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In a recent paper [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210–218] a

mathematical expression of the variance at any point of the unit cell has been

described. The formulas were derived in P1 for any type of Fourier synthesis

(observed, difference and hybrid) under the following hypothesis: the current

phases are distributed on the trigonometric circle about the correct values

according to von Mises distributions. This general hypothesis allows the variance

expressions to be valid at any stage of the phasing process. In this paper the

method has been extended to any space group, no matter whether centric or

acentric. The properties of the variance generated by space-group symmetry are

described; in particular it is shown that the variance is strictly connected with

the implication transformations, which are basic for Patterson deconvolution.

General formulas simultaneously taking into account phase uncertainty and

measurement errors have been obtained, valid no matter what the quality of the

model.

1. Symbols and notation

Paper I: Giacovazzo & Mazzone (2011).

F ¼PN
j¼1 fj expð2�ihrjÞ ¼ jFj expði’Þ: structure factor of the

target structure.

Fp ¼
Pp

j¼1 fj expð2�ihr0jÞ ¼ jFpj expði’pÞ, where r0j = rj þ�rj:

structure factor of the model structure.

Cs � ðRs;TsÞ sth symmetry operator (Csr � Rsrþ TsÞ: Rs and

Ts are the rotational and translational matrices, respectively.

n: number of the symmetry operators for the target and for the

model structure.P
N ¼PN

j¼1 f
2
j ,
P

p ¼Pp
j¼1 f

2
j , where p is the number of

atoms in the model structure.

Fq ¼ F � Fp ¼ jFqj expði’qÞ: structure factor of the ideal

difference structure.

E = A + iB = R expði’Þ, Ep = Ap + iBp = Rp expði’pÞ, Eq = Aq +

iBq = Rq expði’qÞ, R ¼ jFj=P1=2
N ;Rp ¼ jFpj=

P1=2
N .

�ðrÞ ¼ ð2=VÞPh>0 jFhj cosð2�h � r� ’hÞ: general expression

of an electron-density map.

�pðrÞ ¼ ð2=VÞPh>0 jFphj cosð2�h � r� ’phÞ: electron-density

map of the model structure.

�obsðrÞ ¼ ð2=VÞPh>0 mhjFhj cosð2�h � r� ’phÞ: observed elec-

tron density when a model is available.

½�ðrÞ�N ¼ ð2=VÞPh>0 Rh cosð2�h � r� ’hÞ: electron-density

map calculated via normalized structure factors.

�pNðrÞ ¼ ð2=VÞPh>0 Rph cosð2�h � r� ’phÞ: electron-density

map of the model structure calculated via normalized struc-

ture factors.

�obsNðrÞ ¼ ð2=VÞPh>0 mhRh cosð2�h � r� ’phÞ: observed

electron density when a model is available, calculated via

normalized structure factors.

PðuÞ ¼ ð2=VÞPh>0 jFhj2 cosð2�huÞ: Patterson synthesis.

In all the above Fourier syntheses (observed, difference,

hybrid) the term of order zero is omitted. Accordingly, the

average values of the corresponding maps are always zero. By

h > 0 it is meant that the summation is over one half of the

reciprocal space (only one member of each Friedel pair is

included).

var�ðrÞ ¼ h½�ðrÞ�2i � ½h�ðrÞi2�: variance of the map � in a

point r.

½var�ðrÞ�N ¼ h½�ðrÞ�N2i � fh½�ðrÞ�Ni2g: variance of the norm-

alized electron-density map.

DiðxÞ ¼ IiðxÞ=I0ðxÞ, Ii is the modified Bessel function of order i.

D ¼ hcosð2�h�rÞi: the average is performed per resolution

shell.

�A ¼ Dð�p=�NÞ1=2.
�2
R ¼ hj�j2i=PN , j�j2� �

is the measurement error.

e ¼ 1þ �2
R.

m = hcosð’� ’pÞi = I1ðXÞ=I0ðXÞ; where X =

2�ARRp=ðe� �2
AÞ.

s ¼ sin �=�.
mch ¼ 0:5þ 0:5 tanhðX=2Þ.
EDM: electron-density modification.

CORR: correlation between the model and the target

electron-density maps.
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2. Introduction

An algebraic expression estimating the variance of the

electron-density map in a point r of the unit cell for observed,

difference and hybrid Fourier syntheses was obtained in Paper

I, under the hypothesis that a model structure is available and

that the space group is P1. To carry out the calculations, two

assumptions were made: (i) there is no error in the measure-

ments; (ii) each phase ’h is distributed around ’ph according to

the von Mises distribution

Mð’;X; ’pÞ ¼ ½2�I0ðXÞ��1 exp½X cosð’� ’pÞ�: ð1Þ
The above hypotheses allowed the calculation of the variance

no matter what the correlation between the model and target

structures. When CORR = 0 the phases are randomly

distributed and equation (1) becomes a flat function; when

CORR � 1 the phases are definitively fixed and equation (1)

coincides with the Dirac delta function. The final expression

was

var�ðrÞ ¼ 2

V2

�X
h>0

ð1�m2
hÞjFhj2 �

X
h>0

jFhj2

� ½m2
h �D2ðXhÞ� cosð4�h � r� 2’phÞ

�
: ð2Þ

In that paper it was shown that:

(a) As a first approximation, the second term is negligible

with respect to the first one. Thus the concept of map variance

was introduced and its main properties (as a function of

CORR, of the data resolution etc.) were described. The

simplified expression

var�ðrÞ ¼ 2

V2

X
h>0

ð1�m2
hÞjFhj2 ð3Þ

was assumed to be a reliable approximation of equation (2).

(b) The ratio h�ðrÞi=ðvar�Þ1=2 was considered as the signal/

noise ratio; its properties were related to several modern

phasing methods including charge flipping (Oszlányi & Süto��,
2004, 2005, 2007; Palatinus & Chapuis, 2007), the VLD algo-

rithm (Burla, Caliandro et al., 2010; Burla, Giacovazzo &

Polidori, 2010) and EDM procedures (Shiono & Woolfson,

1992; Refaat & Woolfson, 1993; Giacovazzo & Siliqi, 1997).

(c) Expression (3) may be combined with the variance

expression calculated by Coppens &Hamilton (1968) (see also

Rees, 1976), based on the variance of the observed amplitudes

[say �2ðjFhjÞ�:

�2 �ðrÞ½ � ¼ 4

V2

X
h>0

�2ðjFhjÞcos2ð2�h � r� ’hÞ: ð4Þ

Expression (4) was essentially dedicated to establishing the

accuracy of the results of the structure analysis after the final

least-squares refinement. The combined expression suggested

in Paper I was

var�ðrÞ ¼ 2

V2

X
h>0

½ð1�m2
hÞjFhj2 þ 2�2ðjFhjÞ�

� cos2ð2�h � r� ’hÞ: ð5Þ

When the model coincides with the target structure the term

representing the average map variance [see equation (3)]

vanishes, and the variance coincides with the Coppens &

Hamilton term. If CORR � 1, then the Coppens & Hamilton

contribution becomes negligible and the variance is domi-

nated by expression (3).

In Paper I it was also anticipated that the concept of map

variance does not hold for space groups with symmetry higher

than P1, or, in other words, the variance may vary strongly

from point to point as an effect of the space-group symmetry.

This paper aims to establish a variance expression valid in all

the space groups and to discover its properties, including the

possible connections between variance properties and phasing

methods.

In x3 we derive the variance expression valid in P1, in xx4–6
the method is extended to all acentric and centric space

groups, in xx7–10 the main properties of the variance are

described, in xx11–12 Emaps and hybrid Fourier syntheses are

considered, in x13 the variance function is drawn for a simple,

even if unrealistic, structural example, and in x14 a criterion

for the active use of the variance is anticipated.

