
An Interactive Bio-Inspired Approach to Clustering and Visualizing Datasets

Ugo Erra

Dipartimento di Matematica e Informatica
Università della Basilicata

Potenza, Italy
Email: ugo.erra@unibas.it

Bernardino Frola, Vittorio Scarano

Dipartimento di Informatica
Università di Salerno

Fisciano, Italy
Email: frola@dia.unisa.it, vitsca@dia.unisa.it

Abstract—In this work, we present an interactive visual
clustering approach for the exploration and analysis of datasets
using the computational power of Graphics Processor Units
(GPUs). The visualization is based on a collective behavioral
model that enables cognitive amplification of information
visualization. In this way, the workload of understanding the
representation of information moves from the cognitive to
the perceptual system. The results enable a more intuitive,
interactive approach to the discovery of knowledge. The paper
illustrates this behavioral model for clustering data, and applies
it to the visualization of a number of real and synthetic datasets.

Keywords-visual clustering; behavioral model; GPU; high-
dimensional datasets;

I. INTRODUCTION

The human perception system is the result of both evo-

lution and experience of the environment. A direct conse-

quence is the fact that humans have great ability to un-

derstand patterns in the natural environment through visual

perception. Humans are physiologically receptive to natural

shapes and behaviors and such patterns reach deep into our

subconscious. For example, humans usually respond in a

similar manner to the beauty of a sunset or to the shapes

created by a flock of birds. Consequently, visualization of

complex interrelationships may be better understood using

natural analogues, producing visualizations that are moti-

vated by metaphors inspired by nature. A methodology for

the creation of effective visualizations based on our ability

to immediately perceive complex information in nature is

discussed in [1].

An approach that may be inspired by natural analogues is

clustering. Clustering is essentially a data mining approach

that addresses the problems of large amounts of data and

the scarcity of human attention by discovering groups of

similar objects. Each group, called a ‘cluster’, consists of

objects that are similar to one another and dissimilar to

objects of other groups. Based on given similarities, data

is organized into clusters using an unsupervised learning

approach that starts with an unlabeled dataset, from which

the aim is to discover how the objects within that set are

organized [2]. The main problem of clustering is in the

visualization of vast volumes of data which is the first

requirement for meaning to emerge and to be understood

effectively. Simplistic approaches to visualization lead to

cluttered or confusing displays, which require a great deal of

cognitive processing on behalf of the user in order to extract

meaning from them.

This paper addresses the clustering of large high-

dimensional datasets using a bio-inspired visualization tech-

nique that improves human understanding. The metaphor

is based on a flock of birds. High-dimensional data is

mapped as agents’ features (we refer to autonomous agents

using the word ’agent’). Each agent is assigned a local

behavioral model and moves by coordinating its movement

with the movement of other agents in a 3D environment.

Our approach relies on the natural organization of groups

that arises when agents with similar features interact using

this local behavioral model.

In addition, we exploit the parallel architecture of Graph-

ics Processor Units (GPUs) to guarantee interactive clus-

tering. We illustrate the model and show how it enables

agents to be organized into clusters with similar features.

A significant advantage of the proposed approach is that it

does not require the number of clusters as input, and data can

be introduced interactively. Generally, our approach enables

high-performance data analysis processing, and visualization

based on an intuitive representation that avoids the projection

of high-dimensional data in two- or three-dimensional space.

Experimental results show a guaranteed quality of clustering

from our algorithm, while implementation using the GPU

architecture merely performs well.

The remainder of this paper is organized as follows: in

section II, we review previous clustering approaches that are

based on GPUs. In section III, we describe the behavioral

model that inspired our clustering approach. In section IV,

we illustrate our clustering algorithm. In section V, we

present a brief description of the application. Section VI

illustrates our results in terms of efficiency and performance

scalability. Finally, section VII concludes and discusses

directions for future work.

