and liquid phases andL0 the latent heat per unit mass. This
picture is valid, to a first approximation, in absence of buoy-
ancy effects(i.e., in a microgravity environment) [2]. How-
ever, even in this case, the volume change in solidification is
the source of a richer phenomenology, which deserves fur-
ther investigation. In this perspective, some experimental in-
vestigations stressed the role of pressure as a possible control
variable in solidification experiments. The melting tempera-
ture changes with pressure according to the Clapeyron equa-
tion; then pressure variations during solidification allow the
researcher to control in a rapid and uniform way the actual
supercooling of the melt[3,4]. It has also been shown that
the frequency of dendritic side-branching can be tuned by
periodic pressure variations, to induce a regularization of the
growth pattern[5,6].

The Clapeyron’s effect can play also a role for solidifica-
tion in a closed system, i.e., at constant volume. Whenrl ,rs
(contraction) tensile stresses eventually result in the forma-
tion of cavities, where the pressure level is fixed by the local
vapor pressure; whenrl .rs the liquid expands upon solidi-
fication, and the pressure increases with time due to the me-
chanical constraint of the domain’s walls. The latter case,
typical for water, is of central relevance in geological pro-
cesses. Moreover, recent experiments on the melting and so-
lidification of nanoscale crystals, encapsulated in fullerene-
like graphitic shells, put into evidence significant alterations
of the phase-change dynamics; the overpressure due to the
carbon shell seems to be responsible of some of these effects
[7].

In this paper we address the growth of a crystal in a
closedsystem, using a modified version of the phase-field
model [8], which takes into account the hydrodynamic and
elastic corrections to the classic diffusive problem. The
model is a refinement of a previous approach[9], with a
more consistent derivation of the thermodynamic potential,
and incorporates also ideas proposed by Caginalp and Jones
[10], Oxtoby[11], Andersonet al. [12], and Tonget al. [13].
We assumerl .rs, i.e., the liquid expands upon solidifica-
tion. The aim of our investigation is to characterize the in-
terplay between the(fast) relaxation of the mechanical
modes and the(slow) relaxation of the thermal field. The
model has been solved numerically in two dimensions to
describe the spherical growth of a solid nucleus, with isotro-
pic and anisotropic surface tension. In the first case we ob-
serve that during the growth, the interface temperature can be
well approximated through the Clapeyron’s equation, with
the usual capillary and kinetic corrections. This indicates that
even in presence of strong elastic transients, the interface
kinetics is essentially driven by the average pressure inside
the system. Along the growth, due to the morphological in-
stability, the crystal loses its spherical shape[14]. We ob-
served that in respect to nonconstrained growth, the onset of
this instability is slightly anticipated. With anisotropic sur-
face tension, the solid seed develops into the well known
needle crystal(or free dendrite). As shown by Ivantsov[15],
the purely diffusive solution is a shape-preserving parabola
which moves at constant velocity. The Peclet number, i.e.,
the product of the tip radiusRtip and the tip velocityvtip, is
uniquely fixed by the supercoolingD. Our numerical simu-
lations show that in a closed system the increasing pressure
alters significantly the growth dynamics, destroying the
steady regime; to follow the decreasing supercooling, the
Peclet number changes with time. We observed that the re-
laxation time for this phenomenon is comparable to the char-
acteristic time of the process; however, after the first fast
transient, the growth dynamics seems to follow the changing
pressure with no appreciable lag.
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II. THE EQUATIONS OF THE MODEL

The governing equations of the model are derived in full
details in Ref.[8]. The order parameterf takes the values
f=0 in the solid andf=1 in the liquid. The solid phase is
modelled as an isotropic fluid with large viscosity. We indi-
cate withT0, p0, rs0, rl0 the temperature, pressure, solid, and
liquid density, respectively, in an equilibrium reference state.
The equilibrium densityr0sfd is assumed to change in the
interfacial region asr0;r0sfd=rs0+psfdsrl0−rs0d, where
the functionpsfd=f3s10−15f+6f2d is monotonic and in-
creasing withf, taking the valuesps0d=0, ps1d=1. A non-
dimensional form of the model equations is obtained adopt-
ing a reference lengthj and scaling time tot=j2/D (D is the
thermal diffusivity). Density is scaled asr /rl0 and a nondi-
mensional temperature is introduced asu=CsT−T0d /L0.
Specific energies will be scaled tov0

2, wherev0=j /t, and the
scale for pressure and the components of the stress tensor is
rl0v0

2. Notice that in the following we neglect thermal expan-
sion effects; moreover equal values in both phases are as-
sumed for the specific heat, the thermal diffusivity and the
isothermal compressibility.

