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Advection flow effects in the growth of a free dendrite
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The growth of a free dendrite into a supercooled liquid is simulated through a modified version of the
phase-field model, which takes into account the advection flow due to the different densitiesrs andr l of the
solid and liquid phases. The intensity of the flow is maximal at the dendrite tip and decays far from the surface
of the crystal. At fixed undercooling, as the density ratiors /r l increases, we observe a decrease of the tip
velocity, while the tip radius increases. The Peclet number is shifted with respect to the pure diffusive value.
The onset of the morphological instability, which is responsible for the origin of the dendrite from a growing
circular germ, is slightly anticipated by the flow effects.
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Most theoretical models for dendritic solidification a
sume a pure diffusive mechanism for the latent heat relea
at the solid-liquid interface. The steady solution obtained
Ivantsov @1# for a free dendrite is a shape-preserving p
rabola which can be characterized by the tip radiusRtip and
the velocity v tip . Ivantsov’s analysis fixes the product o
these quantities, through a relation between the Peclet n
ber P5Rtipv tip/2D (D is the thermal diffusivity! and the di-
mensionless supercooling imposed at infinityD5C(T0
2T`)/L0, where C is the specific heat,T0 represents the
coexistence temperature of the solid and liquid phases,
L0 the latent heat per unit mass. The degeneracy of
solution was removed observing that for a stable a
steady tip propagation an anisotropic surface tensiong is
required, and the dendrite operating point was identifi
determining the value of the so called stability constants*
5d0D/(Rtip

2 v tip), where d05(g C T0)/(r0L0
2) is the capil-

lary length@2#. However, in most solidification experimen
a convection flow arises in the melt. Even in the absence
buoyancy effects~i.e., in space experiments@3#! anomalies in
dendritic growth were observed, which were ascribed to
advection flow driven by the density change in the liqu
solid transition. McFadden and Coriell@4# extended the free
boundary diffusive model to incorporate the advection
fects, obtaining two main results:~i! a parabolic shape is stil
consistent with a steady growth of the dendrite, and~ii ! the
Peclet number depends not only on the melt’s undercool
but it is also a decreasing function of the density ratioS
5rs/r l . In this paper we address the coupled thermal a
hydrodynamic problem for the growth of a free dendrite u
ing a modified version of the phase-field model@5#, which
incorporates previous ideas proposed by Caginalp and J
@6#, Oxtoby @7#, Andersonet al. @8#, and Tonget al. @9#. The
numerical solution of the model shows that in the early st
of the growth, the sudden dilatation~or compression! of the
liquid in front of the interface originates pressure~and den-
sity! waves that propagate into the sample. Even before
relaxation of this mechanical transient a needle crysta
formed, with a well defined tip radius and velocity. At fixe
undercooling, as the density ratioS increases, we observe
decrease of the tip velocity, while the tip radius increas
and the Peclet number deviates from the pure diffusive va
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The onset of the morphological instability is slightly antic
pated by the flow effects. The derivation of the governi
equations is presented in detail in Ref.@5#. The order param-
eter f takes the valuef50 in the solid andf51 in the
liquid. The solid phase is modeled as an isotropic fluid w
large viscosity. We indicate withT0 , p0 , rs0, and r l0 the
temperature, pressure, solid, and liquid density, respectiv
in an equilibrium reference state. The equilibrium dens
r0(f) is assumed to change in the interfacial region asr0
[r0(f)5rs01p(f)(r l02rs0), where the functionp(f)
5f3(10215f16f2) is monotonic and increasing withf,
taking the valuesp(0)50, p(1)51. A nondimensional
form of the model equations is obtained adopting a refere
length j and scaling time tot5j2/D. Density is scaled as
r/r l0 and a nondimensional temperature is introduced au
5C(T2T0)/L0. Specific energies will be scaled tov0

2,
where v05j/t, and the scale for the components of t
stress tensor isr l0v0

2. Notice that in the following we neglec
thermal expansion effects; moreover, equal values in b
phases are assumed for the specific heat, the thermal d
sivity, and the isothermal compressibility.

