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We provide a general framework to describe cooling of a micromechanical oscillator to its quantum ground
state by means of radiation-pressure coupling with a driven optical cavity. We apply it to two experimentally
realized schemes, back-action cooling via a detuned cavity and cold-damping quantum-feedback cooling, and
we determine the ultimate quantum limits of both schemes for the full parameter range of a stable cavity. While
both allow one to reach the oscillator’s quantum ground state, we find that back-action cooling is more efficient
in the good cavity limit, i.e., when the cavity bandwidth is smaller than the mechanical frequency, while cold
damping is more suitable for the bad cavity limit. The results of previous treatments are recovered as limiting
cases of specific parameter regimes.
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I. INTRODUCTION

Cooling of mechanical resonators close to their quantum
ground state has become an important topic for various fields
of physics, such as ultrahigh precision measurements �1�, the
detection of gravitational waves �2�, and the study of the
transition between classical and quantum behavior of a me-
chanical system �3�. It is also a prerequisite for any possible
use of optomechanical systems for quantum information pro-
cessing �4,5�. Recently, various experiments have demon-
strated significant cooling of the vibrational mode of a me-
chanical resonator coupled to an optical cavity �6–16�. In
these experiments cooling has been achieved by exploiting in
two different ways the radiation-pressure interaction between
a mechanical mode and the intracavity field: �i� by back-
action, or self-cooling �17�, in which the off-resonant opera-
tion of the cavity results in a retarded back-action on the
mechanical system and hence in a “self”-modification of its
dynamics �9,11,13,14,18�; and �ii� by cold-damping quantum
feedback �19–21�, where the oscillator position is measured
through a phase-sensitive detection of the cavity output and
the resulting photocurrent is used for a real-time correction
of the dynamics �6,10,12,15�.

We generalize and extend the previous treatments of these
schemes �17,19–21,28,29� to the full parameter range of a
stable cavity by deriving the quantum steady state of the
micromechanical oscillator in a linearized quantum Langevin
equation �QLE� approach. Comparing the two schemes we
find that back-action cooling is more efficient in the good
cavity limit, i.e., when the cavity bandwidth is smaller than
the mechanical frequency, while cold damping is more suit-
able in the opposite limit of a bad cavity. We also show that,
contrary to common belief, the feedback gain in cold-
damping schemes is necessarily bounded by an upper limit to
achieve quantum ground-state cooling.

The paper is organized as follows. In Sec. II we describe
the dynamics of the system in terms of linearized quantum
Langevin equations. In Secs. III and IV we evaluate the
steady-state energy of the mechanical oscillator for the two

cases of back-action cooling with a detuned cavity and cold-
damping feedback cooling. In Sec. V we conclude by com-
paring in detail the two cooling schemes.

II. QUANTUM LANGEVIN EQUATIONS FOR THE
SYSTEM

We consider a driven optical cavity coupled by radiation
pressure to a micromechanical oscillator. The typical experi-
mental configuration is a Fabry-Perot cavity with one mirror
much lighter than the other �see, e.g., �7,9–12,16��, but our
treatment applies to other configurations such as the silica
toroidal microcavity of Refs. �13,22�. Radiation pressure
typically excites several mechanical degrees of freedom of
the system with different resonant frequencies. However, a
single mechanical mode can be considered when a bandpass
filter in the detection scheme is used �23� and coupling be-
tween the different vibrational modes can be neglected. The
Hamiltonian of the system reads �24�

H = ��ca
†a +

1

2
��m�p2 + q2� − �G0a†aq + i�E�a†e−i�0t

− aei�0t� . �1�

The first term describes the energy of the cavity mode, with
lowering operator a ��a ,a†�=1�, cavity frequency �c, and
decay rate �. The second term gives the energy of the me-
chanical mode, modeled as harmonic oscillator at frequency
�m and described by dimensionless position and momentum
operators q and p ��q , p�= i�. The third term is the radiation-
pressure coupling of rate G0= ��c /L��� /m�m, where m is
the effective mass of the mechanical mode �23�, and L is an
effective length that depends upon the cavity geometry: it
coincides with the cavity length in the Fabry-Perot case and
with the toroid radius in the case of Refs. �13,22�. The last
term describes the input driving by a laser with frequency
�0, where E is related to the input laser power P by �E�
=�2P� /��0. One can adopt the single cavity mode descrip-
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tion of Eq. �1� as long as one drives only one cavity mode
and the mechanical frequency �m is much smaller than the
cavity free spectral range �FSR��c /L. In this case, scatter-
ing of photons from the driven mode into other cavity modes
is negligible �25�.