Then, the model equations read
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where T and P indicate, respectively, the capillary and
the viscous stress tensor, which components are
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In the above equations the parameters are defined as
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whereg is the surface tension,h is the interface thickness,
and d0=sgCT0d / sr0L0

2d is the capillary length. Moreover,m
is the kinetic supercooling coefficient that relates the inter-
face supercooling to the interface velocityvI through vI
=msT0−Td; k is the isothermal compressibility andhl, zl rep-
resent the first and second viscosity in the liquid. The func-
tion gsfd=s1/4df2s1−fd2 is the classic double-well
Landau-Ginzburg contribution to the free energy. Anisotropy
of the surface energy is accounted for through the function
hsud=s1+v cos 4ud, where u is defined as the angle be-
tween the normal to the interface and a fixed direction, thex
axis in our calculations, andv specifies the intensity of the
anisotropy. The functionlsfd describes the transition of the
system’s viscosity across the interface. In the bulk solid we
assumedhs=103hl. To allow a complete relaxation of the
order parameter towards the stable solid phase in a reason-
able time, we definedlsfd=hs/hl +qsfds1−hs/hld with
qsfd=1 for fù0 andqsfd=0 for f=0. Table I summarizes
the values of the thermophysical properties we used to esti-
mate the model parameters; notice that we referred to the
phase diagram and to the elastic properties of nickel. The
interface thickness has been chosen ash=30310−8 cm.
Choosing an(arbitrary) length scalej=2310−4 cm, we have
the following values of the parameters:a=265, m=0.1, ẽ
=1.5310−3, R1=3.533106, R2=R3=1.07310−2, R4=R7
=0.105, R5=4.943103. The density ratio is chosen asS
=0.85.

TABLE I. Material properties utilized to evaluate the model
parameters.

Parameter Value

rl0 8.0403103 Kg m−3

L0 2.933105 J Kg−1

T0 1.7283103 K

C 4.443102 J Kg−1 K−1

D 1.54310−5 m2 s−1

g 0.8 J m−2

m 2.62 m s−1K−1

k 5.56310−12 m3 J−1

hl =zl 1.30310−3 J s m−3
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III. NUMERICAL RESULTS

Equations(1)–(4) have been solved on a computational
domain 0øxøxm, 0øyøym, with impermeable boundary
conditions. Time integration was exploited through an ex-
plicit scheme except for the momentum equations, in which,
due to the large viscosity of the solid phase, we were forced
to employ an implicit scheme. Second order central differ-
ences were used for the Laplace operator, and upwind differ-
ences for the convective terms. The grid spacing was se-
lected asDx=Dy= ẽ; the time step required for numerical
stability is Dt=0.36310−6. Following a standard method in
computational fluid dynamics, the velocity fieldsvx,vy were
solved on two computational grids shifted ofDx/2 andDy/2
in respect to the one used for the scalar fields.

A. Spherical growth

Let us first consider the isotropic growthsv=0d of a
spherical nucleus. We choosexm=ym=1.8. Initially, the uni-
form supercooled meltsD=0.7d is at rest sf=1,r=1,vx
=0,vy=0,u=−Dd; then a circular solid seedsf=0,r=S,u
=0d is nucleated, with center atx=xm/2, y=ym/2 and a su-
percritical radiusR0=0.012. Here and in the following the
numerical results will be reported in nondimensional units.
For the reader’s convenience we recall that the length scale is
2310−4 cm, the velocity scale 7.703102 cm s−1 and the
time scale 2.58310−7 s. The pressure scale is 4.77
3105 Pa.

