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Reactive oxygen species (ROS) behave as secondmessengers in signal transduction for a series of receptor/ligand
interactions. A major regulatory role is played by hydrogen peroxide (H2O2), more stable and able to freely dif-
fuse through cell membranes. Copper–zinc superoxide dismutase (CuZn-SOD)-1 is a cytosolic enzyme involved
in scavenging oxygen radicals to H2O2 and molecular oxygen, thus representing a major cytosolic source of per-
oxides. Previous studies suggested that superoxide anion and H2O2 generation are involved in T cell receptor
(TCR)-dependent signaling. Here,we describe that antigen-dependent activation of humanT lymphocytes signif-
icantly increased extracellular SOD-1 levels in lymphocyte cultures. This effectwas accompanied by the synthesis
of SOD-1-specific mRNA and by the induction of microvesicle SOD-1 secretion. It is of note that SOD-1 increased
its concentration specifically in T cell population, while no significant changes were observed in the “non-T” cell
counterpart. Moreover, confocal microscopy showed that antigen-dependent activationwas able tomodify SOD-
1 intracellular localization in T cells. Indeed, was observed a clear SOD-1 recruitment by TCR clusters. The ROS
scavenger N-acetylcysteine (NAC) inhibited this phenomenon. Further studies are needed to define whether
SOD-1-dependent superoxide/peroxide balance is relevant for regulation of T cell activation, as well as in the
functional cross talk between immune effectors.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

T cell activation is a complex phenomenon in which intracellular
signals, mediated by the engagement of TCR, are integrated by a variety
of ligand/receptor interactionswhose outcome is tofinely tune antigen-
dependent T cell response [1]. T lymphocytes play a pivotal role in the
orchestration of the immune response and TCR-mediated signaling is
a critical event to properly channeling the immune response and to ob-
tain pathogen control and self-tolerance [2].
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Several studies have been suggesting that TCR-dependent T cell
activation induces ROS production [3–5]. Different enzymatic sources,
such as the mitochondrial respiratory chain [6], lipooxygenases,
NADPH oxidases NOX2 and DUOX1 [7,8], have been described to con-
tribute to ROS generation upon TCR triggering. In the light of these ob-
servations, the involvement of multiple anti-oxidant enzymes in fine
tuning of antigen-dependent T cell response can be hypothesized.

TCR stimulation generates both H2O2 and superoxide anion [8,10]
and antioxidant enzymes specific for H2O2 enhance and/or prolong
TCR-dependent ERK activation, while those specific for superoxide
anion have no effect [11].

ROS include oxygen superoxide, hydrogen peroxides, hydroxyl
radicals and peroxides. They represent a normal product of cellular
metabolism and play relevant roles in innate defense against pathogens
[12]. Several receptor/ligand interactions, as represented by TGF-beta
[13], insulin [14], angiotensin II [15] and EGF [16] have been correlated
to the presence of ROS. In this context, ROS appear to act as key second
messenger regulating several crucial cellular responses, as protein ki-
nase activation, gene expression and cell proliferation/apoptosis [17].
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H2O2 is more stable than other short-lived ROSmolecules (1 minute
half-life). It is electrically neutral and it can diffuse inside the cell and
freely through cell membranes. In addition, H2O2 can be rapidly gen-
erated and easily scavenged by numerous mechanisms, thus sharing
several features with well-known second messengers [18–20].

SOD molecules mediate scavenging of ROS, to H2O2 and molecular
oxygen. They belong to a large family of isoenzymes that mediate
cellular response to oxidative stress and represent the main enzy-
matic source of peroxides [21]. All mammalian cells express both
the intra-mitochondrial Mn-SOD and the cytosolic dimeric CuZn-SOD
(SOD-1), while the tetrameric extracellular CuZn-SOD isoenzyme
seems to be selectively expressed by specific cell populations
[22,23]. Hyperoxia and copper availability accelerate both the syn-
thesis and activity of Cu,Zn SOD [24]. Significant control of ROS sig-
naling depends on its spatially restricted production at intracellular
sites, where redox-regulated signal occurs [25]. In this context, SOD-1
recruitment has been described in redox-dependent TNF-alpha and
IL-1 receptor-induced endosomes [26,27]. In addition, SOD-1 associates
with Rac-1-regulated NADPH oxidase complexes in different mouse
tissues and cell lines [28].

SOD-1 may be released in vitro by fibroblasts, hepatocytes [29],
human neuroblastoma cells [30] and Sertoli cells [31]. The extracellular
release of such enzyme is related to specific stress conditions [32].
ER/Golgi involvement in SOD-1 secretion has been described
[33–36], while it is unclear how this cytosolic protein can be targeted
into the ER/Golgi network.

SOD-1 is constitutively secreted by microvesicles in some cell
lines through an ATP dependent mechanism [37]. The intracellular
increase of the enzyme can be observed in neuroblastoma SK-N-BE
cells when they are exposed to oxidative stress [37]. Recently, it
has been shown that SOD-1 secretion is induced by high level of ex-
tracellular K+ in GH3 rat pituitary cells [38] and that the enzyme in-
teracts with membrane of neuroblastoma SK-N-BE cells activating a
phospholipase/protein kinase C pathway, able to increase intracellu-
lar calcium [39,40].