3. The variance estimate in P1

We will assume that both ’ and ’p may only have values of 0

or �, that a weight mc may be associated with the probabilistic

relation ’ ’ ’p. Then

h�ðrÞi ¼ 2

V

X
h>0

mchjFhj cosð2�h � r� ’phÞ ¼ �obsðrÞ ð6Þ

and

h�2ðrÞi ¼ 4

V2

X
h>0

jFhj2cos2ð2�h � rÞ
* +

þ 4

V2

X
h 6¼k>0

mchmckjFhFkj cosð2�h � r� ’phÞ

� cosð2�kr� ’pkÞ:
ð7Þ

Since the last term in equation (7) is equal to

�2
obsðrÞ �

4

V2

X
h>0

m2
chjFhj2cos2ð2�h � r� ’phÞ

we obtain

var�ðrÞ ¼ h�2ðrÞi � h�ðrÞi2 ¼ TH1 þ TH2ðrÞ ð8Þ
where

TH1 ¼
2

V2

X
h>0

ð1�m2
chÞjFhj2;

TH2ðrÞ ¼
2

V2

X
h>0

ð1�m2
chÞjFhj2 cosð4�h � rÞ:

A second useful expression for the variance is
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var�ðrÞ ¼ 4

V2

X
h>0

ð1�m2
chÞjFhj2cos2ð2�h � rÞ: ð9Þ

It may be useful to notice now that the variance is strictly

correlated with the Patterson function. Indeed

var�ðrÞ ¼ 1

V
½Pwð0Þ þ Pwð2rÞ�

where Pw is a weighted ½w ¼ ð1�m2
chÞ� Patterson function. If

the model is uncorrelated with the target structure then

var�ðrÞ ¼ 1

V
½Pð0Þ þ Pð2rÞ�:

The relation between the variance and the Patterson function

will be more evident when the space-group symmetry is taken

into account.

var� shows analogies and remarkable differences with the

variance calculated for P1. Among the analogies we notice:

(a) In each point r the variance is the sum of two contri-

butions [see equation (8)]: TH1 (the constant term) which does

not vary with r, and TH2ðrÞ (the variable term) depending on r.

(b) var� is expected to be non-negative in any point of the

unit cell [see equation (9)].

(c) The variance has three-dimensional periodicity, half that

of the electron density. Indeed the variable term assumes the

same value in r and in r + u, where u = ua + vb + wc and u, v, w

may be 0 or 1
2.

The variance in P1, however, shows a variability larger than

in P1; in particular it attains strong maxima on the inversion

centres [indeed TH2 is at a maximum if cosð4�h � rÞ ¼ 1 for

any Miller index, that is when x, y, z are 0 or 1
2].

To estimate the largest oscillations of var� we used Newqb

(C48H40N4O10, P1; Sheldrick, 1982) as the target structure and

we associated with it six models with different values of h�Ai,
where h�Ai is the average of the �A values corresponding

to different resolution shells. In Fig. 1 we plot the values of

oscv = fmax½var�ðrÞ� �min½var�ðrÞ�g=TH1 versus h�Ai. In the

same figure we also show osc� versus h�Ai, where osc� =

fmax½��ðrÞ� �min½��ðrÞ�g=ðTH1Þ1=2 and ��ðrÞ ¼ ðvar�Þ1=2. We

notice:

(a) oscv is constantly close to 1.1 (in P1 it was in the interval

0.14–0.30);

(b) osc� is constantly close to 0.5 (in P1 it was in the interval

0.07–0.15).

The above observations suggest that the concept of map

variance may be used only in P1: when symmetry operators

are present in the crystal the variance depends on the point r

in which it is calculated.

In the same Fig. 1 we compare �� with �d, the standard

deviation of the pixel intensity distribution of the current

electron-density map. As in P1 �� and �d are anticorrelated:

the first diminishes and the second increases when the model–

target correlation increases. The two parameters should not be

confused.

A schematic overview of the variance distribution for the

model structure characterized by h�Ai = 0.68 is given in Fig. 2,

where we show the projection of TH2ðrÞ (the variance is quite
similar; it differs from TH2 by a constant term) on the plane

(a, b). As theoretically foreseen, the periodicity of the

variance along the unit-cell axes is half that of the cell periods,

and maxima are concentrated on the inversion centres; the

positive regions of the map are in blue, the negative (corre-

sponding to positive minima of the variance) are in brown.

4. The variance estimate in acentric space groups

Owing to the well known symmetry relationship

FhR ¼ Fh expð�2�ihTÞ ¼ jFhj exp½ið’h � 2�hTÞ�;
the general expression of the electron density for an acentric

space group is
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Figure 1
Newqb. oscv (blue line), osc� (green line), �� (red line) and �d (yellow
line) are plotted versus h�Ai. The squares and the triangles correspond to
six structure models characterized by different h�Ai values.

Figure 2
Newqb, P1 space group: crystal structure in red, model structure in green
(h�Ai = 0.68). Projection of TH2 on the plane (a, b): blue peaks
correspond to maxima, regions in brown to negative minima.
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�ðrÞ ¼ 2

V

X
h;ind

jFhj
Xn
s¼1

cos½’ðhÞ � 2�hCsrÞ�:

The symbol
P

h;ind indicates that the summation goes over the

symmetry-independent reflections; the contribution of the

Friedel opposites is contained in the summation. If each phase

’h is assumed to be distributed around ’ph according to the

von Mises distribution [equation (1)], then

h�ðrÞi ¼ 2

V

X
h;ind

mhjFhj
Xn
s¼1

cos½’pðhÞ � 2�hCsr�

and

h�ðrÞi2 ¼ 4

V2

X
h;ind

m2
hjFhj2

Xn
s;q¼1

cos½’pðhÞ � 2�hCsr�

� cos½’pðhÞ � 2�hCqr�

þ 4

V2

X
h6¼k;ind

mhmkjFhFkj
Xn
s;q¼1

cos½’pðhÞ � 2�hCsr�

� cos½’pðkÞ � 2�kCsr�:
ð10Þ

Accordingly

h�2ðrÞi ¼ 4

V2

X
h;ind

jFhj2
� Xn
s;q¼1

cos½’ðhÞ � 2�hCsr�

� cos½’ðhÞ � 2�hCqr�
�

þ 4

V2

X
h6¼k;ind

mhmkjFhFkj
Xn
s;q¼1

cos½’pðhÞ � 2�hCsr�

� cos½’pðkÞ � 2�kCqr�:
ð11Þ

Combining equations (10) and (11) gives

var�ðrÞ ¼ h�2ðrÞi � h�ðrÞi2

¼ 4

V2

X
h;ind

jFhj2
� Xn
s;q¼1

cos½’ðhÞ � 2�hCsr�

� cos½’ðhÞ � 2�hCqr�
�

� 4

V2

X
h;ind

m2
hjFhj2

Xn
s;q¼1

cos½’pðhÞ � 2�hCsr�

� cos½’pðhÞ � 2�hCqr�;

which, after some calculations, leads to

var�ðrÞ ¼ TH1 þ TH2ðrÞ þ TDðrÞ ð12Þ
where

TH1 ¼
2

V2

X
h>0

ð1�m2
hÞjFhj2

TH2ðrÞ ¼
2

V2

X
h;ind

jFhj2ð1�m2
hÞ
Xn
s6¼q¼1

cosf2�h½ðCs � CqÞr�g

TDðrÞ ¼ � 2

V2

X
h;ind

jFhj2½m2
h �D2ðXhÞ�

�
Xn
s;q¼1

cos½2’pðhÞ � 2�hðCs þ CqÞr�:

For n = 1 TH2ðrÞ � 0, and the variance expression described in

Paper I for P1 is obtained:

var�ðrÞ ¼ 2

V2

X
h>0

ð1�m2
hÞjFhj2 �

2

V2

X
h;ind

jFhj2½m2
h �D2ðXhÞ�

� cos½2’pðhÞ � 4�hr�:
Equation (12) may be simplified by writing it in a more

compact form:

var�ðrÞ ¼ THðrÞ þ TDðrÞ; ð13Þ
where

THðrÞ ¼ 2

V2

X
h;ind

jFhj2ð1�m2
hÞ
Xn
s;q¼1

cos½2�hðCs � CqÞr�

TDðrÞ ¼ � 2

V2

X
h;ind

jFhj2½m2
h �D2ðXhÞ�

�
Xn
s;q¼1

cos½2’pðhÞ � 2�hðCs þ CqÞr�:

Since TH1 does not vary with r and TH2ðrÞ ¼ TH2ð�rÞ,
THðrÞ is a centrosymmetric function, while TDðrÞ is non-

centrosymmetric.