The dynamics are also determined by the fluctuation-
dissipation processes affecting both the optical and the me-
chanical mode. They can be taken into account in a fully
consistent way �24� by considering the following set of non-
linear QLEs, written in the interaction picture with respect to
��0a†a:

q̇ = �mp , �2a�

ṗ = − �mq − �mp + G0a†a + � , �2b�

ȧ = − �� + i�0�a + iG0aq + E + �2�ain, �2c�

where �0=�c−�0. The mechanical mode is affected by a
viscous force with damping rate �m and by a Brownian sto-
chastic force with zero mean value � that obeys the correla-
tion function �24,27�

���t���t��	 =
�m

�m

 d�

2�
e−i��t−t����coth� ��

2kBT
 + 1� , �3�

where kB is the Boltzmann constant and T is the temperature
of the reservoir of the micromechanical oscillator. The
Brownian noise ��t� is a Gaussian quantum stochastic pro-
cess and its non-Markovian nature �neither its correlation
function nor its commutator are proportional to a Dirac delta�
guarantees that the QLE of Eqs. �2a�–�2c� preserve the cor-
rect commutation relations between operators during the
time evolution �24�. The cavity mode amplitude instead de-
cays at the rate � and is affected by the vacuum radiation
input noise ain�t�, whose correlation functions are given by

�ain�t�ain,†�t��	 = �N��c� + 1�	�t − t�� �4�

and

�ain,†�t�ain�t��	 = N��c�	�t − t�� , �5�

where N��c�= �exp���c /kBT�−1�−1 is the equilibrium mean
thermal photon number. At optical frequencies ��c /kBT�1
and therefore N��c��0, so that only the correlation function
of Eq. �4� is relevant.

Cooling of the mechanical oscillator by radiation pressure
can be described in thermodynamical terms in the following
way. Radiation pressure couples the oscillator to the optical
cavity mode, which behaves as an effective additional reser-
voir for the oscillator when the cavity is appropriately de-
tuned. As a consequence, the effective temperature of the
mechanical mode will be intermediate between the initial
reservoir temperature and that of the effective optical reser-
voir, which is in practice equal to zero due to the condition
N��c��0. Therefore one approaches the mechanical ground
state when the coupling rate to the optical reservoir is much
larger than the damping rate �m, which gives the coupling to
the initial reservoir. This explains why significant cooling is
obtained when radiation pressure coupling is strong. It is
realized when the coupling G0 is large, but is more easily

achieved when the intracavity field is very intense, i.e., for
high-finesse cavities and enough driving power. In this limit
�and if the system is stable� the system is characterized by a
semiclassical steady state with the cavity mode in a coherent
state with amplitude 
s ��
s��1�, and a new equilibrium
position for the oscillator, displaced by qs. The parameters 
s
and qs are the solutions of the nonlinear algebraic equations
obtained by factorizing Eqs. �2a�–�2c� and setting the time
derivatives to zero. They are given by

qs =
G0�
s�2

�m
, �6�


s =
E

� + i�
, �7�

where the latter equation is in fact the nonlinear equation
determining 
s, since the effective cavity detuning �, includ-
ing radiation pressure effects, is given by

� = �0 −
G0

2�
s�2

�m
. �8�

Rewriting each Heisenberg operator of Eqs. �2a�–�2c� as the
c-number steady state value plus an additional fluctuation
operator with zero mean value, one gets the exact QLE for
the fluctuations,

	q̇ = �m	p ,

	ṗ = − �m	q − �m	p + G0�
s	a† + 
s
�	a� + 	a†	a + � ,

	ȧ = − �� + i��	a + iG0�
s + 	a�	q + �2�ain. �9�

We have assumed �
s��1, therefore one can safely neglect
the nonlinear terms 	a†	a and 	a	q in the equations above
and obtains the linearized QLE

	q̇ = �m	p , �10a�

	ṗ = − �m	q − �m	p + G	X + � , �10b�

	Ẋ = − �	X + �	Y + �2�Xin, �10c�

	Ẏ = − �	Y − �	X + G	q + �2�Yin. �10d�

Here we have chosen the phase reference of the cavity field
so that 
s is real and positive, and we have defined the cavity
field quadratures 	X��	a+	a†� /�2 and
	Y ��	a−	a†� / i�2, and the corresponding Hermitian input
noise operators Xin��ain+ain,†� /�2 and
Yin��ain−ain,†� / i�2. The linearized QLE show that the me-
chanical mode is coupled to the cavity mode quadrature fluc-
tuations by the effective optomechanical coupling

