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Abstract: In this paper, a model of ex-situ biological biogas upgrading process is first developed.
Then, parameter sensitivity analysis is performed, in order to determine the most relevant
parameters for subsequent parameter identification, based on a linear fractional transformation
(LFT) reformulation of the model. Biogas composition and volumetric production have been
well predicted by the calibrated model, allowing its adoption as a designing tool for start-up

operation of experimental pilot-scale activity.
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1. INTRODUCTION

Climate change will bring negative effects on human
health, economics, the environment, flora and fauna pres-
ence on the planet; for these reasons, the necessity to find
and use renewable energy sources is compelling.

Anaerobic digestion provides renewable energy from resid-
ual biomass (organic waste, wastewater sludge, manure,
crop waste from agriculture etc.), converting organic frac-
tion into biogas, composed by methane (CHy), in a range
of 50-70% and carbon dioxide (CO3), at a concentration of
30-50%. In recent years, biogas upgrading to biomethane
has been promoted in Europe and Italy since policies, like
the European Green Deal, highlights the need to reach
climate neutrality before 2050 and to make European
economy sustainable.

There are several upgrading technologies available, from
the well-known physical/chemical technologies for sepa-
ration/transformation of COg, to the newest biological
process. Biological biogas upgrading methods have been
experimentally proved and are still on an early pilot or full
scale implementation (Angelidaki et al. (2018)). External
hydrogen must be provided to make the process feasible,
however, to make the process sustainable, hydrogen must
derive from renewable sources, i.e., water electrolysis dur-
ing renewable energy surplus. Therefore, the process is
called power-to-gas (P2G). The major advantage of these
processes is that the COs is converted into other energy
(CH,) instead of being simply removed from the main flux
and then disposed of.

Biological biogas upgrading has been tested on two main
configurations: in-situ and ez-situ. In the in-situ applica-
tion, hydrogen is injected directly in an existing anaerobic

digester to be co-digested with CO4 produced by metabolic
processes from anaerobic organic degradation. On the
other hand, the ex-situ biogas upgrading technology is
based on the provision of external COs; with Hs in a
dedicated anaerobic reactor. Even though, a new reactor
is needed, the main advantage of the ex-situ configuration
is that Hy addition does not inhibit the anaerobic organic
degradation, which remains the main aim of anaerobic di-
gestion. Moreover, in the ex-situ configuration it is possible
to reach higher CHy4 content (> 95% in volume) in the final
product (Angelidaki et al. (2018)).

Models dealing with biological biogas upgrading, very
limited up to now, could effectively support experimental
research that still needs optimization and could speed-up
future full-scale applications.

This work reports a model for ex-situ configuration, and it
consists of a set of differential equations including biomass,
substrate, gas-liquid mass transfer and acid-base.

A sensitivity analysis, based on the OpenModelica sensi-
tivity optimization tools OMSens (Fritzson et al. (2020)),
has been performed to assess the key parameters of the
model. The sensitivity analysis showed that the gas-liquid
mass transfer coefficient of Ha (krao,) is the parameter of
interest to obtain high CHy4 concentration in the final bio-
gas, since the efficiency of the process depends on the avail-
ability of dissolved Hs for hydrogenotrophic methanogens.
Other relevant parameters are the maximum specific up-
take of hydrogenotrophic methanogens (kmpy,) and the
half-saturation constant of dissolved hydrogen (Kg m,).

Then, these parameters have been calibrated by experi-
mental parameter identification, based on a linear frac-
tional transformation (LFT) reformulation of the model
(Lee and Poolla (1999); Hsu et al. (2008b); Casella and
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Lovera (2008); Hsu et al. (2008a)). Theil’s Inequality Co-
efficient (TIC) (Theil (1961)) has been used to evaluate the
goodness of the model: biogas composition and volumetric
production have been well predicted by the model, TIC
range from 0.042-0.072, allowing its adoption as a design-
ing tool for start-up operation of experimental pilot-scale
activity.

The paper is organized as follows. In Section 2 the model is
developed; Section 3 illustrates the results of the sensitivity
analysis; in Section 4 LFT-based parameter identification
is recalled and the model is reformulated in a LFT form,
while in Section 5 the results of parameter identification
are discussed; finally, some conclusions are given in Section
6.

2. PROCESS MODEL

The process exploits the action of hydrogenotrophic
methanogens (Archaea), that can utilise Hy to convert
CO; into CH4 based on the following reaction:

kJ

mole

4Hy + COy — CHy + 2H,0 , AG® = —130.7

The process model is based on the Anaerobic Digestion
Model No. 1 (ADM1) (Batstone et al. (2002)), while not
including all the processes regarding organic degradation,
such as disintegration, hydrolysis and acidogenesis. This
means that the only microbial population included is the
hydrogenotrophic methanogens Xy, .

