

THEMIS: Tracking the health of the environment and missions in space

Camilla Colombo ¹, Andrea Muciaccia¹, Mirko Trisolini ¹, Lorenzo Giudici ¹, Juan Luis Gonzalo ¹, Stefan Frey ², Borja del Campo ³, Francesca Letizia ⁴, Stijn Lemmens ⁴

¹ Politecnico di Milano, ² Vyoma, ³ Deimos Space, ⁴ European Space Agency

6th European Space Debris modelling and Remediation workshop, Milano, 18-20 May 2022

Apollo mission 2019. Simulation COMPASS Virtual Reality game. Actual space debris orbits, artistic representation of objects

Introduction

Space debris like other environmental issues

Orbital environment trend (space debris growth)

Earth system trends (environmental stressors)

Maury T., Loubet P., Trisolini M., Gallice A., Sonnemann G., Colombo C., "Assessing the impact of space debris on orbital resource in Life Cycle Assessment: a proposed method and case study", Science of the Total Environment, 2019. Earth system trend original image by Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the anthropocene: The great acceleration. Anthropocene Review, 2(1), 81–98. https://doi.org/10.1177/2053019614564785

Introduction

Goals and novelties

Goals:

- To assess the impact of a space mission on the space environment
- To assess the overall Space capacity and the contribution of each mission to it

Scientific development:

- A statistical density-based approach used for propagating explosion and collision fragments
- Definition and extension of space debris index to all orbital regions, including LEO, GEO, MEO, GTO, HEO
- Analysis of possible capacity proxy and capacity threshold

Software development:

- Integration with existing ESA tools such as DISCOS, MASTER, DRAMA, OSCAR
- Single score output of the environmental analysis in the ESA database DISCOS for reporting analyses and for integration into a life cycle assessment procedure
- Develop a web-based interface for the submission and evaluation of the space by several users

THEMIS SOFTWARE TOOL

THEMIS software tool

Tracking the Health of the Environment and Missions In Space

Space debris mode

- to allow different users to assess the impact of a space mission on the space debris environment based on mission information such as orbit, mass, cross-section, and risk of fragmentation due to accidental collisions or break-up
- to determine the share of the capacity of space used by that mission under analysis

Space capacity mode

- to allow the computation of the overall space capacity used by orbiting spacecraft
- to analyse possible definitions and proxy of the capacity threshold

THEMIS software tool

Software design

THEMIS frontend

Interface for external users:

- to analyse missions and their impact
- to have an overview of the overall status of the space environment
- for registered users to submit user-defined mission for evaluation of its environmental impact both in terms of index and capacity consumption
- for operators to declare new missions profiles

THEMIS backend

- Computation of the environmental index:
 - Create and propagate a mission profile
 - Compute the collision probability
 - Compute the explosion probability
 - Determine the collision effect
 - Determine the explosion effects
 - Interface with ESA tools
- Computation of the space capacity:
 - Long-term propagation using ESA DELTA
 - Compute the available capacity of the space environment

Overall software design and flow

Overall software design and flow

Overall software design and flow

THEMIS software tool

Basic functional analysis of the system subdivided by sections

SPACE DEBRIS INDEX

Index formulation

ECOB formulation index to assess the risk = probability x severity

p = probability
e = effects (severity)

Letizia, F., Colombo, C., Lewis, H. G., & Krag, H. (2016). Assessment of breakup severity on operational satellites. Advances in Space Research, 58(7), 1255-1274.

Explosion probability

POLITECNICO deimos MILANO 1863 elecnor group

Representative targets

LEO region representative targets in a semi-major axis and inclination grid

MEO region representative targets in a right ascension of ascending node and inclination grid

GEO region representative targets in a longitude and inclination grid

POLITECNICO deimos elecnor group

Explosion probability

Survival rate evaluated using the **Kaplan-Meyer** estimator

$$S(t) = \prod_{t_i < t} \left(1 - \frac{d_i}{n_i} \right)$$

Explosion probability evaluated using the **Nelson-Aalen** estimator

$$H(t) = \sum_{t_i < t} \frac{d_i}{n_i}$$

- ➤ Kaplan, E. L., Meier, P. (1958), Nonparametric Estimation from Incomplete Observations. Acta Astronautica, 53(282), 457-481.
- > O. Aalen, (1978), Nonparametric Inference for a Family of Counting Processes. The annals of statistics, 6(4), 701-726.