II. RELATED WORKS

An example of a system that uses visualization techniques

for high-dimensional clustering is OPTICS [3]. The authors

of OPTICS created a one-dimensional ordering of databases,

2011 15th International Conference on Information Visualisation

1550-6037/11 $26.00 © 2011 IEEE

DOI 10.1109/IV.2011.16

440

representing the density of clustering structures. Cluster

points are close to each other in the one-dimensional order-

ing generated by OPTICS, and their reachability is found

using a distance plot. This visualization system is valuable

for understanding and guiding the clustering process. An-

other approach to high-dimensional clustering is the HD-Eye

system [4]. HD-Eye considers clustering as a partitioning

problem and enables the user to be directly involved in the

clustering process - that is, in choosing the dimensions to

be considered, in selecting the clustering paradigms, and in

partitioning the datasets.

In the context of clustering, GPUs have demonstrated

some interesting results. The k-means clustering algorithm

is probably the algorithm most studied on GPUs. The first

demonstrations of the use of GPUs to significantly accelerate

k-means analysis are [5] [6]. Using an obsolete approach,

based on shader languages, the authors of these studies

exploit the computational capabilities of GPUs. Today, gen-

eral purpose languages, like CUDA, offer better support to

GPU architectures. The authors of [7] [8] tried to improve

the efficiency of k-means using CUDA and optimizations

directly targeted at parallel architectures. They obtained an

increase in speed that is 14 and 13 times greater, respectively,

than that of a CPU’s sequential computation.

The authors of [9] used a shader language to implement

hierarchical clustering. Their implementation speed was 2-4

times greater than that of a CPU. [10] explored parallel com-

putation of hierarchical clustering with CUDA and obtained

a 48-fold increase in speed.

The real-time simulation and visualization of large

datasets using a GPU architecture has been proven to

outperform CPU implementation in several past papers, for

example [11]. In this work, the authors implement the pro-

posed clustering approach using the BehaveRT framework

[12]. This framework allows real-time simulation and visu-

alization of large datasets. This enables developers to focus

on the design and implementation of behavioral models that

exploit the computational power of the GPU. We will show

that this is a key aspect to obtaining interactive results.

III. THE BEHAVIORAL MODEL

Our clustering approach is inspired by the original be-

havioral models proposed by Reynolds [13]. In Reynold’s

model, each agent has a strictly local perception of the space

it occupies. None of the group members have full knowledge

of the entire group. Hence, agents must base their decisions

on what they know of neighbors in their field of vision.

Based on each agent’s visibility, the synchronized aggregated

motion of the group is achieved by calculating a weighted

sum of steering behaviors. Reynolds defined three steering

behaviors.

The first, separation, maintains a certain distance from

neighbors. This is necessary to prevent collisions. A repul-

sive force �fs is calculated as the difference vector between

Visualization
Domain

Data
Domain

3-D: (x, y, z) d-D: (x1, x2, …, xd)A B

C

DataItem(A)
DataItem(B)

DataItem(C)

Figure 1: Each agent is associated with a data item in the

dataset. Agents move in the 3D space while data items exist

in the d-dimensional space. Data items affect the steering

force of agents’ behavior. For example, agents A and B

represent similar data items (using a specific metric) and

they move closer to each other. The data item of agent C

is quite different to those of agents A and B, thus it moves

away from them.

an agent’s current position and the position of each of its

neighbors, while the steering force is calculated as the aver-

age of all the repulsive force vectors. The second, cohesion
moves the agent toward the center of his local neighborhood.

This tends to aggregate the flock. The cohesion force �fc is

obtained by computing the average position of neighbors.

The third steering behavior, alignment tends to align the

agent with other neighbors through group computing. The

alignment force �fa is calculated as the difference between

the average of the neighbors’ forward vectors and the

forward vector of the agent itself.

The overall steering force �fr of the Reynolds model, for
the agent i, is achieved by summing the steering forces
produced by all behaviors.

�fr = ws
�fs + wc

�fc + wa
�fa

where, ws, wc, and wa are weights that manage the behav-

ioral impact on the overall steering force.

IV. THE CLUSTERING MODEL APPROACH

In addition to the behaviors described in the model

proposed by Reynolds, we defined two new behaviors called

Cluster-Cohesion and Cluster-Alignment. These behaviors

implement the agent-based clustering algorithm.