Methanogens Xy, consume the substrate, dissolved hy-
drogen Swy,, to produce methane Scy,, and their decay
term is described by a first order kinetic, having kqgec (d71)
as constant, and becoming increasingly important at high
hydraulic retention time tyg.

Sic is the total inorganic carbon in the liquid phase,
and it is assumed to be the sum of carbon dioxide and
bicarbonate ion. Inorganic carbon is used for methane gen-
eration, knowing carbon content in methane Ccy, (mole
gCOD™1). It is also used for biomass growth, depending
on carbon content in biomass Cha. (mole gCOD™!) and
it is respectively released into the reactor liquor during
biomass decay.

The last liquid variable is the inorganic nitrogen (Sin),
that is an indicator for nutrients availability, and it is used
by microorganisms for their growth Ny, (mole gCOD™!).

All the liquid variables are expressed in term of COD
(chemical oxygen demand), except for Sic and Siy that
are expressed in molar terms (mole L™1).

The gas-phase set of equations, that include Hy, CH4 and
CO3, has been then modified to consider an input gas
flowrate that is not common in anaerobic digestion.

Finally, gas-liquid mass transfer coefficient of each gas
i = {Hy,CHy, CO3} has been derived from Pauss’s law
of gas diffusivity (Pauss et al. (1990)):

D;

kLai = k[ao e
2 D
(@)
2

where krao, (d71) is the gas-liquid mass transfer coeffi-
cient, D; (cm? s71) is the diffusivity if the gas i, and Do,

is the diffusivity of Os. Diffusivity values can be found
in literature and are function of temperature. The reason
of this formulation is that it is easier to experimentally
derive, with a blank test, dissolved oxygen concentration,
and thus krao,.-

The gas-liquid transfer for Hy, CH, and COs is expressed
by the combination of Henry’s law and the two-film theory
of Whitman (Whitman (1962)). Therefore, for gaseous
components the gas-liquid mass transfer rate is present in
the gas equation and in the corresponding liquid variable;
in the following model (1-9) a positive gas-liquid transfer
means that the transfer of ¢ component is from the liquid
phase (S;) to the gas phase (S, gas)-

The ex-situ biological biogas upgrading model is thus
defined by 8 differential equations: 1 for the microorgan-
isms (Xu,), 1 for the substrate (Su,), 1 for the product
(Scm, ), 2 for inorganic carbon (Sic) and nitrogen (Sin),
and finally 3 for the gaseous components (Su, gas, SCH,,gas
and SCOZ,gaS):

dXy 1
2= — (X in — X
dt tHR( Ho, Hz)
Y kg, 22X X (1)
H2 H2 SH2 + KS}Hz H2 dec H2
d.SH2 1 SH
—  (Suym— Su,) — k 2
dt tHR( Ha, H2) MH, SH2 +KS,H2 Ha
/D
_kLa‘Oz Dgz (SHZ - RTOPKHHQSngaS) (2)
dScm, 1
TR— (ScH, in — Sch,)
SH
1—Yny, )k —2 X
+( H2) MH, SHQ +KS,H2 Ha

D
—krao, ‘2553(50H4—=R7BpKU7CH4SCH%gw) (3)
O2
S 1
— — (Sican — S
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St,

_CCH4(]- — YvHQ)]{??TLH2 SH AXH2
2

+ Ksn,

SH
—Chac (YH2 kag mXHQ - kdecXH2>
Dco
—k 2
LaOQ D02
10-PH
<SIC 10—PH JrKaCOQ - RTOPKHCO2SCOQ78:&S> (4)
dSIN 1
= in S
a tHR( IN, IN)
Noac | Yir, km S Y e X (5)
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dSHg,gas _ ans,inSHQ,gas,in N ans,outSHQ,gas
dt vaas Vgas
Dy,
+o—kLao, (Su, — RTop K Hit, St gas)  (6)
Vgas D02

dSCH4,gaS o ans,inSCH4,gas,in o ans,outSCH4,gas (7)

dt Vgas Vgas
Dcn,
+7kLa02 I~ (SCH4 - RTOPKHCH4SCH4,gaS)
Vgas D02
dSCO2,gaS _ qgas,inSCOQ,gasA,in . ans,outSCOQ,gas
dt Vgas Vgas
14 Dco
k 2
+Vgas L0, Do,
10-PH
S — RT,, KHc0o,5c0,.¢as 8
< IC 10—pH + KG/CO2 p CO2PCO2,g ) ( )
(gas,out = {gas,in
DH2
JrRTOPV/chao2 Do, S, — RTop K Hy, S, gas
Pgas — Pgas,H,O 16
Dcu
+RTOkaLaO2 Do; SCH4 - RTopKHCH4SCH4,gas
Pgas — Pgas,H,O 64
D
RToVhpao, | 52

