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Abstract The equations of state for an ideal relativistic, or
generalized, gas, like an ideal quantum gas, are expressed
in terms of power laws of the temperature. In contrast to an
ideal classical gas, the internal energy is a function of
volume at constant temperature, implying that the ideal
generalized gas will show either attractive or repulsive
interactions. This is a necessary condition in order that the
third law be obeyed and for matter to have an electro-
magnetic origin. The transition from an ideal generalized to
a classical gas occurs when the two independent solutions
of the subsidiary equation to Lagrange’s equation coalesce.
The equation of state relating the pressure to the internal
energy encompasses the full range of cosmological scenar-
ios, from the radiation to the matter dominated universes
and finally to the vacuum energy, enabling the coefficient
of proportionality, analogous to the Grüeisen ratio, to be
interpreted in terms of the degrees of freedom related to the
temperature exponents of the internal energy and the
absolute temperature expressed in terms of a power of the
empirical temperature. The limit where these exponents
merge is shown to be the ideal classical gas limit. A
corollary to Carnot’s theorem is proved, asserting that the
ratio of the work done over a cycle to the heat absorbed to
increase the temperature at constant volume is the same for
all bodies at the same volume. As power means, the energy
and entropy are incomparable, and a new adiabatic
potential is introduced by showing that the volume raised
to a characteristic exponent is also the integrating factor for
the quantity of heat so that the second law can be based on
the property that power means are monotonically increas-
ing functions of their order. The vanishing of the chemical
potential in extensive systems implies that energy cannot
be transported without matter and is equivalent to the
condition that Clapeyron’s equation be satisfied.

Incomparable thermodynamic laws

Thermodynamics distinguishes itself on being able to take
into account processes involving heat transfer. According to
Thomson [11], heat is the ‘uncontrollable’ form of work,
and temperature is its measure. James Prescott Joule
appreciated that heat and work were interconvertible, de-
pending only on a constant for the units chosen to measure
heat and mechanical work.

The first law was formulated as an expression for the
conservation of internal energy even in the presence of heat
transfer. The second law placed limitations on the amount
of heat that could be converted into mechanical work.
According to William Thomson (Lord Kelvin) [12]

“it is impossible to construct an engine which when
operated in a cycle will produce no effect other than
the extraction of heat from a reservoir and the perfor-
mance of an equivalent amount of work.”

The second law also succinctly sums up observations of
nature like “heat always passes from hotter to colder, and
never in the reverse direction” [3], at constant volume. It
also asserts that “heat will be absorbed as a gas expands to
keep its temperature constant.”

Carnot [4] not only discovered that there is an upper
bound to the efficiency of engines operating in a closed
cycle but also called attention to a truly mathematical
invariant quantity that inspired Kelvin’s later researches
into the discovery of that entity. This invariant would be the
same for all substances at the same temperature, and Kelvin
equated it with the temperature measured on the ideal gas
absolute scale. This factor proved to be an integrating
denominator for the quantity of heat and became a matter
of contention between Rudolf Clausius and Kelvin for its
true authorship [10]. Thus, the entropy, like the internal
energy, and in contrast to the quantity of heat, was iden-
tified as a point function which had the advantage of
depending only on the instantaneous state of the body and
not on the process by which the body arrived in that state.
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To the best of our knowledge, there has never been any
question of the compatibility of the first and second laws of
thermodynamics. Certainly, the two laws are compatible
for a classical ideal gas (ICG) because of the separability of
the temperature and volume afforded by the logarithmic
function. However, this is not true, in general, for an ideal
generalized gas (IGG), or a ‘quantum’ gas (IQG) [7], which
is the low-temperature extension of an ICG. Here, we make
the distinction between an IGG and an ICG in that the
former can be valid at all temperatures and not only in the
high-temperature limit. This means that the transition
between an IGG and an ICG occurs in a manner different
than taking the high-temperature limit, and one in which
we shall explore in the last section of this paper.

For an IGG, as well as an IQG, power laws are involved
that contain products of different powers of the temperature
andvolume.And, in fact, one finds that for all processesother
than those involving pure heat conduction, the power means
derived from the first and second laws are incomparable.