In the first stage of the growth surface tension effects
prevail, and the crystal preserves a circular shape; then, after
the onset of the morphological instability, the spherical sym-
metry is destroyed. Figures 1(a)–1(c) show the pressure field
in the liquid at three different times. The first picture shows
the sharp pressure step around the crystal(the white spot at
the center of the graph), due to the sudden expansion of the
solidified melt. Then the pressure wave reaches the domain’s
boundaries, where it is reflected and redirected towards the
crystal [Figs.1(b) and 1(c). The sequence of the pictures
shows that the average pressure increases with time, as any
volume change of the system is prevented by the imperme-
able walls. Then, as predicted by the Clapeyron’s equation,
we expect a drop of the effective supercooling along the
growth. This effect is evidenced in Fig. 2 where the growth
rate is represented versus time. For comparison we show also
the data obtained with an identical system, withpermeable
boundary conditions. In a first stage the two curves coincide
(until the reflected wave impinges on the crystal’s surface).
Then the growth rate in free conditions approaches asymp-
totically a constant value. For constrained growth, on the
contrary, we see the continuous slowing of the process, due
to the decrease of the thermodynamic force available for so-
lidification.

To better understand the extent of this effect, we observe
that the Clapeyron’s equation, in nondimensional form, may
be written as

up =
ẽ

a

S− 1

S

1

R3
sp − p0d, s7d

whereup, the shift of the coexistence temperature, is related
to the pressure shiftsp−p0d. The latter, averaged over the
entire system, may be estimated as

kp − p0l =
R1R3

m
F 1

1 + xssS− 1d
− 1G , s8d

wherexs is the actual solid fraction. We recall also that for a
solid-liquid interface with curvaturek, the equilibrium tem-
perature shift, due to the Gibbs-Thomson effect, is

FIG. 1. The pressure wave originated at the solid-liquid inter-
face, at times 1.15310−3 (a), 2.52310−3 (b), and 2.52310−2 (c).
Notice the increase with time of the average pressure.
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uk = −
k

6Î2a
. s9d

Figure 3 shows, versus time, the interface temperature as
obtained through the numerical simulation, compared with
the contributionsup andup+uk.

We observe that the numerical solution agrees to a quite
good extent with the pressure plus curvature shifts obtained
using the actual solid fraction and the curvature of the crys-
tal. This means that the interface temperature follows almost
instantaneously the change of the actual supercooling.

For the free growth of a spherical nucleus, the linear
analysis of Mullins and Sekerka[14] can determine the larg-
est radiusR=Rp of the crystal which still corresponds to a
stable symmetric growth. An interesting question is whether
the onset of the morphological instability is altered in a
closed system. To estimateRp we observe that, due to the
finite spacing of the grid, the symmetry of the crystal is very
poor in the early stage of the growth, and improves with time

until RøRp, when the crystal begins to lose its sphericity. A
simple indicator for the deviations of the crystal from the
circular shape may be constructed considering the first and
the second moment of its radius, i.e., the average radiusRav
and the gyration ratioRgyr. The differenceRgyr−Rav vanishes
for a symmetric disk and increases when the circular sym-
metry is lost. We estimated the average radius asRav
=ÎAsol/p, with Asol indicating the total area of the solidified
mass. Indeed, Fig. 4 shows that this difference, represented
versusRav, first diminishes, traverses a minimum and then,
after the onset of the instability, increases with increasing the
size of the crystal. The position of the minimum can be as-
sumed as a reasonable estimation ofR=Rp. We observe in
the figure that for constrained growth the onset of the insta-
bility is slightly anticipated with respect to free growth. This
effect is consistent with the results of a previous investiga-
tion [16] which pointed out that the stability of the growth
increases with increasing the effective supercooling.

FIG. 2. The growth rate versus time for spherical growth in an
open and a closed system.

FIG. 3. Interface temperature versus time for spherical growth.
The numerical solution is compared with the pressure and curvature
corrections to the coexistence temperature.

FIG. 4. The difference between the gyration radius of the crystal
and the average radiusRav, versusRav. The two curves show that for
constrained growth the loss of spherical symmetry is slightly antici-
pated with respect to free growth.