Dgas — Pgas,H20

10~ PH
. (Slcl()_pH+Kaco2 - RTOpKH002SCOQ,gaS> 9)

where Y1, (gCODxy,, gCODgéQ) is the growth yield of hy-

drogenotrophic methanogens, kmy, (d=!) is the maximum
specific uptake rate of hydrogenotrophic methanogens,
kdec (A1) is the first order decay coefficient of the biomass,
Ksn, (gCOD L71) is the half-saturation constant of dis-
solved hydrogen, K H; is the Henry’s constant of gas i
(mole L=! bar™1!), Peas and Pgas H,0 (bar) are the total
headspace pressure and the water vapour pressure respec-
tively. Other physical parameters are Kaco, (mole L™1)
that is inorganic carbon dissociation constant, R (bar L
mole™! K~1) is the ideal gas constant and To, (K) is
the operating temperature inside the reactor, V' (L) is the
working volume of the reactor, and Vgas the headspace vol-
ume. The quantities Xm, in, SHa,in» SCH4,ins S1C,ins SIN,in
are the concentrations of each liquid component in the
influent stream, While, SHg,gas,ina SCH4,gas,ina SCOg,gas,ina
Jgas,in are the gas inputs.

3. SENSITIVITY ANALYSIS

The model depends on many parameters, a part of them
can be taken from literature (Batstone et al. (2002)),
while others (especially the ones depending on reactor
configuration as krao,) need further investigation. Thus,
a sensitivity analysis is firstly performed on the model
to assess the most significant parameters which need
identification and optimization.

The perturbed parameters in the sensitivity analysis are
krao, and hydrogenotrophic methanogens kinetic and
stoichiometric parameters: Yy,, kmu,, Kdec, and Kgm,.
Initial values of these parameters are taken from ADMI1
recommended values and are reported in Table 1, except
for k1ao, which is assumed to be 200 d~1, a coherent value
for batch activity test of the process.

Table 1. Initial values of the parameters

krao, YH, km, kdec KsH,
1 gCODxH2 1 = .
(a=1) FCODs,, (A7) (d71) (mgCOD L™Y)
200 0.06 35 0.02 0.007

Hydrogen transfer rate r; g2 and methane production rate
@, defined as

D
12 Sy, — RTop K Hit, Sty gas)

T+ H, = krao, D
O2

s
@:417yhgkmﬂ%%l 2 xu,
2

+ Ksn,
are the keys for biological biogas upgrading process op-
timization, therefore, their maximization is evaluated
through the sensitivity analysis.

The sensitivity analysis is performed with the OpenMod-
elica sensitivity optimization tools OMSens (Fritzson et al.
(2020)). An individual parameter-based sensitivity analy-
sis has been performed and the Root Mean Square (RMS)
index is used to evaluate the differences between the values
assumed by a variable (along with the whole simulation)
with and without a parameter perturbation. Four simula-
tions have been reported, with parameters perturbations
range from —50% to +50%, results are shown in Fig. 1.

+50% perturbation

-50% perturbation

0.5
kLaO2
0.4
km,_,
0.3
Kshe
0.2
Yha
" 0.1
dec
n % o %
S i S i
+ 25% perturbation - 25% perturbation
0.25
kLaO2 kLaO 0.25
0.2 0.2
kmh2 kmh2
0.15 0.15
Kshe Ksh2
0.1 0.1
Yhe Yhe
0.05 0.05
kdec kdec
M Q
R % ey ?
S > S

Fig. 1. Results of the sensitivity analysis.

Methane production rate is highly influenced by the max-
imum specific uptake of hydrogenotrophic methanogens,
kmu,, the gas-liquid mass transfer coefficient of oxygen
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krao, and the half-saturation constant on dissolved hy-
drogen Kgm,. The gas-liquid mass transfer coefficient is
a key parameter to enhance H, dissolution and thus,
hydrogenotrophic methanogenesis. Therefore, the param-
eters selected for identification are: krao,, kmm, and
Kg,.

