
Available online at www.sciencedirect.com

Finite Elements in Analysis and Design 40 (2004) 425– 448
www.elsevier.com/locate/�nel

Three-�eld mixed formulation for the non-linear analysis of
composite beams with deformable shear connection

Andrea Dall’Astaa ;∗, Alessandro Zonab

aDipartimento di Progettazione e Costruzione dell’Ambiente, University of Camerino, Viale della Rimembranza,
63100 Ascoli Piceno, Italy

bIstituto di Scienza e Tecnica delle Costruzioni, University of Ancona, Via Brecce Bianche, 60131 Ancona, Italy

Received 25 August 2002; received in revised form 27 January 2003; accepted 9 February 2003

Abstract

A three-�eld mixed �nite element is proposed for the non-linear analysis of composite beam with deformable
shear connection. The formulation considers the non-linear behaviour of materials and shear connectors. The
established mixed element is compared to the locking-free displacement element from which it derives and
to a re�ned locking-free displacement element previously tested by the authors. In order to evaluate the way
to better improve the solution in the non-linear range (three-�eld mixed formulation or re�ned displacement
formulation), numerical applications are performed using, as working example, a steel-concrete cantilever,
representing a di3cult test for composite beam elements.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Composite beams are widely used in structural and bridge engineering and a beam model account-
ing for the non-linear behaviour of both materials and deformable shear connectors is needed for
an accurate and reliable description of the deformability and the ultimate carrying load capacity. If
the study is limited to the in-plane bending behaviour, i.e. symmetric cross-sections are considered
and no torsion and out-of-symmetry-plane bending occur, the analysis of this type of structures can
be based on the Newmark kinematical model [1]: the Kirchho@ beam theory is used to model the
two parts of the composite beam; the e@ects of the deformable shear connection are accounted for
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Fig. 1. Kinematical model for the composite beam with weak shear connection.

by using an interface model with distributed bond, preserving the contact between the components
(Fig. 1).
Numerical solutions provided by the �nite element method are very helpful in the analysis and

design of this type of structures but an e3cient and reliable composite beam element is required.
Di@erent displacement-based �nite element models have been proposed [2–4]. Finite elements based
on the displacement method have a simple formulation but their behaviour is not always satis-
factory. For example the �nite element satisfying the lower regularity requirements is a@ected by
locking when shear connection sti@ness increases [5]. Moreover, even if locking-free elements are
adopted, a high number of DOF may be necessary in order to obtain reliable results in non-linear
analysis [4].
Models that attempt to overcome the limitations of the displacement based formulations have been

proposed. Salari et al. [6] and Salari et Spacone [7] adopted a �nite element based on the force
method (Hexibility formulation), demonstrating that a more accurate calculation of the stress and
strain �elds, with respect to displacement based elements, is possible. However in the Hexibility
formulation a not straightforward iterative procedure is needed to determine the element state, as
described in [8,9]. Moreover di3culties arise in selecting the force interpolation functions that strictly
satisfy equilibrium for cases that involve interaction between beam displacements and internal forces,
as occurs in composite beams with weak shear connection.
In view of the limitations of the displacement formulation and the di3culties of the Hexibility

formulation, Ayoub et Filippou [10] and Ayoub [11] introduced a displacement-stress mixed element.
The mixed approach seems to combine the advantages of both displacement and force formulations,
while overcoming most of their limitations. In the �nite element described in [10,11] only three
components of the stress �eld (the two axial forces and the summation of the bending moments
of the two components) are described by force shape functions while the interface force is derived
from the displacement �eld.
In this paper, the authors propose a three-�eld mixed element in order to evaluate its e3ciency in

comparison with locking free displacement elements with internal nodes tested in [4,5]. In the case
of linear or non-linear elastic materials the proposed formulation is equivalent to the formulation
based on the Hu-Washizu variational principle (see [12] for historical and technical details).
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The displacement �eld of a locking-free element, the strain �eld (two axial deformations, curvature,
interface slip) and the stress �eld (two axial forces, summation of the bending moments of the
two components, interface shear force) are introduced and independently approximated. Since the
de�nition of the three-�eld mixed element starts from a locking-free displacement �eld (that of
the 10DOF displacement element [5]), the mixed formulation is adopted here as a stress recovery
technique to enhance the stress representation [13], and not as a method to reduce or eliminate
locking. Such an approach has been developed for improving the e@ectiveness in the non-linear
range of the 10DOF element, while in the linear range the proposed mixed element has the same
behaviour of the element from which it is derived, as can be deduced from the Limitation Theorems
[14,15]. The established three-�eld mixed element is compared to the 10DOF element and to a re�ned
locking-free displacement based element (16DOF) obtained by improving the 10DOF element with
further internal nodes and previously tested by the authors [4,5]. Both the three-�eld element and the
16DOF displacement element require more tedious computation with respect to the 10DOF element
and the comparison is developed in order to establish the better approach to use in order to overcome
the problems involved in the 10DOF element.
In the sequel, the kinematical model of the composite beam with interlayer slip is described