Receptor–ligand interactions, involving members of hematopoietin
receptor super family and EGF, have been described to mediate extra-
cellular H2O2 generation [41,42]. Moreover, exogenously added H2O2

is able to induce signals in the absence of ligands, whereas catalase
is able to inhibit such effect [43,44]. A role for SOD-1 in modulating
ROS-dependent intra-cellular and inter-cellular signaling might be
hypothesized.

Communication between immune cells involves the secretion of
several proteins, like the cytokines, and the presence of their recep-
tors on neighboring cells. This type of intercellular “dialog”may involve
the release of membrane vesicles, like exosomes. These vesicles can
affect cell physiology inducing intracellular signaling and conferring
them new biological properties [45,46]. Peripheral blood human T
cells, T cell clones and Jurkat T cells are able to release microvesicles
in the culture medium. The microvesicle production is finely regulated
and, notably, it increases upon TCR triggering [47].

In previous papers, we showed that cytosolic SOD-1 is secreted by
several cell types [29,30,37] and it is also released in primary lym-
phoid organs, as represented by human thymus [48]. These observa-
tions suggest a paracrine role for SOD-1.

Multiple cytokines have been observed to regulate the expression
of the tetrameric form of extra-cellular SOD-1 [49], while no data are
available on the role of dimeric, cytosolic SOD-1 in functional adaptive
immune effectors. Therefore, the role for SOD-1 in ROS-dependent sig-
naling as well as in the communication between immune effectors
needs to be addressed.

This study is aimed to investigate whether cytosolic SOD-1might be
part of themolecular network involved in TCR triggering.With this pur-
pose SOD-1 intracellular level and localization, as well as SOD-1
microvesicle secretion have been investigated in TCR-triggered human
T lymphocytes.
2. Material and methods

2.1. Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from
10 healthy donors, after informed consent, by centrifugation of pe-
ripheral blood on Ficoll-Paque cushion (GE Healthcare, Uppsala,
Sweden) gradient. T cells have been isolated from PBMC by using a
negative isolation kit (Invitrogen Corporation, Carlsbad, CA, USA)
and following the manufacturer's instructions. PBMC or T cells
(1 × 106/ml) were cultured in 96 well flat-bottomed plates (Falcon)
in RPMI 1640 medium with 2% FCS (Invitrogen, Carlsbad, CA, USA).
TCR triggering was performed by anti-CD3 mAb (Becton Dickinson,
Mountain View, CA, USA) at 5 ng/ml or by using anti-CD3/anti-
CD28 beads (Invitrogen), at 0.3 bead/cell. This activation strategy
has been largely demonstrated to mimic antigen-dependent T cell
triggering. To analyze TCR-dependent SOD-1T cell export, distinct
experiments were performed in the presence of Brefeldin-A, (BFA)
at 5 μg/ml or of 1 mM methylamine, all purchased from Sigma-
Aldrich (Milan, Italy), as described [37]. Cell viability was evaluated
by using Propidium Iodide (PI) (Sigma-Aldrich) labeling and flow cy-
tometry detection [37] as well as by analyzing lactate dehydrogenase
(LDH) activity in culture supernatants by using the Roche Molecular
Biochemical LDH kit (Mannheim, Germany). Written informed con-
sent (model n. 5526 of Azienda Ospedaliera Universitaria “FEDERICO
II”) was obtained from each donor at the time of venous peripheral
blood donation. All the experiments done by using blood donations
were performed and analyzed anonymously, without any biograph-
ical reference to donors.

2.2. ELISA

The quantitative detection of human SOD-1 in medium of cultured
PBMC was carried out using the Bender Med System kit (Bender
Med System Diagnostic, Vienna, Austria), as described [37]. Results
were always normalized for total protein content of the tested sample.
SOD-1 ELISA detection has been always performed on culture superna-
tants immediately frozen at −80 °C. Protein concentrations were de-
termined according to the method of Lowry et al. [50] using BSA, as
standard.

2.3. RNA preparation, semi-quantitative RT-PCR and DNA sequencing

Analysis of SOD-1 specific RNA has been performed, as described
[51]. Briefly, total RNA was extracted with High Pure RNA isolation kit
(Roche Italia, Milano, Italia), according to the manufacturer's instruc-
tions. Traces of contaminated DNA were removed with DNAse I treat-
ment. Quantification was achieved in a single reaction by using the
housekeeping β-actin gene as internal standard. To rule out genomic
DNA contamination we performed a negative control that contained
RNA instead of cDNA. The signal intensities of PCR products were sepa-
rated on a 1.2% agarose gel and were visualized by ethidium bromide
staining. The products' signal intensitieswere determined by computer-
ized densitometric analysis using Fotoplot software. The expression of
SOD-1 was normalized to β-actin mRNA levels. To check the specificity
of the amplified products, DNA bands were eluted from the gel and pu-
rified; sequence analysis was determined by the Big Dye Terminator
Cycle Sequencing method (ABI-PRISM Sequencer 310 Perkin-Elmer).