- **Debris fluxes**
- Impact velocity
- Density value vs object size (integration with DELTA)

Subcomponent: index evaluation – collision probability

Collision probability without CAM capability

Collision probability considering CAM capability

Collision probability evaluation as function of the semi-major axis and inclination considering:

- Cross-section = $10 m^2$
- Time discretisation = 1 year

Collision probability

Explosion probability

$$I(t) = p_c \cdot e_c + p_e \cdot e_e$$
Fragmentation effect

DISCOS

- **Objects properties**
- Active / Inactive
- Explosion probability
- PMD manoeuvres

STARLING

PlanODyn

- Density propagation
- Dynamics propagation

Cloud characterisation and propagation

Input:

 Fragmentation grid: coordinates of the subset of characteristic Keplerian elements of the orbital region under analysis

Output:

 Density distributions: density values stored in ECRS* format, for each fragmentation at each time snapshot

Compressed row storage applied to extended Karnaugh map representation of the density array

Subcomponent: initial density estimation and sampling

Inputs:

- Fragmentation settings specifying:
 - Parent orbit
 - Fragmentation type
 - Parameters (mass, fragments' size, scaling factor)
- Interpolation settings specifying:
 - Interpolation variables
 - Step-sizes for binning
 - Method (Monte Carlo or Weighted Monte Carlo)
 - Re-entry altitude

Process:

- Probabilistic definition of the phase space domain
- Estimation of the density distribution through a binning approach
- Characteristics' sampling according to bins' size and (possibly) expected dynamical behaviour of the cloud

Output:

• Initial characteristics: coordinates $(a, e, i, \Omega, \omega, M, A/M_d, A/M_{srp})$ and density value of each characteristic to be propagated

Subcomponent: characteristics' propagation

Inputs:

- Initial characteristics: coordinates $(a, e, i, \Omega, \omega, M, A/M_d, A/M_{srp})$ and density value of each characteristic to be propagated
- Propagation settings specifying:
 - Snapshots' times (start, end, step-size)
 - Integration settings (tolerances, solver)
 - Dynamical model (parameters and flags, Jacobian, density model, ephemerides)

Process:

- Propagation of characteristics using PlanODyn (semianalytical tool) with set perturbations
- Storing in at some specified epochs

Output:

 Propagated characteristics: coordinates and density values at each snapshot time

Subcomponent: density interpolation

Inputs:

- Interpolation settings specifying:
 - Interpolation variables
 - Step-sizes for binning
 - Method (Monte Carlo or Weighted Monte Carlo)
 - Re-entry altitude
- Propagated characteristics: coordinates and density values at each snapshot time

Process:

- Density distributions are recovered from the propagated characteristics through binning in an (up to) 6D phase space
- Nearest-neighbour like interpolation among neighbouring bins is implemented to avoid missing data in the distribution

Output:

 Density distributions at each specified snapshot time stored in ECRS format

Main block: fragmentation effect

Input:

 Density distributions at each specified snapshot time stored in ECRS format

Output:

 Effects: coordinates of one fragmentation defined in the fragmentation grid and the relative effect on the representative targets

Subcomponent: representative targets

Inputs:

- DISCOS active objects
- Grid parameters:
 - Keplerian elements ranges and steps
 - Orbit type
- Target settings specifying the fixed Keplerian elements

Output:

 Representative targets: Keplerian elements, area, and total area of each representative target

Process:

- Reading DISCOS file with active objects
- Generation of the grid in Keplerian elements (according to the orbital region) and computation of the total and average areas in each cell of the grid
- Identification of the representative targets considering the cells containing the 90% of the cumulative cross-sectional
 area

Subcomponent: representative targets

Grid parameters:

- Semi-major axis range: [6778 8378] km
- Semi-major axis step: 10 km
- Inclination range: [0 − 180] deg
- Inclination step: 10 deg

Representative targets in LEO region - 14/02/2022

Main block: fragmentation effect

Impact rates:

 $\dot{\eta}$ for different target positions (according to an equally-spaced grid in mean anomaly) at each specified snapshot time

$$\dot{\eta} = A_c \int_{\mathbb{R}^3} \sum_{k=1}^4 \frac{n_{\boldsymbol{\alpha}}(\boldsymbol{\alpha}_{13}, \boldsymbol{\alpha}_{46}^k)}{|\det J^k|} \| \boldsymbol{v}(\boldsymbol{\alpha}_{13}, \boldsymbol{\alpha}_{46}^k) - \boldsymbol{v}^* \| d\boldsymbol{\alpha}_{13}$$

Process:

- The density distribution is sampled in the subset of Keplerian elements (a, e, i)
- By imposing intersection with target position, the full set of samples' coordinates is retrieved
- The density values in correspondence of the samples' coordinates is computed
- The impact rate is evaluated by integrating the flux of fragments over the target area

Main block: fragmentation effect

Cumulative collision probability:

 $p_c(t)$ at each specified snapshot time

$$p_c(t) = 1 - \exp(\eta(t)) = 1 - \exp\left(\int_{t_0}^t \dot{\eta}(\mathbf{r}^*, \mathbf{v}^*) ds\right)$$

Process:

- The number of impacts with the target is estimated through midpoint integration
- The probability of collision is computed from the cumulative number of impacts at final time, through an analogy with kinetic gas theory

Main block: fragmentation effect

Fragmentation effect:

e: weighted (according to shared area) cumulative collision probability of one fragmentation with the representative targets

$$e = \sum_{k=1}^{N_t} \frac{A_c^k}{A_c^{\text{tot}}} p_c^k(t_f), \qquad A_c^{\text{tot}} = \sum_{k=1}^{N_t} A_c^k$$

Process:

The effect of a fragmentation is computed as the weighted sum of the collision probabilities according to the share of overall cross-sectional area of each target

Fragmentation example

<u>1e−3</u> 3.0

2.5

0.5

☐0.0 15

12

2.0

Payload explosion in low-Earth orbit

Time elapsed: 0 years

Fragments' number (N) distribution over time – heatmaps in a, e and i

Fragments number (N), impact rate $(\dot{\eta})$ and number of impacts (η) over time

- Fragmentation orbit: a = 7236 km, e = 0.001, i = 85 deg
- **Target orbit:** a = 7226 km, e = 0.001, i = 75 deg
- \triangleright **Perturbation model:** J_2 and drag
- **Collision probability:** randomisation in ω , Ω , M assumed

Effects map

Payload explosions in low-Earth orbit

Cumulative collision probability at 15 years from fragmentation on 48 representative targets

Space debris

ECOB formulation overview

The index assessed over time to get its evolution and cumulative value for the mission lifetime

$$I = \int ECOB \ dt$$

- Each mission profile is divided in mission phases: e.g. launch, injection, orbit raising, operational orbit, deorbiting etc.
- The basic formulation expanded to include the reliability of post-mission disposal (PMD) manoeuvres with a coefficient (α)

$$I = \int_{t_0}^{t_{EOL}} ECOB \ dt + \alpha \cdot \int_{t_{EOL}}^{t_f} ECOB \ dt + (1 - \alpha) \cdot \int_{t_{EOL}}^{t_f} ECOB \ dt$$
 disposal no disposal

Letizia, F., Colombo, C., Lewis, H. G., & Krag, H. (2016). Assessment of breakup severity on operational satellites. Advances in Space Research, 58(7), 1255-1274.

Letizia, F., Colombo, C., Lewis, H. G., & Krag, H. (2016). Assessment of breakup severity on operational satellites. Advances in Space Research, 58(7), 1255-1274.

Index evolution – **dummy** mission

- Phase 1: Keplerian elements from an .oem file
- Phase 2: constant Keplerian elements
- PMD/NO-PMD: OSCAR propagation,
 considering a Re-orbit at 500 km using
 chemical propulsion

Index evolution over time – each color represents a single phase of the mission, and the index is computed at each time epoch

Frontend – Evaluation Output View

CONCLUSIONS

Conclusions

Steps completed

- Staling 2.0 tool applied to computation of the space debris index
- Space matrix approach for efficient binning
- Development of space debris ingredients for any orbital region
- Interfaces with ESA tools: DISCOS, MASTER, DRAMA

Next steps

- Space debris implementation and validation
- Capacity formulation and definition of capacity threshold
- Engaging with the space community...stay tuned

THEMIS: Tracking the health of the environment and missions in space

Camilla Colombo ¹, Andrea Muciaccia¹, Mirko Trisolini ¹, Lorenzo Giudici ¹, Juan Luis Gonzalo ¹, Stefan Frey ², Borja del Campo ³, Francesca Letizia ⁴, Stijn Lemmens ⁴

¹ Politecnico di Milano, ² Vyoma, ³ Deimos Space, ⁴ European Space Agency

6th European Space Debris modelling and Remediation workshop, Milano, 18-20 May 2022

MILAN

CANDIDATE CITY TO HOST THE

INTERNATIONAL ASTRONAUTICAL CONGRESS

RESPONSIBLE SPACE FOR SUSTAINABILITY

MICO Milano Convention Centre 11-18 October 2024