G = G0
s
�2 =

2�c

L
� P�

m�m�0��2 + �2�
, �11�

which can be made very large by increasing the intracavity
amplitude 
s. Notice that together with the condition
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�m�c /L which is required for the single cavity mode de-
scription, �
s��1 is the only assumption required by the
present approach. We shall see below that, thanks to this fact,
the present approach provides a generalization of previous
treatments of back-action cooling, such as the semiclassical
treatment of Ref. �17� and the perturbation treatments of
�28,29�.

III. DETUNING-INDUCED BACK-ACTION COOLING

We have to evaluate the mean energy of the oscillator in
the steady state

U =
��m

2
��	q2	 + �	p2	� � ��m�nef f +

1

2
 , �12�

and to see if and when it approaches the ground-state value
��m /2. This is equivalent to determining the conditions un-
der which �	q2	��	p2	�1 /2. The two oscillator variances
�	q2	 and �	p2	 can be obtained by solving Eqs. �10a�–�10d�
in the frequency domain and integrating the corresponding
fluctuation spectrum. One gets

�	q2	 = 

−�

� d�

2�
Sq

���� ,

�	p2	 = 

−�

� d�

2�

�2

�m
2 Sq

���� , �13�

where the position spectrum is given by

Sq
���� = ���ef f

� �����2�Sth��� + Srp��,��� , �14�

where

Sth��� =
�m�

�m
coth� ��

2kBT
 �15�

is the thermal noise spectrum,

Srp��,�� =
G2���2 + �2 + �2�

��2 + �� − ��2���2 + �� + ��2�
�16�

is the radiation pressure noise spectrum, and

�ef f
� ��� = �m��m

2 − �2 − i��m −
G2��m

�� − i��2 + �2�−1

�17�

is the effective susceptibility of the oscillator, modified by
radiation pressure. The latter can be read as the susceptibility
of an oscillator with effective resonance frequency and
damping rate given by

�m
ef f��� = ��m

2 −
G2��m��2 − �2 + �2�

��2 + �� − ��2���2 + �� + ��2��1/2

,

�18�

�m
ef f��� = �m +

2G2��m�

��2 + �� − ��2���2 + �� + ��2�
. �19�

The modification of the mechanical frequency due to radia-
tion pressure shown by Eq. �18� is the so-called “optical

spring effect,” which may lead to significant frequency shifts
in the case of low-frequency oscillators, such as pendulum
modes of suspended mirrors �14�. In the case of higher reso-
nance frequencies, such as those of Refs. �9,11,13� where
�m1 MHz, the optical spring term in Eq. �18� does not
significantly alter the frequency, even for large intracavity
power. Here, we shall only consider numerical examples
with large �m, where the frequency is practically unchanged
��m

ef f�����m, see Fig. 1�a��. In fact, ground state cooling
nef f �1 can be approached only if the initial mean thermal
excitation number n̄= �exp���m /kBT�−1�−1 is not prohibi-
tively large, and this is possible, even at cryogenic tempera-
tures, only if �m is sufficiently large. For positive � and for
large enough G the effective mechanical damping is instead
significantly increased �see Fig. 1�b��. This increase is at the
basis of the cooling process. In fact, the mechanical suscep-
tibility at resonance is inversely proportional to damping and
it is therefore significantly suppressed by radiation pressure.
As a consequence, the oscillator is much less affected by
thermal noise and this means cooling as long as the
radiation-pressure noise contribution Srp�� ,�� remains small
compared to the thermal noise term Sth���, which is verified
for not too large G.

