

STUDIO ECOTOSSICOLOGICO DI ALCUNI AGROFARMACI

L.Scrano^a, F. Lelario^a, T. Trabace^b, G.Filippo^b e S. A. Bufo^a

 ^a Dipartimento Scienze dei Sistemi Colturali, Forestali e dell'Ambiente, Università degli Studi della Basilicata, Potenza
^b Sezione di Bio-Tossicologia, Metapontum Agrobios, Metaponto

Stato dell'Arte

Prodotti organici di uso fitofarmaceutico efficaci a basse e bassissime dosi

selettività

riduzione delle dosi

Stato dell'Arte

Impatto ambientale non trascurabile

Non si conosce il livello di tossicità

somma della tossicità delle sostanze madri e di quella dei loro metaboliti.

Le norme attualmente in vigore prevedono che l'autorizzazione all'immissione in commercio di un agrofarmaco sia preceduta da una approfondita valutazione del rischio ambientale

La normativa in vigore comporta

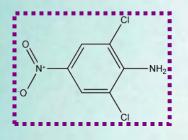
l'esame delle modalità di distribuzione delle sostanze attive e dei loro prodotti di degradazione e/o metaboliti nei diversi comparti ambientali

una valutazione dei danni che tali preparati possono determinare sulle popolazioni animali e vegetali "non-bersaglio" (pesci, alghe, uccelli, organismi del suolo, insetti utili, ecc.)..

I test ecotossicologici permettono di definire una relazione causa-effetto

I risultati ottenuti, validi per le condizioni sperimentali utilizzate, non consentono di estendere le conclusioni ad altre specie o a sistemi naturali complessi

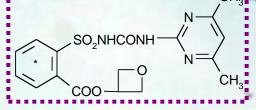
Non possono tenere conto delle complesse interazioni fra biota ed ambiente.


Nessun biotest è in grado di coprire da solo l'intera varietà di risposte ai diversi tipi ed ai vari intervalli di concentrazione di ciascun xenobiotico

organismi differenti evidenziano una diversa sensibilità alle componenti attive ed ai coformulati presenti negli agrofarmaci

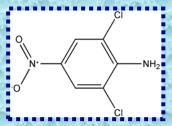
è opportuno implementare test multispecie in cui gli ambiti di sensibilità non si sovrappongano ma, piuttosto, siano complementari

Gli organismi da utilizzare nei test multispecie sono scelti in base alla loro rappresentatività (un procariote, un vegetale, un animale superiore) ed in base alle loro relazioni con la catena trofica.



Dichloran

Materiali e Metodi


Imazethapyr

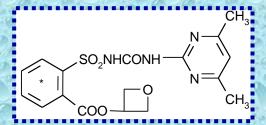
Oxasulfuron

Mepanipyrim

Studio ecotossicologico di alcuni agrofarmaci: Materiali e Metodi

Dichloran

Fungicida,


Classe chimica: nitroaniline

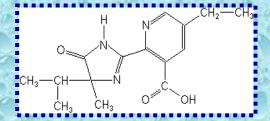
CAS RN 99-30-9

Formula : $C_6H_4CI_2N_2O_2$

Mammiferi - Ora	lle acuta LD50 (mg kg ⁻¹)	Ratto	Moderato			
Mammiferi -	(mg kg ⁻¹):	Ratto	Elevato			
NOEL a breve termine	(ppm dieta):		-			
Uccelli - Acuto Ll	D50 (mg kg ⁻¹)	Anas platyrhynchos	Moderato			
Pesce - Acuto LC	50 (mg l ⁻¹)	Oncorhynchus mykiss	Moderato			
Invertebrati acqu	natici - Acuto EC50 (mg l ⁻¹)	Daphnia magna	Moderato			
	g organisms 28 giorno atic, water (mg l ⁻¹)	Chironomus riparius	Moderato			
Alghe - Acuto EC	C50 (mg l ⁻¹)	Scenedesmus subspicatus	Moderato			
Api - LD50 (μg aj	pe ⁻¹)	Contatto	Moderato			
Lombrichi - Acut	to LC50 (mg kg ⁻¹)	Eisenia foetida	Moderato			
Earthworms - Re	production NOEC (mg kg ⁻¹)	Eisenia foetida	Moderato			