Another useful form of equation (13) is

var�ðrÞ ¼ 4

V2

X
h;ind

ð1�m2
hÞ
Xn
s;q¼1

FhRs expð�2�ihRsrÞF�hRq

� expð2�ihRqrÞ

� 4

V2

X
h;ind

½m2
h �D2ðXhÞ�

Xn
s;q¼1

FhRs expð�2�ihRsrÞFhRq

� expð�2�ihRqrÞ:
ð14Þ

Equations (12)–(14) are the formulas we were looking for;

they will be used to describe the variance properties.

5. The variance estimate in centric space groups

In accordance with xx3 and 4 the electron density in a centric

space group of order n is given by

�ðrÞ ¼ 2

V

X
h;ind

jFhj
Xn=2
s¼1

cos½’ðhÞ � 2�hCsr�; ð15Þ

where n/2 is the number of symmetry operators not referred

by an inversion centre. The limit to the summation is due to

the fact that the contribution of the Friedel opposite reflec-

tions to �ðrÞ is already considered when the cosine, instead of

the exponential formulation, is used for defining the electron

density. The expected value of �ðrÞ is
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h�ðrÞi ¼ 2

V

X
h;ind

mchjFhj
Xn=2
s¼1

cos½’pðhÞ � 2�hCsr� ¼ �obsðrÞ:

The same procedure adopted for the acentric space groups

leads to the following results:

var�ðrÞ ¼ TH1 þ TH2ðrÞ þ TDðrÞ; ð16Þ
where

TH1 ¼
2

V2

X
h>0

ð1�m2
chÞjFhj2

TH2ðrÞ ¼
2

V2

X
h;ind

jFhj2ð1�m2
chÞ

Xn=2
s 6¼q¼1

cosf2�h½ðCs � CqÞr�g

TDðrÞ ¼ 2

V2

X
h;ind

jFhj2ð1�m2
chÞ
Xn=2
s;q¼1

cos½2�hðCs þ CqÞr�:

Equation (16) may be rewritten as

var�ðrÞ ¼ THðrÞ þ TDðrÞ; ð17Þ
where

THðrÞ ¼ 2

V2

X
h;ind

jFhj2ð1�m2
chÞ
Xn=2
s;q¼1

cos½2�hðCs � CqÞr�

TDðrÞ ¼ 2

V2

X
h;ind

jFhj2ð1�m2
chÞ
Xn=2
s;q¼1

cos½2�hðCs þ CqÞr�:

The variance expression described in x3 for P1 may be easily

obtained from equation (17); indeed in P1 the relation TH2(r)

� 0 arises because two symmetry operators not related by the

inversion centre do not exist. Furthermore, the only pair of

subscripts available for the calculation of TD(r) are s = 1 and q

= 1.

A further simplification is possible in centric space groups:

since both Cs and�Cs belong to the set of symmetry operators

(on assuming the origin on an inversion centre), then

var�ðrÞ ¼ 2THðrÞ ¼ 1

V2

X
h;ind

jFhj2ð1�m2
chÞ

�
Xn
s;q¼1

cos½2�hðCs � CqÞr�: ð18Þ

Equation (18) is the relation we were looking for.

6. Simplified expressions for the variance in acentric
and centric space groups

The algebraic formulas obtained in xx4 and 5 for describing the
variance components TH2 and TD involve a summation over

symmetry-independent reflections and a double internal

summation over the symmetry operators. In order to simplify

the analysis of the variance maps we need to rewrite the

variance expressions in a more useful form. We notice: (i)

2�hðCs � CqÞr = 2�hCsðI� C�1
s CqÞr = 2�hCsðI� C�Þr where

C� ¼ C�1
s Cq; (ii) 2�hCsðI� C�Þr = 2�hRsðI� C�Þr; (iii) the

typical expression of the Patterson function quoted in x1 may

also be transformed into

PðuÞ ¼ 2

V

X
h;ind

Xn
s¼1

jFhRsj2 cosð2�hRsuÞ;

which explicitly takes the symmetry into account.

As a consequence of the three points above, THðrÞ and

TDðrÞ, as defined for acentric space groups [see equation (13)],
may be rewritten as follows:

THðrÞ ¼ 2

V2

X
h>0

jFhj2ð1�m2
hÞ
Xn
s¼1

cos½2�hðI� CsÞr� ð19Þ

TDðrÞ ¼ � 2

V2

X
h>0

jFhj2½m2
h �D2ðXhÞ�

�
Xn
s¼1

cos½2’pðhÞ � 2�hðIþ CsÞr�: ð20Þ

Analogously, the variance expression for centric crystals may

be transformed into

var�ðrÞ ¼ 2

V2

X
h>0

jFhj2ð1�m2
chÞ
Xn
s¼1

cos½2�hðI� CsÞr�: ð21Þ

We are now ready to analyse the three components of the

variance.

7. The variance component TH1 and the concept of
map variance

TH1 does not vary with r, is independent of the space-group

symmetry and diminishes when CORR increases; it coincides

with the map variance defined in Paper I for P1. As shown in

x4, for a general space group the variance is the sum of a group

of three terms – TH1, TH2ðrÞ and TDðrÞ. Accordingly, TH1 has

to be considered only the mean value of the variance, when

the average is calculated over all the points of the unit cell. We

suggest two further interpretations for TH1:

(a) As a figure of merit, able to estimate the average simi-

larity between the target Patterson function P(u) and a

weighted Patterson function Pw(u), with model-dependent

weights; indeed

TH1 ¼ Pð0Þ � Pwð0Þ;
where

Pwð0Þ ¼
2

V2

X
h>0

m2
hjFhj2

is the value of a modified Patterson synthesis with coefficients

m2
hjFhj2. If the model is uncorrelated with the target then mh

nearly vanishes and TH1 attains its maximum value. If the

model nearly coincides with the target, then mh approaches

unity for all the reflections and TH1 attains its minimum value.

(b) Caliandro, Carrozzini, Cascarano, De Caro, Giacovazzo

& Siliqi (2008), under the same assumptions adopted in this

paper, derived, for each h coefficient of a difference Fourier

synthesis, the variance expression �qh = ð1�m2ÞjFhj2.
Accordingly TH1 is nothing but the sum of the variances of the

single reflections, considered statistically independent, divided

by the squared unit-cell volume:
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var�ðrÞ ¼ 1

V

X
h

�2
qh: ð22Þ

8. The variance component TH2 and Patterson
deconvolution methods

TH2ðrÞ is a function varying with r; the distribution of its

values in the unit cell depends on the space-group symmetry.

The weights m2
h increase when CORR increases; consequently

the average values of the largest peaks in TH2ðrÞ will decrease
when CORR increases.

Before going on in our analysis it may be useful to deter-

mine whether TH2 may be neglected when compared to TH1.

Since TH1 is independent of r, the simplest way is to calculate,

for each pair of target–model structures, the TH2 map and

look for oscTH2 = max½jTH2ðrÞj=TH1�. We will use as target

structures a low-symmetry compound (BCDIMP, P21,

chemical content in the asymmetric unit C55H76N4O37;

Impellizzeri et al., 2000) and a high-symmetry compound [i.e.

TOTC, P61, C33H36O6�0.2(C16H33OH); Sheldrick, 1982]. To

take into account the effects of the heavy atoms on the TH2

map, a third target structure was considered (ERICA,

C37H43FeO4, P1; Othen, 1990). For each target structure four

models were simulated, characterized by different values of

h�Ai. The values of oscTH2 are plotted (blue squares) versus

the parameter h�Ai in Figs. 3–5. We notice: (i) oscTH2 reaches

values up to 0.08 for the light-atom and low-symmetry struc-

ture (BCDIMP), 0.46 for the light-atom high-symmetry space

group (TOTC), and 0.15 for the structure with a heavy atom

(ERICA); (ii) the trend of the oscTH2 curves versus h�Ai is
not similar in the three figures. The rationale may be the

following: both TH2ðrÞ and TH1 have the same coefficients [i.e.

