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Advection flow effects in the growth of a free dendrite
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The growth of a free dendrite into a supercooled liquid is simulated through a modified version of the
phase-field model, which takes into account the advection flow due to the different depgsiiedp, of the
solid and liquid phases. The intensity of the flow is maximal at the dendrite tip and decays far from the surface
of the crystal. At fixed undercooling, as the density raiidp, increases, we observe a decrease of the tip
velocity, while the tip radius increases. The Peclet number is shifted with respect to the pure diffusive value.
The onset of the morphological instability, which is responsible for the origin of the dendrite from a growing
circular germ, is slightly anticipated by the flow effects.
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Most theoretical models for dendritic solidification as- The onset of the morphological instability is slightly antici-
sume a pure diffusive mechanism for the latent heat releasquhted by the flow effects. The derivation of the governing
at the solid-liquid interface. The steady solution obtained byequations is presented in detail in R]. The order param-
Ivantsov [1] for a free dendrite is a shape-preserving pa-eter ¢ takes the valuegp=0 in the solid and$=1 in the
rabola which can be characterized by the tip radyysand  liquid. The solid phase is modeled as an isotropic fluid with
the velocity vy, . Ivantsov's analysis fixes the product of large viscosity. We indicate witfy, pg, pso, andpq the
these quantities, through a relation between the Peclet nuneemperature, pressure, solid, and liquid density, respectively,
ber P=R;pv /2D (D is the thermal diffusivity and the di- in an equilibrium reference state. The equilibrium density
mensionless supercooling imposed at infinity=C(T, po(¢) is assumed to change in the interfacial regiorpgs
—T.)/Ly, whereC is the specific heatT, represents the =pq(d)=psot+pP(®)(p10o—pso), Where the functionp(e)
coexistence temperature of the solid and liquid phases, and ¢3(10— 154+ 6¢?) is monotonic and increasing witt,

L, the latent heat per unit mass. The degeneracy of thitaking the valuesp(0)=0, p(1)=1. A nondimensional
solution was removed observing that for a stable andorm of the model equations is obtained adopting a reference
steady tip propagation an anisotropic surface tensiois  length £ and scaling time tar=¢2/D. Density is scaled as
required, and the dendrite operating point was identifiedh/p,, and a nondimensional temperature is introduced as
determining the value of the so called stability constaft =C(T—T,)/L,. Specific energies will be scaled @3,
=doD/(REv4p). Wheredo=(yC To)/(poL§) is the capil- wherev,=¢/7, and the scale for the components of the
lary length[2]. However, in most solidification experiments stress tensor ig;qv3. Notice that in the following we neglect

a convection flow arises in the melt. Even in the absence ofhermal expansion effects; moreover, equal values in both
buoyancy effectsi.e., in space experimenii8]) anomalies in  phases are assumed for the specific heat, the thermal diffu-
dendritic growth were observed, which were ascribed to theivity, and the isothermal compressibility.

advection flow driven by the density change in the liquid- Then, the model equations read

solid transition. McFadden and Cori¢#t] extended the free-

boundary diffusive model to incorporate the advection ef- dp .

fects, obtaining two main result§) a parabolic shape is still ar —pV-U, @
consistent with a steady growth of the dendrite, &ndthe

Peclet number depends not only on the melt's undercooling, di

but it is also a decreasing function of the density reio pa=V~(T+H), 2

=pdp; . In this paper we address the coupled thermal and

hydrodynamic problem for the growth of a free dendrite us- du do 1

ing a modified version of the phase-field mog8|, which —+p'(¢p)—=V2u+ —(IL:V7), (3
incorporates previous ideas proposed by Caginalp and Jones dt dt PRs