2.4. Microvesicle isolation and western blotting for SOD-1 detection

To purify the membrane microvesicle-containing fraction, superna-
tants were collected immediately after culture and treated, as described
[52]. Briefly, they were sequentially centrifuged at 500 g for 15 min to
remove cellular debris and again at 10,000 g for 20 min. The obtained
supernatant was collected and further centrifuged at 100,000 g for
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2 h. The resulting pellet was then collected and considered to represent
the enriched membrane vesicle fraction. Western blotting analysis of
the purifiedmaterial was performed as previously described [37]. Com-
parative analysis of SOD-1 was performed by using 40 μg of total
proteins.

2.5. Immunofluorescence and flow cytometry analysis

Intracellular SOD-1 contentwas evaluated anti-SOD-1mAb and FITC
labeled anti-mouse IgG secondary antiserum (Sigma-Aldrich) staining
of permeabilized cells and immunofluorescence technique. A commer-
cial fixing/permeabilization kit, purchased from Becton Dickinson was
always employed, following the manufacturer's instructions. For the
analysis of SOD-1 content in distinct cell subsets and to evaluate T cell
activation after TCR triggering, co-staining with FITC, PerCP or APC la-
beled anti-CD3, anti-CD45 and anti-CD69 mAb was performed. Labeled
antibodies and isotype-matched controls were purchased from Becton
Dickinson. T cell staining and activation were performed by anti-CD3
mAb recognizing different CD3 epitopes. Cell death was always less
than 5% as evaluated by using PI (Sigma-Aldrich) staining. Immunoflu-
orescence, flow cytometry and data analysis were performed by using a
two laser equipped Becton–Dickinson FACSCalibur flow cytometer and
the Cell Quest analysis software.

2.6. Fluorescence microscopy

PBMC or purified T cells (0.5 × 106) were adhered to polylysine-
coated glass slides for 16–18 h at 37 °C.When indicated, the above pop-
ulationswere stimulated with anti-CD3mAb CLB-CD3/4E at 1:100 asci-
tes dilution or anti-CD3/anti-CD28 beads (at 0.3 bead/cell) and 1 mM
NAC [53]. Cells were incubated at 37 °C and immediately fixed with
3% paraformaldehyde solution. Fixed cells were incubated with FITC la-
beled anti-CD3 and anti-human Cu,Zn SOD-1 rabbit antibody (Santa
Cruz Biotechnology, CA, USA) for 45 min in a humidified chamber,
washed three times with PBS and incubated with Alexa Fluor 594-
conjugated goat anti-rabbit secondary antibody (Molecular Probes,
Life Technologies) for additional 45 min at 37 °C in the same conditions.
After 3 washes with PBS the glass slides were mounted using a 50% so-
lution of glycerol in PBS and examined with a Zeiss LSM 510 confocal
microscope with a 63× oil immersion objective (N.A. 1,4) at room tem-
perature. Pictures were taken from selected fields of control and treated
samples.

2.7. Cell to cell aggregate evaluation

To evaluate cell aggregation, PBMCs were cultured in 96 wells flat
bottomedmicrotiter plates (Falcon) in the presence of Medium, anti-
CD3 and 1 mM NAC (Sigma-Aldrich), as indicated. This NAC concen-
tration was demonstrated in preliminary experiments to completely
block ROS formation, as described [54]. Contrast phase microscopy
analysis was performed with a Leitz DIAVERT microscope with a
10× objective at room temperature. Pictures were taken from selected
fields by using a digital Nikon Coolpix Camera. NAC treatment was un-
able to significantly affect T cell viability and proliferation, as evaluated
by PI staining after 1 to 5 h of culture and 3H thymidine incorporation
after 72 h of culture. Quantification has been performed by counting
the number of cell aggregates (identified by the presence of at least 8
clustered cells) in the cell culture of 1 × 105 PBMC plated on the flat-
bottomed microtiter wells.

2.8. Statistical analysis

Statistical evaluation of data, by InStat 3.0 software (GraphPad
Software Inc., San Diego, California, USA), has been performed by
means of the Mann–Whitney test or Paired t test, as indicated.
Two-sided p values of less than 0.05 were considered to indicate sta-
tistical significance.

3. Results

3.1. TCR triggering induces both intracellular increase and BFA-dependent
secretion of SOD-1 in human T lymphocytes

To investigate whether antigen-dependent T cell activation in-
duces SOD-1 production and extracellular secretion, we measured
the release of this enzyme in supernatants of PBMC cultured from
15 min to 18 h in presence of Medium alone or with anti-CD3 mAb,
that induces the TCR triggering mimicking antigen-dependent activa-
tion of T lymphocytes. As shown in Fig. 1A, human PBMC cultures se-
creted small amount of SOD-1 that remained substantially stable from
15 min till to 18 h of culture. Anti-CD3 treatment slightly, but signifi-
cantly (p b 0.05), increased such basal secretion. The increment was
detectable after 4 h of culture and reached the highest level after 18 h
of activation. This effect was independent on cell damage, always eval-
uated by PI labeling (Fig. 1B) and significantly correlated with TCR-
dependent activation, as revealed by the up-regulation of the activation
molecule CD69 (Fig. 1C). Therefore, TCR-triggering was associated with
the induction of SOD-1 secretion in human lymphocytes.