and the main equations are introduced. The �nite element displacement formulation is then brieHy
summarized. Finally the proposed three-�eld approach is introduced and numerical applications are
illustrated. In the examples, a steel-concrete cantilever beam is considered and uniform loads were
applied downward (cracking of the concrete slab) and upward (softening of the concrete slab). The
cantilever structural scheme was analysed since it is a di3cult test for composite beam elements,
due to high slip gradient and strain localizations. The same problems a@ect continuous beams (a
problem of practical interest in structural engineering); the main di3culties can however be more
clearly highlighted in the simpler cantilever scheme.

2. Kinematical assumptions and governing equations

2.1. Kinematical model

In the reference con�guration, the composite beam occupies the cylindrical region V = A× [0; L]
generated by translating its symmetrical cross-section A along a rectilinear axis, orthogonal to the
cross-section. The cross-section is divided into two parts A= A1 ∪ A2. We introduce an orthonormal
reference frame {O;X; Y; Z} where Z is orthogonal to A; YZ is the symmetry plane for A, A1 and
A2; i, j, k are the unit vectors of axis X; Y; Z respectively. It is assumed that the connection does
not permit a displacement jump in the direction orthogonal to the beam axis and only discontinuities
parallel to the beam axis may occur, so that the jump condition can be expressed as follows:

[u	] · j = 0; (1)

where u	 is the displacement �eld of part 	 (	=1; 2) with u	 · i=0; this condition implies the same
displacement in the Y -direction for the two beam components.
The deformed con�guration is described by the following displacement �eld:

u	(y; z) = v(z)j + [w	(z) + (y	 − y)v′(z)]k on A	 (	= 1; 2); (2)
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where the prime denotes the derivative with respect to the z co-ordinate and v, w	 are the scalar
components in Y and Z directions of the displacement of the centroid of A	 located at the ordinate
y	 (see Fig. 1).

2.2. Balance and compatibility conditions

The Virtual Work Principle permits obtaining compatibility and balance conditions and identify-
ing the dynamic entities which are duals of the kinematic entities introduced by the kinematical
assumptions. Such dynamic entities are resultants of the stresses which make work (active stress).
The Virtual Work Principle speci�ed for the problem in examination becomes:

∑
	

∫ L

0

∫
A	

�z	�̂z	 dA	 dz +
∫ L

0
fs�̂ dz

=
∑
	

∫ L

0

∫
A	

b · û	 dA	 dz +
∑
	

∫ L

0

∫
9A	
t · û	 ds	 dz

∀û	; (3)

where û	 is the admissible displacement �eld, �z	 is the axial strain given by

�z	(y; z) = �	(z) + (y − y	)�(z) on A	 (	= 1; 2) (4)

(�	 = w′
	 is the axial strain evaluated at the centroid of A	 and � = −v′′ is the curvature); � is the

slip between the two parts of the composite beam:

�(z) = w2(z)− w1(z) + hv′(z); (5)

where h= y2− y1 is the distance of the two components centroids (Fig. 1); �z	 is the normal stress
(it can be calculated from the axial strain after the introduction of the constitutive relationship for
the composite beam materials); fS is the shear connection force, assumed to be distributed along
the interface (it can be calculated from the slip after having assigned the connection constitutive
relationship); b and t are the body and surface forces respectively (for the sake of brevity no forces
are prescribed at the end sections).
Once the stress resultants:

N	 =
∫
A	

�z	 dA	; M	 =
∫
A	

�z	(y − y	) dA	 (6a,b)

M12 =M1 +M2, and the load resultants:

gz	 =
∫
A	

b · k dA	 +
∫
9A	
t · k ds	; (7a)

gy =
∑
	

∫
A	

b · j dA	 +
∑
	

∫
9A	
t · j ds	; (7b)
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mx =
∑
	

∫
A	

b · k(y	 − y) dA	 +
∑
	

∫
9A	
t · k(y	 − y) ds	 (7c)

have been introduced, the Virtual Work Principle can be expressed in the concise form:∫ L

0
r · ”̂ dz =

∫ L

0
g ·Hû dz ∀[û; ”̂] (8)

having introduced the displacements vector (9), the vector of generalized strains (10), the vector of
stress resultants (11), the generalized load vector (12):

uT = [w1 w2 v]; (9)