In order to rectify this incompatibility, we will prove a
corollary to Carnot’s theorem, asserting that the ratio of the
work done in a complete cycle to the heat absorbed on
expansion at constant temperature is “the same for all
substances at the same temperature.” The corollary states
that the ratio of the work done in a complete cycle to the
heat absorbed on volume expansion at constant tempera-
ture is “the same for all substances at the same volume.”
This, in effect, replaces the isotherms of the Carnot cycle
by isochores without affecting the efficiency of the cycle.

In addition to the inverse temperature, another integrat-
ing factor for the quantity of heat will be shown to exist
[6] and leads to a new adiabatic potential, which will be
comparable to the entropy, and differ from it by a power of
the adiabatic variable. The difference between this new
potential and the entropy is that it is not a first-order
homogeneous function of the volume. This will enable a
comparison of means involving processes which require
work where, otherwise, the first and second laws would be
mute since both the internal energy and the entropy are
first-order homogeneous functions of the volume for an
IGG.

The existence of a new adiabatic potential raises the
question as to the actual content and predictive power of
the second law. The irresistible increase in the entropy
during an irreversible process will now be confronted with
the same inevitable decrease in the new adiabatic potential.
Irreversibility will have to be detached from quasi-static
processes, which occur as a passage through a sequence of
equilibrium states [1]. Irreversibility will apply to those
processes where the initial and final states differ with
respect to either their temperatures, or their volumes, or
both. An equilibration resulting in the conservation of one
of the two adiabatic potentials will depend on whether the
temperature ratio of the two states or their inverse volume
ratios, raised to a characteristic power, is equal to the ratio
of quantities of heat absorbed or rejected at these tem-
peratures or volumes. One conserving equilibration will be
necessary in order to secure a final uniform state with a
common mean value. General statements can be made

about such conserving equilibrations: An entropy conserv-
ing equilibration has the lowest common final mean
temperature or volume, implying that the maximum
amount of work has been performed. In addition, thermal
efficiency can never be inferior to mechanical efficiency.

In a companion paper [8], these statements will be
translated into comparable power means and the lack of
absoluteness of these potentials as a class of equivalent
means. The metrizability of such a space of equivalent
means will also be studied; the notion of a metric is entirely
foreign to classical thermodynamics. Probability distribu-
tions and probabilistic notions will enter naturally when-
ever processes inside the system occur in an uncontrollable
manner, like heat transfer and deformations. Evolution
criteria will be shown to emanate from the fundamental
property that power means are monotonically increasing
functions of their order. Numerous mathematical inequal-
ities will then be shown, like the Tchebychef and Jensen
inequalities, which all predict an increase in entropy on the
average or a decrease on the average of the complementary
adiabatic potential. These mathematical inequalities will
eliminate the need to have recourse to experiment, albeit
one single experiment, to determine the sign of the entropy
change or to that of the complementary adiabatic potential.

Power laws

If the absolute temperature, T, and volume, V, are chosen as
the independent variables, the integrability condition for
the entropy is

T
@p

@T

� �
V

¼ @E

@V

� �
T

þ p; (1)

where p is the pressure, and E is the internal energy. If the
product pV measures the absolute temperature scale, then

@E

@V

� �
T

¼ 0: (2)

In other words, in order for Boyle’s law to be identical with
the absolute temperature, it is necessary and sufficient that
the internal energy be a linear function of the temperature
alone [2].

If the pressure were to vary as some power of the
temperature, say T� , then from Eq. (1), we would have

@E

@V

� �
T

¼ @ ln p

@ ln T

� �
V

� 1

� �
p¼ �� 1ð Þp: (3)

Thus, the ICG condition (Eq. (2)) that pV measures the
absolute temperature separates two domains: one in which
Eq. (3) is positive, α>1, and the attractive nature of the gas
implies that it will condense, and another region in which
Eq. (3) is negative, α<1, and repulsion prevails, implying
that the system has a zero-point energy [6].
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Every gas comprised of mechanically noninteracting
particles obeys an equation of state of the form [6]

pV ¼ sE V ; Tð Þ; (4)

where s>0 is proportional to the adiabatic exponent.
Introducing Eq. (4) into Eq. (1) converts it into the dif-
ferential equation