To ascertain whether such secretionwas sustained by up-regulation
of SOD-1 gene transcription, we analyzed SOD-1 specific mRNA. As
shown in Fig. 2, an increase of more than 70% of SOD-1 specific
mRNA has been observed in the cultures treated with anti-CD3
mAb as compared with resting cells. Therefore, antigen-dependent
T cell activation induced SOD-1 secretion that was sustained by the
increase of SOD-1 transcription in the whole PBMC population.

To evaluate whether SOD-1 export might be part of micro-vesicle
production upon TCR triggering, we purified the micro-vesicle frac-
tion from the supernatants of 18-hour cultures of PBMC and purified
T cells. TCR triggering of PBMCwas performed with anti-CD3mAb. In
order to mimic costimulatory signals, usually mediated by accessory
cells, a combination of anti-CD3/anti CD28 beads was used to fully
activate purified T cells, as described [1]. Fig. 3 shows western blot-
ting analysis of SOD-1 in the enriched membrane vesicle fractions.
Fig. 3A–B reports one representative experiment, while Fig. 3C refers
the analysis of data obtained in all the six experiments performed in
PBMC cultures. The comparison revealed the occurrence of a mean
25% increase of SOD-1 content in the enriched membrane vesicle
fraction obtained from anti-CD3 treated lymphocytes (p b 0.01). As
shown, in the enriched membrane vesicle fraction isolated from
anti-CD3/anti-CD28 treated T cells, a more consistent increase of
SOD-1 content was observed (Fig. 3D–F). Indeed, a mean increase
N120% of SOD-1 content was evidenced in three experiments per-
formed with purified T lymphocytes (p b 0.05).

To investigate whether other cell populations, present in PBMC,
contribute to SOD-1 production and secretion in response to TCR-
triggering, we analyzed intra-cellular SOD-1 levels in the T cell sub-
set and in the “non-T” counterpart in a mixed context. This evalua-
tion was performed by the combination of immune fluorescence
and flow cytometry detection, to preserve the biological complexity
of antigen-dependent T cell response and allow specific detection of
SOD-1 in the T cell subset and in “non-T” population (Fig. 4A). As
shown (Fig. 4B), very low amount of intracellular SOD-1 was ob-
served in all the “resting” lymphocytes (T and non-T cells).

After TCR-triggering, the up-regulation of SOD-1 intracellular level
was observed only in T lymphocytes if compared to non-T cells (Region
1 versus Region 2 in Fig. 4C).

To investigate the pathway involved in SOD-1 secretion, we ana-
lyzed intracellular SOD-1 retention in T cells in the presence of BFA
(Fig. 4D) or methylamine (Fig. 4E) described to block ER/Golgi intracel-
lular network and cell endocytosis, respectively [51,52]. In this regard,
BFA but not methylamine treatment induced significant increase of



Fig. 1. SOD-1 concentration in anti-CD3 triggered cultures of human lymphocytes. (A) SOD-1 amount in supernatants of PBMC cultured in the presence ofMedium (black squares) or anti-
CD3 (white squares). SOD-1 concentrations were analyzed in undiluted samples by using ELISA assay; results were normalized for total protein content of the tested sample. Each point
refers mean value obtained in five independent experiments; error bars indicate SEM. * indicates the occurrence of statistically significant (p b 0.05) higher SOD-1 concentration in anti-
CD3 treated cultures. (B and C) PI and CD69 labeling of PBMC cultured O.N. withMediumor anti-CD3, as indicated. Results refer to one of five independent experiments. As shown (B), no
significant differences have beenobserved in PI staining profiles of PBMC culturedwithMediumand anti-CD3; (C) CD69 stainingprofile (bold line) of PBMCculturedwithMediumor anti-
CD3, as indicated; broken line indicates isotype control; as shown, activated PBMCs were characterized by significant increase of the activation molecule CD69.
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the enzyme content in T cells. No significant changes in intracellular
levels of SOD-1 were observed in “non-T” cell population, in the same
experimental conditions (Fig. 4F). Notably, none extracellular SOD-1 in-
crease was detected by ELISA in anti-CD3 cultures incubated with BFA
(data not shown).