”T = [�1 �2 � �]; (10)

rT = [N1 N2 M12 fs]; (11)

gT = [gz1 gz2 gy mx] (12)

and the di@erential operator

H=




1 0 0

0 1 0

0 0 1

0 0 9


 : (13)

The compatibility condition is expressed by

” =Du; (14)

where the di@erential operator

D=




9 0 0

0 9 0

0 0 −92
−1 1 h9


 (15)

permits obtaining the generalized strain vector from the displacements �eld (9 denotes the derivative
with respect to the z co-ordinate).
The local equilibrium conditions are obtained by integrating by parts of (8) (Euler problem) and

they have the following expression:

DTr =HTg (16)

(the apex T denotes the adjoint of the di@erential operators) while the eight boundary conditions are

N	(z)ŵ	(z)|z=0; L = 0 ∀ŵ	; (17a)
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M12(z)v̂′(z)|z=0; L = 0 ∀v̂; (17b)

(M ′
12(z) + hfs(z))v̂(z)|z=0; L = 0 ∀v̂: (17c)

2.3. Constitutive law

The generalized constitutive law can be derived from the materials and shear connection consti-
tutive laws

�z	 = c	(�z	); (18a)

fs = cs(�); (18b)

where c	 and cs are non-linear functions, and assumes the form

r = c(”): (19)

The non-linear generalized constitutive law can be linearized referring to stress and strain
increments

Pr ∼= Dt(”i)P” (20)

(Pr = ri+1 − ri and P” = ”i+1 − ”i) having introduced the symmetric operator

Dt(”i) =
9r
9”

∣∣∣∣
�i

=




D11 0 D13 0

0 D22 D23 0

D13 D23 D33 0

0 0 0 D44


 ; (21)

where

D		 =
9N	
9�	

=
∫
A	

d�z	
d�z	

dA	; (22a)

D	3 =
9N	
9� =

∫
A	

d�z	
d�z	

(y − y	) dA	; (22b)

D33 =
∑
	

9M	

9� =
∑
	

∫
A	

d�z	
d�z	

(y − y	)2 dA	; (22c)

D44 =
dfs

d�
(22d)

since all other terms are null.
In the linear elastic case constitutive laws of materials and shear connection are linear functions

�z	 = E	�z	; (23a)
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fs = k� (23b)

and the generalized linear constitutive law assumes the form

r =D” (24)

having introduced the symmetric operator

D =




EA1 0 0 0

0 EA2 0 0

0 0 EJ12 0

0 0 0 k


 ; (25)

where the following quantities, containing the inertial properties of the cross-section and constitutive
parameters, are introduced

EA	 =
∫
A	

E	 dA	; (26a)

EJ	 =
∫
A	

E	(y − y	)2 dA	 (26b)

and EJ12 = EJ1 + EJ2 (i.e. the bending sti@ness in absence of shear connection).

3. Displacement formulation

3.1. Finite element displacement formulation

The problem can be approached by assuming the displacements as unknown and using the balance
condition (16), the compatibility condition (14) and the generalized constitutive law (19). The strong
form of the balance condition (16) in terms of displacement is

DTc(Du) =HTg (27)

while the weak form is∫ L

0
[DTc(Du)−HTg] · û dz = 0 ∀û; (28)

where û is the admissible displacement �eld.
An approximated solution can be calculated using the displacement approach of the �nite ele-

ment method. The displacements formulation of the �nite element method introduces a polynomial
approximation of the displacement �eld at the interior of each element

ũ =Nd ; (29)

where N is the matrix of shape functions and d is the vector of the nodal displacements parameters
(hereinafter •̃ denotes the approximation of �eld •). The strain vector ”̃u is obtained from the
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approximated displacement �eld

”̃u =DNd = Bd : (30)

Using constitutive laws it is possible to relate the generalized stress vector to the nodal dis-
placement vector. The stress vector r̃u deduced from the approximated displacement �eld has the
expression

r̃u = c(”̃u) = c(Bd): (31)

The weak form of the balance condition at element level, after substituting the approximations
(29), (30) and (31), becomes∫ Le

0
[DTc(Bd)−HTg] ·Nd̂ dz = 0 ∀d̂ (32)

from which the following solving balance equation is obtained:

fr;PE(d)− f = 0; (33)

where

fr;PE(d) =
∫ Le

0
BTc(Bd) dz; (34)

f =
∫ Le

0
(HN)Tg dz (35)

are the element internal forces vector and the element loads vector respectively. In the case of linear
and non-linear elastic materials, the same result is obtained making stationary the functional of Total
Potential Energy.
Since the equilibrium equations are non-linear an iterative method must be used. If the Newton–

Raphson method is adopted then the equilibrium equation are solved using the iterative formula

Kt;PE(di)(di+1 − di)− (f − fr;PE(di)) = 0 (36)

where

Kt;PE(d) =
∫ Le

0
BTDt(Bd)B dz (37)

is the element tangent sti@ness matrix.