The cluster-cohesion force �fcc, for a specific agent i, is
computed as

�fcc =
∑

j∈Neighs(i)

simij �sij + (1− simij) �fij

where, Neighs(i) are the nearest neighbors of the agent
i. The vector �sij = (�pj − �pi) − �vi is the seeking force

between agents i and j, while �fij = − �sij is the fleeing force.
The function simij computes a similarity factor between
the features vectors associated with agents i and j and must

be between 0 and 1. The cluster-alignment force �fca, for a
specific agent i, is computed as

�fca =
∑

j∈Neighs(i)

simij
�dj

441

D; 0.7

C; 0.4
E; 0.9B; 0.9

F; 1.0

A

a) b)

sim(A, F)

.0

0.5

0 0.4

.5

1

10 0.4 10 4 0.90.78sim
as
im

Repulsion Attractionp

Figure 2: a) A group of 6 agents (triangles). Step I: Agent A

computes the linear similarity (sim) of each neighbor. It also

computes their minimum (0.4), maximum (0.9) and average

(0.78) sim. Step II: Agent A computes the value of asim
for each of its neighbors, taking into account the minimum,

maximum and average sim computed in the previous step.

b) Adaptive vs. linear similarity. Agent A is repulsed by

agents with asim < 0.5 (agents C and D) and attracted by

those with asim > 0.5 (agents B, E and F).

The steering force �f used in the flocking clustering al-
gorithm is calculated by summing Reynold’s steering forces
and these two new forces

�f = �fr + wcc
�fcc + wca

�fca

It should be noted that in this case, we use two weights

wcc, and wca to manage the impact of the clustering algo-

rithm’s behavior.

Similarity.: In our model, each agent represents an

object in the data set, while the features vector associated

with each object defines an agent’s character (Figure 1).

Agents move in a 3D environment where the most similar

agents will be found and grouped. The overall effect is that

when an agent finds another agent similar to itself, it stays

near this agent but continues to explore the 3D environment,

looking for groups of agents that are similar to its group.

The purpose of using a 3D environment as the search space

is twofold. First, the 3D environment enables clustering of

high-dimensional datasets without feature loss. Second, the

clustering process is visualized in an intuitive and natural

fashion, irrespective of dataset dimensionality.
The similarity of two agents is computed using the values

of their associated features. The implementation described
in this paper defines the angular separation between agent i
and j as

simij =
�ci · �cj√
‖�ci‖ ‖�cj‖

where, �c is the agent’s features vector. The range of simij is

[0, 1] but it must be mapped in the range [-1, 1].To achieve

this, the similarity is recalculated as simij = (simij+1)/2.

This similarity factor yields poor results when features

vectors are not normalized, which is due to the mean

value and variance of all the features vectors. This kind of

normalization is unfeasible when data represents continuous

streams. For this reason, we adopted a dynamic adjustment

2 4

1

85
7

10

6
12

3

13

9

11

2 1

1

15
5

2

6
3

3

3

5

1

1 1

1

11
1

1

3
3

3

3

1

1

a) b) c)

C1

C3

Figure 3: Example of local label propagation for cluster

identification (with LPIterations equal to 2). a) Step I:

Assign a unique label to each agent. b) Step II, iteration 1:

Propagate minimum values using neighborhood connections.

c) Step II, iteration 2: Again, propagate minimum values.

Agents with the same labels represent clusters.

of the similarity value, using the similarities between statis-

tics for agents’ neighbors.

At each step of our simulation, each agent collects

information about the minimum value (smin), maximum

value (smax) and average value (savg) of its neighbors’

similarities. The adaptive similarity asim is then computed

as follows:

asimij =

{
lerp(simij , smin, 0.0, savg, 0.5) if simij ≤ savg
lerp(simij , savg, 0.5, smax, 1.0) else

where, lerp(val, xa, ya, xb, yb) represents the linear inter-

polation of val on the line whose vertexes are (xa, ya) and

(xb, yb). Figure 2 shows the relationship between sim and

asim.

Cluster Identification.: We implemented a simple local

label propagation algorithm for cluster identification. The

algorithm consists of two steps:

1) Assign a unique label to each agent.

2) Each agent examines each of its neighbors in turn.

If its neighbor’s label is smaller than its own label,

then it replaces its own label with that of its neighbor.