Fig. 4G–I reports the statistical comparisons of SOD-1 intracellular
amount in PBMC (Fig. 4G), in T cells (Fig. 4H) and “non-T” cells
(Fig. 4I), as evaluated by considering themean fluorescence intensity
(MFI) values obtained in all the 4 experiments performed. As shown,
no significant changes in SOD-1 levels were observed in the absence of
TCR triggering. Thus, SOD-1 amount was strictly dependent on antigen-
mediated T cell activation. Indeed, anti-CD3 treatment significantly
Fig. 2.Anti-CD3 treatment induces significant increase of SOD-1mRNA inhuman lympho-
cytes. (A) Densitometric arbitrary units ratio between SOD-1 and beta actin in Medium
and anti-CD3 treated cultures. Results refer one of five independent experiments. mRNA
was measured by RT-PCR, as detailed in Material and methods section. (B) Comparative
analysis of SOD-1 mRNA percent increase in all the five experiments performed. For
each experiment mRNA amount in Medium cultured PBMC was considered the reference
value (100) for calculation of percent increase in the anti-CD3 treated culture. As shown, a
mean increase of more than 70% of SOD-1 specific mRNA has been observed in anti-CD3
treated PBMC. Error bars indicate SEM. Statistical analysis has been performed by using
Paired t test.
increased SOD-1 intracellular level (p b 0.005) in thewhole lympho-
cyte population (Fig. 4G). This effect specifically characterized the T
cell subset (p b 0.005; Fig. 4H), while no differences were observed
in the “non-T” population (Fig. 4I). Moreover, the block of ER/Golgi
network, mediated by BFA treatment, was observed to mediate signifi-
cant (p b 0.05) intra-cellular SOD-1 retention only in T lymphocytes
(Fig. 4H). Similar results have been obtained by anti-CD3/anti-CD28
triggering of purified T cells (data not shown). As control, intracellular
accumulation of Interferon-gamma was specifically detected in TCR
triggered cultures treated with BFA (not shown).

3.2. TCR and SOD-1 co-localize and cluster after TCR-triggering in human T
cells

We analyzed SOD-1 and TCR cellular localization by confocal mi-
croscopy after 2 min of culture in the presence of Medium alone or
with anti-CD3. Fig. 5 shows TCR and SOD-1 co-staining after 2 min
of culture with Medium alone (Fig. 5A) or anti-CD3 (Fig. 5B and C).
As expected, the homogeneous surface TCR distribution observed
in resting T cells (Fig. 5A) was completely changed by anti-CD3 trigger-
ing (Fig. 5B and C). Indeed, significant TCR clustering (Fig. 5B and C)
characterized activated T cells. SOD-1 staining revealed a quite homoge-
neous intracellular distribution of the enzyme in resting T cells; staining
profiles also confirmed the presence of SOD-1 at very low levels in
human T lymphocytes (see Fig. 4).

Notably, confocal microscopy revealed that TCR triggering was
able to induce a clustered distribution of SOD-1 enzyme (Fig. 5B
and C). Merged images clearly showed that TCR clusters have been
recruiting intracellular SOD-1, whose localization strictly reflected
TCR distribution (Fig. 5B and C). TCR/SOD-1 co-localization disap-
peared 20 min after anti-CD3 treatment (not shown). To preserve
the physiological complexity, we chose to perform the analysis in
PBMC population as a whole and we identified T cells by labeling
with specific antibodies. In this model, TCR triggering is allowed by
the physiological cross talk between T cells and autologous antigen

image of Fig.�2


Fig. 3. TCR-dependent T cell activation increases SOD-1 containing microvesicle secretion by human T lymphocytes. (A) Flow cytometry analysis of PBMC population. As shown, T lym-
phocytes (CD3+ cells) represent less than 85% of the total population; (B) western blot of enrichedmembrane vesicle fractions, isolated from culture supernatants of Medium (white col-
umn) and anti-CD3 treated PBMC (gray column), as detailed inMaterial andmethods section. Densitometric analysis shows increased presence of SOD-1 in TCR triggered PBMC. Results
refer one representative experiment of the six performed; (C) Analysis of percent increase of SOD-1 containing microvesicle in supernatants derived from anti-CD3 treated PBMC in six
experiments. For each experiment, SOD-1 amount inMedium cultured PBMCwas considered the reference value (100) for calculation of percent increase in the anti-CD3 treated culture.
As shown, a mean increase of 25% was observed in themicrovesicle-enriched fraction obtained from the supernatants of anti-CD3 treated PBMC. (D) Flow cytometry analysis of a typical
purified T cell population isolated by using negative selection strategy, as indicated in theMaterial andmethods section. As shown, T lymphocytes (CD3+ cells) representmore than 98% of
the total population; (E)western blot of enrichedmembrane vesicle fractions, isolated from culture supernatants ofMedium(white column) and anti-CD3/antiCD28 treated T cell cultures
(gray column), as detailed inMaterial andmethods section. Densitometric analysis shows increased presence of SOD-1 in the sample obtained from TCR triggered T cells. Results refer one
representative experiment of the three performed; (F) analysis of percent increase of SOD-1 containingmicrovesicle in supernatants derived from anti-CD3/anti-CD28 treated T lympho-
cytes in three experiments. For each experiment, SOD-1 amount in Medium cultured T cells was considered the reference value (100) for calculation of percent increase in the anti-CD3/
anti-CD28 treated cultures. As shown, an increase of more than 120% was observed in the microvesicle enriched fraction obtained from the supernatants of anti-CD3/anti-CD28 treated
purified T cells. Error bars indicate SEM. Western blot comparative analysis of SOD-1 has been always performed on aliquots of enriched microvesicle fractions containing 40 μg of
total proteins. Statistical analysis has been performed by using Paired t test.
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presenting cells (APC). Notably, we never observed a TCR clustering
decoupled from SOD-1 co-localization. No significant changes in
SOD-1 intracellular localization were observed in “non-T” popula-
tion after anti-CD3 triggering (not shown). Notably, SOD-1/TCR in-
tracellular co-clustering was observed also in anti-CD3/anti-CD28
triggered purified T cells (not shown).