3.2. Displacement based elements

In previous works by the authors, three di@erent displacement based elements were used and
compared, with reference to linear [5] and non-linear analyses [4]. The elements considered are the
8DOF (also called PE012, the simplest element with only external nodes, linear axial displacement
and cubic Hermite polynomials for transverse displacement), the 10DOF (also called PE112) and
the 16DOF (also called PE334) elements (see Fig. 2 and Table 1).
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PE002 (8DOF) PE112 (10DOF) PE334 (16DOF) 

Fig. 2. Displacement �elds of the 8DOF, 10DOF and 16DOF elements.

Table 1
Displacement based elements previously tested [4,5]

Element Shape functions polynomials degree

Displacements Strains

w v � � �

PE012 (8DOF) 1 3 0 1 2
PE112 (10DOF) 2 3 1 1 2
PE334 (16DOF) 4 5 3 3 4

The numerical applications performed and the analytical examination of the displacement �eld
evidenced that the 8DOF element shows locking problems and furnishes large errors for high values
of the connection sti@ness. This pathology can be avoided by appropriately selecting additional inter-
nal nodes in order to have both contributions to slip description, deriving from axial and transverse
approximations, represented by polynomials of the same degree [5]. By starting from the 8DOF
element, the problem can be surpassed by introducing an additional DOF for each of the two axial
displacements, obtaining a 10DOF element with two internal nodes for w1 and w2. In this element,
both contributions to slip description are second order polynomials.
Another element based on the choice of calibrated internal nodes is the 16DOF element, obtained

from the 8DOF displacement �eld introducing an internal node, with one translational and one
rotational DOF, for the transverse �eld description (v is now a �fth order Hermite polynomial), and
three internal nodes for each of the two axial displacement �elds. The resulting slip description is a
fourth order polynomial.
However, even if locking-free displacement elements are used, a large number of elements may

be required in order to obtain an accurate description of the stress and strain �elds in a non-linear
analysis. If, in fact, an inadequate discretization is adopted, strong irregularities in stress and strain
description may arise when the beam reaches the plastic range, as illustrated in [4].

4. Three-!eld mixed formulation

4.1. Finite element three-7eld formulation

The problem can be approached by assuming the displacement, strain and stress �elds as unknowns
and solved using the strong formulation made by the compatibility condition (14), balance condition
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(16) and the generalized constitutive law (19). The problem can also be approached using the weak
form ∫ L

0
{[DTr −HTg] · û + [r − c(”)] · ”̂ + [” −Du] · r̂} dz = 0 ∀[û; ”̂; r̂]; (38)

where [û; ”̂; r̂] are the admissible displacement, strain and stress �elds.
An approximated solution can be obtained using a three-�eld formulation of the �nite element

method. The method introduces polynomial approximations of the displacement �eld, of the strain
�eld and of the stress �eld at the interior of each element:

ũ =Nd ; (39a)

”̃ = Ee; (39b)

r̃ = Ss; (39c)

where N ; E and S are the matrices of shape functions and d ; e and s are the vectors of nodal
displacement, strain and stress parameters.
The weak form (38), after substituting the approximations (39), can be written at element level:∫ L

0
{[DTSs −HTg] ·Nd̂ + [Ss − c(Ee)] · Eê + [Ee − Bd ] · Sŝ} dz = 0 ∀[d̂ ; ê; ŝ] (40)

and the following solving equations can be obtained

SBTs − f = 0; (41a)

a(e)− SETs = 0; (41b)

SEe − SBd = 0; (41c)

where

SB =
∫ Le

0
STB dz; (42)

SE =
∫ Le

0
STE dz; (43)

a(e) =
∫ Le

0
ETc(Ee) dz: (44)

Note that the equations of compatibility and equilibrium are linear, since the non-linear constitutive
law does not involve the relation between displacement and strain and between stress and applied
loads. In the case of linear or non-linear elastic materials, the same system (41) is obtained making
stationary the Hu-Washizu variational principle.
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The non-linear problem can be solved using an iterative method. If the Newton–Raphson method
is adopted then the problem is solved using the iterative formulas

SDt(ei)(ei+1 − ei)− ( SETs − a(ei)) = 0; (45)