[6], Oxtoby[7], Andersonet al.[8], and Tonget al.[9]. The g

numerical solution of the model shows that in the early stage_¢ e 2 e i ,

of the growth, the sudden dilatatidor compressionof the g M V- [7(OVel+ 07y[77( 0)n'(6) byl

liquid in front of the interface originates pressuend den-

sity) waves that propagate into the sample. Even before the d , m|dg(¢) , -
relaxation of this mechanical transient a needle crystal is — o [7(0)n (‘9)‘1’3/]}_?_2[ ip P (¢)paeu
formed, with a well defined tip radius and velocity. At fixed

undercooling, as the density rat®increases, we observe a 1 pg_pz

decrease of the tip velocity, while the tip radius increases, - Ep’(cﬁ)p(l—S) Ril —5—= 1. 4
and the Peclet number deviates from the pure diffusive value. PPy
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whereT andIl indicate, respectively, the capillary and the
viscous stress tensor, whose components are

R1R3 (p—po)
Tax=~Po~ — +Rapy+Redy,
RiR3 (p—po)
Tyy:_pO_T—+R2p>2<+R3¢§'
Txy: Tyx: - R2pxpy_ R3¢x¢y )
My =R ()] 2 2 2% g g 5
xx— N4 (¢) 3 ax 3 ay 7 ‘U,
I =R 4 vy 2 duy RY.G
yy= RaN (@) 33y 3 ox 7V,
duy vy
Hy =1y =RaA () W"’W . 5
In the above equations the parameters are defined as
uwyTo _ h €
m=——, &é=—, a= ,
Dpiol 3 6+/2d,
mTTo 6127h
R].:—! :RSZ—'
6\/Ehkp|0L Epiov
(b)
7 Lo 4
Ri=———, Rs=—, Ri=—, (6)
TPi1oVo Vo P10V o

whereh is the interface thickness andis the kinetic under-
cooling coefficient that relates the interface undercooling to
the interface velocity, throughv,= u(To—T); kis the iso-
thermal compressibility ang, ,, represent the first and sec-
ond viscosity in the liquid. The functiog(¢)=(1/4)¢?(1

— ¢)? is the classic double well Landau-Ginzburg contribu-
tion to the free energy. Anisotropy of the surface energy is
accounted for through the functiom(d)=(1+wcos 4),
where 6 is defined as the angle between the normal to the
interface and a fixed direction, thxeaxis in our calculations,
and w specifies the intensity of the anisotropy. The function
N(¢) describes the transition of the system’s viscosity across
the interface. In the bulk solid we assumeg=10%7,. To
allow a complete relaxation of the order parameter towards FIG. 1. The pressure wave originated at the solid-liquid inter-
the stable solid phase in a reasonable time, we definefdce, at times 2.4810 2 (a), 3.24<10 ? (b), and 4.05 10 2 (c).

N p)=nslm+aq(d)(1—ns/7) with q(¢)=1 for ¢=0 The density ratio isS=1.05. In order of increasing darkness the
and q(¢)=0 for $=0. For the thermophysical properties five zones represent pressure value25<p<-—20, —20<p
we referred to the data of nickel. However, due to limitations< ~ 15 —15<p<—5, =5<p=<-0.1, ~0.1=p=<0.

of computational resources, a compressibility value has been

chosen, resulting in a sound velocity that is one order of Equations(1)—(4) have been solved on a computational
magnitude lower than the actual value. The interfacedomain Osx<x,,, 0sy=<y,,, with X,=y,=3.75. Neu-

()

thickness has been chosen hs-50x10 8 cm. With a
length scale é&=2x10 *cm, we have the following
values of the model parametersi=265, m=0.1, &
=25x103% =002, R;=212x10% R,=R;=1.78
X102, R,=R;=0.105,R;=4.94x10°, A=0.7.

mann boundary conditions were imposed at the domain’s
borders. Time integration was exploited through an explicit
scheme except for the momentum equations, in which, due to
the large viscosity of the solid phase, we were forced to
employ an implicit scheme. Second-order central differences
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FIG. 2. The tip velocity(doty and the tip radiugsquaresvs the

density ratioS. FIG. 4. The flow field in proximity of the dendrite tip, dt

=2.70x 10 2. The density ratio iS=1.25.
were used for the Laplace operator, and upwind differences

for the convective terms. The grid spacing was selected aé drite tips. Th ¢ hes the d in's bound
Ax=Ay="¢; the time step required for numerical stability is endrite tips. The pressure front reaches the domain's bound-