Studio ecotossicologico di alcuni agrofarmaci: Materiali e Metodi

Oxasulfuron


Erbicida,

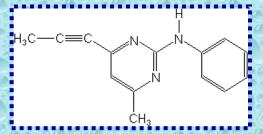
Classe chimica: solfoniluree

CAS RN 144651-06-9

Formula : $C_{17}H_{18}N_4O_6S$

- N			
1	Mammiferi - Orale acuta LD50 (mg kg ⁻¹)	Ratto	Basso
	Uccelli - Acuto LD50 (mg kg ⁻¹)	Anas platyrhynchos	Basso
	Pesce - Acuto LC50 (mg l ⁻¹)	Lepomis macrochirus	Basso
	Invertebrati acquatici - Acuto EC50 (mg l ⁻¹)	Daphnia magna	Moderato
	Piante acquatiche - EC50 (mg l ⁻¹)	Lemna gibba	Moderato
	Alghe - Acuto EC50 (mg l ⁻¹)	Raphidocelis subcapitata, 72 ora	Moderato
	Api - LD50 (μg ape ⁻¹)	Orale	Basso
	Lombrichi - Acuto LC50 (mg kg ⁻¹)		Moderato

Imazethapyr


Erbicida,

Classe chimica: Imidazolinone

CAS RN 81335-77-5

Formula : $C_{15}H_{19}N_3O_3$

		Zan and a second		
	Mammiferi - Ora (mg kg ⁻¹)	le acuta LD50	Ratto	Basso
	Mammiferi -	(mg kg ⁻¹):	Ratto	Moderato
	NOEL a breve termine	(ppm dieta):		-
0	Uccelli - Acuto L	.D50 (mg kg ⁻¹)	Anas platyrhynchos	Basso
	Pesce - Acuto LC50 (mg I ⁻¹)		Oncorhynchus mykiss	Basso
0	Invertebrati acqu EC50 (mg l ⁻¹)	ıatici - Acuto	Daphnia magna	Basso
Š	Piante acquatich	ne - EC50 (mg I ⁻¹)	Lemna gibba	Elevato
	Alghe - Acuto E0	C50 (mg l ⁻¹)	Raphidocelis subcapitata	Basso
0	Api - LD50 (µg a _l	pe ⁻¹)		Elevato
6	Lombrichi - Acu	to LC50 (mg kg ⁻¹)		Basso

Mepanipyrim

Fungicida, Battericida

Classe chimica : Anilinopyrimidine

CAS RN 110235-47-7

Formula $C_{14}H_{13}N_3$

Mammiferi - Ora (mg kg ⁻¹)	le acuta LD50	Ratto	Basso
Mammiferi - NOEL a breve termine	(mg kg ⁻¹):	Ratto	Moderato
	(ppm dieta):		-
Uccelli - Acuto LD50 (mg kg ⁻¹)		Anas platyrhynchos	Basso
Pesce - Acuto LC50 (mg l ⁻¹)		Oncorhynchus mykiss	Basso
Invertebrati acquatici - Acuto EC50 (mg l ⁻¹)		Daphnia magna	Basso
Piante acquatiche - EC50 (mg l ⁻¹)		Lemna gibba	Elevato
Alghe - Acuto EC50 (mg l ⁻¹)		Raphidocelis subcapitata	Basso
Api - LD50 (μg ape ⁻¹)			Elevato
Lombrichi - Acuto LC50 (mg kg ⁻¹)			Basso