ð1�m2
hjFhj2Þ], and therefore should have a similar trend

versus h�Ai. The ratio TH2ðrÞ=TH1 is therefore more influ-

enced by the specific characteristics of the model rather than

the h�Ai value.
TH2 may be closely related to Patterson deconvolution

methods. Since early times it was clear that a Patterson map is

a sum of structure images as seen from the atomic positions

(Wrinch, 1939; Buerger, 1959; Beevers & Robertson, 1950;

Garrido, 1950). To derive a single image of the structure from

a Patterson map it is necessary to apply a deconvolution

process. Quite effective are the implication transformations

(see Pavelčı́k, 1988; Pavelčı́k et al., 1992, and literature quoted

therein): they are symmetry operations which transform a

region of the Patterson map defined via specific symmetry

rules into a function whose maxima may coincide with the

atomic positions. A typical implication transformation is

JsðrÞ ¼ P½ðI� CsÞr�; ð23Þ
where ðI� CsÞr represents any point lying in the Harker

(1936) section HSðI;CsÞ of the Patterson map. From a math-

ematical point of view, the implication transformation may be

accomplished by using the reflexive generalized inverse D

s of

the matrix Ds ¼ I� Cs (Ben-Israel & Greville, 1974; Ardito et

al., 1985):

r ¼ D

s bðI;CsÞ þ ðI�D


sDsÞr;
where bðI;CsÞ ¼ ðI� CsÞr.

If Cs represents symmetry operators 1; 3; 4; 6 then the three
coordinates of r may be derived without ambiguity; if it
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Figure 3
BCDIMP. oscTH2, oscTD and oscTHD versus h�Ai for four model
structures.

Figure 4
TOTC. oscTH2, oscTD and oscTHD versus h�Ai for four model
structures.

Figure 5
ERICA. oscTH2, oscTD and oscTHD versus h�Ai for four model
structures.
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represents symmetry operators 2, 3, 4, 6 one component of r

remains undefined; if Cs represents the operator 2, two coor-

dinates remain undefined.

When more symmetry operators coexist the so-called

symmetry minimum function (SMF) is frequently used,

proposed in early times by Buerger (1959) and applied by,

among others, Nordman (1966), Richardson & Jacobson

(1987) and Sheldrick (1992):

SMFðrÞ ¼ M
n

s¼2
Js ðrÞ;

where the operator M indicates that the lowest value among

the n � 1 (we omit the identity from the set of symmetry

operators) functions Js has to be chosen.

There are several ways of exploiting the information

contained in the Harker sections. For example:

(a) The Fourier transform of the Harker sections may be

used for defining the values of the one-phase semi-invariants

(Ardito et al., 1985; Cascarano et al., 1987).

(b) By combining the symmetry minimum function with

superposition techniques (Pavelčı́k, 1988; Pavelčı́k et al., 1992;

Sheldrick, 1992, and more recently Caliandro, Carrozzini,

Cascarano, De Caro, Giacovazzo, Mazzone & Siliqi, 2008).

These last authors were able to solve ab initio proteins up to

7890 atoms in the asymmetric unit.

Different uses of the Harker sections imply different types

of calculations. When the Harker sections are used for esti-

mating structure semi-invariants or for Patterson deconvolu-

tion, only some sections may be considered and the symmetry

minimum function should be calculated with respect to them.

Indeed (see Ardito et al., 1985 for the algebraic analysis):

(i) An interatomic vector u ¼ ðCs � CqÞr lying on the

Harker section HSðCs;CqÞ may be rewritten as u ¼
ðI� CqÞCsr. Accordingly, the information contained in

sections of type HSðCs;CqÞ is equivalent to that provided by

sections of type HSðI;CqÞ.
(ii) If Cs 6¼ C�1

s then HSðI;C�1
s Þ provides the same infor-

mation as HSðI;CsÞ.
(iii) If Cq is the transform of Cv by the element Cs (i.e.

Cq ¼ CsCvC
�1
s ) then HSðI;CqÞ provides the same information

as HSðI;CvÞ.
When Harker sections are used to calculate the variance, all

the HSðI;CsÞ concur to define it: one should allow s to vary

freely from 1 to n. In this case the symmetry minimum function

should not be used – it should be replaced by the symmetry

sum function. Indeed, according to equation (19), TH ðrÞ may

be rewritten as

TH ðrÞ ¼ V�1
Pn
s¼1

fP½ðI� CsÞr� � Pw½ðI� CsÞr�g; ð24Þ

where Pw is the Patterson synthesis with coefficients m2
hjFhj2.

In terms of implication transformations equation (24) may

also be rewritten as

THðrÞ ¼ V�1
Pn
s¼1

½JsðrÞ � JwsðrÞ�; ð25Þ

where Jws is the implication function corresponding to Pw.

From equations (24) and (25) the following conclusions

arise:

(a) In acentric space groups the variance, through the

component THðrÞ, is related to the implication transforma-

tions Js(r) directly provided by the Patterson synthesis only at

the beginning of the phasing process, when a random model is

available. As soon as CORR increases, Jws(r) is no longer

negligible and the variance is related to the differences

between Js(r) and Jws(r); it will vanish in the last stages of a

successful phasing process.

(b) In centric space groups the variance is fully related to

the implication transformations because it coincides with

2THðrÞ.
(c) When the symmetry minimum function is applied to

intersecting Harker sections for defining the atomic positions,

it contributes to make the density distribution more concen-

trated in a specific point of the unit cell. If the symmetry sum

function is applied, as for the case of the variance, the density

distribution is more dispersed into the unit cell.

Let us use two examples to better describe the properties of

the symmetry sum function.

Example (1). Space group P2, C1 = I, C2 = 2[010]. According

to equation (19)

THðrÞ ¼ 2

V2

X
h>0

jFhj2ð1�m2
hÞ þ

2

V2

X
h>0

jFhj2ð1�m2
hÞ

� cos½2�hðI� C2Þr�:

TH1 is constant for any point of the unit cell, TH2 attains its

maxima in all the points r = (x, y, z) giving rise to maxima in

the Harker section HS(I, C2). Thus, if (u = 2x, w = 0, w = 2z)

corresponds to a maximum in the Harker section, then TH2

will remain constant for all the points (x, y, z), with y free. For

example, all the points (x, y, z) have the same TH2 as the

points (x, 0, z): TH2 is therefore constant along columns

parallel to the b axis.

Example (2). Space group P212121, C1 = I, C2 = 21[100], C3 =

21[010],C4 = 21[001]. TH1 is constant for any point of the unit cell.

In addition, three sets of columns, parallel to a, b, c, respec-

tively, are originated by maxima in the three Harker sections

HS(I, Ci), i = 2, 3, 4. The domains where the sets of columns

intersect each other are used in different ways according to

whether the symmetry minimum function is employed (then

the minimum among the density values of the intersecting

columns is chosen) or the symmetry sum function is employed

(then the sum of the density values of the intersecting columns

is used). The variance calculation requires the use of the

symmetry sum function.

A particularly important aspect concerns the periodicity of

TH2: we will show that it is related to the Cheshire cell

(Hirshfeld, 1968). Let us consider, for a given space group, the

allowed or permissible origins (see Giacovazzo, 1998, and

literature quoted therein): they are those points of the unit cell

which, when taken as the origin, maintain the same symmetry

operators Cs; s ¼ 1; . . . ; n. They are easily recognizable in

International Tables for Crystallography, Vol. A (Hahn, 1992),

because they have the same ‘symmetry environment’. It was
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shown by Giacovazzo (1998) that all origins allowed by a fixed

functional form of the structure factor are connected by

translational vectors X0 for which

ðRs � IÞX0 ¼ V; s ¼ 1; 2; . . . ; n ð26Þ
where V is a vector with zero or integer components.

Let us now consider, in the TH2 expression [see equation

(19)], the cosine cos½2�hðI� CsÞr�. It does not change if

calculated in the point r or in rþ X0, where X0 is defined by

equation (26). Consequently, TH2 has the same periodicity of

a Cheshire cell, e.g. in P2 the Cheshire cell is defined by (a/2,

"b, c/2) (" is an infinitesimal quantity), and in P212121 by (a/2,

b/2, c/2). As a consequence, positions compatible with the

Harker sections are repeated in each Cheshire cell by trans-

lation, to give the complete TH2 map [the reader may check

Fig. 2, where the Cheshire cell (a/2, b/2, c/2), characteristic of

P1, is clearly recognizable]. It may be useful to recall that,

when the symmetry minimum function is used for phasing

attempts, this enhanced periodicity (summed to the centric

nature of the Patterson map) causes formidable difficulties for

the success of the phasing process; adequate filtering algo-

rithms (Burla et al., 2002, 2006) are required to restate the

correct space-group symmetry of the target structure and to

solve it. The Cheshire periodicity is instead the natural peri-

odicity of TH2.