At=1.0x10"°. Following a standard method in computa- aries, where it is reﬂ(_ected and redirected towards the crystal
tional fluid dynamics, the velocity fields, v, were solved LFig- Ab)=1(c)]. At this stage we are far from a steady me-
on two computational grids shiftelix/2 andAy/2 in respect chanical regime; nevertheless, the shape of the crystal |s.al-
to that used for the scalar fields. ready well defined, and we checked that both the tip velocity
Initially, the melt is at rest, at uniform temperatuge ~@nd the tip radius reached their steady values. A natural ques-
=—A; then a circular solid germ is nucleated at the centetion is whether the Peclet number, which in the diffusive
of the domain, with a supercritical radiiy=0.04. In the picture is only dependent ah, is affected by the advection
first stage of the growth, surface tension effects prevail, reflow driven by the density change. Figures 2 and 3 show the
sulting in a circular shape of the crystal; then, after the onseliP velocity, the tip radius and the Peclet number observed in
of the morphological instability, the pattern selected by thesteady conditions at different values of the density r&io
system is a fourfold dendrite with the four tips propagatingVVe note that the heat transported away fr@ntowards the
along the coordinate directions. The sudden contragiion interface by the liquid flow in the melt has a strong effect on
the expansionof the liquid in front of the interface origi- the growth rate, which decreases with increast@n the
nates a pressure wave which propagates both into the solRfher hand,Ry, increases withS except in a small range
and into the liquid. This effect is illustrated in Figgaland  between 1.06&S<1.10. The Peclet number is almost con-
1(c) where the pressure field is shown in the liquid at threestant for 0.86=S<0.95, then decreases with increasiSg
different times; the crystal is represented as a black spot d&etween 0.95S<1.20. In this range we have an agreement
the center of the graph. Here the density rati8+s1.05, and
we can clearly observe the large pressure drop in front of the
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FIG. 5. The liquid velocity on the axis of the dendrite, tat
FIG. 3. The Peclet number vs the density redio =2.70x 10" 2. The density ratio iS=1.25.
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0.06 for a spherical symmetry, for which the flow decays as the
square of the distance. We found an analogous result in two
dimensions. Figure 5 shows the velocity in the liquid on the
x axis, as a function ofl=x—x,,. We observe that the de-
0.05 |- . pendence,(d) is approximately logarithmic, instead of the
./\ vy~d ™1 characteristic for circular growth.
/ '\ For the pure diffusive problem, the linear analysis of Mul-
/ \././ lins and Sekerkfl10] can determine the largest radiR$ of
the crystal which still corresponds to a stable symmetric
. growth. An interesting question is whether or not the flow in
the liquid alters the onset of the morphological instability. A
reasonable estimation &®* may be given as the largest
003 . . . . . . . value of the radius of curvature observed along the growth,
0.6 08 1.0 12 14 before the formation of the tip. Figure 6 sho®s for dif-
solid to liquid density ratio ferent values of the density rati® We may observe that the
most stable growth corresponds to the absence of flow in the
_FIG. 6. The instability radiugdefined in the tejtvs the density liquid. The dependencB* (S) is nonmonotonic and reflects
ratio S the complex interplay between the density effects and the

with the results of McFadden and Corifd], obtained with a  classic competition of capillary and diffusive effects.

sharp interface theory without capillary and kinetic effects. 1n€ numerical solutions presented in this paper show to
Figure 4 shows the flow field in the liquid, in proximity of what extent the growth of a free dendrite deviates from the

the dendrite tip. In this cas=1.25, and the streamlines Pure diffusive description of lvantsov when the advection
converge towards the solid-liquid interface. The extinction offlow effects are taken into account. Both the tip velocity and
the flow far from the growing crystal is clearly observable. the tip radius, as well as the Peclet number, depend on the
The analysis of McFadden and Corigll] shows that in three  density ratioS. Our numerical results give a picture of the
dimensions the flow decays along the tip axis ak Where process which is in qualitative agreement with the analysis of
d is the distance from the tip. Thus, the rate of decay isMcFadden and Coriell. The onset of the Mullins-Sekerka
intermediate in order between that for a planar interfacenorphological instability is slightly anticipated by the flow
which has a constant flow normal to the interface, and thaeffects.
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