Irradiazione UV: lampada UV HPK 125W (Philips), a vapori di mercurio

Determinazioni analitiche: LCQ Thermo-Finnigann, San Josè, CA, USA

TEST ECOTOSSICOLOGICI

- VIBRIO FISCHERI
- DAFNIA MAGNA
- LACTUCA SATIVA

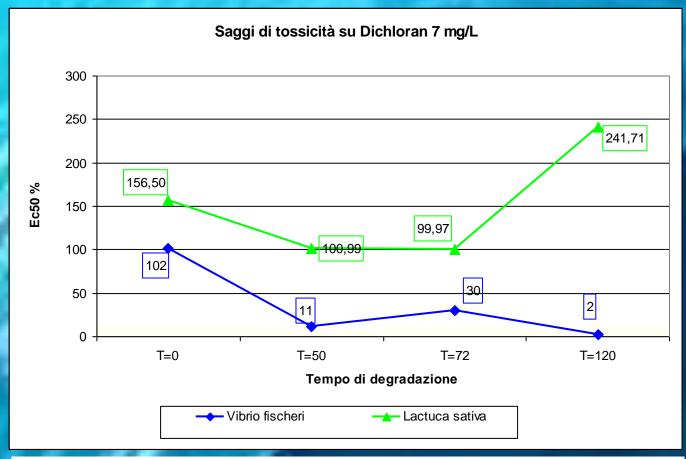
TEST DI TOSSICITÀ ACUTA CON Vibrio fischeri

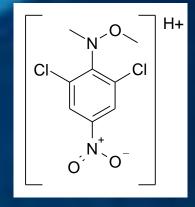
Studio ecotossicologico di alcuni agrofarmaci: Materiali e Metodi

TEST DI TOSSICITÀ ACUTA CON Daphnia Magna

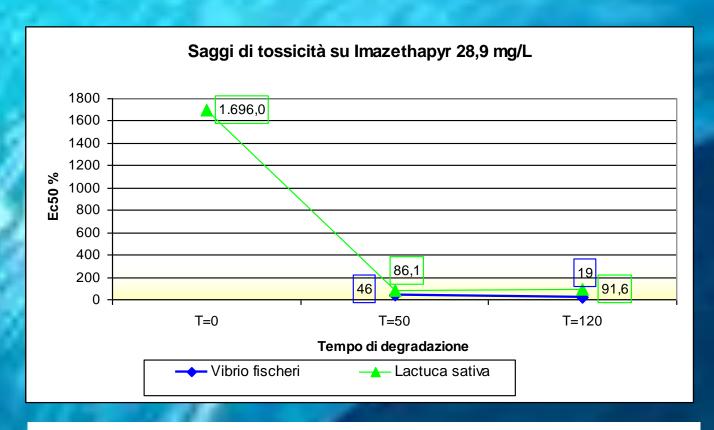
TEST DI TOSSICITÀ CON Lactuca Sativa

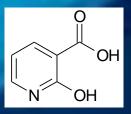
Risultati


Specie test	End-point	Risultati
Vibrio fischeri	Bioluminescenza	% effetto EC ₅₀
Daphnia magna	Immobilizzazione	% effetto EC ₅₀
Lactuca sativa	Germinazione e allungamento radicale	EC ₅₀


Effetto di tossicità (% effetto) degli agrofarmaci testati su Vibrio fischeri, Daphnia magna

Agrofarmaco	tempo di esposizione	Vibrio fischeri Test protocol: Inhibition Test			Daphnia magna Effetto %	
Agroiainaco	di esposizione					
		5'	15'	30'	24 h	48 h
	T=0	46%	55%	57%	0%	30%
	T=50	61%	67%	67%	15%	45%
Dielerenn 7mg/	T=72	45%	56%	60%	5%	20%
Diclorann 7mg/L	T=120	35%	41%	48%	0%	100%
	T=0	10%	10%	7%	5	35%
	T=50	8%	10%	11%	0	5%
Overalliuren 10mg/l	T=72	27%	25%	27%	0	5%
Oxasulfuron 10mg/L	T=120	19%	19%	22%	0	5%
	T=0	34%	63%	81%	65%	60%
	T=50	50%	57%	63%	non testato	non testato
Mananinyrin 22mg/l	T=72	79%	76%	72%	non testato	non testato
Mepanipyrin 22mg/L	T=120	89%	93%	95%	25%	60%
	T=0	8%	-22%	-22%	non testato	non testato
Imazetapyr 28,9 mg/L	T=50	44%	55%	67%	non testato	non testato
iiiiazetapyi 20,9 iiig/L	T=120	76%	85%	78%	non testato	non testato