Equations (19) and (21) allow us to discover another

feature of TH2, valid for symmorphic space groups, no matter

whether they are centric or acentric. The last summation in

these equations reduces to
Pn

s¼1 cos½2�hðI� RsÞr�, which

attains its maximum value (equal to n) in the origin of the unit

cell, where, for acentric crystals,

TH1 ¼
2

V2

X
h>0

ð1�m2
hÞjFhj2; TH2ð0Þ ¼ nTH1;

for centric crystals,

TH1 ¼
2

V2

X
h>0

ð1�m2
chÞjFhj2; TH2ð0Þ ¼ nTH1:

Such a TH maximum is independent of the target and of the

model structure, and only depends on the space-group

symmetry. The question is: is it possible to foresee whether

other points in the unit cell exist with the same properties

of the origin? The answer is easily obtained from equation

(26): indeed for any other permissible origin the sumPn
s¼1 cos½2�hðI� RsÞr� will be equal to n. It may be concluded

that in symmorphic space groups all the allowed origins will

show TH maxima, and therefore variance maxima, no matter

what the model and target structures; the simplest example

has been described in x3 and Fig. 2, where the variance

maxima on the inversion centres for P1 are shown.

9. About the variance component TD(r)

TD is a function of the point r, is non-centrosymmetric,

depends on the space-group symmetry and, through the phase

values, on the atomic positions of the model structure. While

THðrÞ (on average) tends to be maximized when CORR = 0

and minimized when CORR = 1, TDðrÞ shows a different

trend: it tends to vanish both when CORR = 0 and when

CORR = 1.

It may be useful to determine whether TDðrÞ may be

neglected when compared to TH1. The simplest way is to

calculate for each pair of target–model structures the TDðrÞ
map and look for

oscTD ¼ max½jTDðrÞj=TH1�:
We used the same model–target structures as those described

in x8. The values of oscTD are plotted in Figs. 3–5 (red

squares) versus the parameter h�Ai. We notice:

(a) Unlike TH2, TDðrÞ has the characteristic of an observed

Fourier synthesis. Indeed it is calculated via observed ampli-

tudes, with weights depending on the correlation between

model and target structures {e.g. ½m2
h �D2ðXhÞ�}, and model

phases. Thus TDðrÞ should simultaneously show features of

the model and of the target structures, with more emphasis on

one or the other structure according to the value of CORR.

(b) oscTD reaches values up to 0.18 in BCDIMP; as an

effect of the higher symmetry, values up to 0.43 are attained

for TOTC, and, as an effect of the heavy atom, values of 0.37

for ERICA.

(c) As for TH2, the trend of the oscTD curves versus h�Ai is
not the same in the three figures (increasing with h�Ai in

BCDIMP and ERICA, decreasing in TOTC). Indeed both TD

and TH1 tend to be minimized when CORR tends to unity: in

these conditions the trend of the ratio jTDðrÞj=TH1 is mainly

defined by the characteristics of the specific model.

To better understand the properties of TDðrÞ in any acentric
space group we notice:

(i) If r is an atomic position and Cs varies over the set

of symmetry operators, ðI� CsÞr represents the interatomic

vectors connecting r with its symmetry equivalents.

(ii) ðI� CsÞr does not change with an origin translation

(that allows TH2 to be related to the Patterson function),

while ðIþ CsÞr changes with it.

(iii) ðIþ CsÞr, when Cs varies over the set of symmetry

operators of the space group, represents the potential inter-

atomic vectors between the atom in r and the atoms ideally

related to it by the symmetry operators �Cs, existing in the

related centrosymmetric space group, provided the inversion

centre is located at the origin.

On the basis of this interpretation we can apply the impli-

cation transformation to the ðIþ CsÞr positions included in the
expression. Accordingly, ifRs corresponds to a rotation axis of

order 3, 4, 6, then the TH density is of the columnar type and

the TD density is of the point type (the three coordinates of r

are fixed without ambiguity). If Rs corresponds to a twofold

axis, the TH density is of the columnar type and the TD

density is of the planar type, and vice versa for a twofold

inversion axis.

In agreement with the preceding observation it is easily

seen that the periodicities of TDðrÞ and of TH2ðrÞ do not

coincide. For example, while the periodicity of TH2ðrÞ in P2

reflects the Cheshire cell (a/2, "b, c/2), that of TDðrÞ mostly

complies with ("a, b/2, "c). Indeed the implication transfor-
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mation, applied to the point uj ¼ ðIþ CsÞrj ¼ ð0; 2yj; 0Þ, leads
to a density distribution that is constant in the plane y = yj.

Accordingly, TDðrÞ shows a periodicity of b/2, while it is

approximately constant in the planes perpendicular to b.

To check if the variance significantly varies from point to

point, we plotted in Figs. 3–5 by yellow triangles the values of

oscTHD ¼ max½jTH2ðrÞ þ TDðrÞj=TH1�:
It is easily seen that the concept of map variance, assumed to

be valid as a first approximation in P1, cannot be maintained

for higher-symmetry space groups. More precisely, the

variance component TH1 may still be considered the mean

value of the map variance, but now the variance significantly

varies from point to point.

10. A general expression of the variance valid at any
stage of the structure analysis

If CORR is not very high, the contribution to the variance

arising from measurement errors is negligible; indeed it

depends on �2ðjFhjÞ, which is usually quite a small percentage

of the jFhj2 moduli. At the end of a satisfactory structure

refinement, m2
h ’ 1 for nearly all the reflections; then the

phases ’ph are distributed about the target values according to

Dirac delta functions and the variance arising from the phase

uncertainty nearly vanishes: the variance depending on

measurement errors is now dominant.

The above situation is ideal and rare; indeed the final

structure model may contain some inadequacies (e.g.

hydrogen positions not well defined, occupancy factors not

perfectly fixed, imperfect displacement parameter estimates

etc.). The usual crystallographic refinement constitutes a

model limitation, which may be overcome if favourable

conditions exist for multipolar refinement. In this case the

phases of some weak reflections, characterized by small m2
h

values, may still be far away from their correct values: then the

variance estimates described in this paper will not be negli-

gible, and may contribute substantially to the total map

variance. It may then be useful to combine into a unique

variance expression the contribution arising from phase

uncertainties and that related to measurement errors.

In x2 we recalled the expression of the variance obtained by

Coppens & Hamilton (1968), valid in P1 under the condition

that model and target phases coincide; then the variance may

only originate from measurement errors (say �jFj). We want

to obtain, under the same conditions, the general expression of

the variance valid for any acentric space group (not provided

by Coppens & Hamilton). The full procedure described in this

paper may be repeated under modified hypotheses. In parti-

cular, the electron density to consider is

��ðrÞ ¼ 2

V

X
h;ind

�jFhj
Xn
s¼1

cos½’pðhÞ � 2�hCsr�;

where�jFhj ¼ jFjobs � jFjtrue, and the assumptions are: (i) the

same �jFj is associated with symmetry-equivalent reflections;

(ii) h�jFji = 0, and h�jFhj�jFkji = 0 if h 6¼ k; (iii)

h�jFhj�jFhji ¼ �2ðjFhjÞ, where �ðjFhjÞ is the standard devia-

tion of the observed structure-factor modulus. Since

h��ðrÞi ¼ 0 we obtain

�2½�ðrÞ� ¼ 4

V2

X
h;ind

�2ðjFhjÞ
Xn
s;q¼1

cos½’pðhÞ � 2�hCsr�

� cos½’pðhÞ � 2�hCqr�
¼ 2

V2

X
h;ind

�2ðjFhjÞ þ
2

V2

X
h;ind

�2ðjFhjÞ

�
Xn
s 6¼q¼1

cos½2�hðCs � CqÞr�

þ 2

V2

X
h;ind

�2ðjFhjÞ
Xn
s;q¼1

cos½2’pðhÞ � 2�hðCs þ CqÞr�:

Such a formula may be combined with equation (12) to obtain

a general expression valid at any stage of the crystallographic

phasing. In detail

var�ðrÞ ¼ TH1 þ TH2ðrÞ þ TDðrÞ
where

TH1 ¼
2

V2

X
h>0

ð1�m2
hÞjFhj2 þ �2ðjFhjÞ

TH2ðrÞ ¼
2

V2

X
h;ind

½jFhj2ð1�m2
hÞ þ �2ðjFhjÞ�

�
Xn
s 6¼q¼1

cosf2�h½ðCs � CqÞr�g

TDðrÞ ¼ � 2

V2

X
h;ind

fjFhj2½m2
h �D2ðXhÞ� � �2ðjFhjÞg

�
Xn
s;q¼1

cos½2’pðhÞ � 2�hðCs þ CqÞr�:

If CORR 6¼ 1, the contribution to the variance provided by

measurement errors is negligible.