E ¼ T
@E

@T

� �
V

� V

s

@E

@V

� �
T

: (5)

Treating Eq. (5) as a Lagrange equation, the auxiliary
equations are

dT

T
¼ � sdV

V
¼ dE

E
:

There are two independent solutions, TV s=c and either
E/T=a or EV s=b, where a, b, and c are arbitrary constants.
The general solution is Ψ1(a, c)=Ψ1(E/T, TV

s)=0, i.e.,

E ¼ T 1 TVsð Þ; (6)

or Ψ2(b, c)=Ψ2(EV
s, TVs)=0, i.e.,

E ¼ V�s 2 TVsð Þ; (7)

where Ψi and ψi are arbitrary functions. The coefficients of
E, namely, 1/T and V s, will later be appreciated as
integrating factors for the quantity of heat.

The functions ψi are solutions to the adiabatic equation

T
@ i

@T

� �
V

� V

S

@ i

@V

� �
T

¼ 0: (8)

The auxiliary equations to Eq. (8) are

dT

T
¼ � sdV

V
¼ d i

0
:

There are again two independent solutions, ψi=a and
TV s=b, so that the general solution to Eq. (8) is ψi=ψi(z), in
which T and Vs appear only through the combination
z=TV s.

For ψ1=const., Eq. (6) is the thermal equation of state for
an ICG, while for ψ2=const., Eq. (7) is the zero-point
energy. Whereas E=aT is an approximate relation, valid in
the high-temperature limit, so too E=bV−s can be consid-
ered an approximate relation, this time valid in the low-
temperature limit [6]. These are the extreme cases where
the internal energy is a function of either the absolute
temperature, in the high-temperature limit, or the volume,
in the low-temperature limit. The zero-point expresses the
fact that particle interactions are repulsive, (∂E/∂V)T<0, and
such a system would be entirely mechanical since dQ=dE+

pdV=0. However, there is another possibility in which the
internal energy, as well as the entropy, tends to zero
monotonically with the temperature.

The thermal equation of state (6) can be considered as an
IGG, i.e., one for which the particle number, N=ψ1(V, T), is
variable, being a function of the temperature. This will
provide a very profound analogy between a two-phase
classical system, like a Carnot engine, that was analyzed by
Clapeyron by an equation bearing his name, and an IGG
which does not conserve the number of particles.

In the case that E tends to zero monotonically with T,
ψ2(z) may be approximated by L zð Þ ¼ cT�Vs� at low tem-
peratures, where all we demand for the present is that α>0.
According to Eq. (4), the internal energy, E ¼ cT�V ��1ð Þs ,
gives a pressure p ¼ scT�V ��1ð Þs�1 . For dynamic stability,
we require

@p

@V

� �
T

¼ �� 1ð Þs� 1½ � p
V
< 0:

However, if the internal energy is to retain its property of
being a first-order homogeneous function, we must have
(α−1)s=1, implying

@p

@V

� �
T

¼ 0; (9)

or a phase equilibrium [6]. Varying the volume at constant
temperature leaves the vapor pressure constant by having
the liquid either evaporate or condense. This is precisely the
condition under which the Clapeyron equation is valid. For
an IGG, the volume of the second phase is nil since there
is no longer particle conservation, N=ψ1(V, T)
≠const. This fine balance keeps the pressure independent of
the volume and the internal energy a first-order homoge-
neous function

p ¼ scTq=r E ¼ cTq=rV : (10)

In the low-temperature limit, ψ2(z) can be replaced by

L zð Þ ¼ aþ czq=r; (11)

where a>0. Then, since EV s=L(z)

E ¼ V�s aþ czq=r
� �

;

and (∂E/∂V)T<0 if a is finite, or (∂E/∂V)T>0 if a vanishes,
and q>r. In the latter case, the pressure must satisfy Eq. (9),
so that s=r/(q−r). Furthermore, E/T=ψ1(z)=L(z)/z, and
d(EVs)/z=dL(z)/z≕dS, where

S zð Þ ¼ q

q� r
cz1=s ¼ q

q� r
 1 zð Þ (12)

is the entropy.
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Hence, no decision can be made between the Planck
(S=0 at T=0) and the Nernst (S=const. at T=0) formulations
of the third law because the concept of absolute entropy is
meaningless. Moreover, we will see in the following paper
that an absolute L(z) is also meaningless since only its
difference is measurable.