Then, the model equations read

dr

dt
52r¹W •vW , ~1!

r
dvW
dt

5¹•~T1P!, ~2!

du

dt
1p8~f!

df

dt
5¹2u1

1

rR5
~P:¹vW !, ~3!

df

dt
5mH ¹W •@h2~u!¹W f#1

]

]y
@h~u!h8~u!fx#

2
]

]x
@h~u!h8~u!fy#J 2

m

ẽ2 F]g~f!

]f
2p8~f!raẽ uG

2
1

2
p8~f!r~12S!R1S r0

22r2

r2r0
2 D , ~4!
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whereT and P indicate, respectively, the capillary and th
viscous stress tensor, whose components are

Txx52p02
R1R3

m

~r2r0!

r
1R2ry

21R3fy
2 ,

Tyy52p02
R1R3

m

~r2r0!

r
1R2rx

21R3fx
2 ,

Txy5Tyx52R2rxry2R3fxfy ,

Pxx5R4l~f!S 4

3

]vx

]x
2

2

3

]vy

]y D1R7¹•vW ,

Pyy5R4l~f!S 4

3

]vy

]y
2

2

3

]vx

]x D1R7¹•vW ,

Pxy5Pyx5R4l~f!S ]vx

]y
1

]vy

]x D . ~5!

In the above equations the parameters are defined as

m5
mgT0

Dr l0L
, ẽ5

h

j
, a5

j

6A2d0

,

R15
mtT0

6A2hkr l0L
, R25R35

6A2gh

j2r l0v0
2 ,

R45
h l

tr l0v0
2 , R55

L0

v0
2 , R75

z l

tr l0v0
2 , ~6!

whereh is the interface thickness andm is the kinetic under-
cooling coefficient that relates the interface undercooling
the interface velocityv I throughv I5m(T02T); k is the iso-
thermal compressibility andh l ,z l represent the first and sec
ond viscosity in the liquid. The functiong(f)5(1/4)f2(1
2f)2 is the classic double well Landau-Ginzburg contrib
tion to the free energy. Anisotropy of the surface energy
accounted for through the functionh~u!5~11v cos 4u!,
whereu is defined as the angle between the normal to
interface and a fixed direction, thex axis in our calculations,
andv specifies the intensity of the anisotropy. The functi
l(f) describes the transition of the system’s viscosity acr
the interface. In the bulk solid we assumedhs5103h l . To
allow a complete relaxation of the order parameter towa
the stable solid phase in a reasonable time, we defi
l(f)5hs /h l1q(f)(12hs /h l) with q(f)51 for f>0
and q(f)50 for f50. For the thermophysical propertie
we referred to the data of nickel. However, due to limitatio
of computational resources, a compressibility value has b
chosen, resulting in a sound velocity that is one order
magnitude lower than the actual value. The interfa
thickness has been chosen ash55031028 cm. With a
length scale j5231024 cm, we have the following
values of the model parameters:a5265, m50.1, ẽ
52.531023, v50.02, R152.123104, R25R351.78
31022, R45R750.105,R554.943103, D50.7.
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Equations~1!–~4! have been solved on a computation
domain 0<x<xm , 0<y<ym , with xm5ym53.75. Neu-
mann boundary conditions were imposed at the doma
borders. Time integration was exploited through an expl
scheme except for the momentum equations, in which, du
the large viscosity of the solid phase, we were forced
employ an implicit scheme. Second-order central differen

FIG. 1. The pressure wave originated at the solid-liquid int
face, at times 2.4331022 ~a!, 3.2431022 ~b!, and 4.0531022 ~c!.
The density ratio isS51.05. In order of increasing darkness th
five zones represent pressure values225<p<220, 220<p
<215, 215<p<25, 25<p<20.1, 20.1<p<0.
1-2
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were used for the Laplace operator, and upwind differen
for the convective terms. The grid spacing was selected
Dx5Dy5 ẽ; the time step required for numerical stability
Dt51.031026. Following a standard method in comput
tional fluid dynamics, the velocity fieldsvx ,vy were solved
on two computational grids shiftedDx/2 andDy/2 in respect
to that used for the scalar fields.