To investigate whether SOD-1/TCR co-localization in anti-CD3 ac-
tivated T cells is dependent on ROS bioavailability, we performed ex-
periments in the presence of the ROS scavenger NAC at 1 mM
concentration. In this condition, TCR clustering was significantly re-
duced (from 70 to 95% in NAC/anti-CD3 co-cultures). As shown,
NAC significantly inhibited both TCR and SOD-1 clustered localiza-
tion (Fig. 5D). Indeed, TCR was homogeneously distributed on cell
membrane, similarly to what was observed in resting condition
(Fig. 5A). SOD-1 co-staining in anti-CD3/NAC treated lymphocytes
also resembled basal images with the presence of small areas of faint
cytosolic accumulation (Fig. 5D). Merged images revealed a clear-cut
distinct distribution of TCR and SOD-1 in anti-CD3/NAC treated T cells.
Thus, ROS availability significantly affected activation-dependent
TCR/SOD-1 re-localization in human T cells.

To ascertain whether ROS availability might also affect the cell-
to-cell aggregation dependent on TCR triggering, we analyzed the ef-
fect of NAC incubation on early cell clustering (usually detectable
after 45 min of incubation with anti-CD3). As shown in Fig. 6, anti-
CD3-sitimulation was able to induce cell aggregation after 1 h of
treatment (Fig. 6C). Such effect became more evident after 3 h of in-
cubation (Fig. 6G). Anti-CD3/NAC co-treatment severely impaired
anti-CD3 induced cell clustering after 1 h of incubation (Fig. 6D).

image of Fig.�3


Fig. 4. Significant increase of intracellular SOD-1 and BFA-dependent SOD-1 export can be specifically demonstrated in anti-CD3 triggered human T cells. (A) Gating criteria for the iden-
tification of the “T cell subset” (R1) and of the “non-T population” (R2) in a PBMC culture; (B) SOD-1 staining profile of T cells (bold line) and “non-T population” (plain line) in O.N. Me-
dium cultured PBMC. Dotted lines show the isotype control. As shown, similar, very low amount of intracellular SOD-1 characterizes both population. (C) SOD-1 staining profile of T cells
(bold line) and “non-T population” (plain line) in anti-CD3 culturedPBMC.Dotted lines show the isotype control. As shown, specific increase of SOD-1 intracellular content can beobserved
in the T cell subset (bold line) as comparedwith the “non-T” counterpart (plain line); (D) SOD-1 staining in T cell population (R1) culturedwith anti-CD3 alone (plain line) or in the pres-
ence of BFA (bold line). Dotted lines show the isotype control. As shown, anti-CD3/BFA co-culture increases intracellular SOD-1 content in T cell population. (E) SOD-1 staining in T cell
population (R1) cultured with anti-CD3 alone (plain line) or in the presence of methylamine (bold line). Dotted lines show the isotype control. As shown, no significant changes in
SOD-1 intracellular levels can be observed in anti-CD3/methylamine co-cultures. (F) SOD-1 staining profiles of “non-T population” (R2) in anti-CD3 cultures (plain line), in BFA/anti-
CD3 co-cultures (bold line) or in methylamine/anti-CD3 cultures (broken line). Dotted lines show the isotype control. As shown, no significant changes in SOD-1 intracellular content
have been observed. Results refer one of 4 independent experiments. (G–I) Column graphic reports the means of SOD-1 fluorescence intensities observed in 4 independent experiments
in thewhole PBMCpopulation (G), in the T cells (H) and in the “non-T” population (I). White columns indicate SOD-1 levels in cells, cultured as indicated; gray columns indicate SOD-1 in
BFA co-treated cultures; striped columns refer SOD-1 in methylamine co-treated cultures.
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Quantification has been performed by direct counting of cell aggre-
gates, identified by the presence of at least 8 clustered cells, in the
microtiter wells. Comparative analysis showed a cell aggregate inhi-
bition of 83.64 ± 1.62 in anti-CD3/NAC co-treated cultures in 6 inde-
pendent experiments; (p b 0.05). This inhibition was transient and
progressively decreased, likely mirroring the ROS scavenging activity
of NAC. Indeed, after 3 h of NAC/anti-CD3 incubation a percentage of
clustering inhibition of 55.35 ± 2.23 was observed in 6 independent
experiments (Supplementary Table S1). The inhibiting effect of NAC
co-incubation completely disappeared after 6 h of anti-CD3/NAC co-
treatment. NAC co-incubation was unable to mediate significant effects
on cell viability and proliferation (not shown).