Repeat this step LPIterations times.

The value of LPIterations can be set at run-time by the

user. Figure 3 shows an example of local label propagation.

V. THE APPLICATION

This model requires that in a large environment, neighbors

can be identified - neighbors being all other agents that

are within the field of view of a particular agent. This

is fundamental because each agent must be able to make

decisions based on its neighbors, therefore it must be able

to pick out these agents efficiently. In order to guarantee

interactive performances in clustering and visualization, we

use a framework developed in a previous work called

BehaveRT [12]. This framework exploits the computational

power of modern GPUs and enables the parallel execution of

442

a) b) d)c))

t0

t1

Figure 4: Common experimantal situations were: Collisions

between flocks representing well-defined clusters (a). Sim-

ilar clusters move towards each other (b). Movement of

individuals between flocks (c). Flocks mixing (d).

a number of threads equal to the number of simulated agents.

In addition, it offers an extensible architecture which enables

an efficient implementation of the Reynolds model and of

the Cluster-Cohesion and Cluster-Alignment behaviors on

the GPU.

The GPU implementation of the proposed model enables

the real-time introduction of agents into the 3D environment,

using a sort of agent ’fountain’ that eliminates the need to

restart the algorithm when new data are available (Figure

5b). The objective is to maintain fast and consistently good

clustering of the sequences so far observed. When the data

stream of agents enters the environment, it naturally and

immediately seeks similar clusters. This feature is imple-

mented by preallocating buffer space in the GPU’s memory

and using these buffers whenever new data is available.

In the simulation, agents belonging to the same cluster

may move together and form flocks. These flocks explore

the 3D environment, looking for similar groups to join

up with. When flocks (representing well-defined clusters)

collide, they bounce off each other and follow different paths

(Figure 4a). Flocks representing similar clusters move closer

together but do not mix (Figure 4b). Some agents act as

cluster bridges, moving between two flocks. These agents

change flock membership, depending on whether the cluster

of one flock matches its own features vector better than the

cluster of its current flock (Figure 4c). Flocks representing

the same cluster (according to the similarity function metric)

merge into a bigger flock (Figure 4d). Our experiments

showed that 2000 iterations were sufficient to reach a stable

state, even for flocks consisting of thousands of agents.

Several parameters influence the formation of clusters. In

addition to the weights of the model illustrated in Section IV,

we use worldRadius, the size of the world; searchRadius,

the range in question; separationRadius, the distance

between agents; and maxNeighbors, the maximum number

of neighbors an agent can have.

The visual interface (Figure 5a) supports the user in the

process of classification and verification of output clusters,

using the Visual Information Seeking Mantra ”Overview,

zoom and filter, details-on-demand” [14], described below:

• Overview. During cluster creation, the application sup-

Sliders
Simulation area
bounding box

Cluster Label

Confusion matrix

S

l

(a) The software Graphical User Interface (GUI)

“Fountain”

Selected clsuters

Selected agentss

s

(b) Agents foutain and Cluster merge action

Figure 5: (a) Each agent is connected to the agent with the

lowest label value (leader) amongst the agents that belong

to the same cluster. (b) On the left, agents introduced on

the fly in any place in a 3D environment. On the right, a

screenshot of the merge action. Selected agents and cluster

leaders are highlighted. Selected agents are connected with

a line.

ports the visualization of the flocking approach. The

overview provides the user with a visual summary of

clustering results and allows a first evaluation of the

number of clusters and relations between clusters. As

described in Section IV, each agent is connected to the

agent with the lowest unique index in its cluster. The

name of the cluster is the label of the lowest unique

index in that cluster. While clustering, the user can

modify the simulation parameters at run-time, using

several sliders. They can also change their point of view

in the 3D environment, in order to explore one or more

clusters from multiple angles.