Initially, the melt is at rest, at uniform temperatureu
52D; then a circular solid germ is nucleated at the cen
of the domain, with a supercritical radiusR050.04. In the
first stage of the growth, surface tension effects prevail,
sulting in a circular shape of the crystal; then, after the on
of the morphological instability, the pattern selected by
system is a fourfold dendrite with the four tips propagati
along the coordinate directions. The sudden contraction~or
the expansion! of the liquid in front of the interface origi-
nates a pressure wave which propagates both into the
and into the liquid. This effect is illustrated in Figs. 1~a! and
1~c! where the pressure field is shown in the liquid at th
different times; the crystal is represented as a black spo
the center of the graph. Here the density ratio isS51.05, and
we can clearly observe the large pressure drop in front of

FIG. 2. The tip velocity~dots! and the tip radius~squares! vs the
density ratioS.

FIG. 3. The Peclet number vs the density ratioS.
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dendrite tips. The pressure front reaches the domain’s bou
aries, where it is reflected and redirected towards the cry
@Fig. 1~b!–1~c!#. At this stage we are far from a steady m
chanical regime; nevertheless, the shape of the crystal is
ready well defined, and we checked that both the tip veloc
and the tip radius reached their steady values. A natural q
tion is whether the Peclet number, which in the diffusi
picture is only dependent onD, is affected by the advection
flow driven by the density change. Figures 2 and 3 show
tip velocity, the tip radius and the Peclet number observed
steady conditions at different values of the density ratioS.
We note that the heat transported away from~or towards! the
interface by the liquid flow in the melt has a strong effect
the growth rate, which decreases with increasingS. On the
other hand,Rtip increases withS except in a small range
between 1.00<S<1.10. The Peclet number is almost co
stant for 0.80<S<0.95, then decreases with increasingS
between 0.95<S<1.20. In this range we have an agreeme

FIG. 4. The flow field in proximity of the dendrite tip, att
52.7031022. The density ratio isS51.25.

FIG. 5. The liquid velocity on the axis of the dendrite, att
52.7031022. The density ratio isS51.25.
1-3
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with the results of McFadden and Coriell@4#, obtained with a
sharp interface theory without capillary and kinetic effec
Figure 4 shows the flow field in the liquid, in proximity o
the dendrite tip. In this caseS51.25, and the streamline
converge towards the solid-liquid interface. The extinction
the flow far from the growing crystal is clearly observab
The analysis of McFadden and Coriell@4# shows that in three
dimensions the flow decays along the tip axis as 1/d, where
d is the distance from the tip. Thus, the rate of decay
intermediate in order between that for a planar interfa
which has a constant flow normal to the interface, and t

FIG. 6. The instability radius~defined in the text! vs the density
ratio S.
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for a spherical symmetry, for which the flow decays as
square of the distance. We found an analogous result in
dimensions. Figure 5 shows the velocity in the liquid on t
x axis, as a function ofd5x2xtip . We observe that the de
pendencevx(d) is approximately logarithmic, instead of th
vx;d21 characteristic for circular growth.

For the pure diffusive problem, the linear analysis of Mu
lins and Sekerka@10# can determine the largest radiusR* of
the crystal which still corresponds to a stable symme
growth. An interesting question is whether or not the flow
the liquid alters the onset of the morphological instability.
reasonable estimation ofR* may be given as the larges
value of the radius of curvature observed along the grow
before the formation of the tip. Figure 6 showsR* for dif-
ferent values of the density ratioS. We may observe that the
most stable growth corresponds to the absence of flow in
liquid. The dependenceR* (S) is nonmonotonic and reflect
the complex interplay between the density effects and
classic competition of capillary and diffusive effects.

The numerical solutions presented in this paper show
what extent the growth of a free dendrite deviates from
pure diffusive description of Ivantsov when the advecti
flow effects are taken into account. Both the tip velocity a
the tip radius, as well as the Peclet number, depend on
density ratioS. Our numerical results give a picture of th
process which is in qualitative agreement with the analysis
McFadden and Coriell. The onset of the Mullins-Seker
morphological instability is slightly anticipated by the flo
effects.
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