4. Discussion

This study revealed that SOD-1 is part of the network of mole-
cules involved in antigen-dependent T cell response. SOD-1 was re-
cruited by antigen triggered TCR and its intracellular content was
specifically upregulated in human T cells after 16–18 h of anti-CD3
incubation. Moreover, SOD-1 was secreted by a BFA-dependent
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Fig. 5. Anti-CD3 triggering induces ROS-dependent TCR and SOD-1 co-clustering in activated lymphocytes. (A) Confocal microscopy image of CD3 (green) and SOD-1 (red) in resting T
cells. A homogeneous, distinct, membrane and intracellular distribution of the TCR and SOD-1 can be appreciated. (B and C) After 2 min of anti-CD3 treatment a clustered distribution
of TCR can be observed (white arrows). SOD-1 distribution becomes strongly clustered and resembles that of TCR (white arrows). This cell re-localization is better showed in panel C
where a single cell has been focused. Merged images show that TCR clusters recruit intracellular SOD-1, whose localization strictly reflects TCR distribution (white arrows). (D) anti-
CD3/NAC co-incubation induces a homogeneous TCR surface distribution. SOD-1 localization also resembles basal images, with the presence of small areas of faint cytosolic accumulation.
Merged images reveal a clear-cut distinct distribution of TCR and SOD-1.
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microvesicle pathway by TCR triggered T cells. These effects have
been observed maintaining the biological complexity of antigen-
dependent T cell response and confirmed in purified T cells activated
by anti-CD3/anti-CD28 beads.

We showed that extra-cellular SOD-1 is increased in PBMC cultures
after anti-CD3 treatment. This effect was accompanied by both the
induction of SOD-1 mRNA and increase of SOD-1 containing micro-
vesicles in culture supernatants. Moreover, we identified the T cell
population as the specific target for SOD-1 induction and extra-
cellular export. Therefore, TCR-dependent activation behaves as a
triggering element for SOD-1 production and secretion by human T
cells.

SOD-1 production is induced in neuroblastoma SK-N-BE cells
after oxidative stress [30,37]. Moreover, other and our data showed
that cytosolic SOD-1 is secreted by many cell lines carrying out a
paracrine modulatory role [30,31,37] and SOD-1 extracellular export
was by us described in primary lymphoid organs [48].

Induction of extra-cellular export of SOD-1 after TCR-triggering
proposes a more complex physiological involvement of such enzyme
in T cell activation. In this study, we described that a BFA-dependent
secretion mechanism [54] characterized SOD-1 micro-vesicle inter-
cellular trafficking upon antigen-dependent immune response. No
effect has been observed in the presence of methylamine that im-
pairs cell endocytosis [55]. Thus, a major involvement of endocytic
recycling pathways might be excluded. Such mechanism, previously
described in neuronal model [30–34,37], represents an intriguing
issue for further investigations.

SOD-1 is a cytosolic protein lacking signal peptide and consequently
considered to be excluded from ER translocation. The small amount of
wild type SOD-1 detected in ER–Golgi apparatus [36], does not support
the direct involvement of this organelles in SOD-1 secretion. Moreover,
the possible interference of BFA, a classical inhibitor of ER–Golgi depen-
dent protein secretion, in vesicular pathways not directly involving ER–
Golgi apparatus cannot be excluded. In this context, our data propose
that SOD-1 could be part of the micro-vesicle-dependent pathways
functioning as secondary messenger between immune cells [45–47].

A number of data indicate that exogenously addedH2O2 induced sig-
nals in the absence of ligands,whereas catalase is able to inhibit such ef-
fect [42,43,56]. Moreover, the observations that production of catalase
characterizes many pathogens [57] and that viral infection modulates
H2O2 production [58] confirm themultiple roles played by extracellular
H2O2 in the activation processes of lymphocytes [59].

We consistently found that antigen-dependent T cell triggering
mediated changes in the intra-cellular localization of SOD-1 that
was observed to co-localize with clustered TCR. This event was
dependent on ROS availability since it was impaired by NAC co-
treatment. ROS production is an essential component in signaling
cascades that mediate actin cytoskeleton rearrangements. Small G
protein Rac, a key element in the network assembly of actin in
lamellipodia [60–62] participates in activation-dependent ROS pro-
duction by different cell types [63,64]. Moreover, Rac-mediated
ROS production results in the downmodulation of Rho activity thus
regulating cellular morphology and migratory behavior [65]. SOD-1
associates with Rac-1 regulated NADPH oxidase complexes in different
mouse tissues and cell lines [28]. In this context, massive ROS scaveng-
ing is expected to disrupt ROS-dependent regulation of cell contractility
and motility. This event could account for the TCR/SOD-1 intracellular
redistribution (Fig. 5). The impairment of early cell aggregation in