Let us now extend to all centric space groups the P1

Coppens & Hamilton (1968) formula for the variance, in such

a way that the new expression is valid at any stage of the

structure analysis. We obtain

var�ðrÞ ¼ 1

V2

X
h;ind

½jFhj2ð1�m2
chÞ þ �2ðjFhjÞ�

�
Xn
s;q¼1

cos½2�hðCs � CqÞr�:

11. Variance of E-Fourier syntheses

In the everyday work of a crystallographer E-Fourier synth-

eses are often preferred to F syntheses, particularly in the

steps dedicated to crystal structure solution. It is also therefore

useful to derive the variance for these maps. Luckily the
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method described above may be applied without substantial

modifications. The corresponding final formulas are:

(a) For acentric crystals,

var½�ðrÞ�N ¼ THN1 þ THN2ðrÞ þ TDNðrÞ;
where

THN1 ¼
2

V2

X
h>0

ð1�m2
hÞjEhj2

THN2ðrÞ ¼
2

V2

X
h;ind

jEhj2ð1�m2
hÞ
Xn
s6¼q¼1

cosf2�h½ðCs � CqÞr�g

TDNðrÞ ¼ � 2

V2

X
h;ind

jEhj2½m2
h �D2ðXhÞ�

�
Xn
s;q¼1

cos½2’pðhÞ � 2�hðCs þ CqÞr�:

(b) For centric crystals

var½�ðrÞ�N ¼ 4

V2

X
h;ind

jEhj2ð1�m2
chÞ
Xn
s;q¼1

cos½2�hðCs � CqÞr�:

An interesting characteristic of the E-map variance is the

enhanced ‘peakiness’ with respect to the corresponding F

maps; this property reflects the larger peakiness of the E with

respect to the F electron-density maps. To give an example, we

report in Fig. 6 oscTH2, oscTD and oscTHD versus h�Ai
calculated for a light-atom acentric structure (BCDIMP) by

using E-Fourier coefficients and the same four models

employed in Fig. 3. We notice: (i) oscTD and oscTHD strongly

increase for high h�Ai values (up to 0.78, versus the value of

0.18, the maximum attained for an F synthesis); (ii) the

increase of the variance is more evident at high values of h�Ai,
when peaks are in greater contrast with the background.

It may be worthwhile noticing that the variance for E maps

is expected to be on a much smaller scale than the variance for

F maps. That does not mean that the phase uncertainty is

smaller, but only that usually h|E |2i � h|F |2i. A correct esti-

mate of the information provided by any map should make use

of the variance-based signal-to-noise ratio, as described in x14
(see also Paper I).

12. Variance estimates for hybrid Fourier syntheses

We have shown in Paper I that, if � and ! are any pair of real

numbers, and �QðrÞ ¼ ��ðrÞ � !�pðrÞ a general hybrid elec-

tron density, its variance in P1 is given by

var�QðrÞ ¼ �2var�ðrÞ: ð27Þ
Equation (27) is valid in any acentric or centric space group

provided var�ðrÞ coincides with equation (12) or equation

(18), respectively. Owing to its wide use, equation (27) is

particularly interesting for the difference electron density,

characterized by � = ! = 1.

13. Drawing the variance: a simple example

It may be useful to show by a simple example how the variance

maxima and minima are related to the target and to the model

structures, and how such minima and maxima are influenced

by the symmetry. To make things simpler we will consider

quite a simple space group, P21, and a simulated, non-realistic

target structure with only three atoms in a nearly empty unit

cell, to avoid overlapping of the interatomic vectors in the

Patterson map. We will locate three oxygens, O1, O2, O3, in the

positions (0.00, 0.10, 0.15), (0.20, 0.20, 0.00) and (0.30, 0.40,

0.35), respectively. The corresponding Harker peaks will be

characterized by the following coordinates:

O1�O1: ð0:00; 0:50; 0:30Þ; ð0:00; 0:50; 0:70Þ;

O2�O2: ð0:40; 0:50; 0:00Þ; ð0:60; 0:50; 0:00Þ;

O3�O3: ð0:60; 0:50; 0:70Þ; ð0:40; 0:50; 0:30Þ:
We will first consider the case in which a model is not available

(case 1, only observed amplitudes are known); then we will

create three ideal model structures with different values of

CORR to explore where the variance attains its maxima and

minima (cases 2–4).

Case 1. No model is available. This situation corresponds to

the following statistical problem: estimate the variance of a

hypothetic electron-density map, given the Patterson synth-

esis. The reader may notice that, even if the electron-density

map cannot be calculated because no phase information is

available, its variance may be estimated according to the

present theory. On assuming that the phases are randomly

dispersed between 0 and 2�, TH1 þ TH2ðrÞ may be computed

by fixing mh ¼ 0 for all the reflections. In this case TD (r) = 0,

and the variance coincides with TH1 þ TH2ðrÞ ¼ V�1Pð0Þ
þ V�1P½ðI� C2Þr�, which only depends on the observed

amplitudes.

The maxima of the variance are expected to lie on the

points of the unit cell indicated by the implication transfor-

mations, that is along the columns centred on the lines (0.00, y,

0.15), (0.20, y, 0.00) and (0.30, y, 0.35), respectively; the
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Figure 6
BCDIMP. E-Fourier synthesis, oscTH2, oscTD and oscTHD versus h�Ai
for the same four model structures used in Fig. 3.
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intensity is constant along the columns. Obviously, symmetry-

equivalent columns, displaced according to the periodicity of

the Cheshire cell, will also be present. A graphical repre-

sentation of the variance, more precisely a projection on the

plane (a, c) of the term TH2ðrÞ, is shown in Fig. 7; the variance

columns, parallel to b, contain the oxygen positions, marked in

the figure by red crosses. The Cheshire periodicity and the

centric nature of TH2ðrÞ are clearly recognizable.

The result agrees well with expectations: the variance must

be larger along the columns indicated by the implication

transformations because their density is expected to vary

substantially during the phasing process.

If one of the three oxygen atoms constituting the target

structure is replaced by a heavy atom, the columns corre-

sponding to the heavy-atom–heavy-atom Harker vectors

should have a larger variance intensity. That agrees well with

the expectations. Indeed, during the phasing process, the

variation of the density of the pixels belonging to the columns

should vary in a dramatic way.

The indications of the variance for any attempt at crystal

structure solution are the following: try to locate the atoms of

a possible model inside the columns defined by the implication

transformations. There the variance is larger, and therefore

the electron density is expected to increase. The above

example suggests a first conclusion: the variance expression

‘knows’ the theory of the implication transformations and

suggests locating atoms according to it.

Case 2. Model atoms lie far away from target atomic posi-

tions, CORR = 0. We choose a model structure with three

oxygen atoms (O1, O2, O3) located at (0.10, 0.10, 0.30), (0.15,

0.30, 0.20) and (0.05, 0.40, 0.40), respectively (see green

crosses in Fig. 7). Sincemh ’ 0 for all the reflections, TD(r) = 0

and, as in case 1, THðrÞ ¼ V�1Pð0Þ þ V�1P½ðI� C2Þr�; e.g. the
variance is not influenced by the specific model structure,

provided it is not correlated with the target structure.

Accordingly, the variance will attain its maxima exactly along

the columns defined for case 1 and vanishes along the columns

(0.10, y, 0.30), (0.15, y, 0.20) and (0.05, y, 0.40), containing the

model atomic positions. That agrees well with expectations;

indeed the variance density is not expected to vary during the

phasing process.

Case 3. CORR = 1, model and target atomic positions

coincide, mh close to unity for nearly all the reflections. Then

TH2 ¼ TH1 ¼ TD ¼ 0 and the variance vanishes in all the

points of the unit cell. That is exactly what one may expect: the

electron density is not allowed to vary any more because the

phases are distributed according to Dirac delta functions.