Effetto di tossicità (% EC 50) degli agrofarmaci testati su Vibrio fischeri, Daphnia magna e Lactuca sativa


Agrofarmaco	Tempo di degradazione	Vibrio fischeri Test protocol: Basic test 81.9 % Ec50 %		Daphnia magna Ec50 %		Lactuca sativa Ec50 %	
		5	15'	30'	24 h	48 h	120 h
	T=0	-	81 [6-988]	102 [5-2064]	non calcolabile	non calcolabile	156,5% [109,8-729]
Diclorann 7mg/L	T=50	17 [5-60]	9 [2-30]	11 [3-36]	non calcolabile	non calcolabile	101% [71,8-167,9]
Dicioranii / mg/L	T=72	121 [46-315]	53 [38-75]	30 [17-55]	non calcolabile	non calcolabile	100 % [n.c.]
	T=120	4 [2-8]	2 [1-5]	2 [1-3]	non testato	non testato	241,7% [128,3-743,3]
	T=0	non calcolabile	non calcolabile	non calcolabile	non calcolabile	non calcolabile	40,1 % [28,4-67,1]
Oxasulfuron 10mg/L	T=50	non calcolabile	non calcolabile	non calcolabile	non calcolabile	non calcolabile	249,8 % [113,5]
Oxasullulon follig/L	T=72	non calcolabile	non calcolabile	non calcolabile	non calcolabile	non calcolabile	95,2 % [63,5-182]
	T=120	non calcolabile	non calcolabile	non calcolabile	non calcolabile	non calcolabile	99,9 % [n.c.]
	T=0	99 [n.c.]	68 [n.c.]	45 [n.c.]	30,54 % [15,23-61,36]	20,32 % [10,82-38,09]	106,2 % [92,4-137,4]
Mananinyrin 22mg/l	T=50	104 [20-523]	64 [51-81]	58 [44-78]	non testato	non testato	77,6 % [n.c]
Mepanipyrin 22mg/L	T=72	20 % [12-32]	27% [13-55]	36% [17-78]	non testato	non testato	3,1% [n.c.]
	T=120	12 [6-21]	8 [5-13]	6 [4-9]	non calcolabile	40,41%[28,5-57,27]	39.5 % [32,3-50,2]
Imazetapyr 28,9 mg/L	T=0	-	-	=	non testato	non testato	1696 % [214]
	T=50	89 [42-186]	59 [38-90]	46 [10-199]	non testato	non testato	86,1 % [68-124,4]
	T=120	23 [14-38]	21 [15-30]	19 [12-32]	non testato	non testato	91,6 % [73,5-132,3]

Caso del Dichloran: il campione a T=50 e a T=120 risultano più tossici nei confronti del Vibrio fischeri che fra i tre test risulta il più sensibile

Caso dell'Imazetapyr: il campione a T=120 è il più tossico ed il test con Vibrio fischeri è il test più sensibile

Conclusioni

Il nostro lavoro ci ha permesso di confermare che:

- I test di tossicità rispondono in maniera differente agli agrofarmaci presenti nell'ambiente,
- I prodotti di degradazione in alcuni casi risultano più tossici della molecola madre.

In particolare:

- Il Dichloran, il Mepanipyrin e l' Imazetapyr sono tossici per il Vibrio fischeri e per la Lactuca sativa
- L'Oxasulfuron, come molecola madre, è tossico solo per la *Lactuca sativa* mentre i metaboliti ai tempi 50 h,72 h, e 120 h evidenziano una minore tossicità

GRAZIE PER L'ATTENZIONE