image of Fig.�5


Fig. 6. NAC treatment inhibits early activation-induced aggregation of TCR triggered lym-
phocytes. Contrast phasemicroscopy images showing1 and 3 hour cultures of PBMC incu-
batedwithMedium (A and E), NAC (B and F), anti-CD3 (C and G) or anti-CD3 and NAC (D
andH). As shown, significant cell aggregation is observed in anti-CD3 triggered cells. Lym-
phocyte clustering is significantly inhibited in the anti-CD3/NAC co-treated cultures; (D)
after 1 h of incubation. Quantification is performed by counting cell aggregates, identified
by the presence of at least 8 clustered cells. Comparative analysis (see Supplementary
Table S1) shows a 83.64 ± 1.62 inhibition of cell aggregates in anti-CD3/NAC co-treated
cultures in 6 independent experiments; (p b 0.05). (H) After a 3 hour period the
inhibiting effect of NAC treatment is observed to be lowered (55.35 ± 2.23 inhibition of
cell aggregates in 6 independent experiments). Quite normal clustering of anti-CD3 treat-
ed PBMC is observed at longer culture time in anti-CD3/NAC co-treated cells (not shown).
Results show one representative experiment of the six performed.
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presence of anti-CD3/NAC co-treatment (Fig. 6) strongly supports such
hypothesis.

Compelling evidences indicate that ROS, together with their essen-
tial role in innate antimicrobial defense [12], are critically involved in
the regulation of antigen-dependent response of adaptive immune
effectors [10,11,66–69]. Exposure of T cells to oxidant agents, such
as pervanadate or H2O2, induces and/or enhances TCR signaling dur-
ing T cell activation [70–72]. TCR-dependent signaling generates
both superoxide anion and H2O2 that selectively regulate antigen-
dependent proliferation and Fas ligand expression by T effectors
[10]. An oxidative signal implies its tight regulation and transient
character. Thus, in the presence of multiple intracellular ROS sources
[6–9], the involvement of multiple anti-oxidant mechanisms in fine
tuning of antigen-dependent T cell response can be hypothesized. In-
deed, Mn-SOD/SOD-2 a major mitochondrial antioxidative enzyme
has been consistently associated with T cell activation [73] and a
role of catalase, glutathione and thioredoxin has been also proposed
[74].

In the models of ROS generation upon stimulation of receptors it
has been shown that H2O2 is the relevant oxidant species that regu-
late signaling [18–20]. Notably, H2O2 has a short half-life in the re-
ducing environment of the cytosol, and it acts close to its site of
production. Thus, an important aspect of ligand-dependent TCR acti-
vation might be the rapid translocation of receptors to a source of
H2O2 or, vice versa, the clustering of such a source to the receptor.
To this regard, our data strongly support the hypothesis that SOD-1
intracellular localization in antigen-triggered T cells could provide
H2O2 generation in the cell compartment specifically involved in
tuning antigen-dependent signals.

A number of data suggested the role for H2O2 as key modulator of
protein phosphorylation on either serine–threonine and tyrosine
residues [75]. Indeed, all protein tyrosine phosphatases (PTPs) contain
an essential cysteine residue in the signature active enzyme site motif
that has been demonstrated to be target of specific H2O2 oxidation.
The H2O2-mediated inhibition of PTP activity is expected to result in a
shift of protein tyrosine kinases toward protein phosphorylation. The
involvement of SOD-1 in such regulatory pathways has been suggested
[76].

Our data on SOD-1 intracellular re-localization upon TCR-triggering
suggests that SOD-1 could directly modulate kinase/phosphatase ac-
tivity related to proximal TCR signaling. The evidence [10] that anti-
CD3 induced ERK phosphorylation requires H2O2 but is independent
on superoxide anion, strongly supports such hypothesis. Thus, sub-
cellular compartmentalization of H2O2 generating enzymes (like
SOD-1) could represent a relevant element in achieving the superoxide/
peroxide balance required to optimize antigen-dependent T cell response.

Taken in all, our data suggest that SOD-1 is part of the molecular
network involved in antigen-dependent T cell response. At the best
of our knowledge, this is the first observation revealing a relation-
ship between SOD-1 secretion/intracellular re-localization and the
antigendependent T cell activation. Further studies are needed to inves-
tigate on the involvement of SOD-1 in the regulation of TCR signaling
cascades as well as in the functional cross talk between immune
effectors.

5. Conclusion

This study reports for thefirst time that SOD-1, amajor physiological
regulator of cytosolic superoxide/peroxide balance, is part of themolec-
ular network involved in antigen-dependent T cell activation. Indeed,
we observed: i. mRNA induction and increased levels of extra-cellular
SOD-1 containing micro-vesicles in anti-CD3 triggered cultures; ii. in-
crease of intra-cellular SOD-1 and BFA-dependent SOD-1 microvesicle
secretion in TCR-triggered T cells; iii. TCR/SOD-1 co-localizationwas ob-
served in anti-CD3 treated T cells.

Further studies are needed to establishwhether SOD-1 is involved in
modulating ROS-dependent intra-cellular and inter-cellular signaling in
antigen triggered human T cells.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamcr.2013.10.020.
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