• Zoom and filter. Because our approach can handle vast

volumes of data, the visual interface allows the user

443

2.6

5.1
4.6

2.2

54.6 54 6666 55

2

Mouse position
on screen

Distance from line

22.22.222

Camera

Host

Device

Operationseratio

a) b)

Agents dataents d

Start

Modify

ttartSt

Figure 6: a) Interaction schema: The application forwards

input events (generated by the CPU) to the GPU. b) Identi-

fication of the nearest agent to the position of the mouse on

the screen. The solid line represents the screen. The dotted

line indicates the position of the mouse pointer on the screen

relative to the camera position. Each agent computes (in

parallel) the distance to this line.

to zoom in from the initial overview, and filter infor-

mation, refining the current view. If the user identifies

clusters of interest in the overview, these clusters can

be selected individually or removed from the clustering

process.

• Details-on-demand. The user can select one or more

agents and show their properties (position, class mem-

bership, etc.). Each input data is labeled with actual

class membership, and the application shows detailed

information about clusters, using the confusion matrix.

Each row of the matrix represents the instances in

a predicted class, while each column represents the

instances in an actual class.

A. User Interaction

Our application allows the user to interactively modify the

state of agents at run-time. The purpose of user interaction

is to allow the user to improve the quality of the clustering

result. Integrating user interaction into our application is

not trivial as the data representing the state of agents

(positions, directions, etc.) is stored in GPU memory, while

the operating system generating input events uses the CPU.

With a large number of agents, we cannot transfer agents’

data from GPU to CPU memory, because this operation is

too expensive. The solution is to handle input events directly

on the device (Figure 6a). This introduces some additional

issues because computations are distributed across a number

of threads equal to the number of simulated agents. Figure 6

illustrates how to calculate the nearest agent to the mouse

position on screen.

The system computes the direction of the line l that starts

from the camera position and passes through the 2D position

of the mouse on the screen (the dotted line in Figure 6b).

Each agent i computes in parallel the distance to l, disti(l),
that is the perpendicular component of l to the vector �vi =
(pcamera, pagenti) where pcamera is the 3D position of the

camera and pagenti is the 3D position of the agent i. disti(l)

a) b)

Merge
Split

Tim
e

Freeze

c) Simulation area

(moving)

(still)

(moving)

(s

ving)g)

Figure 7: User interaction. The position of the mouse repre-

sents a mouse click on an agent. Three actions are possible:

Merge (causes collision between clusters), Split (separates

agents of the same cluster) and Freeze (moves the selected

cluster out of the simulation area).

is the length of the dotted line joining the agent and the line

l in Figure 6.

The index of the agent nearest to the mouse position on

the screen is equal to the index j such that distj(l) =
mini(disti(l)). The system computes this minimum index

performing a parallel reduction on GPU [15] of all the

agents’ distances in O(log(n)) steps.

The application allows the user to interact with agents in

several ways. It is composed of two phases: selection and

action. During the selection phase the user selects one or

more agents by clicking on them with the mouse. Depending

on which mode is currently active, the user can select a

single agent or a cluster (e.g. when cluster selection is

enabled, the user can select a cluster by picking any of its

agents). The second phase allows one of the following three

operations:

• The Merge action (Figure 7a and Figure 5b) causes a

collision between two selected clusters. If these two

cluster are similar, they merge as shown in Figure 4d.

• The Split action (Figure 7b) separates selected cluster

agents from all other agents in the same cluster. The

two separated clusters will move in opposite directions,

and in order to force them to search for similar groups,

they will not merged again for a certain number of

iterations.

• The Freeze action (Figure 7c) moves the selected cluster

out of the bounding box. The agents of a frozen cluster

are immobilized and cannot interact with other agents.

VI. EXPERIMENTAL RESULTS

In this section, we show the results of two experiments.

The first demonstrates the quality of our approach. The

second is related to the efficiency of GPU, versus CPU,

implementation. All tests were performed on an AMD

Athlon 2800+ CPU, 2GB RAM and a NVIDIA GTX 470

444

0

0,2

0,4

0,6

0,8

1

Iris Wine Yeast B. C. W Abalone SPECT H Syn 10C Syn 20C Syn 40C

Proposed K-means Hierarchical

(a) Precision

0

0,2

0,4

0,6

0,8

1

Iris Wine Yeast B. C. W Abalone SPECT H Syn 10C Syn 20C Syn 40C

Proposed K-means Hierarchical

(b) Recall

Figure 8: Quality test results: average values after 500 iterations of (a) precision and (b) recall. The results of the proposed

approach are compared with those of k-means and hierarchical clustering.