SE(ei+1 − ei)− SB(di+1 − di) = 0; (46)

SBTs − f = 0; (47)

where

SDt(e) =
∫ Le

0
ETDt(Ee)E dz: (48)

4.2. Condensation of the strain and force degrees of freedom

Since the stress and strain �elds can be inter element discontinuous, the system of equations (45)–
(47) will be simpli�ed in the following, performing a static condensation of stress and strain nodal
parameters.
The deformation nodal parameters are calculated from Eq. (45)

ei+1 − ei = [ SDt(ei)]−1[ SETs − a(ei)] (49)

(see Appendix B in [15] for the conditions under which the matrices (48) and (51) are invertible
assuming that (21) is not singular) and substituted in Eq. (46) thus obtaining

SE[ SDt(ei)]−1 SETs − SE[ SDt(ei)]−1a(ei)− SB(di+1 − di) = 0: (50)

After introducing the matrix

D(e) = SE[ SDt(e)]−1 SET (51)

from the previous equation the stress parameters are obtained

s = [Dt(ei)]−1{ SE[ SDt(ei)]−1a(ei) + SB(di+1 − di)} (52)

and are substituted in the equation of equilibrium

SBT[Dt(ei)]−1 SB(di+1 − di) = f − SBT[Dt(ei)]−1 SE[ SDt(ei)]−1a(ei) (53)

or with a di@erent notation:

Kt;HW(ei)(di+1 − di)− (f − fr;HW(ei)) = 0; (54)

where

Kt;HW(e) = SBT[Dt(e)]−1 SB; (55)

fr;HW(e) = SBT[Dt(e)]−1 SE[ SDt(e)]−1a(e) (56)

are the element displacement-strain tangent sti@ness matrix and internal force vector, respectively.
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Observe that the formulas obtained are similar to those of the �nite element displacement formu-
lation and can be easily used in a displacement based program.

5. The proposed three-!eld mixed element

5.1. Element formulation

Starting from an assigned displacement �eld, di@erent choices can be made to represent the strain
and stress �elds at the interior of each element. In the linear elastic case, a proper de�nition of
the shape functions for the three �elds requires particular attention due to the Limitation Theorems
[14,15]. If certain relationships between the displacement, strain and stress �elds are satis�ed, then
the three-�eld mixed approach becomes identical to a two-�eld mixed approach, with the same
displacement and stress �elds, or can even become identical to a displacement-based element with
the same displacement �eld (details in [14,15]). However, in the non-linear case, the Limitation
Theorems are not e@ective, and more possibilities are available.
The mixed element proposed by the authors in this paper is based on the displacement �eld of the

locking-free 10DOF element (quadratic polynomials for the axial displacements, third order Hermite
polynomial for the transverse displacement). The strain �eld has linear shape functions for the two
axial strains and curvature, while the slip shape functions are second order polynomials. The same
representation is used for the stress �eld (linear axial forces and bending moment, second order
interface force). The proposed element will be indicated hereafter as HW112, where the three digits
indicate the polynomial degree of the axial, bending and interface shape functions respectively, used
for both stress and strain.
The HW112 shape functions are collected in the following matrices:

NHW112 =



&21 0 0 0 &23 0 &22 0 0 0

0 &21 0 0 0 &23 0 &22 0 0

0 0 '1 '2 0 0 0 0 '3 '4


 ; (57a)

EHW112 =




&1 &2 0 0 0 0 0 0 0

0 0 &1 &2 0 0 0 0 0

0 0 0 0 &1 &2 0 0 0

0 0 0 0 0 0 &21 &22 &23


 ; (57b)

SHW112 =




&1 &2 0 0 0 0 0 0 0

0 0 &1 &2 0 0 0 0 0

0 0 0 0 &1 &2 0 0 0

0 0 0 0 0 0 &21 &22 &23


 ; (57c)
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HW112 displacement field HW112 strain field HW112 stress field 

Fig. 3. Displacement, strain and stress �elds of the HW112 element.

where the nodal parameters vectors are

dTHW112 = [w1A w2A vA ’A w1C w2C w1B w2B vB ’B]; (58a)

eTHW112 = [�1A �1B �2A �2B �A �B �A �B �C]; (58b)

sTHW112 = [N1A N1B N2A N2B M12A M12B fSA fSB fSC]; (58c)

(letters A and B refer to the end nodes at z = 0 and z = Le, respectively, C indicates the internal
node at z = Le=2, see Fig. 3) and the shape functions:

&1(z) = 1
2(1 + -); (59a)

&2(z) = 1
2(1 + -); (59b)

&21(z) = 1
2(-

2 − -); (59c)

&22(z) = 1
2(-

2 + -); (59d)