4. LFT MODELLING AND PARAMETER
IDENTIFICATION

Consider a nonlinear, time invariant, multi-input multi-
output, continuous-time system

x(t) = £(x(t), u(t), 9)
y(t) = g(x(t), u(t), )

where x € R", y € RP are the state and noise-free output
vectors, respectively, u € R™ is the input vector, § € RY
is a vector of unknown parameters, and assume as output
observation equation

y(tx) = y(tx) + e(tx)

where ty, k =1,..., N, is the sampling instant, and &;(¢x),
i = 1,...,p, is a discrete-time, zero-mean, white noise
of variance o7. Denote with §° € R? the true value of
parameters 9.

(10)

The identification problem can be formulated as follows:
given the sampled data {u(ty),y(tx)}2_,, find the values
of the unknown parameters § minimizing the cost function

N
J(5) = % S €T (tr, 6)Welty, 8)
k=1

ie.,

0 = argmin J(4)
dcR4

where

e(tk7 6) = y(tk) - S’(tk, 6)
is the prediction error between the measured output y (%)
and the output y(¢x,d), predicted by model (10) using
parameters § instead of the true parameters 4°, and W is
a weight matrix.

As it is well known, 6 is a maximum-likelihood estimate
of the model parameters & for output-error plants (Ljung
(1999)), and can be determined through well-known iter-
ative optimization procedures such as, for example, the
Gauss-Newton algorithm

S(v+1)=8(v) - aw)H! (8 (y)) g (Zs (y))

where v is the iteration number, a(v) is the step size,
g(8) : RY — R? and H(d) : RY — R9%¢ are the gradient
vector and a positive semi-definite approximation of the
Hessian of the cost function with respect to the unknown
parameters, respectively.

In turn, rewriting model (10) in a Linear Fractional Trans-
form (LFT) formulation allows for a direct computation
by simulation of the gradient and approximated Hessian
of the cost function (Della Bona et al. (2015))

x(t) = Ax(t) + Byw(t) + B2£(t) + Bsu(t)
z(t) = Cix(t) + D11w(t) + D12¢(t) + Dizu(?)
(.c)(t) = CQX(t) + D21W(t) + DQQC(t) + Dggu(t)
y(t) = Csx(t) + D31w(t) + D32¢(t) + D3zu(?)
w(t) = Az(t) = diag{011,, ..., 0,1, }z(t)

¢(t) = O(w(t))

where z € R"*, w € R™, w € R™ { € R"< are vectors of
auxiliary variables, A, B;, C;, D;; are 16 known constant
matrices, r; are the sizes of the corresponding identity
matrices I, in the A block, and O(w) : R™ — R™ is
a known nonlinear vector function.

Further information on the implementation of the LFT-
based identification algorithm can be found in Della Bona
et al. (2015). A MATLAB™ Toolbox for parameter identi-
fication of nonlinear LFT models is available, as well ! .

Table 2. Aggregated parameters

d a b

1 Du, Dcny
tHR Do, Do,

c p D

10-PH
10-PH+ Kaco,

RTopV
Pgas —Pgas,Hy O

Dco,
Do,
Defining the aggregated parameters as in Table 2 and the

following input u, state x,output y and parameters vectors
o:

XHz,in XH
2
Hs,in S
H
SCH4,in SCH2 T5
SIC,in SIC4 Ggas,out
u= SIN,in , X = Six , Y = Tg
SHQ,gas,in S X7
. Hy,gas
CHy,gas,in SCH, aas zg
SCOz,gas,in S e
. L ©2CO2,gas J
L {gas,in

0 =[Yu, kmu, Ksu, kdec kr0O, ]T
model (1-9) can be reformulated into a LFT as follows:

—dx1 + duq + wq — wy
—dZL'Q + dUQ — Wo — W5
—dx3 + dus + we — w1 — Wg
—dxry + duy + CCH4 (’LU1 — wg)
+Cbac (’LU4 - wl) — Wy
—dzs + dus + Npae (wg — wy)

% =
Vi (2 — G5+ Vuws)
— Vv
V%as (¢ — C6 + Vwg)
GV
I Vo (Ca— ¢+ Vwr) ]
0121
5 0222
Wk w,
u9+D(E+672+w7) 0323
y = T6 , W= | 0424
7 552’5
xs 5525
5527

1 See https://github.com/looms-polimi/LFTSolver.
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As expected, UF configuration reports a high krao, than
the CSTR configuration. In fact, the diffusion gas sys-
tem of UF is proved to be more efficient with respect to
CSTR configuration where it is more difficult to enhance
turbulence and thus, gas-liquid mass transfer. The half
saturation constant Kgy, is higher in the case of the
CSTR configuration probably due to a limited availability
of substrate (Sm,) for microorganisms (Xy,), and this
is related to limited gas-liquid mass transfer of Hy. The
maximum specific uptake rate kmy, is higher in the UF
configuration since the process is more efficient in this con-
figuration and hypothetically temperature is influencing
results. It is well known in literature that thermophilic
microorganisms have higher kinetics constants (Batstone
et al. (2002)).