1280Mb RAM (CUDA compute capability 2.0). Software

configuration: CUDA SDK v3.1, Windows 7. Clusters were

rendered using OpenGL [16].

Quality.: For the quality tests, we selected six of the

most popular datasets from UC Irvine’s Machine Learning

Repository [17]. The selected datasets are Iris, Wine, Yeast,

Breast Cancer Wisconsin, Abalone and SPECT Heart. Below

is a brief description of these datasets.

The Iris dataset contains information about Iris flowers.

There are three classes of Iris flowers - Iris Setosa, Iris

Versicolor and Iris Virginica. The Iris dataset consists of

150 examples of Irises that are classified according to 4

attributes. The Wine dataset is the result of a chemical

analysis of wines grown in a region of Italy but derived

from three different cultivars. There are three classes of

wines. The dataset consists of 178 examples of wines. The

Yeast data set contains 1484 records. The data determines

the cellular localization sites of proteins. There are ten

classes. The Breast Cancer Wisconsin (B.C.W.) dataset has

699 records of benign and malignant breast cancer tumors.

The goal of this dataset is to explain the difference between

the two diagnoses. The Abalone (sea snail) dataset has a total

of 4177 records. Each record represent an abalone instance.

The goal of this dataset is to determine the number of rings

using various measurements. The number of rings ranges

from 1 to 29. The aim of the Abalone dataset is to divide

the number of rings into 3 classes. The SPECT Heart dataset

has 267 records. In contrast to the other datasets, all of its

attributes are binary. The goal of this dataset is to provide a

diagnosis using 0 and 1.

In addition, we created three synthetic datasets using the

Gaussian cluster generator proposed in [18]. Each contained

4000 records. The first has 10 classes (Synth. 10C), the

second has 20 classes (Synth. 20C) and the third 40 classes

(Synth. 40C). For each test we split the given dataset into

two halves. One was used for training, the other for testing.

The parameters used for quality testing were set to wa =
0, wc = 0, searchRadius = 4, separationRadius = 1.5,

maxNeighbors = 32. The training data was used to

Table I: Values of parameters

Iris Wine Yeast B.C.W. Abalone SPECT Synth.

ws 2.0 3.0 2.0 1.0 2.0 0.5 0.5
wcc 3.0 4.0 4.8 2.0 4.0 1.0 3.0
wca 2.0 4.0 3.0 4.0 3.8 6.0 2.5

empirically determine the values of ws, wcc, and wca (shown

in Table I). The value of worldRadius is caluclated such

that agent density in the 3D environment is always 0.05
world units per agent (in order to ensure a good level of

interaction among agents).

For each dataset, we evaluated the correctness of classi-

fication results using precision (P) and recall (R). These

measures are defined as:

P =
tp

tp+ fp
R =

tp

tp+ fn

where, tp is the number of true positive patterns, fp the

number of false positive patterns, and fn the number of false

negative patterns.

Figure 8 shows average values of the proposed clustering

algorithm after 500 iterations (these are subsequent to the

2000 iterations necessary to bring the simulation to a stable

state). We also compared our results to those of k-means

clustering [19] and hierarchical clustering (single-linkage)

[20]. The k-means clustering algorithm was executed 500

times for each dataset. For all datasets, results were superior

to the those achieved using hierarchical clustering. For Iris,

Wine, and SPECT Heart, we achieved better results than

with k-means. For Yeast and Abalone, the results were

similar and, for Breast Cancer Wisconsin, slightly worse.

Tests with the synthetic data show that datasets with high

numbers of classes are properly classified.

Performance.: For performance tests, we used

Gaussian-based synthetic datasets [18] with different

number of instances, features and classes. Parameters

are set to ws = 0.8, wa = 0, wc = 0, wcc = 3.0,

wca = 2.5, searchRadius = 4, separationRadius = 1.5,

maxNeighbors = 32, and worldRadius = 0.05.