&23(z) = 1− -2; (59e)

'1(z) = 1
4(2− 3-+ -3); (59f)

'2(z) =
Le
8
(1− -− -2 + -3); (59g)

'3(z) = 1
4(2 + 3-− -3); (59h)

'4(z) =
Le
8
(−1− -+ -2 − -3); (59i)

with -= 2z=Le − 1; -∈ [− 1; 1]; z ∈ [0; Le].
This element satis�es the Third Limitation Principle [15], i.e. in the linear elastic case it performs

like the 10DOF element, while improvements in stress calculations are expected in the non-linear
case. Note that the authors start from a locking-free displacement element, thus the mixed formulation
is used only as a stress recovery technique to enhance the stress representation, and not as a method
to reduce or eliminate locking.
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Table 2
Displacement and mixed elements compared

Element Shape functions polynomials degree

Displacements Strains Stresses

w v � � � N M fs

PE112 2 3 1 1 2 N.L. N.L. N.L.
PE334 4 5 3 3 4 N.L. N.L. N.L.
HW112 2 3 1 1 2 1 1 2
HW111 2 3 1 1 1 1 1 1
HW222 2 3 2 2 2 2 2 2

Starting again from the 10DOF displacement �eld, other mixed elements, with richer and poorer
stress and strain �elds (HW222 with second order stress and strain shape functions polynomials and
HW111 with linear stress and strain shape functions), were tested, but the best results were obtained
from the previously described HW112 element. The three mixed elements ful�l the conditions under
which the matrices (48) and (51) are invertible when matrix (21) is not singular (Appendix B in
[15]); in fact the matrices E and S are identical and the number of strain nodal parameters equals
the number of stress nodal parameters.
In Table 2, the degrees of the polynomials of the shape functions of HW112, HW111, HW222,

PE112 and PE334 are compared. The strain and stress polynomial degree of displacement-based
elements are indicated in italics because they are not independent from the displacement shape func-
tions: the strain shape functions are derived from the displacement �eld by means of compatibility
conditions while the stress �eld is non-linear since the constitutive law is non-linear.

5.2. Numerical details

The element sti@ness matrix (55) and the internal force vector (56) are obtained integrating the
matrices (42,43) in closed form, while the calculation of matrix (48) and vector (44) is performed
by means of numerical integration, using the trapezoidal rule through the thickness (the cross-section
is subdivided into rectangular strips parallel to the x-axis) and by using the Gauss-Lobatto rule [16]
with 5 integration points, along the element length. Note that the matrices (42,43) are calculated only
once at the beginning of the analysis, while only matrix (48) and vector (44) need to be updated
during the non-linear solution procedure. Once the solution is obtained, the proposed mixed approach
permits a simple calculation of stress and strains nodal parameters, allowing a prompt determination
of the stress and strain �elds, by means of the shape functions (39b) and (39c).

6. Applications

Some of the numerical applications performed are illustrated and discussed hereafter in order to
compare the PE112 element (the simpler locking-free displacement element) with the HW112 and
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Fig. 4. Problem tested with data of the materials and non-linear constitutive laws.

PE334 elements for evaluating the better way to improve the solution (three-�eld mixed formulation
or re�ned displacement formulation).
The geometry of the test problem is described in Fig. 4 (a cantilever with constant cross-section

along the beam axis). Two load conditions are considered: a uniform load applied downward (crack-
ing of the concrete slab) and a uniform load acting upward (softening of the concrete slab). With
regard to the shear connection device, for the sake of simplicity a uniform distribution of stud con-
nectors, designed to obtain a full shear connection, is adopted (i.e. the shear connection is designed
not to collapse before the reinforced concrete slab and/or steel beam reach their ultimate state). The
cantilever structural scheme was analysed since it is a di3cult test for composite beam elements,
due to the high slip gradient and strain localizations. The same problems a@ect continuous beams (a
problem of practical interest in structural engineering), although the main di3culties can be more
clearly highlighted in the simpler cantilever scheme.
The non-linear constitutive laws adopted for materials and shear connectors are the following.