Let us now determine the oscillator mean energy. The
system reaches a steady state only if it is stable and this is
satisfied when all the poles of the effective susceptibility �ef f

�

lie in the lower complex half-plane. By applying the Routh-
Hurwitz criterion �30�, we get the following two nontrivial
stability conditions in the detuned-cavity case:

s1 = 2�m����2 + ��m − ��2���2 + ��m + ��2� + �m���m + 2��

���2 + �2� + 2��m
2 �� + ��mG2��m + 2��2 � 0, �20a�

-4 -3 -2 -1 1 2 3 4

0.9

0.95

1.05

ω/ωm

ωeff/ωm

-4 -3 -2 -1 1 2 3 4

10000

20000

30000

40000

ω/ωm

γeff/γm

(a)

(b)

FIG. 1. Plot of the effective mechanical frequency of Eq. �18�
�a� and of the effective mechanical damping of Eq. �19� �b� versus
frequency. Parameter values are �m /2�=10 MHz, �m /2�
=100 Hz, �=�m, �=0.2 �m, and G=0.2 �m �dashed line�, G
=0.3 �m �dotted line�, and G=0.4 �m �full line�, which we shall
see later correspond to an optimal cooling regime.
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s2 = �m��2 + �2� − G2� � 0. �20b�

When the stability conditions are satisfied, the integrals of
Eq. �13� for the two variances can be solved exactly. How-
ever, it is reasonable to simplify the thermal noise contribu-
tion in Eqs. �15�. In fact kBT /��1011 s−1 even at cryogenic
temperatures and therefore is always much larger than all the
other parameters. At these high values of � the position spec-
trum is negligible and therefore one can safely approximate
in the integral

�m�

�m
coth� ��

2kBT
 � �m

2kBT

��m
� �m�2n̄ + 1� . �21�

Performing the integrals, one gets the final expressions for
the two variances, which are given by

�	q2	 = �s1s2�−1��n̄ +
1

2
G2A� + G2B� + C�� ,

�	p2	 = s1
−1��n̄ +

1

2
G2D� + G2E� + F�� , �22�

where

A� = ��m��2 + �2������ + �m�2 + �2� + �� + �m��m
2 �

− G2��� + �m/2���m
2 , �23�

B� = �m��m
2 �2��2�2 − �m

2 − 2�2� + ���2 − 2�2�� , �24�

C� = 2��m�m��2 + �2����2 + �2���� + �m�2 + �2�

+ 2���� + �m� − �2��m
2 + �m

4 � , �25�

D� = ���� + �m���2 + �2� + ��m
2 � , �26�

E� = 2�m�� + �m/2���m, �27�

F� = 2��m���2 + �2���� + �m�2 + �2� + 2���� + �m� − �2��m
2

+ �m
4 � . �28�

Notice that in general �	q2	� �	p2	, that is, one does not
have energy equipartition, as it is already shown by the gen-
eral expression of Eq. �13�. This means that in the generic
case, the steady state of the system is not, strictly speaking, a
thermal equilibrium state and this prevents one from deriving
here an univocally defined temperature. With this respect,
Eq. �12� provides a definition of the effective mean excita-
tion number nef f from which one can only define an effective
temperature as Tef f =��m / �kB ln�1+1 /nef f��. However, in or-
der to get to the quantum ground state, both variances have
to tend to 1/2 and therefore energy equipartition has to be
satisfied in the optimal regime close to the ground state.

In order to have an intuitive picture and to facilitate the
comparison with the recent perturbation treatments of Refs.
�28,29�, we consider the expressions of the variances in some
limiting case of experimental interest. It is convenient to in-
troduce the rates �29�

A� =
G2�

2��2 + �� � �m�2�
, �29�

which define the rates at which laser photons are scattered by
the moving oscillator simultaneously with the absorption
�Stokes, A+� or emission �anti-Stokes, A−� of the oscillator
vibrational phonons. For ��0 one has A−�A+ and a net
laser cooling rate

� = A− − A+ � 0

can be defined, giving the rate at which mechanical energy is
taken away by the leaking cavity. As a consequence, the total
mechanical damping rate is given by �m+�, which is con-
sistent with the expression of the effective �frequency-
dependent� damping rate of Eq. �19�: in fact, it is easy to
check that

�m
ef f�� = �m� = �m + � . �30�

As discussed in the preceding section, ground-state cooling
is achievable when �m, the coupling rate with the thermal
reservoir, is significantly smaller than �, which represents
the coupling rate of the mechanical oscillator with the effec-
tive reservoir provided by the damped cavity mode. For
small �m the above expressions simplify to