445

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1

4

16

64

256

1024

1K 2K 4K 8K 16K 32K 65K

Proposed approach (parallel)
Proposed approach (serial)
K-means (serial)
Speed-up

M
ill

ise
co

nd
s

Sp
ee

d-
up

(a) Instances

1

4

16

64

256

1024

10 20 40 80 160

Proposed approach (parallel)
K-means (serial)

M
ill

ise
co

nd
s

(b) Features

1

4

16

64

256

1024

5 10 20 40

Proposed approach (parallel)
K-means (serial)

(c) Classes

Figure 9: (a) Speed-up is seen between the CPU implementation (proposed approach - serial) and the GPU implementation

(proposed approach - parallel). GPU implementation scales better than CPU implementation. GPU implementation is affected

by an overhead that dominates overall performance in tests with a low number of instances (up to 1000). (b) The GPU

implementation (proposed approach - parallel) does not scale as well as a classical clustering algorithm. This is due to the

parallelization scheme chosen. Scalability improves with #instances, compared to #features. (c) The performance of the GPU

implementation does not decrease with a high number of classes.

For the evaluation we developed a serial version of the

application for the Opteron 252 2.6Ghz CPU with 2GB

RAM and based on the OpenSteer steering library [21].

Performance was measured by comparing the number of

milliseconds necessary for GPUs and CPUs to implement

each algorithm iteration. We also compared the results of

our GPU implementation with those of Matlab’s k-means

serial implementation, in order to have an idea of the results

of a classical clustering approach. We executed the k-means

clustering algorithm 500 times with each configuration and

took the average elapsed time for a single execution.

Figure 9a compares results for GPU, CPU, and Mat-

lab’s k-means implementations, using various numbers of

instances. With 1000 instances, CPU implementation is

more efficient than GPU implementation (due to the data-

reordering overhead, as described in [11]), though the latter

scales better than the former. We achieved a 30-fold speed-

up with a dataset of 65000 agent instances (or size of

dataset). Figure 9a also shows that CPU implementation

can run up to 2000 instances at interactive frame rates,

while GPU implementation can run up to 32000 instances

at interactive frame rates.

Figure 9b compares the results of the k-means implentata-

tion with the results of the proposed GPU implementation.

The performance of the proposed approach does not scale

quite as well as the k-means. This is due the implementation

used which launches a new thread for each of the agent’s

neighbors. This was done to ensure good performance with

a high number of instances and a small number of features

(up to 40). In future work, a new version of the kernel will

address this problem of poor performance. A good solution

would be to launch a new thread for each feature of each

agent.

Figure 9c illustrates an interesting point. The computation

time of the classical k-means implementation increases in

proportion to the number of classes. The computation time

of the GPU implementation decreases. This is because a

large number of classes leads to high agent fragmentation

in the 3D environment (one flock for each class). This in turn

decreases the average size of the list of agents’ neighbors.

Thus, when the number of classes is high, the phase of

searching for neighbors is slightly more efficient.

VII. CONCLUSIONS AND FUTURE WORKS

We proposed a biologically-inspired clustering model for

large, high-dimensional datasets using GPUs. Each features

vector is represented by an agent. The agent follows the rules

developed by Reynolds and two new behaviors (Cluster-

Cohesion and Cluster-Alignment) while moving in a 3D

environment. Following these simple rules, similar agents

gradually merge to form a cluster. GPU implementation

is the key to obtaining an interactive visualization as it

enables incoming data to cluster without the need to take

into account all of the data already processed. Our approach

is able to detect evolving input data. It can also detect new

data, introduced into the 3D environment which must join

old clusters or form new clusters.

Another advantage of our approach is that it does not

require a priori knowledge of the number of clusters, or of

the amount of data that will cluster. As the input data stream

evolves during computation, the number of natural clusters

changes. This enables the user to interactively introduce

data streams into a user-defined 3D space. In addition,

we implemented a local label propagation approach to

automatically identify clusters. The detection and validation

of our results was facilitated by the use of a visualization

technique that relies on an interactive interface to improve

data interpretation. The approach enables the user to perform

several operations on clusters (such as merging, splitting and

freezing). Experimental results show that our approach can

improve the quality and performance of clustering.

446

ACKNOWLEDGE

We greatly acknowledge NVIDIA for providing us hard-

ware used during the experiments.