Elastic—perfect plastic—hardening constitutive laws are assumed for beam steel and reinforcements
bars [17]; the non-linear law suggested by the CEB-FIP Model Code 1990 [18] is considered for
concrete under compression while, for the sake of simplicity, null strength is used under traction;
furthermore, the Ollgaard constitutive law [19] is adopted for the shear connection. The mechanical
characteristics of the materials are reported in Fig. 4.
The solution of the algebraic non-linear problem obtained assembling the composite beam ele-

ments, is attained by a displacement control incremental procedure [20] whose prediction is corrected
by the Newton–Raphson iterative procedure (predictor–corrector scheme, see [4] for more details and
other solution procedures tested). The non-linear analyses, performed controlling the free-edge de-
Hection, were stopped when the ultimate strain of one of the materials is achieved. When load
levels near collapse were reached, the HW112 element provided a slower convergence rate than
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Fig. 5. (a–c) Load-deHection curves with di@erent types and numbers of elements.

displacement based elements and smaller increments of the controlled displacement were needed to
accomplish the assigned tolerance of the unbalance force vector.
The case of uniform load applied downwards is �rstly considered. The structural global response

is illustrated in Fig. 5, where the load-displacement curves, obtained with di@erent elements number
and type, are reported. The solutions achieved with a four-element mesh are compared in Fig. 5a,
while eight and sixteen elements mesh solutions are illustrated in Figs. 5b and c, respectively. The
HW112 mixed element and the PE112 displacement element practically supply the same results (see
also Table 3), while the PE334 element gives lower values of collapse load and ultimate deHection,
even if discretizations with the same total displacement DOF are considered (the PE334 has a more
accurate approximation of the strain peaks).
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Table 3
Ultimate loads and deHections using di@erent types and number of elements

Element Number of Total displacement Ultimate load Ultimate
elements DOF (kN/m) deHection (mm)

PE112 4 24 550.00 786
8 48 505.00 431
16 96 470.40 193

HW112 4 24 549.60 781
8 48 505.00 430
16 96 471.20 195

PE334 4 48 484.00 306
8 96 469.60 180
16 192 443.40 75
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Fig. 6. (a,b) Load-displacement curves with di@erent numbers of elements.

In Fig. 6, the load-displacement curves calculated with the same element type are considered:
in Fig. 6a the three curves are obtained using the PE112 and the HW112 elements (equivalent
global results), while the three curves in Fig. 6b are those obtained with the PE334 element. Note
that the PE334 gives a smaller error in the ultimate load level, even if a coarse mesh is
adopted.
In Figs. 7–9 the stress resultant trends along the beam axis are reported for three steps: 15 mm

of free-edge deHection (dotted lines) when the steels are in the elastic range and the concrete slab
cracked; 30 mm of deHection (dashed lines) when the beam and reinforcements steels are yielded
and 60 mm of deHection when the plastic deformations of the steels have reached the near hardening
point (for the corresponding load levels see Table 4). The steel beam axial force Ns is normalized
with respect to the steel beam plastic force Nspl (i.e. the yielding stress multiplied by the steel beam
cross-section area); the summation of steel beam bending moment and concrete slab bending moment
Msc is normalized with respect to the steel beam plastic moment Mspl; �nally the interface shear force
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Fig. 7. Stress trends computed by a uniform mesh of 4 elements.

fs is normalized with respect to the connection strength fsmax. The axial force and bending moment
are inter-elements discontinuous in the displacement based elements while the interface shear force
is inter-element continuous as calculated from a continuous slip (the displacements of Eq. (5) are
assembled in the solving system and the distance h between the two beam components centroids is
constant along the beam axis). The mixed element gives inter-elements discontinuities in both axial,
bending and interface shear force, due to the static condensation of the strain and stress DOF; this
results in a non compatible trend of the interface shear force (i.e. the shear force must be zero at
the constrain since here the slip is zero).
In Fig. 7 the stress trends, obtained with the three types of elements from a uniform four-element

mesh, are compared. Despite the global behaviour is practically the same, the PE112 element and
the HW112 element perform in a di@erent manner if the stress resultants are observed. Strong
irregularities in axial force and bending moment arise in the PE112 when the load level increases,
while the HW112 furnishes a smooth description of axial force and bending moment, whenever low
or high load levels are considered. The PE334 displacement element is a@ected by some irregularities
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Fig. 8. Stress trends computed by a uniform mesh of 8 elements.

in the axial force and bending moment description for high load levels, while the shear force
description is closer to the reference solution (sixteen PE334 elements reported in Fig. 9) compared
with the other two elements; the PE334 is however based on richer displacement shape functions
and the comparisons are made between solutions with di@erent total DOF.
In Figs. 8 and 9 the same stress resultants trends are reported with reference to a uniform

eight-element mesh and a uniform sixteen-element mesh, respectively. It is interesting to note that
a re�ned mesh does not eliminate the previously described problems. In fact the irregularities in
the axial force and bending moment computed by the PE112 element are still evident. The HW112
furnishes the smoother description of Ns and Msc, but the interface shear force presents the same
irregularities analysed in the four element discretization, although a solution closer to the reference
solution is obtained by means of the increment of the number of elements.
The strain trends are not reported here for the sake of brevity. However the strain �eld obtained

from the PE112 and PE334 elements present problems (see [4] for details) analogous to those
illustrated in the stress �eld, while the mixed element gives the same results of the PE112 element,
since the relation between displacement and strain is still linear. Consequently the proposed mixed
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Fig. 9. Stress trends computed by a uniform mesh of 16 elements.