�	p2	 =
1

�m + �
�A+ + A−

2
+ �mn̄�1 +

�

2�
� , �31�

�	q2	 =
1

�m + �
�a

A+ + A−

2
+

�mn̄

��
�1 +

�

2�
b� , �32�

where we have defined the coefficients

a =
�2 + �2 + ���m

2

����2 + �2 + �m
2 �

, �33�

b =
2��2 − �2� − �m

2

�2 + �2 , �34�

�� = 1 −
G2�

�m��2 + �2�
. �35�

Note that for positive �, 0����1 due to the stability con-
dition of Eq. �20b�. Equations �31� and �32� provide a gen-
eralization of the results of Refs. �28,29�, which are repro-
duced if we take �m� n̄�m ,G and ���m ,G �assumed in
Refs. �28,29�� in Eqs. �31� and �32�. In these limits a ,��

→1, � /�→0 and therefore

�	p2	 � �	q2	 = nef f + 1/2, �36�

where

nef f =
�mn̄ + A+

�m + �
�37�

is the basic result of Ref. �28� �see Eq. �9�� and Ref. �29� �see
Eq. �5� and its derivation�. This result has been also obtained
in Ref. �31� through an approximate treatment of the exact
integrals of Eq. �13�.
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The approximate expression of Eq. �37� suggests how the
system parameters can be chosen in order to minimize the
oscillator energy close to the ground-state value. In order to
reach the condition nef f �1 one needs a large � /�m while
keeping A+ /� small. This is done by matching �=�m, which
optimizes the energy transfer from the mechanical mode to
the anti-Stokes sideband. Further optimization requires a
large value of G, which is, however, constrained by the sta-
bility condition ���0. When ��→0, �	q2	 becomes too
large, while the ground state, where �	q2	= �	p2	=1 /2, is
approached for ���1 �see Eq. �32��. Finally the optimal
ratio � /�m is determined by the fact that the laser-cooling
rate � has to be large but still smaller than � because the
cavity response time ��−1 has to remain shorter than that of
the oscillator ��−1. We find that, within a set of experimen-
tally achievable parameters, the best cooling regime �nef f
�0.1� is obtained in the good cavity limit condition � /�m

�0.2 �see Fig. 2�, which is close to the value of 1 /�32
suggested in �29�.

IV. GROUND-STATE COOLING WITH COLD DAMPING

An alternative way of cooling the oscillator by overdamp-
ing, proposed in �19� and experimentally realized in

�6,10,12,15�, is to use quantum feedback and specifically
cold damping �20,21,32�. This technique is based on the ap-
plication of a negative derivative feedback, which increases
the damping of the system without increasing the thermal
noise. The oscillator position is measured by means of a
phase-sensitive detection of the cavity output, which is then
fed back to the oscillator by applying a force whose intensity
is proportional to the time derivative of the output signal, and
therefore to the oscillator velocity. One measures the phase
quadrature Y, whose Fourier transform, according to Eqs.
�10a�–�10d�, is given by

	Y��� =
G�� − i��

�� − i��2 + �2	q����+ noise terms� . �38�

This shows that the highest sensitivity for position measure-
ments is achieved for a resonant cavity, �=0 and in the large
cavity bandwidth limit ���m ,�m, i.e., when the cavity
mode adiabatically follows the oscillator dynamics 	Y���
��G /��	q���. Therefore the QLE for the cold-damping
scheme coincides with those of Eqs. �10a�–�10d� with �=0,
but with an additional feedback force

	q̇ = �m	p , �39a�

	ṗ = − �m	q − �m	p + G	X + � − 

−�

t

dsg�t − s�	Yest�s� ,

�39b�

	Ẋ = − �	X + �2�Xin, �39c�

	Ẏ = − �	Y + G	q + �2�Yin. �39d�

In Eq. �39b� g�t� is a causal kernel, proportional to a deriva-
tive of a Dirac delta in the ideal derivative feedback limit,
and 	Yest�s� is the estimated intracavity phase quadrature that
is obtained from the measurement of the output quadrature
Yout�t� as follows. The usual input-output relation

	Yout�t� = �2�	Y�t� − Yin�t� �40�

can be generalized to the case of a nonunit detection effi-
ciency by modeling a detector with quantum efficiency �
with an ideal detector preceded by a beam splitter with trans-
missivity ��, hence mixing the incident field with an uncor-
related vacuum field Yv�t� �26�. The generalized input-output
relation then reads

Yout�t� = ����2�	Y�t� − Yin�t�� − �1 − �Yv�t� , �41�

so that the estimated phase quadrature 	Yest�s� is given by

	Yest�t� �
Yout�t�
�2��

= 	Y�t� −
Yin�t� + ��−1 − 1Yv�t�

�2�
.