FIG. 5. Dendritic growth. Tip velocity versus time in a open and
a closed system.
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B. The needle crystal

Another set of experiments, withv=0.03 andD=0.7, is
concerned with dendritic growth. We set a circular seed cen-
tered atx=0, y=ym/2, with a supercritical radiusR0=0.012.
After the onset of the morphological instability, the pattern
selected by the system is a needle crystal propagating along
the x axis. Figures 5 and 6 show, versus time, the velocity
and the radius of the dendrite tip. We observe, for an open
system, the well-known steady regime. On the contrary, in a
closed system the growth is characterized by a continuous
decrease of the effective supercoolingDp=D+up, so that the
tip velocity decreases with time and the tip radius increases.
According to the Ivantsov’s analysis, insteadyconditions the
Peclet number, defined asP=0.5sRtipvtipd, should only de-
pend on the melt supercooling. An interesting question is
whether in a closed system the growth follows a quasisteady

dynamics, adapting instantaneously to the variation of the
effective supercoolingDp. In Fig. 7 we show the decrease of
the Peclet number along the growth(solid line), reflecting
the decrease of the effective supercooling. On the same
graph we superimposed(diamonds) some values of the Pe-
clet number obtained forsteadygrowth in an open system,
with values of the supercoolingD corresponding to the in-
stantaneous values ofDp. We observe that the steady values
of the Peclet number represent a good approximation to the
dynamic evolution of the process except for the first fast
transient(notice that we were not able to obtain steady solu-
tions with Dø0.55).

To get some insight into this issue, we planned a different
experiment. During the free growth of a needle crystal, after
the steady regime was achieved, we impressed a step varia-
tion of the external pressure(from p=0 to p=1200). The
transition of the system towards the new regime is shown in
Figs. 8 and 9, where the tip velocity and the tip radius are

FIG. 6. Dendritic growth. Tip radius versus time in a open and a
closed system.

FIG. 7. Dendritic growth. The Peclet number versus time(solid
line). The diamonds represent the Peclet number obtained for steady
growth in a open system, with values of the supercoolingD corre-
sponding to the instantaneous values of the actual supercoolingDp.
From left to right these correspond to D
=0.675,0.650,0.625,0.600,0.575,0.550.

FIG. 8. Dendritic growth. Tip velocity versus time before and
after the step variation of the external pressure, which occurs at
time t=0.02.

FIG. 9. Dendritic growth. Tip radius versus time before and
after the step variation of the external pressure, which occurs at
time t=0.02.

PRESSURE EFFECTS FOR CRYSTAL GROWTH IN A… PHYSICAL REVIEW E 70, 031602(2004)

031602-5



represented versus time. We observe that the transition is not
instantaneous, and takes a time of the order ofDt,0.02.
This lag, at least in our case(solidification far from equilib-
rium), is not irrelevant with respect to the time scale of the
growth process, and in a fast transient we are not allowed to
decouple the growth dynamics from the pressure change. It
is worth to notice that the time scale we observed for the
relaxation of the system is in qualitative agreement with the
numerical and experimental results obtained by Börzsönyi
[5,6] in the frequencydomain. These authors studied the dy-
namic response of dendritic solidification to periodic pres-
sure variations, focussing their attention on the emission of
side branches. A resonance behavior was detected at frequen-
cies of the order off ,100; at frequencies larger than these,
the growth could not follow the external forcing.

IV. CONCLUSIONS

The results of this investigation show that volumetric ef-
fects can influence constrained crystal growth in a significant

manner. The melting temperature shift driven by the pressure
change along the growth reduces the thermodynamic force
available for solidification. The interface temperature
changes with time, and may be evaluated with a good accu-
racy through the Clapeyron equation and the curvature cor-
rection. The onset of the morphological instability, for a
spherical crystal, is slightly anticipated with respect to free
growth. In dendritic solidification the melting temperature
shift destroys the steady regime, and the tip radius and ve-
locity change with time. We observed that the relaxation time
for this phenomenon is comparable to the characteristic time
of the process, and consistent with the results of previous
investigations conducted in the frequency domain. However,
after the first fast transient, the Peclet number seems to be
well approximated by the values obtained in steady condi-
tions, with a supercooling corresponding to the instantaneous
actual supercooling. This indicates that a quasisteady ap-
proximation is a satisfactory approach to interpret the growth
dynamics.
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