Case 4. CORR is in between 0 and 1, some model atoms lie

far away from target atomic positions. This is the most inter-

esting case: we choose for O1 the same position occupied in

the target structure, and for O2 and O3 the same positions as in

case 2 (see Fig. 8). We calculated for this model h�Ai ¼ 0.63;

mh will then be close to unity for reflections with large values

of Rh and Rph, and close to zero for weak reflections.

According to equation (23), the variance is the sum of:

(a) The constant term TH1 ¼ V�1½Pð0Þ � Pwð0Þ�. Its value
depends on the correlation between the model and target

structures.

(b) The variable term TH2ðrÞ ¼ V�1fP½ðI� C2Þr�
� Pw½ðI� C2Þr�g. As in case 1 the component V�1P½ðI� C2Þr�
attains its maxima on the columns (0.00, y, 0.15), (0.20, y, 0.00)
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Figure 8
Projection on the plane (a, c) of TH2ðrÞ for a three O-atom model and
target structure (h�Ai = 0.63), assigned space group P21. The red crosses
coincide with target atomic positions, the green crosses with the model
atomic positions. One atomic position is in common at (0.00, 0.10, 0.15).

Figure 7
Three O-atom model structure, assigned space group P21. Projection on
the plane (a, c) of TH2ðrÞ in the case in which no model structure is
available, or a model uncorrelated with the target structure has been fixed
(i.e. h�Ai = 0). In both cases var�ðrÞ � TH2ðrÞ þ TH1. The red crosses
coincide with target atomic positions, the green crosses with the model
atomic positions.
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and (0.30, y, 0.35), and symmetry equivalents, and is null along

the columns (0.15, y, 0.20) and (0.05, y, 0.40).

The component V�1Pw½ðI� C2Þr� will subtract density to

the columns suggested by the implication transformations by a

quantity which increases with CORR. If we consider

jFhj2ð1�m2
hÞ, the coefficient of both TH1 and TH2ðrÞ, we see

that the contribution to the variance of the reflections with the

largest observed and calculated amplitudes nearly vanishes

(for themm2
h ’ 1). Accordingly, TH1 and TH2ðrÞ contribute to

the variance mostly through reflections with large observed

and small calculated values. The projection of TH2ðrÞ on the

plane (a, c) is shown in Fig. 9; red crosses and green crosses

indicate the atomic positions of the target and of the model

structure, respectively. Maxima of TH2ðrÞ are still on the

columns passing through the target atomic positions, but the

corresponding density values are weaker. The TH2ðrÞ values
are still vanishing at the model positions far from the target

atoms [owing to the algebraic form of the implication func-

tions, TH2ðrÞ cannot significantly contribute to their density].

(c) The variable term TD(r). Let us write

TDðrÞ ¼ �TD1ðrÞ � TD2ðrÞ � TD3ðrÞ
and analyse the three components (defined below) separately.

We will look for the maxima of TD1, TD2, TD3 by bearing in

mind that they correspond to minima of TD(r) and, probably,

to variance minima.

(i)

TD1ðrÞ ¼
2

V2

X
h>0

jFhj2½m2
h �D2ðXhÞ� cos½2’pðhÞ � 4�hr�:

ð28Þ

Appendix A suggests that maxima of

ð2=V2ÞPh>0 jFphj2 cos½2’pðhÞ � 4�hr� should lie at u ¼
ðrpj1 þ rpj2Þ=2. Since model phases and target amplitudes are

used in equation (28), maxima should stay in correspondence

with half-sums of target positional vectors and of model

positional vectors, provided h�Ai is sufficiently high. Other-

wise the maxima may lie far away from the above ideal

scheme, even because the weights ½m2
h �D2ðXhÞ�minimize the

contribution from the reflections with the largest observed and

calculated amplitudes.

(ii)

TD2ðrÞ ¼
2

V2

X
h>0

jFhj2½m2
h �D2ðXhÞ� cos½2’pðhÞ � 4�hC2r�:

The situation is very similar to case (i): the only difference is

that u ¼ ðrpj1 þ rpj2Þ=2 is replaced by its symmetry equivalent

u ¼ Csðrpj1 þ rpj2Þ=2.
(iii)

TD3ðrÞ ¼
4

V2

X
h>0

jFhj2½m2
h �D2ðXhÞ� cos½2’pðhÞ � 2�hðIþ C2Þr�:

In accordance with x9 the implication transformation calcu-

lated for the point ðIþ C2Þr implies maxima distributed along

sheets centred on the planes (x, 0.10, z), (x, 0.30, z) and (x, 040,

z); 0.10, 0.30, 0.40 are the y coordinates of the model atoms.

The TD3ðrÞ maps, however, cannot behave in strict agreement

with the above indications because observed amplitudes and

special weights are used.

These circumstances make the map quite dependent on the

CORR value, on the specific model structure etc.

In Fig. 9 we show the TD(r) projection on the plane (a, b). It

is easily seen that the most evident features of the map are

the sheets defined by the TD3 implication transformation.

Accordingly, in Fig. 9 such sheets are marked in brown: they

correspond to the TD3 maxima and therefore to the TD

negative minima. To aid readers, we notice that two target

atoms happen to lie on such sheets, and one of them overlaps

with a model atom.

An overview of the variance distribution may be obtained

by looking at the TH2ðrÞ þ TDðrÞ map (see Fig. 10); we

omitted TH1 (it is constant) to emphasize the contrast of the

map. Accordingly, the negative regions of the TH2ðrÞ þ TDðrÞ
map (in brown) correspond to the (positive) minima of the

variance map. We observe:

(a) Since the algebraic form of the implication function

hinders TH2 from providing a significant contribution to the

variance density at the model atomic positions, there the

variance mainly arises from the TD contribution. According to

Fig. 9, the maxima of TD3 lie on sheets centred on the y

coordinate of the model atomic positions. The overall result is

the following: TH2ðrÞ þ TDðrÞ is negative, and therefore the

variance is positive and minimum, on the sheets defined by the

TD3 component.

(b) The positive maxima of TH2ðrÞ þ TDðrÞ (in blue), and

therefore of the variance, mostly coincide with the maxima of

TH2. According to the algebraic form of the implication
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Figure 9
Three O-atom model and target structures (h�Ai = 0.63), assigned space
group P21. Projection of TD(r) on the plane (a, b). The red crosses
coincide with target atomic positions, the green crosses with the model
atomic positions. One atomic position is in common at (0.00, 0.10, 0.15).
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transformations, the maxima correspond to columns parallel

to b. The variance density tends to vanish or to become

negative where the columns intersect the TD3 planes; this is

the condition for two of the three target atoms.

What is the rationale of a variance density like that shown in

Fig. 10? If a model atom does not coincide with a target atom,

the corresponding electron density is expected to be small, and

it will vanish when the target structure is recovered. Accord-

ingly the variance is expected to be small at such positions.

If we consider the case in which model and target atom

coincide, the corresponding electron density will be much

larger when the full structure is recovered. Accordingly, the

variance is expected to be large at such positions.

But why does the variance present sheets and columns

rather than globular domains centred on model or target

atoms? This is a kind of indeterminacy which is a consequence

of the specific symmetry: e.g. intersecting Harker sections

would make the variance distribution more concentrated in

globes rather than dispersed in sheets.

14. The signal/noise ratio in electron-density maps

The theory described in this paper suggests an interesting

question: can we estimate the conditional probability of an

electron density �ðrÞ in a point r of the map given the prior

knowledge of a structural model? In view of this we should

consider �ðrÞ as a variable itself, a function of other primitive

variables, the distribution of which should be a priori known.

The answer is simpler if the central limit theorem is invoked.