�42�

After solving the QLE of Eqs. �39a�–�39d� by Fourier trans-
form, one finds that the two oscillator variances in the cold-
damping case are given again by Eqs. �13�, but with a dif-
ferent position spectrum Sq

cd��� that can be expressed as
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FIG. 2. �Color online� �a� Effective mean vibrational number
nef f versus � /�m and � /�m around the optimal ground-state cool-
ing regime for �m /2�=10 MHz, �m /2�=100 Hz, m=250 ng, a
cavity of length L=0.5 mm driven by a laser with power P
=50 mW, and wavelength 1064 nm. The oscillator reservoir tem-
perature is T=0.6 K, corresponding to n̄�1250. The minimum
value nef f �0.1 corresponds to an effective temperature Tef f

�0.2 mK. �b� Effective mean vibrational number nef f versus � /�m

and the normalized power P / P0, �P0=50 mW� at the fixed, optimal
value for the detuning, �=�m. The other parameters are the same as
in �a�.
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Sq
cd��� = ���ef f

cd �����2�Sth��� + Srp��,0� + Sfb���� . �43�

Sth��� is given by Eq. �15�, Srp�� ,0� is obtained by choosing
�=0 in Eq. �16�, and one has the additional contribution

Sfb��� =
�g����2

4��
�44�

due to the measurement noise that is fed back into the oscil-
lator dynamics by the cold-damping feedback loop �g��� is
the Fourier transform of g�t��. Finally,

�ef f
cd ��� = �m��m

2 − �2 − i��m +
g���G�m

� − i�
�−1

�45�

is the effective susceptibility of the oscillator in the cold-
damping scheme, which depends upon the explicit form of
the feedback transfer function g���. The simplest choice,
corresponding to a standard derivative high-pass filter, is

g��� =
− i�gcd

1 − i�/� fb
, �46�

which means choosing

g�t� = gcd
d

dt
���t�� fbe−�fbt�

so that � fb
−1 plays the role of the time delay of the feedback

loop, and gcd�0 is the feedback gain. The ideal derivative
limit is obtained for � fb→�, implying g���=−i�gcd and
therefore g�t�=gcd	��t�. The cold-damping susceptibility of
Eq. �45� can be read again as the susceptibility of an oscil-
lator with effective resonance frequency and damping rate
given by

�m
ef f ,cd��� = ��m

2 +
gcdG�m� fb�2�� + � fb�

��2 + �2��� fb
2 + �2� �1/2

, �47�

�m
ef f ,cd��� = �m +

gcdG�m� fb��� fb − �2�
��2 + �2��� fb

2 + �2�
. �48�

The frequency dependence of the effective resonance fre-
quency and damping depends upon the specific form of the
transfer function g���, and the one associated with the
choice of Eq. �46� is plotted in Fig. 3 for comparison with
the corresponding curves for the back-action cooling of Fig.
1. Figure 3�a� shows again that in the chosen parameter re-
gime, the frequency shift, i.e., the optical spring effect, is
negligible. Cold damping is usually applied in the adiabatic
limit when � ,� fb�� and in this limit one has �m

ef f ,cd��m

and �m
ef f ,cd��m+gcdG�m /�=�m�1+g2�, where we have de-

fined the scaled, dimensionless feedback gain g2
�gcdG�m /��m �21�. In this limit the only effect of cold
damping is to increase the mechanical damping rate without
significantly changing the resonance frequency. As a conse-
quence, the system is stable whenever gcd�0. This is not
any longer true in the general case when finite values of �
and � fb are considered. By imposing that all the poles of
�ef f

cd ��� lie in the lower complex half-plane we get one non-
trivial stability condition

scd = ��m�� fb + gcdG�m� fb + �m
2 �� + � fb����� + �m��� + � fb�

���m + � fb� + �m�m
2 − gcdG�m� fb� − ��m

2 � fb�� + �m

+ � fb�2 � 0. �49�

This stability condition is always satisfied in the ideal deriva-
tive feedback limit �� fb→�� and in the ideal adiabatic limit
�→�. However, for finite values of � fb and �, Eq. �49�
implies an upper limit to the feedback gain which is given by

