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THE ABEL SUMMABILITY OF CONJUGATE LAPLACE SERIES
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Abstract. In the present paper we describe the concept of conjugate Laplace series and
present some results concerning its Abel summability.
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1. Introduction. The classical theory of conjugate Fourier series is well known
(see, e.g. [1]). It is possible to extend the concept of conjugate series in higher dimen-
sions in different ways. Muckenhoupt and Stein gave a concept of conjugate ultras-
pherical expansion in [2], which later was generalized to Jacobi series by Li [3]. Cialdea
introduced a different concept of conjugate Laplace series in [4]. It hinges on the no-
tion of conjugate differential forms, which is an extension of the classical definition of

conjugate harmonic functions. In the case n = 3, if
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is a spherical expansion, its conjugate series, according to [4], is

oo 2h
Ahk 1 OYk . OY
— . 1
;;}Hrl {smgb g 10— smo5 0 (1)

We remark that (1) is not a series of scalar functions, but a series of differential forms of
degree one on the unit sphere. In general n-dimensional case, it is a series of differential
forms of degree n —2 on ¥ = {x € R" : |z| = 1}. Different criteria for the summability
of a conjugate Laplace series were given in [5] in the particular case n = 3. These
criteria are not readily extendable to higher dimensions. Here we show how to obtain
the Abel summability of conjugate Laplace series in any dimension.

2. Preliminary. A k-form wu is represented in an admissible coordinate system

(x1,...,2,) as 1
U = Eulllkdflf” e dil?ik,

where wu;, ; are the components of a k-covector, i.e. the components of a skew-
symmetric covariant tensor. We denote the differential, the adjoint and the co-differen-
tial operators by d, x and ¢, respectively. For details about the theory of differential
forms we refer to [6,7].

By CJ"(92) we denote the space of all k-forms defined in a domain @ C R", whose
components are continuously differentiable up to the order m in a coordinate system of
class C™! (and then in every coordinate system of class C™ ). We say that u € C}(Q)
and v € Cp,,(Q) are conjugate if
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du = v
{ ou=0, dv=0. (2)

If n =2, k=0, system (2) turns into the Cauchy-Riemann system.
A k-form w is said to be harmonic if

1

We note that two conjugate forms are both harmonic forms.
If u is a harmonic function in the unit ball B = {z € R" : |z| < 1}, we have the

expansion
Nh n

1S Fn ()

where {Y};} stands for an orthonormal complete system of spherical harmonics and

(h+n—3)!

Npn = diHl[Yh,n(E)] = h!(n — 2)!

(2h+n-2), heN,

Y}, (X) being the spherical harmonic space of order h in n dimensions.
The trace of v on ¥ is given by the expansion

oo Nh,n
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If the coefficients ay,, are
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we say that (3) is the Laplace series of the measure p (of the function f). In what
follows, the term measure means a finite signed measure defined on the Borel sets of
.

According to [4,5], we introduce conjugate Laplace series by analogy with the case
of trigonometric series. Let us consider the 2-form

) Nhn
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The h-th term of this series is a differential form whose coefficients are harmonic homo-
geneous polynomials of degree h. It is possible to show that the couple (u,v) satisfies
system (2), that means that v and v are conjugate forms. The boundary behaviour of
v is determined by the restriction of v and *v on Y. If the restriction of v exists, it is
equal to 0 because of the presence of the term d(|z|"*?), while the restriction of v is
(formally at least)

iNZ (h+2) C;Lhi-n—Q) (dy"’“<| |>Ad(|x|h+2>> (5)
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We call (5) the series conjugate to the spherical expansion (3). If (3) is a Laplace series,
we say that (5) is the Laplace series conjugate to (3).

Let us consider the Laplace series of a measure p. Arguing as in [5], the series (4)
and (5) can be written in a simpler way by means of the Legendre polynomials P, as
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respectively.

3. Abel summability. We treat now the Abel summability of conjugate Laplace
series; this topic is discussed more fully in [8].
Let us consider the series

Zm_z Pralt). (6)

It absolutely converges for r € (—1,1), t € [—1,1]. Moreover, it uniformly converges
forr e K C (—1,1),t € [-1,1]. It is possible to give an integral representation for the
series (6). Namely, if r € (0,1), t € [—1,1], then

Nhn b n /‘7‘ pn—2 _p
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Setting r = |z| and t = z - y, the function J,(r,t) can be seen like the kernel of
conjugate series.

The coefficients vj, ;. ,(x) of *v satisfy a limit relation, described by the next
theorem.

Theorem 1. Let
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1<jp<nk=1,...,n- 2), where p s a measure on Y. If x € ¥ is a Lebesgque
point of u, then

1
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where X, ={yeX:|jy—xz| <7} L

'We recall that o € ¥ is a Lebesgue point for the measure p if

L e f@)al(5)

=0
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where | - | is the total variation measure, o is the (n — 1)-dimensional Lebesgue measure on ¥ and f
is the Radon-Nikodym derivative of .
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Since one can write

n n i 1
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where Mit-dn=z = §lowen S0 (1 < jip <n, k=1,...,n— 2) the next statement
]
is obtained by means of some properties involving such tangential operators.

Theorem 2. If pu is a measure on X, the singular integrals

1 n
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(1<jx<n,k=1,...,n—2) do ezist almost everywhere on X.

The last two results combine to give the Abel summability of conjugate Laplace
series.

Theorem 3. The conjugate Laplace series of measure j is Abel summable almost
everywhere on Y and its Abel sum is

1 . Nh,n Lo n
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