628
o
T2
T3
Ty i wlw% i
s w3 + wo
Lo W16W13
L7 W16wW1i4
w— | 8 ¢ W16W1s
Zi weg [wlﬁ + D (% + % + wlg)}
We wr [wls +D (1—1; + % + w12)}
ST RRIC B |
Ug | W8 |Wi6 16 61 12)| |
U7
us
L U9
w2
G
)
z = I

a (1‘2 — RTOPKHHZ.T(;)
b(.’L’g — RTopKHCH4x7)
¢(prs — RTop KHco,2s)

Note that, even if only the three parameters considered
after the sensitivity analysis have been identified, the LFT
formulation has been developed considering 5 parameters
(while considering the other two fixed), in order to make
the LFT formulation more flexible for future applications.

Of course, it assumed that all inputs and outputs are
measurable or can be assumed to be null i.e. X, in, SH,,ins
and SCH4,in-

5. EXPERIMENTAL PARAMETER
IDENTIFICATION

The LFT calibration has been performed with two
datasets, (Bassani et al. (2017)) and own unpublished
data. The study of Bassani et al. (2017) considers a ther-
mophilic (T = 55 °C) up-flow (UF) reactor for ex-situ
biogas upgrading, operating conditions of this reactor can
be found in the paper.

Own experimental work is composed of a Continuous
Stirred Tank Reactor (CSTR) with a working volume V/
= 380 L and 460 L of headspace, where hydrogen cylinder
and biogas (or just pure cylinder carbon dioxide) are
injected. Figure 2 reports the input flowrate of the gases
expressed in Ly d™'. For all the experiments, the stoi-
chiometric Hy : CO2 = 4 : 1 ratio has been kept constant.
Results from LFT calibration of both configurations are
reported in Table 3.

< 1500

° | EEECO;

=)

2 1000

©

z

Is]

» 500

]

o

2

£ 0

0 50 100 150 200
Time (d)

Fig. 2. Input flowrates of gases.
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Fig. 3. UF configuration: fitting results (methane and total
gas flowrates).

As shown in Fig. 3, a good fitting is obtained for UF
configuration, confirmed by the values of Theil’s Inequality
Coefficient (TIC) (Theil (1961)): TIC = 0.0420 for to-
tal output gas flowrate and TIC = 0.0454 for methane
flowrate.

A good fitting is also obtained for CSTR configuration
(Fig. 4): TIC = 0.072 for total output gas flowrate and
TIC = 0.043 for methane flowrate.

Figure 5 compares volatile solids concentration (gVS L~1)
(TIC = 0.035), a derived variable from hydrogenotrophic
methanogens concentration, and ammonium concentration
(Sin) (TIC = 0.104). Regarding ammonium concentra-
tion there are some differences between model and the
experimental data. This is probably due to ammonification
of residual organic nitrogen in the inoculum, a process
that is not included in the model. In the last part of the
experimental activity an increase in nitrogen concentration
is revealed due to ammonium bicarbonate (NH4HCO3)

Table 3. LF'T calibration results

Parameter  Optimal value (UF)  Optimal value (CSTR)
km, 160 101
kLao, 1532 247
Ksu, 1.1047 x 103 5.6763 x 10~2
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Fig. 4. CSTR configuration: fitting results (methane and
total gas flowrates).
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Fig. 5. CSTR configuration: fitting results (volatile solids
concentration and ammonium concentration).

dosing, to restore nitrogen availability for microorganisms’
growth.

6. CONCLUSION

In this paper, a model of ex-situ biological biogas upgrad-
ing has been presented. The model can predict methane
flow rate output of two different configurations: a ther-
mophilic up-flow reactor and a continuous stirred tank
reactor. Sensitivity analysis using OpenModelica has been
performed in order to identify the parameters which needs
further optimization. Parameter identification based on
Linear Fractional Transformation (LFT) has proven to
be a valuable tool for the calibration of the model’s pa-
rameters. Identification results demonstrate a good model
accuracy, even though it should be compared with more
datasets, to increase its strength and applicability. Finally,
the model can be extended including other dissolved hy-
drogen consumption pathways such as homoacetogenesis,
introducing new parameters and state variables.
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