g2 � �0 + ��0
2 + �r

2, �50�

where

�0 =
1

2
�� fb

�m
�1 +

�m

�
 +

�

�m
+

�m

�
+ 1 −

�m
2

��m
+

�m
2

�� fb
+

�m + �

� fb

−
�m

2

�m� fb
� , �51�

�r
2 =

�m
2 + �2 + �m�

� fb
2 �2�m

�� fb
3 + � fb

2 �� + �m� + � fb��m
2 + �m��

+ ��m
2 � . �52�

The system may become unstable for large gain because, for
nonzero time delay, the feedback force can be out-of-phase
with the oscillator motion and become an accelerating rather
than a viscous force.
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FIG. 3. Plot of the effective mechanical frequency of Eq. �47�
�a� and of the effective mechanical damping of Eq. �48� �b� versus
frequency. Parameter values are �m /2�=10 MHz, �m /2�
=100 Hz, gcd=4, � fb=3�m, �=30�m, and G=0.2 �m �dashed
line�, G=0.3 �m �dotted line�, and G=0.4 �m �full line�, which we
shall see later correspond to an optimal feedback cooling regime.
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The exact expression for the position and momentum
variances can be obtained by integrating Eq. �13� using the
corresponding spectrum for the cold-damping case, given by
Eq. �43�. Using again the approximation of Eq. �21�, one gets

�	q2	 = scd
−1��n̄ +

1

2
�Acd + �1 +

� fb
2

�2 Bcd + Ccd�
+

gcd
2 � fb

2

8��
�Acd + Bcd� +

G2

2�
�Bcd + Ccd�� , �53�

�	p2	 = scd
−1��n̄ +

1

2
���2 + � fb

2

�m
2 Acd +

� fb
2

�m
2 Bcd + Dcd�

+
gcd

2 � fb
2

8��
� �2

�m
2 Acd + Dcd� +

G2

2�
� �2

�m
2 Acd +

� fb
2

�m
2 Bcd�� ,

�54�

where

Acd = �m
2 ���m

2 + � fb��m
2 + �m� + gcdG�m�� , �55�

Bcd = �m
2 �2��m + � + � fb� , �56�

Ccd = � fb��� fb
2 �� + �m� + � fb�� + �m�2 + �m��m

2 + �2

+ ��m�� , �57�

Dcd = � fb
2 ��m��m

2 + �2 + ��m� + �� + �m�gcdG�m� + � fb��m
2

+ ��m���m
2 + ��m + gcdG�m� + ��m

2 ��m
2 + �m�� . �58�

Equations �53� and �54� show that also with cold damping
�	q2	� �	p2	, i.e., energy equipartition does not hold in gen-
eral.

The optimal cooling conditions in the cold-damping
scheme can be obtained by minimizing the sum of the vari-
ances of Eqs. �53� and �54�, which is nontrivial in general.
Since, however, cold-damping feedback is designed to work
only within the adiabatic limit, we can restrict the discussion
to the bad cavity limit where ���m ,�m. In fact, the feed-
back force is an additional viscous force that is able to over-
damp the mechanical oscillator only when the output signal
	Yest�t� is proportional to the oscillator position 	q�t�, which
happens when � is much larger than the relevant frequencies
� of the mechanical motion. In the good cavity limit
����m ,�m� on the contrary, the output signal 	Yest�t� is
proportional to the time integral of the oscillator position
	q�t� and therefore the feedback force is proportional to the
oscillator position rather than to its velocity. This means that
in the good cavity limit the feedback loop has no cold-
damping effect because it increases the mechanical fre-
quency, �m

ef f ,cd���m
2 +gcdG�m�1/2, without appreciably

modifying the mechanical damping �see Eqs. �45�, �47�, and
�48��.

