Laboratory characterisation of the Radiation Explorer in the Far-Infrared Breadboard (REFIR/BB) for the atmospheric emission measurement in the 100-1100 cm⁻¹ spectral range Luca Palchetti⁽¹⁾, Giovanni Bianchini⁽¹⁾, Carmine Serio⁽²⁾, Francesco Esposito⁽²⁾, Rolando Rizzi⁽³⁾, Vincenzo Cuomo(4) - (1) Istituto di Fisica Applicata "Nello Carrara" CNR, Firenze, Italy; - (2) DIFA, Università della Basilicata, Potenza, Italy; - (3) ADGB-Diparimento di Fisica, Università di Bologna, Bologna, Italy; - (4) Istituto di Metodologie per l'Analisi Ambientale, CNR, Potenza, Italy. A spectrometer named Radiation Explorer in the Far InfraRed (REFIR) is being proposed for a future space mission aimed at the spectral measurement in the far infrared of the Earth outgoing emission from 100 to 1100 cm-1 wavenumber, with particular attention at the spectral regions that are not covered by any current or planned space mission. In preparation for a possible space mission, a BreadBoard version (REFIR/BB) of the Fourier transform spectrometer has been built. REFIR/BB will allow us to study the trade-off between all instrument parameters, to test the optical layout and to optimise the data acquisition strategy. This work describes the laboratory results on REFIR/BB with particular attention to the instrument characterisation. Tests were performed both in air, at ground level, and under a vacuum chamber. In perspective the breadboard could be flown for test flight on aircraft or balloon platforms. Optical layout of the REFIR/BB instrument 2-input (I1, I2), 2-output (O1, O2) ports polarizing Fourier transform spectrometer. M-Moving retroreflector, P-Photolithographic polarizers under vacuum conditions. Spectral features are due to beam splitter substrate (mylar) De te c tor re sponse analysis Noise Equivalent Spectral Radiance measured absorption. Air transmittance measured as the ratio between the signal acquired in air and the signal acquired under vacuum. Rotational water vapor band is shown in the left-side panel while the CO2 vibrational v2 mode is shown in the right-side panel. The results are compared with the transmittance simulated under the same laboratory conditions of the measurements. The differences in the baseline in the right-side panel are a residual calibration error due to the | Channel I | Channel 2 | |---|--| | Hierard signal (A. U.) | | | Value of the control | 0.005 0 0.005
Opicial publifference (2005 | | | 0.005 Optical path difference (cm) | Interferogram phase correction is performed through a frequency filtering in the time domain in order to compensate for the effects of the detector and preamplifier. In the upper panel are shown the interferograms after resampling on equal space intervals for both detectors with and without filtering. In the panel below is shown the measured system response and the analytical expression used for implementing the filtering algorithm. | absorption features of the BS mylar substrate.
Interferometer type Polarising interferometer with double input/output | | |---|---| | cometer with double input/output | Interferometer type | | | Spectral bandwidth | | sided interferogram | Spectral resolution (max) | | | Optical throughput | | | Internal pupil diameter | | | Field-of-view | | c mirror (f=300mm) | Input optics | | c mirror (f=150mm) + Winston cone concentrator 1.4 | Output optics | | ter | | | Au grids (0.7μm wide, 2.5μm pitch) on 2.5μm mylar | Beam Splitter | | electrics, 2mm diam. | Detectors | | r diode, λ=780 nm, temperature stabilised | Reference laser | | | Power | | electronics) | Weight | | $500x615mm^2$, height = 256mm | Dimensions | | x220x360mm ³ | | | e mirror (f=150mm) + Winston cone concentrator 1 ter
Au grids (0.7 μ m wide, 2.5 μ m pitch) on 2.5 μ m my electrics, 2mm diam.
r diode, λ =780 nm, temperature stabilised
electronics)
600x615mm², height = 256mm | Input optics Output optics Beam Splitter Detectors Reference laser Power Weight | REFIR/ Bre a nBo a rd PDU-Pyroeledric Detector Unit, BSU-Beam Splitter Unit, RLS-Reference Laser System URB Hot Black Body CBR Cold Black Bod REFIR/ Balloon Schematic of the REFIR optics Pro je c t info http://www.refir.org/ http://radiation.ifac.cnr.it L.Palchetti@ifac.cnr.it