element permits a smoother description of axial force and bending moment than the equivalent
displacement element PE112, while the other results (global behaviour, strain and displacement) are
practically equivalent. Notice furthermore that the interface slip, even if it is not assembled since it
is condensed out, is equal to the slip computed from the displacement �eld. Hence, if the interface
shear force is computed from the displacement �eld or from the strain �eld, the results obtained are
the same as those of the PE112 element.
In Figs. 10 and 11 some results regarding the cantilever under negative load (i.e. load applied

upwards) are reported. In this load case the slab is under compression and softening of concrete
occurs under high deformations. In Fig. 10 the load-displacement curves are reported: in Fig. 10a
the three curves are obtained using the PE112 and the HW112 elements (once again equivalent
global results), while the three curves in Fig. 10b are those obtained with the PE334 element. Note
once more that the PE334 gives a smaller error in the ultimate load level, even if a coarse mesh
is adopted. In Fig. 11 the stress trends, obtained with the three types of elements from a uniform
four-element mesh, are compared. The stress resultants trends along the beam axis are reported for
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Table 4
Compared solutions

Element Number of DeHection 15 mm DeHection 30 mm DeHection 60 mm
elements Load (kN/m) Load (kN/m) Load (kN/m)

PE112 4 202.37 398.46 488.30
8 202.36 396.99 460.20
16 202.36 396.80 443.51

HW112 4 202.37 398.46 488.30
8 202.36 396.99 460.20
16 202.36 396.80 443.51

PE334 4 202.36 396.23 451.60
8 202.36 396.60 439.41
16 202.36 396.29 435.53
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Fig. 10. (a,b) Load-displacement curves with di@erent numbers of elements (negative load case).

three steps: 10 mm of free-edge deHection (dotted lines) when the steels are in the elastic range;
20 mm of deHection (dashed lines) when the steel beam is yielded and 40 mm of deHection when
the reinforcement steel is also yielded and the concrete undergoes softening. The same considerations
made in the previous case can be repeated here. In e@ect the axial force Ns and bending moment
Msc trends are quite similar to those of Fig. 7, apart from the sign. The di@erent trend of the
interface shear force fs is due to the more complex behaviour of the reinforced concrete slab under
compression.
In the previous �gures only the HW112 element is analysed between mixed elements since it

provides the best results with respect to the other three-�eld elements tested. However, for the sake
of completeness, the di@erent mixed elements are compared in Fig. 12. If the HW111 element is
adopted, the descriptions of the axial force and bending moment are practically equal to those of
the HW112 element, but the description of the interfacial shear force is too poor (piecewise linear).
If the HW222 element is used, despite the higher degree of shape functions in the axial force and
bending moment, the element provides, in these stress resultants, worse results than the HW112
element.
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Fig. 11. Stress trends computed by a uniform mesh of 4 elements (negative load case).

7. Conclusions

A three-�eld mixed �nite element for the non-linear analysis of composite beam with weak
shear connection is proposed. The formulation considers the non-linear behaviour of materials and
deformable shear connectors. The proposed element is compared with the two locking-free
displacement elements previously used by the authors. In the applications a steel-concrete cantilever
beam is considered and uniform loads were applied downward (cracking of the concrete slab) and
upward (softening of the concrete slab). The cantilever structural scheme was analysed since it is
a di3cult test for composite beam elements, due to high slip gradient and strain localizations. The
same troubles a@ect continuous beams (a problem of practical interest in structural engineering),
however the main di3culties can be more clearly highlighted in the simpler cantilever scheme. The
non-linear analyses performed show that the established mixed element furnishes more regular dis-
tributions of axial forces and bending moment with respect to the locking-free 10DOF displacement
element from which it is derived. However the mixed element requires a more cumbersome for-
mulation, longer computational times and has a slower convergence for high non-linearity. If the
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Fig. 12. Stress trends computed by a uniform mesh of 4 elements (mixed elements).

mixed element is compared to the re�ned locking-free 16DOF displacement element, only slight
advantages are obtained with the mixed formulation in the description of axial forces and bending
moment distributions, while the re�ned displacement element gives a more accurate description of
the interface slip and the shear force, has a simpler formulation and convergence in the non-linear
range is achieved with good reliability.
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