REFERENCES

[1] P. K. Robertson, “A methodology for choosing data repre-
sentations,” IEEE Comput. Graph. Appl., vol. 11, pp. 56–67,
May 1991.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering:
a review,” ACM Comput. Surv., vol. 31, no. 3, pp. 264–323,
1999.

[3] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander,
“OPTICS - Ordering points to identify the clustering struc-
ture,” SIGMOD Rec., vol. 28, no. 2, pp. 49–60, 1999.

[4] A. Hinneburg, D. A. Keim, and M. Wawryniuk, “HD-Eye -
Visual clustering of high dimensional data: A demonstration,”
Data Engineering, International Conference on, vol. 0, p.
753, 2003.

[5] J. D. Hall and J. C. Hart, “GPU acceleration of iterative clus-
tering,” in ACM Workshop on General Purpose Computing
on Graphics Processors, August 2004.

[6] S. A. Shalom, M. Dash, and M. Tue, “Efficient k-means
clustering using accelerated graphics processors,” in DaWaK
’08: Proceedings of the 10th international conference on Data
Warehousing and Knowledge Discovery. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 166–175.

[7] M. Zechner and M. Granitzer, “Accelerating k-means on the
graphics processor via CUDA,” Intensive Applications and
Services, International Conference on, vol. 0, pp. 7–15, 2009.

[8] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A
parallel implementation of k-means clustering on GPUs,” in
PDPTA, 2008, pp. 340–345.

[9] Q. Zhang and Y. Zhang, “Hierarchical clustering of gene
expression profiles with graphics hardware acceleration,” Pat-
tern Recogn. Lett., vol. 27, no. 6, pp. 676–681, 2006.

[10] D.-J. Chang, M. M. Kantardzic, and M. Ouyang, “Hierar-
chical clustering with CUDA/GPU.” in ISCA PDCCS, J. H.
Graham and A. Skjellum, Eds. ISCA, 2009, pp. 7–12.

[11] U. Erra, B. Frola, V. Scarano, and I. Couzin, “An efficient
GPU implementation for large scale individual-based simula-
tion of collective behavior,” High Performance Computational
Systems Biology, International Workshop on, vol. 0, pp. 51–
58, 2009.

[12] U. Erra, B. Frola, and V. Scarano, “BehaveRT: A GPU-based
library for autonomous characters,” in Motion in Games, ser.
Lecture Notes in Computer Science, R. Boulic, Y. Chrysan-
thou, and T. Komura, Eds., vol. 6459. Springer Berlin
Heidelberg, 2010, pp. 194–205.

[13] C. W. Reynolds, “Flocks, herds and schools: A distributed
behavioral model,” in SIGGRAPH ’87: Proceedings of the
14th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1987, pp. 25–34.

[14] B. Shneiderman, “The eyes have it: A task by data type tax-
onomy for information visualizations,” in Proceedings of the
1996 IEEE Symposium on Visual Languages. Washington,
DC, USA: IEEE Computer Society, 1996, pp. 336–.

[15] M. Pharr and R. Fernando, Gpu gems 2: programming tech-
niques for high-performance graphics and general-purpose
computation. Addison-Wesley Professional, 2005.

[16] OpenGL ARB, D. Shreiner, M. Woo, J. Neider, and T. Davis,
OpenGL(R) Programming Guide : The Official Guide to
Learning OpenGL(R), Version 2 (5th Edition). Addison-
Wesley Professional, August 2005.

[17] http://archive.ics.uci.edu/ml/datasets.html.

[18] http://dbkgroup.org/handl/generators/.

[19] J. B. MacQueen, “Some methods for classification and anal-
ysis of multivariate observations,” in Proc. of the fifth Berke-
ley Symposium on Mathematical Statistics and Probability,
L. M. L. Cam and J. Neyman, Eds., vol. 1. University of
California Press, 1967, pp. 281–297.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, ser. Springer Series in Statistics. New
York, NY, USA: Springer New York Inc., 2001.

[21] C. W. Reynolds, “OpenSteer - steering behaviors for au-
tonomous characters,” 2004, http://opensteer.sourceforge.net/.

447