We discuss the expressions of �	q2	 and �	p2	 in the adia-
batic limit by distinguishing two situations that depend upon
the value of the feedback bandwidth � fb: �i� very large band-

width, � fb����m ,�m, where the feedback is practically
instantaneous; and �ii� finite bandwidth, ��� fb��m��m.
In the first case one has

�	q2	 �
n̄ + 1

2 + �
4 +

g2
2

4���1 + g2
�m

� �
1 + g2

, �59�

�	p2	 �
�n̄ + 1

2��1 + g2
�m

� � + �
4

1 + g2
+

g2
2

4��

� fb�m

�m
2 , �60�

where we have defined the scaled dimensionless input power
�=2G2 /��m. These results provide the generalization of the
results of �20,21�, where the quantum limits of cold-damping
have been already discussed within the adiabatic limit. In
fact, Eqs. �59� and �60� reproduce the results of Ref. �21� in
the large-bandwidth limit of the feedback except for the ad-
dition of the nonadiabatic correction term g2�m /� for both
�	q2	 and �	p2	. The almost instantaneous feedback regime
� fb����m ,�m is not convenient for cooling because of
the last contribution to �	p2	, which is very large since it
diverges linearly with � fb. This is due to the fact that the
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FIG. 4. �Color online� �a� Effective mean vibrational number
nef f versus the feedback gain gcd and the scaled input power P / P0

�P0=100 mW�, around the optimal cooling regime for �m /2�
=10 MHz, �m /2�=100 Hz, m=250 ng, a cavity of length L
=0.5 mm driven by a laser with wavelength 1064 nm, and band-
width �=3�m. The feedback bandwidth is � fb=3.5�m. The oscilla-
tor reservoir temperature is T=0.6 K, corresponding to n̄�1250.
The minimum value nef f �0.2 corresponds to an effective tempera-
ture Tef f �0.27 mK. �b� Effective mean vibrational number nef f

versus � /�m and � fb /�m at fixed input power P0=100 mW and
feedback gain gcd=0.8. The other parameters are as in �a�.
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derivative feedback injects a large amount of shot noise
when its bandwidth is very large.

In the other limit where the feedback delay time is com-
parable to the oscillator time scales, that is, ��� fb
��m��m, one has

�	q2	 �

g2
2

4�� + �n̄ + 1
2 + �

4��1 +
�m

2

� fb
2 �

1 + g2 +
� fb

2

�m
2

, �61�

�	p2	 � �1 + g2 +
�m

2

� fb
2 �−1� g2

2

4��
�1 +

g2�m� fb

�m
2 

+ �n̄ +
1

2
+

�

4
�1 +

�m
2

� fb
2 +

g2�m

� fb
� . �62�

These results generalize those of Refs. �20,21�, which were
restricted to the adiabatic limit �→�, and partially modify
their conclusion that one can always achieve ground-state
cooling in the large feedback-gain limit g2��→� ��=1�.
This is not true in general. From Eq. �61� it is clear that,
when g2���1,� fb

2 /�m
2 , one obtains �	q2	�1 /2

+�m
2 /4� fb

2 + �n̄ /g2��1+�m
2 /� fb

2 �, which implies that the
ground state is approached when �m /� fb�1 and n̄ /g2�1.
However, in the same limit, Eq. �62� yields �	p2	�1 /2
+ �� fb

2 /4�m
2 ��g2�m /� fb�+ n̄ /g2�1+�m

2 /� fb
2 +g2�m /� fb�, show-

ing that the feedback bandwidth � fb cannot be too large be-
cause otherwise �	p2	 becomes too large. The best cooling
regime is instead achieved for � fb�3�m and g2�� �i.e.,

gcd�2G /�m�, i.e., for large but finite feedback gain. This is
consistent with the fact that stability imposes an upper bound
to the feedback gain when � and � fb are finite. The optimal
cooling regime for cold damping is illustrated in Fig. 4,
where nef f is plotted versus the feedback gain gcd and the
input power P, at fixed �=3�m �bad-cavity condition� and
� fb=3.5�m. We find a minimum value nef f �0.2, corre-
sponding to an effective temperature T�0.27 mK for g2
���104. Lower values of nef f can be obtained only if the
quality factor �m /�m is further increased.

V. CONCLUSIONS

We have developed a general quantum Langevin treat-
ment of radiation-pressure ground-state cooling of a micro-
mechanical oscillator, extending previous treatments
�17,19–21,28,29� to the full parameter range of a stable cav-
ity. Both cavity self-cooling and cold damping are able to
approach the ground state, and the comparison of the optimal
cooling conditions for both schemes shows that self-cooling
is preferable for a good cavity ����m�, while cold damping
is more convenient for a bad cavity ����m�.
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