The difference between the enthalpy,

H ¼ U þ pV ¼ 1þ sð ÞcTq=rV ;

and T times the entropy, Eq. (12), is

G ¼ 1þ s� q

q� r

� �
cTq=rV : (13)

The Gibbs free energy (Eq. (13)) presents itself as a
measure of non-extensivity and vanishes when s=r/(q−r)
[6].

The second laws

The quantity of heat, dQ, which must be absorbed by a
body to make its temperature rise to T+dT and its volume
expand to V+dV is

dQ ¼ MdV þ NdT : (14)

This caloric equation, familiar to nearly all the thermo-
dynamicists, undoubtedly fell out of favor due to the fact
[5]

“that Q cannot be a function of V and T, if these
variables are independent of each other. For if it
were, then by the well-known law of the differential
calculus, that if a function of two variables is
differentiated with respect to both of them, the order
of differentiation is indifferent”

and this was definitely not so with Eq. (14). In fact, the
exactness condition of the internal energy,

dU ¼ dQ� pdV ¼ M � pð ÞdV þ NdT ;

shows that their difference gave [12]

dp

dT
¼ @M

@T
� @N

@V
: (15)

This led Planck [9] to remark that the notation dQ

has frequently given rise to misunderstanding, for dQ
has been repeatedly regarded as the differential of a
known finite quantity Q. This faulty reasoning may be
illustrated by the following example.

And the example Planck gave resulted in Eq. (15), which
Thomson took merely as a statement of the first law.

The statement that he took as the second law was
Clapeyron’s equation

dp

dT
¼ M

C Tð Þ (16)

where C(T) is the reciprocal of the Carnot function, which
Thomson showed was equal to the absolute temperature, T.
That is, the ratio of the total work done in an infinitesimal
cycle, dpdT dTdV , to the ratio of the heat absorbed in the first
branch of the Carnot cycle, MdV,

dP
dT dT

M
¼ dT

C Tð Þ (17)

must be the product of dT and a function of T only. The
“very remarkable theorem that dp/dT/M must be the same
for all substances at the same temperature was first given
(although not in precisely the same terms) by Carnot” [12].

For an ICG, M=p, because the internal energy is a
function of the absolute temperature alone, and N, as
Clausius realized, “can be a function of T only. It is even
probable that this magnitude [N], which represents the
specific heat of the gas at constant volume, is a constant.”

In contrast, for an IGG,

M ¼ 1þ 1

s

� �
p ¼ q

r
p; (18)

and

N ¼ q

r

E

T
; (19)

or, equivalently,

M

N
¼ sT

V
:

Expression (18) invalidates Clausius’ conclusion that “a
permanent gas, when expanded at constant temperature,
takes up only so much heat as is consumed doing external
work during the expansion.” Clausius’ conclusion is based
on the fact that the working substance was an ICG, obeying
pV=T, while Eq. (18) shows that an IGG absorbs more
since q>r, or that the internal energy is a function of
volume at constant temperature.

To convert dQ into the total differential of a certain
function, we introduce the integrating factor λ and require

@�M

@T
¼ @�N

@V
: (20)

The exactness condition (Eq. (20)) can be rearranged to read

@M

@T
� @N
@V

� �
¼ N

@ ln �

@V
�M

@ ln �

@T
: (21)
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By a composite system argument, λ can only be a
function of T or V. Consider two simple fluids in thermal
contact; such a system will have three independent var-
iables T, V1 and V2. The integrating factor can only be a
function of the common variable T [3]. Hence,

@M
@T � @N

@V

� �
M

¼ d ln �

dT
:

On the strength of the exactness condition for the internal
energy (Eq. (15)), this is equivalent to the Clapeyron’s
equation (Eq. (17)), and on the strength of Carnot’s theorem,
C(T)=T is the integrating denominator for the increment in
the heat, dQ, giving the entropy, (Eq. (12)), which depends
on V and T only through the combination z=TV s.