Let us consider the acentric space groups:

(a) According to the definition given in x1 the electron

density is the sum of a large number of terms, each h term

represented by ð2=VÞRh cosð2�h � r� ’hÞ.
(b) Each h term is statistically independent from the others,

with the mean value given by ð2=VÞmhRh cosð2�h � r� ’phÞ
and variance given by

�2
h ¼

2

V2
½jFhj2ð1�m2

hÞ þ �2ðjFhjÞ�
Xn
s¼1

cos 2�hðI� CsÞr

� 2

V2
fjFhj2½m2

h �D2ðXhÞ� � �2ðjFhjÞg

�
Xn
s¼1

cos½2’pðhÞ � 2�hðIþ CsÞr�:

In accordance with the central limit theorem �ðrÞ will have a

Gaussian distribution with mean value equal to the sum of the

expectation values of each h term [i.e. �obsðrÞ], and with

variance equal to the sum of the variances of the h terms [i.e.

var�ðrÞ ¼P
h>0 �

2
h]. We obtain for �ðrÞ the conditional prob-

ability

P½�ðrÞj�pðrÞ� ’
1

�½�ðrÞ�ð2�Þ1=2 exp � 1

2

½�ðrÞ � �pðrÞ�
�½�ðrÞ�

� �2
 !

;

ð29Þ
where �½�ðrÞ� ¼ ½var�ðrÞ�1=2.

For centric space groups the distribution [equation (29)] is

still valid, but

�2
h ¼

2

V2
½jFhj2ð1�m2

chÞ þ �2ðjFhjÞ�
Xn
s¼1

cos 2�hðI� CsÞr

and var�ðrÞ ¼P
h>0 �

2
h.

The reader may notice that in our mathematical treatment

we did not consider the effects of the limited data resolution

on the conditional distribution [equation (29)]. This subject is

beyond the aims of this paper and will be considered in a

future work.

Equation (29) prompts two additional interesting questions:

may an active variance criterion be useful during the phasing

process, in particular in EDM procedures? May a variance

criterion, combining uncertainty of the phases with measure-

ment errors and taking full account of the space-group

symmetry, be useful at the end of a successful standard (say, by

using the spherical-atom hypothesis) crystallographic refine-

ment?

A complete answer to the above questions is outside the

aims of this paper, and requires extended calculations in a

wide crystallographic area. We limit ourselves to guessing

about the potential advantages arising from the active use of a

criterion based on the variance.

Let us first briefly discuss the first question. In the absence

of any additional prior information (e.g. the envelope for

proteins) the most common criterion for selecting the pixels to

use in the Fourier inversion of a modified electron-density
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Figure 10
Three O-atom model and target structures, assigned space group P21.
TH2ðrÞ þ TDðrÞ map projected on the plane (a, b): we omitted TH1

(which is constant) to emphasize the contrast of the map. The most
negative regions of the map are in brown, the most positive regions in
blue. Red crosses coincide with target atomic positions, green crosses with
model atomic positions. One atomic position is in common at (0.00, 0.10,
0.15). The map is representative of the variance: the blue regions
correspond to the variance maxima, the brown regions to the variance
positive minima.
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map is to fix a threshold TRH for the �obsðrÞ densities (all the
pixels are set to zero unless their density is larger than TRH).

This practice presupposes that the pixel density is the signal

and that the variance for any pixel of the unit cell is constant.

The theory described in this paper states that the variance

varies from point to point in the unit cell, and allows one to

calculate, for any type of electron density (observed, differ-

ence, hybrid) and for any model (no matter whether poor or

not), the corresponding variance values. Then a different

criterion may be used to select the pixels to use in the electron-

density Fourier inversion: for example, the signal/noise ratio,

defined as

SðrÞ=N ¼ �obsðrÞ=�½�ðrÞ�; ð30Þ
where �obsðrÞ may be considered the available signal. All the

pixel densities are set to zero before the Fourier inversion

unless they are larger than a given threshold for SðrÞ=N.

The criterion [equation (30)] allows us to compare the

quality of the information contained in an electron-density

map with that carried out by the related E map or by the

difference or hybrid Fourier synthesis. As an example, the

variance in a point r of a difference electron density is equal to

that of the corresponding electron-density synthesis in the

same point r. However, it is well known that the quality of the

information is quite different. The reason may be easily

understood by calculating the SðrÞ=N ratios for the two

syntheses (see Paper I).

A further advantage of the criterion [equation (30)] is that it

automatically takes into consideration the quality of the

model. For example, if one chooses, in an EDM procedure, to

Fourier invert a fixed percentage of pixels (e.g. 10%, those

corresponding to the largest density values) in all the EDM

cycles, very likely different thresholds of SðrÞ=N are auto-

matically fixed as a consequence of those choices.

Concerning the second question, it is more realistic to think

that some residual model misfit exists at any stage of the

structure refinement. Therefore, combining the residual phase

ambiguity with measurement errors, and taking full account of

the space-group symmetry, may provide a supplementary tool

for a successful multipolar structure refinement.

15. Conclusions

In the literature formulas estimating the variance in any

point of an electron-density map are available; they are only

valid in P1 and in P1, disregard the effects of the space-group

symmetry and only take into account measurement errors. As

a consequence they may be applied only at the end of a

successful phase refinement (e.g. when aspherical-atom scat-

tering factors are introduced for the study of charge-density

distributions), mostly in P1, when phases are considered

correctly fixed.

In this paper new algebraic expressions for estimating the

variance in any point of the unit cell are derived. The formulas

take into account: (i) the space-group symmetry (it is basically

incorrect to disregard it, as the symmetry heavily modifies the

variance); (ii) the uncertainty on the current phases. As a

consequence our theory may be applied at any stage of the

crystal structure determination process, both during the

phasing step and at the phase-refinement stage. In other

words, the theory is valid for poor- as well as for high-quality

structural models.

The new variance expression has been subdivided into three

components, the main properties of which have been char-

acterized as follows:

(a) A term (TH1) that does not vary from point to point but

depends on the misfit between model and target structures. It

fixes the average variance of the map.

(b) A second component (TH2), varying from point to

point, strictly connected with the implication transformations,

a quite basic tool for the Patterson deconvolution. In some

way TH2 ‘knows’ the theory of the implication transformation:

its main task is to fix, via weights depending on the misfit

between model and target structures, the variance on the

points indicated by the implication transformations (i.e. the

points where the target atoms may potentially stay).

(c) A third term (TD), varying from point to point,

depending on the model phases and on the observed moduli.

Its main task is to fix, via weights depending on the misfit

between model and target structures, the variance on points

related to the model structure.

The variance expression, depending on measurement error

and which is available in the literature, has been generalized to

all the space groups. Owing to the orthogonality between

phase uncertainty (depending on the model) and measure-

ment errors (depending on the experiment) unique expres-

sions of the variance taking into account both phase and

measurement errors have been derived for any space group.

APPENDIX A
It is well known that

PðuÞ ¼ �ðrÞ 
 �ð�rÞ ¼ 1

V2

Z
V

X
h;k

FhFk exp�2�i½krþ hðuþ rÞ� dr

¼ 1

V2

X
h;k

FhFk expð�2�ihuÞ
Z
V

exp�½2�iðhþ kÞr� dr;

ð31Þ
where the symbol ‘*’ defines the convolution operation. The

integral on the right-hand side of equation (31) vanishes

except when k ¼ �h: accordingly

PðuÞ ¼ 1

V

X
h

jFhj2 expð�2�ihuÞ: ð32Þ

To check where PðuÞ is maximum let us replace in equation

(32) jFhj2 by its algebraic expression. We have

PðuÞ ¼ 1

V

X
h

XN
j1; j2¼1

fj1 fj2 exp½2�ihðrj1 � rj2 � uÞ�;

which suggests maxima at u ¼ rj1 � rj2.

Let us now consider
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�FFðuÞ ¼ �ðrÞ 
 �ðrÞ
¼ 1

V2

Z
V

X
h;k

FhFk exp�2�i½krþ hðu� rÞ� dr

¼ 1

V2

X
h;k

FhFk expð�2�ihuÞ
Z
V

exp�½2�iðk� hÞr� dr:

The last integral vanishes except when k ¼ h: accordingly

�FFðuÞ ¼
1

V

X
h

FhFh expð�2�ihuÞ ¼ 2

V

X
h>0

jFhj2 cosð2’h � 2�huÞ:

ð33Þ
To check where �FFðrÞ is maximum let us replace in the middle

term of equation (33) FhFh by its algebraic expression. We

have

�FFðrÞ ¼
1

V

X
h

XN
j1;j2¼1

fj1fj2 exp½2�ihðrj1 þ rj2 � uÞ� ð34Þ

which suggests a maximum at u ¼ rj1 þ rj2.
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