Now consider two simple fluids in mechanical contact,
for which the independent variables are V, T1, and T2.
Again, the integrating factor λ can only be a function of the
variable in common to both subsystems so that the
exactness condition (Eq. (21)) now reduces to

dp
dT dTdV

NdT
¼ d ln � Vð Þ: (22)

By interchanging isochores for isotherms, NdT is the
quantity of heat absorbed in the first segment of an equiv-
alent Carnot cycle, as we shall discuss in the next section.
The very remarkable fact, equivalent to Carnot’s theorem,
is that the right-hand side is the product of dVand a function
only of the volume. Thus, dp/dT/N is the same for all
substances at the same volume. For an IGG, λ(V)=V s [6],
which reduces to � Vð Þ ¼ VR=Cv for an ICG, whereCv is the
heat capacity at constant volume, and R is the gas constant,
which will only be introduced in conjunction with Cv.

The integrating factor λ(V) for the increment in the heat,
dQ, now gives the point function (Eq. (11)), which, again,
depends on V and T only through the combination, z.
However, whereas the entropy (Eq. (12)) is extensive, the
potential (Eq. (11)) is not.

Consider any two states 1 and 2, with T1>T2 for
concreteness. Any process connecting the two states will be
said to be irreversible if

z1 > z2: (23)

Rearranging Eq. (23), we get Vs
1

�
Vs
2 > T2=T1 so that the

thermal efficiency,

�t ¼ 1� T2
T1

� 1� Vs
1

Vs
2

¼ �v;

can never be inferior to the mechanical efficiency, ηv.
If Q1 and Q2 are quantities of heat absorbed and rejected

at T1 and T2, respectively, then we say that there is thermal
equilibration if

T2
T1

¼ Q2

Q1
� Vs

1

Vs
2

;

whereas there is mechanical equilibration if

Vs
1

Vs
2

¼ Q2

Q1
� T2

T1
:

More work can be accomplished during a thermal equil-
ibration than a mechanical one since the system achieves a
lower final temperature, T2.

For any infinitesimal narrow Carnot cycle, the ratio Q2/
Q1 may be replaced by its differential, dQ2/dQ1. Thermal
equilibration results when

I
dQ

T
¼ 0; (24)

and

I
VsdQ � 0; (25)

while mechanical equilibration requires

I
VsdQ ¼ 0; (26)

and

I
dQ

T
� 0; (27)

since any irreversible cycle is necessarily less efficient than
a Carnot cycle, dQ2/dQ1<T2/T1.

For processes of pure thermal conduction, we would
identify Eq. (26) with the first law, and the conservation of
energy over the entire cycle, and Eq. (27) as the statement
of the second law. However, for purely mechanical inter-
actions, neither Eq. (27) nor the first law would give an
evolutionary criterion since the internal energy and entropy
are first-order homogeneous functions of the volume. The
criteria of mechanical equilibration would fix the final
volume as the weighted arithmetic mean of the partial
volumes according to Eq. (25), while Eq. (24) shows that L
would tend to decrease since the arithmetic mean is inferior
to the power mean of order q/(q−r).

If we split the cycle up into two segments, A→B, and
B→A, where the former contains all the irreversibility, then
Eq. (25) givesZ B

A
V sdQ > LB � LA;
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while Eq. (27) becomes

SB � SA >

Z B

A
dQ=T :

If the infinitesimal increment in the heat is the sum of the
infinitesimal heat dQe introduced into the system or
extracted from it, and the sum of irreversible heat transfers
within the system,

dQ ¼ dQe þ
Xn
i¼1

dQi;

then for an isolated system dQe=0,

LB � LA <
Xn
i¼1

Z B

A
V sdQi; (28)

under the condition that
Pn

i¼1

H
dQi

�
T ¼ 0 , or

SB � SA >
Xn
i¼1

Z B

A

dQi

T
; (29)

under the condition that
Pn

i¼1

H
VsdQi ¼ 0: Inequality (29)

is referred to as Clausius’ inequality, while inequality (28)
appears to be novel.

For each individual process of heat transfer, dQi will
appear twice: once as a positive quantity and once as a
negative quantity. The second law (Eq. (29)) asserts that the
integrating denominator in the former is smaller than in the
latter, since ‘heat flows spontaneously from a hotter to a
colder body at constant volume.’ Alternatively, according
to Eq. (28), ‘as heat is absorbed the gas expands at constant
temperature,’ so that the integrating factor of the former
will be smaller than the latter.

Either Eq. (28) or Eq. (29) can be taken as statements of
the second law, depending on the constraints imposed. It is
quite remarkable that both criteria can be formulated in
terms of comparable means, and their fundamental prop-
erty that the power mean is a monotonic increasing
function of its order will be investigated thoroughly in the
following paper.

An equivalent Carnot cycle

An equivalent cycle to that of Carnot can be obtained by
replacing isothermals by isochores. This will prove a very
remarkable theorem that dp/dT/N must be the same for all
substances at the same volume, which is precisely analo-
gous to Carnot’s theorem that dp/dT/M must be the same
for all substances at the same temperature.

The cycle consists of:

1. Absorption of a quantity of heat Q1, at a constant
volume V1, by compression which raises the absolute
temperature from T1 to T2 and consequently increases
the pressure

2. An adiabatic expansion to a state of larger volume V2

and lower temperature T3

3. The rejection of a quantity of heat Q2 by expansion
which lowers the temperature to T4 at constant volume
V2

4. An adiabatic compression which restores the system to
volume V1 and temperature T1

The adiabatic branches provide the following ratios:

Vs
1

Vs
2

¼ T3
T2

¼ T4
T1
:

The ratio of the heat rejected, |Q3→4|, to the heat absorbed,
Q1→2 is

Q3!4j j
Q1!2

¼ Vs
1

Vs
2

;

and the efficiency of the engine

�v ¼ 1� Vs
1

Vs
2

;

is the same as the Carnot thermal efficiency, ηt.
Now, for an infinitesimal cycle, the ratio of the total

work performed to the heat absorbed at constant volume is
Eq. (22), which is the same for all substances at the same
volume. This, as we have shown in the last section, is
equivalent to Carnot’s theorem (Eq. (17)).

Both Eqs. (17) and (22) give the same Clapeyron equa-
tion, which, when integrated, give the pressure in Eq. (10),
independent of volume for a homogeneous system.While it
was realized that dp/dT was a function of the temperature
alone [5], it was not appreciated that the mechanical ICG
equation of state, pV=T, could not be used to evaluate the
work.

The transition IGG→ICG

The absolute temperature, T, and the empirical temperature,
t, will coincide only for an ICG. For an ICG, pV reads the
temperature, and E is a function of the temperature alone,
independent of the volume. In contrast for an IGG, p will
be independent of the volume, and E will be a function of
it. In addition, E will no longer be a linear function of the
temperature.

The only demand made by the zeroth law is that when
two identical systems are placed in thermal contact, their
empirical temperatures be the same when a state of mutual
thermal equilibrium has been reached. Once the empirical
scale has been chosen, the absolute temperature must be a
monotonically increasing function of it, viz.,

T tð Þ ¼ t r;

with r≥1.
On the empirical temperature scale, E will vary as t q,

where q≥r with the equality sign pertaining to the ICG
limit. Whereas the exponent r is related to the average
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kinetic energy of the particles, the exponent q is related to
additional forms of energy, like the energy required to
create or annihilate particles, since for an IGG, the particle
number is not conserved. As a matter of fact, the vanishing
of the difference of the two exponents will signal the
transition from an IGG to an ICG, as we shall now show.
This is in distinction to the transition between an IQG and
an ICG, which occurs only in the high-temperature limit.

It is notable that in the limit as q→r, the entropy (Eq. (12))
is of the indeterminate form 0/0. Applying L’Hôpital’s rule,
we get

lim
q!r

S zð Þ ¼ c ln z;

where z ¼ TVR=Cv . Identifying c as Cv gives

lim
q!r

S zð Þ ¼ Cv ln T þ R lnV :

In the same limit,

lim
q!r

L zð Þ ¼ CvT
R=Cv;

and consequently, either

dE ¼ TdS zð Þ � pdV ¼ CvdT

or

dE ¼ 1

VR=Cv
dL zð Þ � pdV ¼ CvdT ;

which is the thermal equation of state of an ICG.
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